Академия

24 февраля 2015 года состоялось очередное заседание Президиума Российской академии наук

24 февраля 2015 года состоялось очередное заседание Президиума Российской академии наук

24.02.2015 24 февраля 2015 года состоялось очередное заседание Президиума Российской академии наук Научное сообщение «Проблемы безопасности атомной энергетики». Докладчик — член-корреспондент РАН Леонид Александрович Большов. Присуждение премии имени С.В. Ковалевской 2015 года Видеозапись заседания

Сводка и итоги

 

24 февраля 2015 года

состоялось очередное заседание Президиума Российской академии наук

 

 

Члены Президиума заслушали научное сообщение «Проблемы безопасности атомной энергетики»

Докладчик — член-корреспондент РАН Леонид Александрович Большов  

Институт проблем безопасного развития атомной энергетики (ИБРАЭ) РАН создан после аварии на ЧАЭС для фундаментальных исследований и независимого анализа ядерной и радиационной безопасности распоряжением СМ СССР № 2198р от 3 ноября 1988 г. Развитие требований к безопасности. Усиление требования независимости различных уровней защиты, минимизация возможности развития аварии на следующих уровнях. Радиационный риск во всех состояниях и режимах должен быть сопоставим с риском от других промышленных установок, используемых для аналогичных целей. Не должно возникать необходимости эвакуации за пределы промплощадки. Требования по размещению ядерных установок не должны содержать дополнительных ограничений по сравнению с другими промышленными объектами.

Постановка задачи. При тяжелой аварии на АЭС с реакторными установками с водой под давлением возможно расплавление активной зоны и перемещение значительных масс высокотемпературного топлива на днище корпуса реактора (Авария на TMI-2, 29.03.1979 г.). Перемещение расплава в бетонную шахту реактора чревато длительным взаимодействием с подстилающим грунтом и загрязнением грунтовых вод (Китайский синдром). Образование лавообразных топливосодержащих масс после аварии на Чернобыльской АЭС, 26 апреля 1986г.: предотвращение такого взаимодействия является одной из ключевых задач обеспечения безопасности АЭС; удержание расплава топлива в корпусе реактора; создание и установка специально разработанной ловушки расплавленного топлива (ВВЭР-1000 нового поколения, ВВЭР-1200). Удержание расплава в корпусе: механизмы теплопередачи от расплава к корпусу реактора (или ловушки) вследствие конвекции и теплопроводности; физико-химические процессы в сложных многокомпонентных расплавах (основные компоненты (UO2 , ZrO2 ,Zr, SS); фокусировка теплового потока вследствие разделения фаз; возможность теплоотвода к окружающей воде; механическое поведение днища в условиях неоднородных тепловых нагрузок. Проект расплав, «маска»: получена база данных по теплофизическим свойствам расплава при температурах до 3100К; создана база данных, описывающая ключевые параметры поведения бассейна расплава; создан расчетный инструмент. Удержание расплава в корпусе ВВЭР/PWR. ВВЭР-440: возможно и реализовано в технических решениях за рубежом – АЭС Ловииса (Финляндия), Пакш (Венгрия), Дукованы (Чехия), Моховце (Словакия). ВВЭР-600, ВВЭР-640: возможно, обосновано в проекте РУ. AP-600 (США): возможно, обосновано в проекте РУ. При коротких сценариях ТА (менее суток) удержание в корпусе может быть обосновано для РУ электрической мощностью менее 700 МВт. Для реакторных установок мощностью 1000 и более МВт удержание расплава может быть обеспечено за счет: удлинения сценариев путем увеличения времени до плавления а.з. более 3 суток с использованием дополнительных систем безопасности; использования внешнего устройства локализации расплава – ловушки. Выход расплава из реактора в УЛР. Пример: АЭС Тяньвань (КНР). Моделируемые процессы: перемещение расплава в УЛР. Растекание, застывание, разогрев, плавление, расслоение расплава; теплопередача в неоднородной среде: молекулярная, конвективная; состояние корпуса УЛР; граничная теплоотдача, включая тепловое излучение в полости; химические реакции (12 основных компонентов): нейтрализация агрессивных металлов (U, Zr, Cr), жертвенным материалом (Fe2O3+ Al2O3) и др., состав расплава; выход газов Н2О, Н2, СО; выход активности из расплава. Устройство локализации расплава – «ловушка». Назначение: прием, локализация и захолаживание расплава при авариях c разрушением активной зоны и корпуса реактора.

