# Том 67, номер 12, 2022

| ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ                                                                               |      |
|------------------------------------------------------------------------------------------------------------------|------|
| Особенности применения метода перенормировки с ограничением к изображениям со спекл-шумом                        |      |
| А. В. Кокошкин                                                                                                   | 1167 |
| Метод внедрения и определения подлинности информации в сигнале<br>цифрового изображения по маркеру               |      |
| Е. А. Пухова, В. Ю. Верещагин                                                                                    | 1179 |
| РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ                                                                  |      |
| Экситонный вклад в фотоиндуцированную гига- и терагерцовую диэлектрическую проницаемость полупроводников         |      |
| В. С. Бутылкин, П. С. Фишер, Г. А. Крафтмахер, Ю. Н. Казанцев, Д. С. Каленов,<br>В. П. Мальцев, М. П. Пархоменко | 1185 |
| Исследование ультразвукового поля в акустооптическом кристалле акустическими методами                            |      |
| С. А. Титов, А. С. Мачихин, В. Э. Пожар, М. Ф. Булатов                                                           | 1192 |
| ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ                                                                       |      |
| Лазерное считывание радиосигналов с устройств на поверхностных акустических волнах                               |      |
| В. А. Комоцкий                                                                                                   | 1200 |
| Акустическое двулучепреломление в составном магнитоакустическом резонаторе                                       |      |
| Н. И. Ползикова, С. Г. Алексеев                                                                                  | 1210 |

# ЭЛЕКТРОНИКА СВЧ

| Применение метода конструкторско-технологической оптимизации для повышения надежности субгармонического смесителя сверхвысокочастотных радиосигналов на базе резонансно-туннельного диода |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| К. В. Черкасов, С. А. Мешков, М. О. Макеев, В. Д. Шашурин, Б. В. Хлопов                                                                                                                   | 1216 |
| НОВЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ И ЭЛЕМЕНТЫ                                                                                                                                                 |      |
| Экспериментальные исследования оптических характеристик акустооптического фильтра, работающего в диапазоне 4501700 нм                                                                     |      |
| В. И. Батшев, А. Б. Козлов, М. О. Шарикова, А. С. Мачихин, Г. Н. Мартынов, А. В. Горевой,<br>С. В. Боритко, В. А. Ломонов, Н. А. Моисеева                                                 | 1220 |
| Лазерные системы на АИГ:Nd <sup>3+</sup> для морского лидара ультрафиолетового диапазона                                                                                                  |      |
| А. И. Ляшенко, Е. М. Володина, Ю. А. Гольдин, Б. А. Гуреев                                                                                                                                | 1227 |
| $\pi$ -контакты в ячейках адиабатической сверхпроводниковой логики                                                                                                                        |      |
| И. И. Соловьев, Г. С. Хисматуллин, Н. В. Кленов, А. Е. Щеголев                                                                                                                            | 1232 |
| Авторский указатель                                                                                                                                                                       | 1245 |

# ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 621.396

# ОСОБЕННОСТИ ПРИМЕНЕНИЯ МЕТОДА ПЕРЕНОРМИРОВКИ С ОГРАНИЧЕНИЕМ К ИЗОБРАЖЕНИЯМ СО СПЕКЛ-ШУМОМ

© 2022 г. А. В. Кокошкин\*

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация

\**E-mail: shvarts65@mail.ru* Поступила в редакцию 05.03.2022 г. После доработки 28.06.2022 г. Принята к публикации 20.07.2022 г.

Представлено применение метода перенормировки с ограничением (МПО) для подавления спеклшума цифровых изображений. Тестирование метода происходит на различных видах изображений, полученных с помощью радиолокационной системы с синтезированием апертуры антенны (PCA), гидролокации и медицинских ультразвуковых исследований. Принципиальная возможность существенного снижения уровня спекл-шума обнаружена вследствие того, что МПО перенормирует спектр акустического изображения к модели универсального опорного спектра (УОС), которая является моделью спектра оптического изображения "хорошего" качества. Для повышения общей резкости после применения МПО рекомендовано использовать дополнительную обработку, подходящую к каждому конкретному виду изображений. Предложено оценивать степень подавления спекл-шума с помощью среднеквадратичного отклонения от изображения, усредненного по плавающему окну (спрайту). Проведенное исследование позволяет сделать вывод, что применение МПО к различным цифровым изображениям позволяет существенно снизить присущий им спекл-шум.

**DOI:** 10.31857/S0033849422120075

#### введение

В настоящее время при решении прикладных задач во многих областях человеческой деятельности, как правило, объектом исследования специалистов являются цифровые изображения. Например, радиолокационные системы с синтезированием апертуры антенны (РСА) чрезвычайно широко используются в различных технологиях дистанционного зондирования Земли (ДЗЗ). С помощью РСА можно получать радиолокационные изображения (РЛИ) поверхности Земли вне зависимости от наличия облачности и времени суток. Важным параметром РСА является длина волны сигнала, которая определяет, насколько далеко излучение может проникнуть в исследуемую среду. В некотором смысле родственным РСА по природе формирования цифровых изображений являются гидролокационные системы бокового обзора [1]. Таким образом, РСА (в широком смысле) используют в большом количестве прикладных задач, таких как: экология, природные ресурсы, археология, сельское хозяйство, чрезвычайные ситуации, промышленная и оборонная безопасность. В то же время принципы гидролокации широко используются не только практически во всех перечисленных выше областях, но и при медицинских ультразвуковых исвсех перечисленных выше изображений характерно наличие мешающего объективному анализу мультипликативного спекл-шума. Он возникает из-за интерференции волн, вызванной множественным рассеянием от малых, относительно элемента разрешения, отражателей. Спекл-шум проявляется в виде светлых пятен (и ярких точек), случайным образом разбросанных по всему изображению. Поэтому спекл-картину называют "зернистостью" или "гранулярной" структурой изображения. В отличие от радиолокационных систем с синтезированием апертуры антенны, которые используют для зондирования Земли из космоса, у гидролокационных комплексов изменение рельефа от точки к точке может быть соизмеримо с дальностью до объекта зондирования. Вследствие этого увеличивается вероятность того, что на одной и той же дальности окажется сигнал, отраженный от целей на разных углах прихода. Это приводит к усреднению сигналов, отраженных от разных участков [1]. Данная особенность увеличивает вероятность появления дополнительных спекл-шумов. Таким образом, подавление спекл-шума на изображениях является актуальной задачей практически во всех системах дистанционного зондирования.

следованиях (УЗИ). Необходимо отметить, что для

Все методы подавления спекл-шума имеют своей целью освободить изображение от паразитных шумов и артефактов, выделить границы исследуемых сред и объектов. Данная статья посвящена цифровой обработке уже полученных изображений, в ней не рассматриваются вопросы борьбы со спекл-шумом с помощью различных технических средств повышения качества визуализации (в аппаратной части системы). Для решения конкретных прикладных задач создано большое количество алгоритмов цифровой обработки изображений. В одних случаях применяются медианная фильтрация и локально-усредняющие пространственные фильтры, в других – алгоритмы винеровской, калмановской или гомоморфной фильтрации. Кроме того, для борьбы со спекл-шумом, используются методы с вейвлет-преобразованиями и фрактальным кодированием [1–5].

Цель данной работы — показать, что недавно разработанный оригинальный метод перенормировки с ограничением (МПО) [6—9], помимо особенностей, отмеченных в более ранних публикациях, еще и существенно снижает спекл-шум на цифровых изображениях.

Изначально МПО создавали для решения задач восстановления изображений, искаженных известной аппаратной функцией (АФ), при наличии неизвестных помех и шума [6, 7]. Метод перенормировки с ограничением восстанавливает изображения, искаженные как АФ с осесимметричным спектром, так и с анизотропной АФ типа "смаз". Причем модифицированный МПО может эффективно работать и без определения вида и параметров искажающей аппаратной функции [10]. МПО хорошо проявил себя при работе со спектрально-локальными помехами, и показал устойчивость к воздействию аддитивного шума [11].

При тестировании МПО на различных изображениях выяснилось, что применение этого метода значительно подавляет мультипликативный спекл-шум [9]. Объяснить это можно тем, что после применения МПО в среднем аксиально-симметричная (изотропная) часть амплитудного пространственного спектра исследуемых изображений становится подобной универсальному опорному спектру (УОС), т.е. модели спектра оптического изображения "хорошего" качества [6, 7]. Информация о контурах областей и объектов на изображении содержится не в амплитудной, а в фазовой части спектра. Таким образом, после снижения уровня спекл-шума все границы сред и локализация объектов на изображениях сохраняются. Необходимо отметить, что в этой работе все спектры и модели спектров центрированы, т.е. при визуализации спектров нулевая частота находится в центре изображения.

Для модели УОС предлагается использовать следующую формулу [7]:

$$URS(i, j) = A[Bl \exp(-G1R^{0.75}) + B2 \exp(-G2R^{0.12})],$$
(1)

где A = 128 — половина максимальной яркости,  $B1 = 0.55, B2 = 0.45, G1 = 2.5, G2 = 1.5, R = i^2 + j^2$ . Краткое описание алгоритма МПО согласно [6, 12] приведено в Приложении.

В работах [9, 13] отмечено, что после применения МПО на изображениях РСА проявляется эффект "затуманивания" или легкой "размытости". Поэтому для повышения общей резкости после применения МПО рекомендовано использовать дополнительную обработку, подходящую к каждому конкретному виду изображений. Из большого количества известных методов опытным путем для повышения обшей резкости изображений были выбраны: лапласиан. полъем высоких частот спектра и нерезкое маскирование. В качестве дополнительной обработки после применения МПО были протестированы также: эквализация (выравнивание) гистограмм и гамма-коррекция, но они показали неудовлетворительные результаты. Задание (приведение) гистограмм дало положительный эффект в некоторых случаях.

