

Атомные и оптические квантовые вычисления (первый отчётный этап)

Станислав Страупе

Центр квантовых технологий физического факультета МГУ имени М.В.Ломоносова

Российский Квантовый Центр

Квантовая вычислительная система на одиночных нейтральных атомах

Задачи первого этапа работ по ДК:

- Разработка теоретической модели ошибок в атомном квантовом регистре
- Реализация классического симулятора гейтовых схем с настраиваемой моделью ошибок
- Настройка реалистичной модели ошибок в симуляторе

Одиночные атомы в массивах микроловушек

Индивидуальная адресация кубитов в массиве

Центр

Квантовых

Ридбергоские состояния одиночных атомов

5

Учитываемые в модели ошибок процессы

• Потери атома из ловушки

Причины:

- столкновения с молекулами остаточного газа (~ 10 100 с)
- Параметрический нагрев (~100 с)
- Продольная релаксация логических уровней кубита

Причина – спонтанное рамановское рассеяние фотонов ловушки Характерное время Т₁~ 10 с для большой отсройки (~30 ТГц)

• Необратимая дефазировка (однородная поперечная релаксация)

Причины:

- флуктуации интенсивности лазера ловушки ($T_2 \sim 1 c$)
- флуктуации положения ловушки ($T_2 \sim 1 c$)
- нагрев из-за рассеяния фотонов ловушки (T₂~1 с)
- флуктуации магнитного поля ($T_2^{\sim} 1 c$)
- Обратимая дефазировка (неоднородная поперечная релаксация)

Причины:

- дифференциальный световой сдвиг характерное время ~ T₂* ~ 10 мс
- Может быть скомпенсирована с помощью спинового эха

Моделирование процессов декогеренции

• Численное решение мастер-уравнения без свободных параметров

 $3\pi/2$

 Полностью квантовое описание движения в ловушке

Рамзи-интерференция

 $\pi/2$

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar}[\hat{H}_0, \ \hat{\rho}(t)] - \frac{i}{\hbar}[\hat{H}_{\rm mw}(t), \ \hat{\rho}(t)] + \left(\frac{\partial\hat{\rho}}{\partial t}\right)_{\rm rel}$$

Расчёт точности двухкубитных гейтов

L.V.Gerasimov et al. arXiv: 2205.03383 (2022)

Моделирование томографии гейта с учётом ошибок

В качестве примера моделирования гейтовой схемы была промоделирована полная томография квантового процесса, соответствующего CNOT гейту (т.е. последовательности **приготовление-H-CZ-H-измерение**)

Таблица истинности CNOT гейта

L.V.Gerasimov et al. arXiv: 2205.03383 (2022)

Центр

Квантовых

Основные результаты (атомы)

- Разработана численная модель квантового регистра на основе одиночных атомов в оптических ловушках
- Модель учитывает все основные механизмы декогеренции. Движение атома в ловушке рассматривается квантовомеханически, что делает модель применимой даже вблизи основного колебательного состояния
- Модель учитывает различные каналы ошибок в двухкубитных вентилях, в том числе некогерентное рассеяние из промежуточного состояния и эффекты отдачи
- Реализован программный симулятор гейтовых схем, имеющий настраиваемую модель ошибок, параметры которой взяты из модельных расчётов
- Показана применимость симулятора для моделирования реалистичных ситуаций, в частности – полной томографии двухкубитного гейта с ошибками

Линейно-оптический квантовый вычислитель

Центр Квантовых Технологий

Задачи первого этапа работ по ДК:

- Разработка численной модели линейнооптического квантового вычислителя
- Разработка модели масштабируемого квантового линейно-оптического квантового компьютера
- Разработка методов эпитаксиального роста микрорезонаторных структур с квантовыми точками
- Разработка и верификация численной модели интегрального сверхпроводящего детектора фотонов

Предлагаемый промежуточный вариант архитектуры

- *ll* Фоковские состояния в зацикленных модах
- *|s* Фоковские состояния в логических модах
- *и* Фоковские состояния, добавляемые на каждой итерации

Итерация 1:

$$|\psi_{in}^{1}\rangle \rightarrow \sum_{s} \sum_{l \in K_{s}} c_{sl} |s\rangle |l\rangle$$

Итерация 2:

$$|\psi_{in}^2\rangle = \sum_s \sum_{l \in K_s} c_{sl} |s\rangle (|l\rangle |u\rangle) \rightarrow \sum_{s_1, s_2} \sum_{l_1 \in K_{s_1}} \sum_{l_2 \in K_{s_2}} c_{s_1 l_1} c_{s_2 l_2}^{l_1} |s_1\rangle |s_2\rangle |l_2\rangle$$

Итерация N:

$$|\psi_{out}\rangle = \sum_{s_1, l_1 \in K_{s_1}} \dots \sum_{s_N, l_N \in K_{s_N}} c_{s_1 l_1} c_{s_2 l_2}^{l_1} \dots c_{s_N l_N}^{l_{N-1}} |s_1\rangle |s_2\rangle \dots |s_N\rangle |l_N\rangle$$

Моделируемая конфигурация

Параметры симулируемого процессора: •Циклическая архитектура •Пороговые детекторы с эффективностью 0.85 •Пропускание петли 0.7

Моделировались вариационные алгоритмы расчёта молекул:

•водорода H_2 •гидрида гелия $He - H^+$

Моделирование ХҮ-модели

Трехкубитная ХҮ модель:

$$H_{XY} = J \sum_{i} (X_i X_{i+1} + Y_i Y_{i+1}) + \frac{B}{4} \sum_{i} Z_i , i = 1, 2, 3.$$

Основное состояние: $|W\rangle = \frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle)$, когда $B \sim J$.

Отработка методов роста и постростовой обработки полупроводниковых КТ

ACM изображение поверхности 5x5 мкм2 и спектр флуоресценции структур с KT InAs/GaAs

Основные результаты (фотоны)

- Разработана численная модель линейно-оптического квантового вычислительного устройства
- Предложена архитектура линейно-оптического процессора с зацикленными модами для реализации вариационных алгоритмов
- В численном моделировании показана принципиальная возможность использования такой архитектуры для моделирования молекулярных гамильтонианов и спиновых цепочек
- Разработаны методы эпитаксиального роста микрорезонаторных структур с квантовыми точками. Разработаны методы постростовой обработки гетероструктур, позволяющие реализовывать трехмерные микрорезонаторные структуры
- Реализована численная модель роста вычислительного кластера в баллистической модели линейно-оптических квантовых вычислений (не вошла в доклад)
- Разработана численная модель интегрального сверхпроводящего детектора фотонов (не вошла в доклад)