Последствия тяжелых аварий — опыт Чернобыля. В 1991 году, согласно «Чернобыльскому закону», территории, зараженные Cs свыше 1 Ки/км2, были отнесены к затронутым землям. Их общая площадь составила 160 тыс. км2 с населением около 3 млн. Как показывает Чернобыльский опыт, чрезмерные и радиационно- неоправданные защитные меры (прежде всего эвакуация) могут привести к резкому увеличению негативных психологических, социальных и экономических последствий. Выводы доклада Научного комитета по действию атомной радиации (НКДАР) ООН 2000 «Влияние облучения на состояние здоровья вследствие Чернобыльской аварии»: чернобыльское радиационное воздействие не сказалось на здоровье населения; зарегистрированные и ожидаемые воздействия не стоят в ряду приоритетных задач здравоохранения, а относятся к радиационной эпидемиологии.

Число смертей при радиационных авариях. 1945–1965: 23; 1966–1986: 73; 1987–2007: 66. Всего:162. Реальное число жертв Хиросимы: мгновенная и быстрая гибель – 210 тыс. чел.; отдаленные последствия у 86572 хибакуси – 421 чел. Реальное число жертв Чернобыля: мгновенная и очень быстрая гибель – 31 чел., отдаленные последствия (ликвидаторы и насел.) » 60 чел.

Что неправильно. Основная задача безопасности – защита населения от облучения сверхдопустимыми дозами – поставлена неточно. Аварии с расплавом активной зоны с низким или нулевым уровнем переоблучения обычно имели широкомасштабные последствия вследствие неграмотности населения, противоречивости норм радиационной защиты, плохой коммуникации с населением.

Программно-аппаратные комплексы (ПАК). ПАК для спасательных подразделений ГК «Росатом», чтобы оценить последствия радиационных аварий для окружающей среды (воздух, вода) и населения; ПАК с 3-D моделями для оценки последствий радиационных аварий в сложных промышленных условиях.

Системы аварийного реагирования и радиационного мониторинга в регионах РФ. Территориальные системы создаются в тех регионах РФ, где размещены действующие и строящиеся АЭС, для поддержки работы местной администрации и демонстрации безопасности эксплуатации АЭС (система аварийного реагирования и независимого радиационного мониторинга). Состав и объем работ: создание кризисных центров; создание территориальной автоматизированной системы радиационного мониторинга; разработка и оснащение программных и технических систем; создание мобильных лабораторных комплексов; проведение учений и тренировок.