В данной работе (как и в [13]) лапласиан использовался в своем классическом виде [14]. Что касается "подъема высоких частот спектра", то эта операция состоит в следующем. Чтобы повысить различимость деталей на изображении после процедуры МПО амплитуды высоких частот спектра (ВЧ) умножаются на 1.5. При этом "ограничение" остается в силе, т.е. в окрестности низких частот (вокруг нулевой пространственной частоты) диаметром 9 пикселей значения амплитуд спектра не меняем. Еще один метод повышения резкости используемый в этой работе - "нерезкое маскирование" [14]. Он заключается в вычитании из изображения его нерезкой (размытой) копии. Т.е. сначала размывается исследуемое изображение (в нашем случае для размытия используется усредняющее плавающее окно размером 9 на 9 пикселей). Затем поэлементным вычитанием из исследуемого изображения его нерезкой копии получаем "маску". В заключение прибавляем эту "маску" к улучшаемому изображению.

# 1. ПРИМЕНЕНИЕ МПО К ЦИФРОВЫМ ИЗОБРАЖЕНИЯМ

## 1.1. Изображение РСА

Применение МПО к изображениям РЛС с синтезированием апертуры антенны демонстрируется на примере радиолокационного изображения города Сан-Диего, США (размером 770 на 470 пикселей), полученного на официальном сайте Спутникового центра Европейского союза (The Eu-



**Рис. 1.** Фрагменты исследуемого изображения (слева – собственно изображения, справа – объемный вид яркостей этих же изображений): а, б – РСА; в, г – оптического (прототип сцены для получения изображения РСА); д, е – РСА обработанного МПО; по вертикальной оси объемных рисунков отложены значения яркостей пикселей в градациях серого ("Int" сокращение "intensity" от нуля – черный, до 255 – белый), две оставшиеся оси объемных рисунков по-казывают координаты пикселей яркости на поле изображения (*i*, *j*).

ropean Union Satellite Centre: https://www.satcen. europa.eu/page/sar\_course\_sar).

На рис. 1а показан фрагмент (344 на 344 пикселей) упомянутого выше изображения. Гистограммы яркостей изображений, представленных на рис. 1, показаны на рис. 2. Они нормированы на максимальное значение для каждого изображения. По горизонтальной оси

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022



Рис. 2. Нормированные гистограммы распределения яркостей изображений: РСА (а), оптического (б), РСА, обработанного МПО (в).

отложены градации яркостей ("Int" сокращение "intensity" от 0 – черный, до 255 – белый).

Анализ рис. 1 и 2 позволяет сделать вывод о том, что по своей объемной структуре более близким к "идеальному", чем изображение PCA (см. рис. 1б), является обработка PCA изображения с помощью МПО (см. рис. 1е). На это же указывает и большая "схожесть" форм гистограмм яркостей рис. 26 и 2в по сравнению с рис. 2а. Это подтверждается статистическими характеристиками пространственных яркостей на исследуемых изображениях (табл. 1).

Таблица 1. Статистические характеристики пространственных яркостей на РСА изображении рис. 1а обработанном МПО и лапласианом

| Значения | Тип изображения |     |         |           |
|----------|-----------------|-----|---------|-----------|
|          | OI              | SAR | SAR MRL | SAR MRL L |
| М        | 85              | 56  | 99      | 99        |
| S        | 49              | 65  | 53      | 55        |

Примечание. M (middle) – среднее значение, S (square) – среднее квадратичное отклонение (CKO), OI (optical image) – оптическое изображение, SAR (synthetic aperture radar) – PCA-изображение, SAR MRL (method of renormalization with limitation) – изображение PCA, обработанное методом перенормировки с ограничением, SAR MRL L (laplacian) – изображение PCA, последовательно обработанное методом перенормировки с ограничением и лапласианом.



**Рис. 3.** Гидролокационное изображение затонувшего корабля: а, в – собственно изображения; б, г – объемный вид яркостей этих же изображений; а, б – исходное гидролокационное изображение; в, г – применение МПО к рис. За; по вертикальной оси объемных рисунков отложены значения яркостей пикселей в градациях серого ("Int" сокращение "intensity" от нуля – черный, до 255 – белый), две оставшиеся оси объемных рисунков показывают координаты пикселей яркости на поле изображения (i, j).

Из данных табл. 1 видно, что средние значения яркостей изображений РСА, обработанных методом перенормировки с ограничением (в том числе и с примененным последовательно лапласианом), равны 99 при 85 "идеальных", присущих оптическому изображению, в то время как для изображения РСА средняя яркость соответственно равна 56 условных градаций яркости. Среднее квадратичное отклонение яркостей у МПО и МПО плюс лапласиан (53 и 55) тоже ближе к "идеальному" оптическому (49), чем СКО исходного изображения РСА (65).

#### 1.2. Гидролокационные изображения

Рисунок За представляет собой гидролокационное изображение фрагмента морского дна с затонувшим судном (размером 668 на 512 пикселей) [13], которое полученное с помощью интерферометрического гидролокатора бокового обзора (ИГБО) [15, 16], имеющего следующие технические характеристики:

1) разрешающая способность ИГБО по направлению движения 1.5 градуса, разрешение по наклонной дальности 0.03 м;

2) рабочая частота ИГБО 450 кГц;

3) средняя квадратичная погрешность измерения глубин ИГБО в полосе обзора до трех глубин не хуже 1% от глубины съемки, чувствительность к изменению коэффициента обратного рассеяния грунтов не менее 10%;

4) полоса съемки (обзора) ИГБО до 100 м на один борт;



**Рис. 4.** Нормированные гистограммы изображений: а – для исходного гидролокационного изображения рис. 3а; б – для обработки МПО рис. 3в.

5) зондирующий сигнал — импульсный с линейно-частотной модуляцией.

В состав многофункционального гидролокационного комплекса АГКПС 100 входили дополнительные датчики:

1) приемник спутниковой навигации,

2) датчики крена дифферента и вертикальных перемещений,

3) гирокомпас,

4) измеритель скорости звука в воде.

Гидролокационную съемку проводили при движении судна по параллельным направлениям (галсам) на расстоянии 20 м между ними. Полученные на параллельных галсах акустические изображения наносили на географическую карту с учетом показаний, входящих в состав комплекса датчиков [11]. Особенностью построения карты является то, что изображения с соседних галсов не перекрываются (не происходит усреднения изображения с соседних галсов). Представленное на рис. За затонувшее судно имеет длину 40 м и лежит на глубине 17 м [13]. Рисунок 3в иллюстрирует применение метода перенормировки с ограничением к рис. За.

Рисунок 3 наглядно демонстрирует существенное снижение уровня спекл-шума после применения МПО к гидролокационному изображению. Об этом свидетельствует структура объемных изображений. Исходное изображение (см. рис. 3а, 3б) заполнено спекл-шумом по всему полю, в то время как обработка МПО (см. рис. 3в, 3г) убирает яркие точки, оставляя контуры корабля в неприкосновенности. Особый интерес представляет сравнение гистограмм яркостей этих изображений (рис. 4). Гистограммы нормированы на максимальное значение для каждого изображения.

Нормированная гистограмма гидролокационного изображения (см. рис. 4а) имеет явно выраженный максимум, а значения яркостей растянуты по всему диапазону. Обращает на себя внимание значительное количество пикселей максимальной яркости (255 по горизонтальной оси на рис. 4а). Эти пиксели и являются спекл-шумом. Применение МПО к такому изображению в результате дает более "правильный", в смысле подобия гауссовой кривой, вид гистограммы изображения с математическим ожиданием примерно посередине диапазона изменений яркостей (см. рис. 4б). При этом последняя гистограмма (рис. 4б) показывает отсутствие спеклов (большого количества пикселей максимальной яркости) на изображении, обработанном МПО. Это можно считать подтверждением того, что метод перенормировки с ограничением успешно борется со спекл-шумом.

Как отмечалось ранее, при подавлении спеклшума с помощью МПО возникает эффект "затуманивания" или легкой "размытости". Поэтому в качестве постобработки для повышения резкости используем повышение амплитуд высоких частот спектра, лапласиан и нерезкое маскирование. Для оценки снижения уровня спекл-шума были вычислены статистические характеристики значений яркостей на изображениях, обработанных МПО с дополнительными процедурами. В табл. 2 приведены средние значения, СКО по всей площади изображения, средние СКО по плавающему окну (спрайту) размером 9 на 9 пикселей. Средние СКО по спрайту более показательны для оценки подавления спекл-шума, они вычисляются не от среднего значения по всему изображению, а как отклонение от усредненного плавающим окном уровня вокруг соответствующего пикселя.

Из данных табл. 2 можно установить, что при сохранении общего среднего значения яркостей СКО по спрайту у обработанных тем или иным способом изображений существенно меньше, чем у исходного акустического изображения. МПО с поднятием ВЧ в 1.5 раза как визуально. так и по своим статистическим характеристикам достаточно хорошо справляется с задачей повышения общей резкости изображения. Однако дальнейшая постобработка может привести к появлению артефактов, о чем свидетельствуют изменения статических характеристик и увеличение площади "белых" областей. Это проявляется и в изменениях гистограмм. Таким образом, применять дополнительные пространственные методы для увеличения резкости на подобных изображениях надо с осторожностью, однако постобработка весьма желательна для акустических изображений после применения МПО без поднятия ВЧ [13].

В других случаях это может быть не так. Акустические изображения существенно отличаются от оптических по своей структуре, а в зависимости от способа регистрации могут существенным образом отличаться и друг от друга. Поэтому методика обработки разных акустических изображений варьируется в каждом конкретном случае. В качестве второго примера используем гидролокационное изображение затонувшего корабля на фоне дна размером 3000 на 1085 пикселей (https:// www.kongsberg.com/ru/maritime/products/oceanscience/mapping-systems/sonars/SAS/). Для наглядности и удобства работы возьмем фрагмент исходного изображения размером 1024 на 1024 пикселя (передняя часть затонувшего корабля), показанный на рис. 5а.

