Сапфировое волокно увеличило мощность терагерцевых излучателей
Сапфировое волокно увеличило мощность терагерцевых излучателей
Результаты работы опубликованы в научном журнале Applied Physics Letters.
Генерация и детектирование ТГц-излучения сегодня имеют решающее значение во многих значимых сферах: медицине, системах связи и так далее. ТГц-излучение, находящееся по диапазону между инфракрасным и микроволновым, поглощается биологическими тканями, хорошо проникает сквозь многие диэлектрические материалы (например, пластмассу, бумагу). Кроме того, ТГц-излучение безопасно для живых организмов, поэтому его можно применять в медицине как альтернативу рентгену, а также для проверки качества сельскохозяйственной продукции.
В последние годы ТГц-технологии активно развиваются, созданы варианты ТГц-излучателей и детекторов для разных областей применения. Однако общая проблема подобных устройств — низкая эффективность: только небольшая доля исходных импульсов преобразуется в излучение, большая часть энергии теряется в процессе. Поэтому повышение КПД этой аппаратуры является важной задачей.
Учёные НИЦ «Курчатовский институт» экспериментально подтвердили и модернизировали предложенный ранее метод увеличения эффективности источников терагерцевого излучения.
На поверхность фотопроводящей антенны (ФПА), генерирующей ТГц-излучение, поместили оригинальную линзу, изготовленную из массива сапфировых волокон. Ранее исследователи ИСВЧПЭ РАН продемонстрировали, что такая линза создает значительный оптический контраст на границе с материалом ФПА. Сейчас же эксперимент показал, что за счет этого мощность ТГЦ-излучения, которое генерирует ФПА, возрастает в 8 раз.
«Мы подтвердили свои теоретические расчеты, причем для излучателей большой площади, которые используются для генерации интенсивных ТГц-импульсов. Это прежде всего спектрометры, которые широко применяют в разных областях — от научных исследований до сельского хозяйства, — комментирует Дмитрий Пономарёв, инициатор работы, заместитель директора ИСВЧПЭ РАН. — Кроме того, мы усовершенствовали топологию самого излучателя таким образом, что расстояние между соседними электродами соответствует диаметру сапфирового волокна. Также мы предложили для размещения волокон новую оснастку, которая легко изготавливается аддитивными методами и позволяет расположить волокна с высокой точностью».
В исследовании приняли участие сотрудники Института общей физики им. А.М. Прохорова, РАН, Института физики твёрдого тела РАН и университета Тохоку (Япония).
Источник: НИЦ «Курчатовский институт».