Уроки Фукусимы. Наихудший сценарий развития аварии на АЭС Фукусима 1 — для расчета выбраны наихудшие (маловероятные) метеоусловия: скорость ветра – 10 м/с, направление ветра - 115 градусов, категория устойчивости – E, локальные осадки в районе г. Владивостока интенсивностью 10 мм/ч. Полная эффективная годовая доза (дети, 1-2 года) в пределах 10 мЗв. Расчетный анализ аварии в 1–3 блоках и 1–4 бассейнах выдержки ОЯТ на АЭС Фукусима Даичи (СОКРАТ). Моделирование атмосферного переноса с помощью ПС «Нострадамус» с учетом подробных метеоданных на территории Японии. Северо-Западный след. Общий итог аварии на АЭС Фукусима-Дайичи. Многие факторы, усугубившие аварию на Фукусиме, были выявлены еще до аварии: отсутствие мер по повышению безопасности; слабая структура планирования и управления тяжелыми авариями; неадекватная оценка внешних факторов риска; слабая система регулирования; недостаточная подготовка персонала по готовности к аварийному реагированию. Не были предприняты необходимые меры по устранению этих недостатков. Жертвы аварии отсутствуют. Рекомендации по защитным мерам. Для основной части японской территории, суммарная радиация доз облучения для населения в течение 20 дней после аварии не превышала 0,1 мЗв. — не требуется защитных мер. Общая доза для населения за 20 дней в наиболее загрязненной префектуре Ибараки достигла 0,6-1,0 мЗв. — рекомендована такая мера профилактики, как контроль загрязнения молока и овощей в течение первого месяца. В северо-западном следе на границе 20-километровой зоны максимальные дозы в течение 20 дней могли достигать 50 мЗв. Ожидаемая доза за первый год без защитных мер могла составить всего 150 мЗв. Эвакуация населения не оправдана — рекомендуются дезактивация, регулярный контроль загрязнения продуктов питания и воды и некоторые другие меры.

Что делать? Следует принять защитные меры для тяжелых, хотя и мало вероятных, аварий. Национальные технические центры должны оказывать поддержку аварийному реагированию и профессиональному информированию населения при радиационных инцидентах. Следует устранить 100-кратный разрыв между порогом воздействия излучения и регламентирующими документами. Образование населения должно стать необходимым условием использования атомной энергии. Система адекватного реагирования (включая образование населения) должна быть создана государством. Выводы. Вопрос о безопасности АЭС будет снят с повестки дня при выполнении ряда условий: обеспечить приемлемый уровень технической безопасности; согласовать правила и нормы по радиационной защите; обязать правительства стран, допустивших использование атомной энергии, обеспечить образование населения в вопросах реальной опасности радиации и адекватное реагирование.

В обсуждении доклада приняли участие:

ак. И.А. Щербаков, д.физ.-мат.н. В.Ф.Водвин, ак. В.Л. Макаров, ак. Д.В. Рундквист, ак. В.Е. Фортов, ак. А.А. Саркисов, ак. В.А. Тутельян, ак. А.А. Макаров, ак. А.А. Лагарьков, ак. Б.Ф. Мясоедов.  

На заседании рассмотрен вопрос о присуждении премии имени С.В. Ковалевской 2015 года (представление Экспертной комиссии и Бюро Отделения математических наук) д. ф.-м. н. Александру Игоревичу Буфетову за цикл работ «Эргодическая теория и ее применения к случайным процессам, представлениям и теории Тейхмюллера». Выдвинут ФГБУН Математическим институтом им. В. А. Стеклова Российской академии наук. 

На заседании Экспертной комиссии присутствовали 8 членов Комиссии из 8. В соответствии с результатами тайного голосования (за - 5, против - 3, недействительных бюллетеней нет) к присуждению премии рекомендована кандидатура д. ф.-м. н. А.И. Буфетова. На заседании Бюро Отделения математических наук РАН присутствовали 14 членов Бюро из 25. В соответствии с результатами тайного голосования (за - 13, против - 0, недействительных бюллетеней - 1) в Президиум РАН представлен проект постановления о присуждении премии д. ф.-м. н. А.И. Буфетову. 

Представленные на соискание премии имени С. В. Ковалевской работы д. ф.-м. н. А. И. Буфетова содержат новые яркие идеи в современной, активно развивающейся области. В них, наряду с доказательством давно стоявших гипотез, предложены новые методы в теории динамических систем, развиты новые и перспективные методы символического кодирования, доказаны новые предельные теоремы для потоков на римановых поверхностях. Также изучены эргодические свойства детерминантных мер и мер Пикрелла. Результаты А. И. Буфетова, находящиеся на стыке динамических систем, теории представлений, теории Тейхмюллера, случайных процессов, вносят фундаментальный вклад в современную эргодическую теорию динамических систем.

Члены Президиума обсудили и приняли решения по ряду других научно-организационных вопросов.