Для рассматриваемого нами случая гистограмма исходного акустического изображения показана на рис. 6а, а гистограмма результата применения МПО к этому изображению – на рис. 6б. Формы гистограмм на рис. 6 радикально отличаются от форм гистограмм на рис. 4. Рисунок 6 демонстрирует наличие большого количества пикселей черного цвета на изображениях (максимум вблизи нуля по горизонтальной оси). Гранулярная структура рис. 5а такова, что вся информативная часть подобных изображений представляет собой пиксели разных яркостей, разбросанные по черному фону. Применение метода перенормировки с ограничением к рис. 5а несколько трансформирует форму гистограммы. На рис. 66 видно относительное увеличение количества "ярких" пикселей по сравнению с рис. 6а. Однако форма гистограммы такого акустического изображения после применения МПО очень далека от похожей на распределение Гаусса гистограммы на рис. 4б.

Таблица 2. Статистические характеристики значений яркостей на гидролокационном изображении рис. За, обработанном МПО и дополнительными процедурами (лапласиан, нерезкое маскирование и МПО с повышением ВЧ в 1.5 раза)

| Mator of pototicity | Значения |    |    |
|---------------------|----------|----|----|
| метод обработки     | М        | S  | SS |
| SI                  | 117      | 49 | 42 |
| SI MRL              | 118      | 30 | 11 |
| SI MRL L            | 119      | 34 | 17 |
| SI MRL USM          | 118      | 37 | 20 |
| SI MRL HFE          | 117      | 42 | 16 |
| SI MRL HFE L        | 117      | 47 | 25 |
| SI MRL HFE USM      | 117      | 52 | 30 |

Примечание. Здесь и в табл. 3 введены следующие обозначения: M - среднее значение, S - CKO, SS - CKO по спрайту; SI (sonar image) – исходное гидролокационное изображение, SI MRL (method of renormalization with limitation) – обработка с помощью MПO исходного изображения, SI MRL L – обработка с помощью MПO исходного изображения плюс лапласиан, SI MRL USM (unsharp masking) – обработка с помощью MПO исходного изображения с поработка с помощью MПO исходного изображения с поднятием высоких частот, SI MRL HFE L – обработка с помощью MПO исходного изображения с поднятием высоких частот плюс лапласиан, SI MRL HFE USM – обработка с помощью MПO исходного изображения с поднятием высоких частот плюс нерезкое маскирование.

Таблица 3. Статистические характеристики значений яркостей на гидролокационном изображении рис. 5а обработанном МПО и дополнительными процедурами (лапласиан, нерезкое маскирование и МПО с повышением ВЧ в 1.5 раза)

| Mator of pofoticity | Значения |    |    |  |
|---------------------|----------|----|----|--|
| метод обработки     | М        | S  | SS |  |
| SI                  | 43       | 53 | 27 |  |
| SI MRL              | 67       | 57 | 4  |  |
| SI MRL L            | 67       | 57 | 6  |  |
| SI MRL USM          | 67       | 58 | 7  |  |
| SI MRL HFE          | 60       | 53 | 5  |  |
| SI MRL HFE L        | 60       | 54 | 8  |  |
| SI MRL HFE USM      | 60       | 55 | 9  |  |

В табл. 3 придены статистические характеристики значений яркостей для гидролокационного изображения рис. 5а, обработанного МПО и дополнительными процедурами (лапласиан, нерезкое маскирование и МПО с повышением ВЧ в 1.5 раза).

В случае первого примера гидролокационного изображения (см. рис. 3, 4 и табл. 1) имело некоторый смысл вычислять СКО по всему полю изображения, чтобы получить представление о



**Рис. 5.** Гидролокационное изображение передней части затонувшего корабля: слева – собственно изображения, справа – объемный вид яркостей этих же изображений; а, б – исходное гидролокационное изображение; б, в – применение МПО к рис. 5а; по вертикальной оси объемных рисунков отложены значения пространственных яркостей пикселей в градациях серого ("Int" сокращение "intensity" от 0 – черный, до 255 – белый), две оставшиеся оси объемных рисунков показывают координаты пикселей яркости на поле изображения.

степени подавления спеклов (хотя бы в случае "классического" МПО, т.е. МПО без применения дополнительных процедур). Применительно ко второму примеру (см. рис. 5, 6) этого утверждать нельзя. Данные табл. 3 красноречиво свидетельствуют об этом. Средние яркости и среднеквадратичные отклонения по всему полю для второго примера увеличиваются после обработки МПО и после постобработки. Применение МПО "в среднем" преобразовывает исходные спектры в модель универсального опорного спектра, что, как было сказано выше, "в среднем" является спектром оптического изображения "хорошего" качества. Вследствие структурных отличий оптических и акустических изображений это может вызвать вопросы. Из табл. 3 видно, что даже средние значения яркостей исходного акустического изображения (27) и результатов обработки МПО и постобработки (53, 57) могут существенно отличаться. В то же время СКО обработанных изображений, вычисленные по всему полю, могут даже превышать СКО исходного акустического. Все встает на свои места после оценки СКО по спрайту, как среднеквадратичного отклонения от усредненного



**Рис. 6.** Нормированные гистограммы изображений: а – для гидролокационного изображения рис. 5а; б – для обработ-ки МПО рис. 5в.

плавающим окном 9 на 9 пикселей уровня вокруг каждого пикселя изображения. СКО по спрайту (SS) для обработки МПО и постобработки в разы меньше, чем это отклонение для исходного акустического изображения. После применения МПО меняется структура изображения. Она из зернистой становится близкой к структуре оптических изображений, более привычных человеческому глазу. Как и ранее, побочным эффектом трансформации структуры изображения является эффект "затуманивания" или небольшой "размытости" изображения. Это, в свою очередь, можно скорректировать той или иной постобработкой (методами, повышающими общую резкость изображений).

Для второго примера (см. рис. 5а) в отличие от первого (см. рис. 3а) для МПО с повышением высоких частот в 1.5 раза плюс лапласиан или плюс нерезкое маскирование получаются приемлемые результаты. В качестве подтверждения изложенного выше рассмотрим результаты обработки различными методами гидролокационного изображения, представленного на рис. 5а (рис. 7). С экспертной точки зрения изображением с "наилучшей" резкостью можно считать изображение, обработанное с помощью МПО с повышением высоких частот в 1.5 раза плюс нерезкое маскирование (см. рис. 7г).

#### 1.3. Медицинские ультразвуковые изображения

Изображения, полученные в ходе медицинских ультразвуковых исследований (УЗИ), были изучены в работе [8]. В качестве исходного взято изображение (рис. 8а) размером 640 на 480 пикселей из атласа ультразвуковых изображений (https:// www.medison.ru/ultrasound/gal103.htm). Там, как дополнительный этап обработки, после применения МПО с повышением высоких частот, предлагается применить билатеральную фильтрацию (БФ) [17, 18], что позволяет сгладить спеклы с сохранением четких границ объектов. По сравнению с описанными выше примерами это является особым случаем, поскольку после применения МПО с поднятием высоких частот не произошло существенного подавления спекл-шума (см. рис. 8) [8].

Там же [8] проиллюстрирован известный факт о том, что применение медианной фильтрации к данной задаче менее предпочтительно, поскольку эта процедура вместе со спекл-шумом может удалить и полезную информацию [14].

# ЗАКЛЮЧЕНИЕ

Проведено тестирование применения метода перенормировки с ограничением к цифровым изображениям с целью повышения их качества. Это является обобщением опыта использования МПО для борьбы со спекл-шумом. Установлено, что применение МПО к изображениям меняет их пространственную структуру. Так происходит потому, что метод перенормировки с ограничением, по своему определению, перенормирует спектр обрабатываемого изображения к модели универсального опорного спектра (УОС), которая является моделью спектра оптического изображения "хорошего" качества [6, 7]. Изображения РСА, гидролокации и УЗИ по своей структуре значительно отличаются от оптических изображений, поэтому в качестве "платы" за эти изменения при применении МПО проявляется эффект "затуманивания" или незначительной "размытости" изобра-



**Рис. 7.** Гидролокационное изображение рис. 5а, обработанное с помощью МПО (а), МПО с поднятием высоких частот (б), МПО с поднятием высоких частот плюс лапласиан (в), МПО с поднятием высоких частот плюс нерезкое маскирование (г).

жения. Для повышения общей резкости изображения предложено использовать постобработку (увеличение амплитуд высоких частот спектра, лапласиан, нерезкое маскирование) [14]. А в особых случаях (если после применения МПО с поднятием высоких частот не произошло существенного снижения уровня шума) в качестве постобработки протестирована билатеральная фильтрация [8, 17, 18]. Предложено оценивать степень подавления спеклшума с помощью среднеквадратичного отклонения от изображения, усредненного по спрайту. Все изложенное позволяет сделать вывод о том, что применение МПО к цифровым изображениям позволяет существенно снизить присущий им спекл-шум.

### ПРИЛОЖЕНИЕ

Описание алгоритма метода перенормировки с ограничением (МПО).

Сначала вычисляется инверсная фильтрация. То есть спектр исходного искаженного аппаратной функцией и зашумленного изображения – FM(i, j) поэлементно делится на спектр этой  $A\Phi - Faf(i, j)$ . Затем вычисляется амплитудный спектр исходного изображения усред-



**Рис. 8.** Исходное изображение УЗИ (а) и результаты его обработки (все с применением развертки из секторального в прямоугольное и обратно): БФ к исходному (б), "классический" МПО плюс БФ (в), МПО с поднятием высоких частот плюс БФ (г).

ненный по спрайту (5  $\times$  5 пикселов) (УСС) – *FMs*(*i*, *j*). И делается перенормировка результата инверсной фильтрации на модель универ-

сального опорного спектра (УОС) — URS(i, j). Алгоритм МПО можно записать в виде следующего выражения:

$$FMp(i,j) = \frac{FM(i,j)}{Faf(i,j)} \frac{|Faf(i,j)URS(i,j)|}{FMs(i,j)} \frac{FMs(0,0)}{URS(0,0)},$$
(II.1)

где FMs(0,0) и URS(0,0) — значения соответствующих спектров при нулевой пространственной частоте, FMp(i, j) — перенормированный инверсно отфильтрованный спектр.

"Ограничение", заявленное в названии метода, заключается в следующем. Так как в среднем спектр FMp(i, j) должен соответствовать УОС, то превышение преобразованного амплитудного спектра над уровнем УОС более чем в Ur раз интерпретируем как помеху. Ur обычно выбирается равным

4. Помимо собственно помех это ограничивает и спектральные артефакты, присущие процедуре инверсной фильтрации и возникающие при операциях близких к так называемому "делению на ноль". В окрестности низких частот (вокруг нулевой пространственной частоты) диаметром 9 пикселов значение спектра не меняем. В этой "неприкосновенной" области остается только результат инверсной фильтрации. В конечном итоге с помощью обратного преобразования Фурье спектра FMp(i, j) получим восстановленное изображение.

Поскольку в данной работе предполагается, что какому-либо размытию исходное изображение не подвергалось, то искажающая аппаратная функция принимается "игольчатой" (шириной много менее одного пикселя). Таким образом, *Faf*(*i*, *j*) (спектр АФ) перестает фигурировать в формуле (П.1). И формула МПО принимает следующий вид:

$$FMp(i, j) = \frac{FM(i, j)URS(i, j)}{FMs(i, j)} \frac{FMs(0, 0)}{URS(0, 0)}.$$
 (II.2)

Автор заявляет об отсутствии конфликта интересов.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИРЭ им. В.А. Котельникова РАН.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Разманов В.М., Кривцов А.П., Долотов С.А // РЭ.2006. Т. 51. № 1. С. 58.
- 2. Achim A., Bezerianos A., Tsakalides P. // IEEE Trans. 2001. V. MI-20. № 8. P. 772.
- Isar A., Firoiu I., Nafornita C., Moga S. Sonar Systems / Ed. N. Kolev. P.139. Rieka: Intech Open, 2011. https://www.intechopen.com/chapters/18875
- 4. *Ghazel M., Freeman G.H., Vrscay E.R.//* IEEE Trans. 2003. V. IP-12. № 12. P. 1560.
- 5. Илюшин С.В. // Т-Сотт. 2011. № 3. С. 22.
- Кокошкин А.В., Коротков В.А., Коротков К.В., Новичихин Е.П. // Журн. радиоэлектроники. 2015. № 7. http://jre.cplire.ru/jre/jul15/5/text.pdf.
- Гуляев Ю.В., Зражевский А.Ю., Кокошкин А.В. и др. // Журн. радиоэлектроники. 2013. № 12. http:// jre.cplire.ru/jre/dec13/3/text.pdf.

- 8. *Кокошкин А.В.* // Журн. радиоэлектроники. 2020. № 10. http://jre.cplire.ru/jre/oct20/1/text.pdf.
- 9. *Кокошкин А.В.* // Журн. радиоэлектроники. 2021. № 3. http://jre.cplire.ru/jre/mar21/4/text.pdf
- Кокошкин А.В., Коротков В.А., Коротков К.В., Новичихин Е.П. // РЭ 2019. Т. 64. № 6. С. 563. https://doi.org/10.1134/S0033849419060044
- Кокошкин А.В., Коротков В.А., Коротков К.В., Новичихин Е.П. // Журн. радиоэлектроники 2016. № 8. http://jre.cplire.ru/jre/aug16/3/text.pdf.
- 12. Кокошкин А.В., Коротков В.А. Программа реализации метода перенормировки с ограничением для обработки радиоизображений. Свидетельство о государственной регистрации программы для ЭВМ № 2016661952. Опубл. офиц. бюл. "Программы для ЭВМ. Базы данных. Топологии интегральных микросхем" № 11 от 20.11.2016 г.
- Кокошкин А.В., Новичихин Е.П., Смольянинов И.В. // Радиоэлектроника. Наносистемы. Информационные технологии (РЭНСИТ). 2021. Т. 13. № 3. С. 377. https://doi.org/10/17725/rensit.2021.13.377
- Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: "Техносфера", 2019.
- 15. *Каевицер В.И., Кривцов А.П., Разманов В.М. и др. //* Журн. радиоэлектроники. 2016. № 11. http://jre. cplire.ru/jre/nov16/1/text.pdf.
- 16. Смольянинов И.В. Программа для нанесения на географическую карту гидролокационного изображения морского дна. Свидетельство о гос. регистрации программы для ЭВМ № 2018663122. Опубл. офиц. бюл. "Программы для ЭВМ. Базы данных. Топологии интегральных микросхем" № 11 от 22.10.2018 г.
- Кранчатова Т.В., Филиппов М.В. // Наука и образование. 2012. № 02. http://technomag.edu.ru/ doc/340957.html.
- Tomasi C., Manduchi R. // Proc. 6th Int. Conf. on Computer Vision. Bombay. 7 Jan. 1998. N.Y.: IEEE, 1998. P. 839.

# ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ

УДК 621.397,004.9

# МЕТОД ВНЕДРЕНИЯ И ОПРЕДЕЛЕНИЯ ПОДЛИННОСТИ ИНФОРМАЦИИ В СИГНАЛЕ ЦИФРОВОГО ИЗОБРАЖЕНИЯ ПО МАРКЕРУ<sup>1</sup>

© 2022 г. Е. А. Пухова<sup>*a*, \*</sup>, В. Ю. Верещагин<sup>*a*, \*\*</sup>

<sup>а</sup> Московский политехнический университет, ул. Большая Семеновская, 38, Москва, 107023 Российская Федерация \*E-mail: ea.puhova@mail.ru \*\*E-mail: slavaver@gmail.com Поступила в редакцию 14.05.2022 г. После доработки 22.07.2022 г. Принята к публикации 28.07.2022 г.

Предложен метод определения подлинности цифровых цветных изображений путем формирования маркера на основе линейного штрихового кода символики EAN. Такая метка может считываться стандартными аппаратно-программными и/или программными методами. Рассмотрено формирование маркера на основе гистограммы изображения. За счет перераспределения яркостей в ограниченном тоновом диапазоне участок гистограммы приобретает вид штрихового кода. Из-за визуальной избыточности изображений вносимые изменения незаметны при рассматривании изображений. Метка может вводиться в цветовой канал изображения или в выбранную пространственную область канала, что не позволяет определить ее наличие путем анализа распределения яркостей изображения в целом. Предложенный метод чувствителен к преобразованиям изображения и коррекциям, что позволяет использовать его для подтверждения оригинальности изображения.

DOI: 10.31857/S0033849422120178

# введение

Методы защиты изображений, применяемые в дискретных системах, относятся к методам стеганографии. Данные методы позволяют разместить дополнительную информацию (сообщение) в исходное изображение (контейнер). Такими сообщениями может быть текст, изображение, метка, маркер и т.п. Формат сообщения обусловливается методом его внедрения в изображение, и сообщение не может быть распознано универсальными устройствами аппаратного считывания [1]. Существуют методы защиты, которые вводят маркер непосредственно в пространственную область изображения, например через добавление специальной структуры в область низких яркостей [2].

В 2018 г. вышел обзор методов стеганографии [3], в котором рассматриваются методы, реализуемые в том числе через изменение распределения яркостей в изображении. Такие изменения вносятся как с использованием сдвигов гистограммы, так и изменением яркостей отдельных пикселей, но описанные в обзоре методы не используют саму гистограмму для записи в нее информации. Существует ряд методов внесения дополнительной информации в изображения с использованием штрихового кода как скрытого, так и визуально заметного. Они базируются на использовании в основном двух типов кодов, отличающихся направлением считывания: одномерного и двумерного.

Методы, использующие одномерные штриховые коды:

1) метод введения кода в изображение, считываемое камерой, но не видимое человеком, этот метод требует создания дополнительных изображений, которые поочередно выводятся на мониторе [4];

2) метод введения штрихового кода стандарта Code 128 в кадры видеоряда с применением дискретного вейвлет-преобразования [5], этот метод работает только в цветовом пространстве YCbCr, что ограничивает его использование для статичных цифровых изображений, которые чаще всего представлены в цветовом пространстве RGB.

Использование двумерных штриховых кодов можно рассмотреть на примере метода создания цифровой подписи документа:

1) подпись кодируется в виде нескольких QRкодов, и они добавляются в цифровой водяной

<sup>&</sup>lt;sup>1</sup> Работа доложена на Пятой Международной молодежной конференции "Информационные технологии и технологии коммуникации: современные достижения" (Астрахань, 4–7 октября 2021 г.).



Рис. 1. Коды символики EAN-8 (а), EAN-13 (б) и EAN-128 (в).

знак, затем к изображению добавляется видимый QR-код, который содержит информацию о водяном знаке [6];

2) подпись в виде QR-кода скрывается с помощью дискретного вейвлет-преобразования [7].

Также существуют методы внедрения дополнительной информации в изображения, которые можно использовать как в цифровом пространстве, так и на материальных носителях [8] и с применением нейронных сетей [9, 10]. Предложенный авторами метод вводит маркер в пространственную область изображения за счет изменения яркостей пикселей в отдельных каналах, формируя штриховой код в гистограмме, который является аппаратно-считываемым сообщением. В предложенном методе нет необходимости создавать дополнительные изображения, преобразовывать цветовое пространство и использовать нейронные сети. Дополнительная информация- маркер формируется путем заданного перераспределения яркостей, которое имеет отражение в графике гистограммы.

В качестве маркера использован линейный штриховой код стандарта EAN. В данной символике информация кодируется чередованием штрихов разной ширины. Ширина изменяется дискретно на величину минимального модуля. Каждому из кодируемых значений соответствует определенная ширина двух рядом стоящих штрихов и двух пробелов. Количество информации (емкость сообщения), кодируемое символикой, зависит от ширины кода [11].

## 1. МЕТОДИКА ФОРМИРОВАНИЯ МАРКЕРА В ПРОСТРАНСТВЕННОЙ ОБЛАСТИ ИЗОБРАЖЕНИЯ

Авторами разработан метод введения скрытого маркера в виде линейного штрихового кода в цветное цифровое изображение. В рамках этого метода штриховой код формируется на основе гистограммы распределения яркостей цифрового изображения. Основанием для возможности формирования данной метки является визуальная избыточность цветного цифрового изображения, с глубиной цвета не менее 24 бит на пиксель (8 бит на канал) [12].

Маркер вводится в цветовой канал в выбранной пространственной области цифрового изображения и обеспечивает возможность аппаратнопрограммного или программного считывания. Маркер формируется путем перераспределения уровней яркости в ограниченном тоновом диапазоне и в выбранной пространственной области изображения таким образом, что участок гистограммы распределения яркостей преобразуется в маркер, соответствующий линейному штриховому коду (рис. 1) [13].

Область введения маркера должна:

1) иметь достаточный диапазон;

2) не иметь нулевых значений яркости.

Так как в качестве модуля штрихового кода принимается один уровень яркости, то диапазона имеющихся значений яркостей должно быть достаточно для размещения маркера выбранной емкости. В пределах диапазона должны быть заполнены все уровни яркости, в противном случае могут сформироваться ложные пробелы, что не позволит в дальнейшем считать код или считанный код будет иметь недостоверную информацию. Также желательно, чтобы в выбранной пространственной области было наибольшее число контрастных деталей. Это связанно с тем, что маркер формируется за счет перераспределения яркостей в тоновом диапазоне и в результате этого образуются нулевые уровни, что может стать причиной появления шумовой структуры [14].

Выбор одного или нескольких цветовых каналов цветного цифрового изображения для введения маркера зависит от числа кодируемых символов. Если маркер содержит большое количество символов, то его можно последовательно сформировать в двух или даже трех каналах после предварительного разделения маркера на части, соответствующие по ширине выбранному тоновому диапазону.

Контроль подлинности цифрового изображения осуществляется путем считывания маркера с помощью аппаратно-программного или программного обеспечения, затем считанное сообщение сравнивается с исходным. Если сообщения идентичны, то изображение является подлинным, если же сообщение не считалось или не соответствует заданному, то изображение подвергалось изменению.



Рис. 2. Изображение каналов пространства RGB и гистограммы яркости этих каналов.

# 2. ЭКСПЕРИМЕНТ ПО ВВЕДЕНИЮ МАРКЕРА И ОЦЕНКЕ ЗАМЕТНОСТИ ЕГО В ИЗОБРАЖЕНИИ

В эксперименте по введению и оценке заметности маркера использованы цветные изображения в цветовом пространстве RGB (рис. 2). Для введения маркера использован один из каналов, в котором была выделена пространственная область введения маркера и сформирована гистограмма этой области (рис. 3).

Для кодирования сообщения в эксперименте использовали штрихкод с символикой EAN13, который позволяет закодировать 12 чисел. Сообщение генерировалось из случайной последовательности и затем к полученному ряду штрихов и просветов в начале и конце добавлялись пробелы шириной в три модуля для повышения считываемости кода за счет формирования свободной зоны [11].

На основании сформированного ряда осуществлялось перераспределение яркостей пикселей в выделенной пространственной области канала изображения. В результате такого перераспределения появлялись участки с нулевым количеством пикселей, и они соответствовали просветам штрихового кода, а перенесенные на соседние уровни значения формировали штрихи. В результате, если масштабировать гистограмму выделенной пространственной области изображения, чтобы максимальное значение по оси ординат было один пиксель, гистограмма приобретает вид штрихового кода, который можно считать сканером или цифровой камерой (рис. 4).

Для оценки заметности маркера в изображении был проведен качественный и количественный анализ. При качественном анализе сравнивались гистограммы изображений до введения маркера и после. Получено, что наличие маркера не определяется по гистограммам как всего изображения, так и по гистограмме канала изображения, в который был введен маркер (рис. 5).

Наблюдается изменение гистограммы, указывающее на наличие шумовой структуры в изображении, однако за появление такой структуры может



Рис. 3. Выделенная область (белая маска) в канале синего цвета В (а) и гистограмма яркости данной области (б).

отвечать большое число факторов, в том числе проведение коррекции изображения [12, 15].

В качестве количественного метода оценки заметности маркера на изображении использован индекс структурного подобия (SSIM, structural similarity index). Метрика оценки качества воспроизведения изображения, основанная на сравнении обработанного изображения с оригиналом, изменяется в пределах от -1 до 1. Если SSIM равен 1, то изображения идентичны. Согласно оригинальной публикации алгоритма расчета индекса он близко коррелирует с субъективной оценкой изображения наблюдателем. Показано, что изображения с индексом SSIM выше 0.9 оцениваются как идентичные [16]. Также для оценки искажений, вносимых защитными элементами в пространственной области изображений предпочтительнее использовать SSIM, а не PSRN [17].

Была проведена оценка индекса структурного подобия между изображениями до и после введения маркера, а также отдельно рассмотрены каналы, в которые вводили маркер. Проанализировано десять изображений одинакового размера и формы с разным количеством контрастных деталей. Область введения маркера выбирали случайным образом. Полученные данные представлены на рис. 6.

Показано, что в целом введение маркера не оказывает какого-либо влияния на изображение, при оценке по каналам имеется больший разброс в значении SSIM, но показатель не опускается ниже 0.99, что свидетельствует о невозможности визуально различить область введения маркера. Выбросы на графике относятся к изображению с большим количеством информации в диапазоне



Рис. 4. Вид гистограммы с введенным маркером в выделенной пространственной области канала (а) и увеличенный участок высотой в один пиксель (б).

1182



**Рис. 5.** Пример гистограмм канала изображения без введенного маркера (а) и с маркером (б).

гистограммы яркостей на участке, где формировался штриховой код. Так как при перераспределении информации было задействовано наибольшее количество пикселей в сравнении с другими изображениями, то это увеличило количество формируемого шума, но значения SSIM все равно не опустились ниже 0.9.

При коррекции изображений, их масштабировании или сохранении со сжатием с потерями изменяются яркости пикселей, что приводит к изменению гистограммы, а это значит, что и внедренный штриховой код будет нарушен. Поэтому можно утверждать, что если штриховой код не считался или сообщение не совпадает с тем, что было изначально закодировано, то данное изображение претерпевало какие-либо изменения.

#### ЗАКЛЮЧЕНИЕ

Разработанный метод позволяет сформировать и внедрить в изображение маркер, представляющий собой аппаратно-программно или программно считываемую метку. Так как метка вводится в выделенную пространственную зону и может формироваться в разных каналах цветного изображения, то ее выявление при анализе распределения яркостей изображения в целом невозможно. Пред-



**Рис. 6.** Распределение значения индекса структурного подобия для десяти изображений при введении маркера.

ложенный метод позволит усложнить процесс нахождения метки в изображении путем разделения ее на части и введения частей в разные каналы. При таком способе введения, даже если злоумышленник определит место положение частей метки и сформирует штриховой код, то, не зная порядок расположения частей, не сможет быть уверенным в правильности считанной информации.

Разработанный метод чувствителен к различного рода манипуляциям с изображением и может использоваться для подтверждения уникальности изображения в различных областях.

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Грибунин О.Г. Цифровая стеганография. М.: Солон-Пресс, 2002.
- Vereshchagin V., Pukhova E., Khokhlova M. // Proc. 10th Int. Symp. Graphic Eingineering and Design. 12– 14 Nov. 2020. Novi Sad: Univ. Novi Sad, 2020. P. 407.
- 3. Kadhim I.J., Premaratne P., Vial P.J., Halloran B. // Neurocomputing. 2019. V. 355. P. 299.
- Cui H., Bian H., Zhang W., Yu N. // Proc. IEEE Conf. on Computer Commun. (INFOCOM 2019). 29 Apr.– 2 May Paris. 2019. N.Y.: IEEE, 2019. P. 1315.
- Favorskaya M., Zotin A. // Procedia Computer Sci. 2020. V. 176. P. 1261.
- Arkah Z.M., Alzubaidi L., Ali A.A., Abdulameer A.T. // Proc. Int. Conf. on Intelligent Systems Design and Applications (ISDA). Vellore. 6–8 Dec. 2018. Cham: Springer, 2018. V. 1. P. 1093.

- Cardamone N., d'Amore F. // Proc. 17th Int. Symp. Digital Watermaking (IWDW). Jeju Island. 22–24 Oct. 2018. Cham: Springer, 2018. P. 137.
- 8. *Luo Zh., Xie W., Wang B. et al.* // Symmetry. 2019. V. 11. № 2. P. 222.
- 9. *Tancik M., Mildenhall B., Ng R.* // Proc. 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle. 13–19 June. N.Y.: IEEE, 2020. P. 2114.
- 10. *Jia J., Gao Zh., Cheng K. et al.* // IEEE Trans. 2022. V. CYB-52. № 7. Pt. 2. P. 7094.
- 11. ГОСТ ISO/IEC15420-2010. Автоматическая идентификация. Кодирование штриховое. Спецификация символики штрихового кода EAN/UPS. М.: Стандартинформ, 2010.
- 12. Gonzalez R.C., Woods R.E. Digital Image Processing. N.Y.: Pearson, 2018.

- Верещагин В.Ю., Пухова Е.А. Способ определения подлинности цифрового изображения по скрытому маркеру, содержащему дополнительное сообщение. Пат. РФ № 2721793. Опубл. офиц. бюл. "Изобретения. Полезные модели" № 15 от 25.05.2020.
- Пухова Е.А. // Изв. ТулГУ. Сер. Технические науки. 2013. Вып. 3. С. 123.
- 15. Пухова Е.А., Горелик А.А. // Proc. Int. Scientific-Practical Conf. "Innovations in Publishing, Printing and Multimedia Technologies 2019" 17–18 Арг. Kaunas: Kaunas Univ., 2019. С. 101.
- Wang Z., Simoncelli E.P., Bovik A.C. // Proc. the Thirty-Seventh Asilomar Conf. on Signals, Systems & Computers. Pacific Grove. 9–12 Nov. 2003. N.Y.: IEEE, 2003. V. 2. P. 1398.
- 17. Setiadi D.R.I.M. // Multimedia Tools and Applications. 2020. № 6(80). P. 8423.

# РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ

УДК 535-14;537.67

# ЭКСИТОННЫЙ ВКЛАД В ФОТОИНДУЦИРОВАННУЮ ГИГА- И ТЕРАГЕРЦОВУЮ ДИЭЛЕКТРИЧЕСКУЮ ПРОНИЦАЕМОСТЬ ПОЛУПРОВОДНИКОВ

© 2022 г. В. С. Бутылкин<sup>а,</sup> \*, П. С. Фишер<sup>а</sup>, Г. А. Крафтмахер<sup>а</sup>, Ю. Н. Казанцев<sup>а</sup>, Д. С. Каленов<sup>а</sup>, В. П. Мальцев<sup>а</sup>, М. П. Пархоменко<sup>а</sup>

<sup>а</sup> Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, пл. Введенского, 1, Фрязино Московской обл., 141190 Российская Федерация \*E-mail: vasebut@vandex.ru

Поступила в редакцию 22.07.2022 г. После доработки 22.07.2022 г. Принята к публикации 10.08.2022 г.

В рамках единого подхода, базирующегося на использовании матрицы плотности экситонов, исследована фотоиндуцированная диэлектрическая проницаемость є полупроводников в области объединения гигагерцового (ГГц) и терагерцового (ТГц) диапазонов частот. Выявлено существенное различие особенностей поведения є в ГГц- и ТГц-диапазонах. Показано, что с ростом мощности  $P_{\lambda}$ оптического облучения Reє убывает на частотах  $\omega > \Delta \omega_{ex}$  (ТГц-диапазон, друдеподобное поведение) и увеличивается при  $\omega < \Delta \omega_{ex}$  (ГГц-диапазон, не-друдеподобное поведение);  $\Delta \omega_{ex}$  – диапазон частот переходов с участием наиболее заселенных экситонных уровней. Рост Imє с  $P_{\lambda}$  максимален в середине  $\Delta \omega_{ex}$ и ослабевает при удалении  $\omega$  от  $\Delta \omega_{ex}$ . Особенности при  $\omega < \Delta \omega_{ex}$  исследованы измерениями Imє<sup>GHz</sup>( $P_{\lambda}$ ) и Rеє<sup>GHz</sup>( $P_{\lambda}$ ) при волоконно-оптическом облучении ( $P_{\lambda} = 0...370$  мВт,  $\lambda = 0.97$  мкм) образцов Si в волноводном резонаторе ( $f = \omega/2\pi = 4.7$  ГГц) и измерениями динамики пропускания  $T(P_{\lambda})$  в свободном пространстве (f = 8...36 ГГц). Обнаружено, что Reє<sup>GHz</sup> и Imє<sup>GHz</sup> с ростом  $P_{\lambda}$  увеличиваются, а пропускание убывает, приближаясь к насыщению при  $P_{\lambda} > 200$  мВт. При одинаковой мощности  $P_{\lambda}$  пропускание увеличивается с понижением частоты.

DOI: 10.31857/S0033849422120038

#### введение

Индуцируемая оптическим излучением диэлектрическая проницаемость полупроводников, имеющих важное значение в микроволновой фотонике, приобретает дополнительный интерес в ГГц- и ТГц-диапазонах в связи с разработками оптически-управляемых метаструктур (метаматериалов, метаповерхностей, метаатомов) [1-7]. Поскольку свойства метаматериалов (структур с элементами, содержащими полупроводник) в ГГц- и ТГц-диапазонах во многом определяются динамикой диэлектрической проницаемости є полупроводника при возбуждении управляющим оптическим облучением (мощность  $P_{\lambda}$ ,  $\lambda$  – длина волны), особое внимание в указанных работах было уделено расчетам и измерениям Re $\epsilon^{GHz(THz)}(P_{2})$  и Im $\epsilon^{GHZ(THz)}(P_{2})$ .

Для расчетов и объяснения экспериментальных результатов использовалась модель Друде (в рамках механизма свободных носителей заряда) [8], которая оказалась приемлемой в ТГц-диапазоне при исследовании метаматериалов, содержащих Si и GaAs [1–4]. Эта модель была также использована для численных расчетов  $\text{Re}\epsilon^{\text{GHz}}(P_{\lambda})$  и  $\text{Im}\epsilon^{\text{GHz}}(P_{\lambda})$  образцов Si в ГГц-диапазоне [9]. Поведение  $\epsilon^{\text{THz},\text{GHz}}$  исследовалось экспериментально с образцами Si, одного из основных полупроводников микроэлектроники [10–12]. В [10] содержится анализ свойств Si в оптическом и ТГц-диапазонах; в [11] представлены результаты измерений поглощения при фотовозбуждении в ТГц-диапазоне в зависимости от частоты; в [12] приведена осциллограмма поглощения при импульсном фотовозбуждении в ГГц-диапазоне.

Однако прямыми измерениями мнимой и действительной частей диэлектрической проницаемости в ГГц-диапазоне образцов CdS и CdSe в волноводном резонаторе на частоте f = 4.7 ГГц обнаружено отклонение от модели Друде [13]. Продемонстрировано увеличение с ростом  $P_{\lambda}$  не только Im $\epsilon^{GHz}$ , но и Re $\epsilon^{GHz}$ , тогда как в модели Друде Re $\epsilon^{THz}$  должна убывать. Очевидна необходимость исследовать фотоиндуцированную диэлектрическую проницаемость на примере других полупроводников (кроме упомянутых), включая отклонения от модели Друде, и описать ее поведение, охватывая весь рассматриваемый диапазон частот, что и является целью данной работы.

Для изучаемого диапазона характерно, что на область смыкания гигагерцовых и терагерцовых частот приходится полоса  $\Delta f_{\rm ex} = \Delta \omega_{\rm ex}/2\pi$ , в которой расположены частоты экситонных переходов ( $f_{\rm ex}$ ) с участием наиболее заселенных уровней. Так, из данных [14–17] легко найти, что  $\Delta f_{\rm ex} \cong$  $\cong 160$  ГГц...3.4 ТГц для Si ( $f_{21} \approx 2.5$  ТГц,  $f_{31} \approx 3$  ТГц,  $f_{32} \approx 470$  ГГц,  $f_{43} \approx 165$  ГГц, индексы – значения главного квантового числа уровней, к переходу между которыми относится приведенная частота);  $\Delta f_{\rm ex} \cong 350$  ГГц...7.25 ТГц для CdS;  $\Delta f_{\rm ex} \cong 50$  ГГц...1 ТГц для GaAs. Поэтому представляет интерес рассмотреть связь фотоиндуцированной диэлектрической проницаемости полупроводников в ГГци ТГц-диапазонах с экситонами.

В данной работе с этой целью применен единый подход, основанный на использовании матрицы плотности экситонов. Показано, что на частотах f выше  $\Delta f_{\text{ex}}$  поведение  $\text{Ree}^{f>\Delta f_{\text{ex}}}(P_{\lambda})$  и  $\text{Ime}^{f>\Delta f_{\text{ex}}}(P_{\lambda})$  удовлетворяет модели Друде (друдеподобное поведение, ТГц-диапазон). На частотах ниже  $\Delta f_{\text{ex}}$  поведение  $\text{Ree}^{f<\Delta f_{\text{ex}}}(P_{\lambda})$  и  $\text{Ime}^{f<\Delta f_{\text{ex}}}(P_{\lambda})$  существенно отличается от модели Друде (не-друдеподобное поведение, ГГц-диапазон).

Впервые экспериментально наблюдены не-друдеподобные отклики образцов Si прямыми измерениями Im $\epsilon^{GHz}$  и Re $\epsilon^{GHz}$  резонаторным методом в волноводном резонаторе ( $f = 4.7 \ \Gamma \Gamma_{II}$ ) и динамики пропускания  $T(P_{\lambda})$  в свободном пространстве ( $f = 8...36 \ \Gamma \Gamma_{II}$ ) при волоконно-оптическом облучении мощностью  $P_{\lambda} = 0...370 \ \text{мBT}$  ( $\lambda = 0.97 \ \text{мкм}$ ). Результаты экспериментов согласуются с выводами теории.

## 1. ЭКСИТОННЫЙ ВКЛАД

Диэлектричская проницаемость среды, параметр пропорциональности амплитуд электрических индукции и напряженности ( $\vec{D}_{\omega} = \varepsilon(\omega)\vec{E}_{\omega} =$  $= \vec{E}_{\omega} + 4\pi\vec{P}_{\omega}$ ) [8], связана с амплитудой  $\vec{P}_{\omega} =$  $= \sum_{i} \chi^{(i)}(\omega) \vec{E}_{\omega}$  поляризации единицы объема среды на частоте  $\omega = 2\pi f$  и восприимчивостями  $\chi^{(i)}(\omega)$  составляющих ее частиц:

$$\varepsilon(\omega) = 1 + 4\pi \sum_{i} \chi^{(i)}(\omega).$$

В поляризации единицы объема выделяют вклад взаимодействия электромагнитных волн с колебаниями связанных (валентных) электронов ( $\vec{P}^{v}$ ), ионных остовов решетки ( $\vec{P}^{1}$ ) и колебаниями свободных носителей заряда ( $\vec{P}^{ch}$ ) [16]. В связи с этим диэлектрическая проницаемость содержит вклады, выражаемые через соответствующие этим механизмам восприимчивости X единицы объема:

$$\varepsilon = 1 + 4\pi \left( X^{\vee} + X^{1} \right) + 4\pi X^{ch} = \widehat{\varepsilon} + \delta \varepsilon^{ch}.$$
 (1)

В полупроводниковой среде присутствуют и проявляются как в поглощении света, так и в люминесценции [8], экситоны. Необходимо учитывать также и их вклад

$$\vec{P}^{\text{ex}} = N^{\text{ex}} \langle \vec{d} \rangle. \tag{2}$$

Здесь *N*<sup>ex</sup> – концентрация экситонов,

$$\langle \hat{\vec{d}} \rangle = \operatorname{Sp}(\hat{\mathbf{o}}\hat{\vec{d}})$$
 (3)

 квантовомеханическое среднее оператора дипольного момента экситона. Состояние экситона характеризуется статистическим оператором ô (матрицей плотности). Эволюция матрицы плотности определяется кинетическим уравнением [18]

$$\frac{d\hat{\sigma}}{dt} + \hat{\Gamma}\hat{\sigma} = -\frac{i}{\hbar} \left( \hat{V}\hat{\sigma} - \hat{\sigma}\hat{V} \right) \tag{4}$$

(используем представление взаимодействия экситона с электромагнитным излучением). В (4)  $\hat{\Gamma}$  – оператор, описывающий влияние диссипативных систем, в качестве чего может рассматриваться взаимодействие с фононами, спонтанное излучение и столкновения экситонов. В дипольном приближении оператор  $\hat{V} = -\hat{d}\vec{E}$  энергии взаимодействия экситона с микроволновым и оптическим излучением выражается через оператор дипольного момента и напряженности электрических полей волн

$$\vec{E} = \sum_{j} \vec{e}_{j} E_{j} \exp(-i\omega_{j}t),$$

*e*<sub>j</sub> — единичный вектор в направлении поляризации *j*-й волны. В используемом нами представлении взаимодействия

$$V_{rr'} = -\vec{d}_{rr'} \sum_{j} \vec{e}_{j} E_{j} \exp\left[i\left(\omega_{rr'} - \omega_{j}\right)t\right] =$$

$$= \sum_{j} V_{rr'}^{(i)} \exp\left[i\left(\omega_{rr'} - \omega_{j}\right)t\right], \qquad (5)$$

$$\left\langle \hat{\vec{d}} \right\rangle = \sum_{r,r'} \sigma_{rr'} \vec{d}_{r'r} \exp\left(i\omega_{r'r}t\right),$$

 $\vec{d}_{rr'}$  — матричный элемент дипольного момента на базе стационарных функций гамильтониана экситона,  $\omega_{rr'} = (\mathscr{C}_r - \mathscr{C}_{r'})\hbar^{-1}$  — частота перехода между уровнями с собственными энергиями  $\mathscr{C}_r, \mathscr{C}_{r'}$ . В соответствии с условиями измерений диэлектрической проницаемости полагаем, что амплитуды  $E_j$  от времени не зависят, причем  $|\vec{E}_{\omega}| \ll |\vec{E}_{\Omega}|$ . Обозначение  $\omega = 2\pi f$  относим к ГГц-

и ТГц-диапазонам частот,  $\Omega$  — к частотам облучения для фотовозбуждения в оптическом диапазоне. Для удобства сопоставления с обычно применяемой записью диэлектрической проницаемости (например, происходящей от свободных носителей заряда) мы принимаем положительные значения  $\omega$ ,  $\Omega$  ( $\omega_i = \pm \omega, \pm \Omega$ ).

Вклад экситонов в диэлектрическую проницаемость выразим через восприимчивость экситона  $\gamma^{ex}(\omega)$ :

$$\delta \varepsilon^{\text{ex}}(\omega) = 4\pi N^{\text{ex}} \chi^{\text{ex}}(\omega). \tag{6}$$

Восприимчивость экситона определяется через амплитуду спектральной компоненты среднего дипольного момента экситона:

$$\langle \hat{\vec{d}} \rangle_{\omega} = \operatorname{Sp}(\hat{\vec{d}}\hat{\sigma})_{\omega} = \chi^{\mathrm{ex}}(\omega)\vec{E}_{\omega}.$$
 (7)

Качественно поведение экситонной добавки  $\delta \varepsilon^{ex}(\omega)$ к диэлектрической проницаемости может быть рассмотрено на примере квантовой системы с дискретными уровнями, соответствующими энергиям  $\mathscr{E}_r = \mathscr{E}_g - \mathscr{E}_{ex}/n^2$  при  $r = n = 1, 2, ..., \infty$ , матричными элементами дипольного момента  $\vec{d}_{rr'} = \vec{d}_{r'r}^*$  и релаксационным оператором, у которого

$$(\hat{\Gamma}\hat{\sigma})_{rr'} = \begin{cases} -\tau_{rr'}^{-1}\sigma_{rr'} \quad \text{для} \quad r' \neq r, \\ \sum_{r''} (\sigma_{rr}w_{rr''} - w_{r''r}\sigma_{r''r''}) \quad \text{для} \quad r' = r. \end{cases}$$
(8)

 $\mathscr{C}_{g}$  — ширина запрещенной зоны,  $\mathscr{C}_{ex}$  — энергия связи экситона,  $\tau_{rr'}$  — время поперечной релаксации для перехода между уровнями *r* и *r'*,  $w_{rr'}$  и  $w_{r"r}$  вероятности релаксационных переходов системы за единицу времени из состояния *r* в состояние *r*" и из *r*"-го в *r*-е,  $\sigma_{rr}$  — населенность *r*-го уровня. В другой модели совокупность индексов *r* соответствует всем состояниям системы, включая подуровни, на которые расщепляются из-за взаимодействия с диссипативной системой уровни с главным квантовым числом *n*. При этом *r* упорядочены так, что их рост сопровождает увеличение энергии состояния  $\mathscr{C}_{r}$ .

В рамках описанного подхода восприимчивость квантовой системы определяется населенностями  $\sigma_{rr}$  и поляризуемостями  $\kappa^{(r)}(\omega_j)$  ее уровней [19, 20]:

$$\chi_{(jj)}^{\text{ex}}(\omega_j) = \sum_r \sigma_{rr} \kappa_{(jj)}^{(r)}(\omega_j)$$
(9)

(индексы *j* в скобках внизу восприимчивостей, поляризуемостей, дипольных моментов означают, что взяты проекции на направления  $\vec{e}_i$ ).

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022

Приведем уточненное выражение для поляризуемостей (в [19, 20] пренебрегалось влиянием на них релаксации недиагональных элементов матрицы плотности):

$$\kappa_{(j)}^{(r)}(\omega_{j}) = \frac{\widehat{\varepsilon}(\omega_{j}) + 2}{3} \sum_{r'} \frac{\left| (d_{(j)})_{r'r} \right|^{2}}{\hbar} \times \frac{2\omega_{r'r} \left( \omega_{r'r}^{2} - \omega_{j}^{2} + \tau_{r'r}^{-2} \right) + 4i\omega_{j}\omega_{r'r}\tau_{r'r}^{-1}}{\left[ (\omega_{r'r} + \omega_{j})^{2} + \tau_{r'r}^{-2} \right] \left[ (\omega_{r'r} - \omega_{j})^{2} + \tau_{r'r}^{-2} \right]}.$$
(10)

Поправка на фактор локального поля учитывает преобладание доли решетки и валентных электронов. Соединяя сказанное, получаем вклад экситонов в є :

$$\delta \epsilon_{(jj)}^{ex}(\omega) = 4\pi N^{ex} \frac{\widehat{\epsilon}(\omega) + 2}{3} \sum_{r=1,...} \sigma_{rr} \sum_{r'} \frac{\left| (d_{(j)})_{r'r} \right|^2}{\hbar} \times \frac{2\omega_{r'r} \left( \omega_{r'r}^2 - \omega^2 + \tau_{r'r}^{-2} \right) + 4i\omega\omega_{r'r} \tau_{r'r}^{-1}}{\left[ (\omega_{r'r} + \omega)^2 + \tau_{r'r}^{-2} \right] \left[ (\omega_{r'r} - \omega)^2 + \tau_{r'r}^{-2} \right]}.$$
(11)

Запишем действительную и мнимую части диэлектрической проницаемости:

$$\operatorname{Re} \varepsilon = \widehat{\varepsilon} + \frac{8\pi(\widehat{\varepsilon}+2)}{3} N^{\operatorname{ex}} \sum_{r=1,\dots} \sigma_{rr} \sum_{r'} \frac{\left| \left( d_{(j)} \right)_{r'r} \right|^2}{\hbar} \times \frac{\omega_{r'r} \left( \omega_{r'r}^2 - \omega^2 + \tau_{r'r}^{-2} \right) \tau_{r'r}^4}{1 + 2 \left( \omega_{r'r}^2 + \omega^2 \right) \tau_{r'r}^2 + \left( \omega_{r'r}^2 - \omega^2 \right)^2 \tau_{r'r}^4},$$
(12a)  
$$\operatorname{Im} \varepsilon = \frac{16\pi(\widehat{\varepsilon}+2)}{3} N^{\operatorname{ex}} \sum_{r=1,\dots} \sigma_{rr} \sum_{r'} \frac{\left| \left( d_{(j)} \right)_{r'r} \right|^2}{\hbar} \times \frac{\omega_{r'r} \tau_{r'r}^3}{1 + 2 \left( \omega_{r'r}^2 + \omega^2 \right) \tau_{r'r}^2 + \left( \omega_{r'r}^2 - \omega^2 \right)^2 \tau_{r'r}^4},$$
(12b)

(по оценкам [16] Im  $\hat{\varepsilon} = 0$ , Re  $\hat{\varepsilon} \ge 1$ ).

Иногда удобно пользоваться эквивалентными (12), (13) выражениями:

$$\operatorname{Re} \varepsilon = \widehat{\varepsilon} + \frac{8\pi(\widehat{\varepsilon}+2)}{3} N^{\operatorname{ex}} \times \\ \times \sum_{\substack{r=1,2...;\\r'>r}} (\sigma_{rr} - \sigma_{r'r'}) \frac{\left| (d_{(j)})_{r'r} \right|^2}{\hbar} \times$$

$$\times \frac{\omega_{r'r} \left( \omega_{r'r}^2 - \sigma_{r'r'}^2 + \tau_{rr'}^{-2} \right)}{\left( \omega_{r'r}^2 - \omega^2 \right)^2 + 2\left( \omega_{r'r}^2 + \omega^2 \right) \tau_{r'r}^{-2} + \tau_{rr'}^{-4}},$$
(13a)

$$Im \varepsilon = \frac{16\pi (\widehat{\varepsilon} + 2)}{3} N^{ex} \times \sum_{\substack{r=1,2...;\\r'>r}} (\sigma_{rr} - \sigma_{r'r'}) \frac{\left| (d_{(j)})_{r'r} \right|^2}{\hbar} \times$$
(136)
$$\times \frac{\omega \omega_{r'r} \tau_{rr'}^{-1}}{\left( \omega_{r'r}^2 - \omega^2 \right)^2 + 2 \left( \omega_{r'r}^2 + \omega^2 \right) \tau_{r'r}^{-2} + \tau_{rr'}^{-4}.$$

В (12а), (12б), (13а) и (13б) не включены специальные добавки, касающиеся свободных носителей зарядов, поскольку в суммировании по уровням учтены состояния непрерывной части энергетического спектра экситонов.

В (11)–(13) содержатся  $N^{ex}$  и  $\sigma_{rr}$ , произведение которых  $N_{rr}^{ex} = N^{ex} \sigma_{rr}$  представляет собой число экситонов на *r*-м уровне в единице объема. Эти же величины определяют интенсивность линий люминесценции (для атомов и молекул см. в [21]). Основываясь на данных об экситонной фотолюминесценции, например из [16], полагаем, что в фотоиндуцированную диэлектрическую проницаемость наибольший вклад вносят нижние уровни.

Обсудим поведение Reɛ и Imɛ, разделив частоты  $\omega = 2\pi f$  на три области по отношению к  $\Delta \omega_{ex}$ .

# 1.1. Высокочастотная область (ПГц-диапазон, частоты ω > Δω<sub>ex</sub>)

Наиболее интересна асимптотика, когда квадрат частоты (а) много больше квадратов частот всех экситонных межуровневых переходов и квадратов обратных времен поперечной релаксации, относящихся к этим переходам. Первое условие обеспечивается достаточным превышением энергии фотона над энергией связи экситона. Граница выполнения второго условия определяется температурой и обычно лежит внизу ТГц-диапазона.

В отсутствие инверсии населенностей уровней, т.е. когда населенности нижних уровней больше населенностей более высоких уровней (при r' > r частота  $\omega_{r'r} > 0$  и  $\sigma_{rr} > \sigma_{r'r'}$ ), высокочастотная экситонная добавка (δReε) к Reε отрицательна. По абсолютной величине при увеличении N<sup>ex</sup> она растет. Поэтому с увеличением концентрании экситонов N<sup>ex</sup> из-за повышения интенсивности облучения Reɛ убывает. Кроме того, при повышении частоты ω экситонная добавка  $\delta Re\epsilon$  убывает по абсолютной величине обратно пропорционально ω<sup>2</sup>. Высокочастотная экситонная добавка δІтε, как и Ітε, в отсутствие инверсии населенностей положительна и растет с увеличением интенсивности фотооблучения. Это соответствует усилению поглощения излучения

на частоте  $\omega$ . При повышении  $\omega$  Im $\varepsilon$  убывает обратно пропорционально  $\omega^3$  (соответственно, должно увеличиваться прохождение сигнала или уменьшаться поглощение).

Таким образом, на частотах, превышающих ширину экситонной полосы  $\Delta \omega_{ex}$ , реализуется друде-подобное поведение диэлектрической проницаемости полупроводника в условиях, аналогичных состоянию термодинамического равновесия, когда населенность экситонных уровней убывает с увеличением их собственных энергий.

#### 1.2. Низкочастотная область (ГГц-диапазон, частоты ω < Δω<sub>ev</sub>)

В этой области квадрат частоты ω мал в сравнении с квадратами частот экситонных переходов и/или квадратами обратных времен поперечной релаксации, относящихся к этим переходам). Для большинства переходов первое условие может выполняться только для переходов с участием наиболее населенных уровней (нижних). Второе условие, вполне выполнимое при обычных температурах, нарушается при низких температурах.

Низкочастотная экситонная добавка к диэлектрической проницаемости (также в отсутствие инверсии населенностей) положительна. С ростом мощности облучения  $\delta Re\epsilon$  увеличивается. Добавка  $\delta Im\epsilon$ , как и при  $\omega > \Delta \omega_{ex}$ , положительна и растет с увеличением концентрации экситонов. В отличие от случая  $\omega > \Delta \omega_{ex}$ , Imε убывает с понижением  $\omega$ .

Таким образом, на низких частотах в условиях, близких к термодинамическому равновесию, поведение диэлектрической проницаемости существенно отличается от друдеподобного.

# 1.3. Промежуточная область (частоты $\omega \cong \Delta \omega_{ex}$ )

При обычных температурах проявление вклада отдельных переходов в диэлектрическую проницаемость сглажено; при низких температурах, возможно, удастся вблизи переходов между нижними уровнями, где спектр переходов более разрежен, увидеть пики, подобные пику в работе [22, рис. 16]. На сглаженном участке частотная дисперсия экситонной добавки к диэлектрической проницаемости незначительна. При этом мнимая часть имеет вид колоколообразной кривой, поднимающейся с увеличением мощности фотооблучения; зависимость действительной части от фотооблучения практически отсутствует.

Приведем замечания, касающиеся связи друдеподобного поведения фотоиндуцированной є и свободных носителей зарядов в полупроводниках:

1) представим ситуацию, в которой заселен только самый нижний экситонный уровень. Согласно (11), частотная зависимость диэлектриче-



**Рис. 1.** Схема измерений: в резонаторе: *1* – диафрагма связи, *2* – короткозамыкатель.

ской проницаемости для более высокочастотной части терагерцового диапазона соответствует модели Друде, хотя свободные носители зарядов отсутствуют;

2) ситуация, когда заселенным является какойлибо пакет состояний непрерывной части экситонного энергетического спектра. В этом случае для ряда межуровневых переходов имеет место инверсия населенностей и не реализуется друдеподобная частотная дисперсия диэлектрической проницаемости по меньшей мере для мнимой ее части: она отрицательна и соответствует усилению излучения, а не поглощению.

# 2. ОСОБЕННОСТИ Ітє<sup>GHz</sup> И Rеє<sup>GHz</sup> И ПРОПУСКАНИЯ *Т* ОБРАЗЦОВ Si ПРИ ФОТОВОЗБУЖДЕНИИ В ГГц-ДИАПАЗОНЕ (ЭКСПЕРИМЕНТ)

Применив прямой резонаторный метод [13], исследуем динамику комплексной диэлектрической проницаемости образцов высокоомного Si в зависимости от  $P_{\lambda}$  относительно  $P_{\lambda} = 0$  ( $\delta \varepsilon^{GHz}$ ). Используем волноводный резонатор ( $48 \times 24 \times 40$  мм) отражательного типа на частоте 4.7 ГГц (рис. 1). Образец в виде полоски (поперечные размеры  $22 \times 4.6$ , толщина 0.55 мм) располагаем в пучности микроволнового электрического поля *E*, направленного параллельно ее поверхности. Оптоволокно направляем перпендикулярно к центру образца через отверстие в резонаторе.

Определяем:

$$\delta \operatorname{Im} \varepsilon^{\operatorname{GHz}} = \frac{\operatorname{Im} \varepsilon_{P_{\lambda}}^{\operatorname{GHz}}}{\operatorname{Im} \varepsilon_{P=0}^{\operatorname{GHz}}} = \left[\frac{1+R_{P_{\lambda}}}{1-R_{p_{\lambda}}} - \frac{1+R}{1-R}\right] \left[\frac{1+R_{P=0}}{1-R_{P=0}} - \frac{1+R}{1-R}\right]^{-1};$$
(14)

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022



**Рис. 2.** Измеренная в волноводном резонаторе ( $f = 4.72 \, \Gamma \Gamma_{II}$ ) относительно  $P_{\lambda} = 0$  динамика диэлектрической проницаемости Si при изменении  $P_{\lambda}$  ( $\lambda = 0.97 \, \text{мкм}$ ):  $\delta \text{Re} \varepsilon^{\text{GHz}}$  (а) и  $\delta \text{Im} \varepsilon^{\text{GHz}}$  (б).

$$\delta \operatorname{Re} \varepsilon^{\operatorname{GHz}} = \left( \operatorname{Re} \varepsilon^{\operatorname{GHz}}_{P_{\lambda}} - 1 \right) \left( \operatorname{Re} \varepsilon^{\operatorname{GHz}}_{P=0} - 1 \right)^{-1} = \left[ \left( f - f_{P_{\lambda}} \right) f_{P=0} \right] \left[ \left( f - f_{P=0} \right) f_{P_{\lambda}} \right]^{-1},$$
(15)

где измеряемые  $R, R_{P=0}, R_{P_{\lambda}}$  – коэффициенты отражения по напряжению от пустого резонатора, резонатора с образцом при P=0, и при  $P_{\lambda}; f, f_{P=0}, f_{P_{\lambda}}$  – частоты резонатора без образца, с образцом при P=0 и при  $P_{\lambda}$ .

Результаты измерений  $\delta \text{Ree}(P_{\lambda})$  и  $\delta \text{Ime}(P_{\lambda})$ приведены на рис. 2а, 2б. Видим, что с ростом  $P_{\lambda}$ от 0 до 370 мВт (плотность мощности 5 Вт/см<sup>2</sup>)  $\delta \text{Ree}$  и  $\delta \text{Ime}$  увеличиваются, приближаясь к насыщению при  $P_{\lambda} > 200$  мВт. Существенный рост  $\delta \text{Ime}(P_{\lambda})$  при незначительном увеличении  $\delta \text{Ree}(P_{\lambda})$ должен привести к росту затухания волны и, следовательно, уменьшению пропускания. Это под-



**Рис. 3.** Измеренная в свободном пространстве динамика коэффициента пропускания  $\delta T = T(P_{\lambda})/T(P_{\lambda} = 0)$ полоски Si при изменении  $P_{\lambda}$  в частотных диапазонах  $F_1 = 8...12$  ГГц,  $F_2 = 18...28$  ГГц и  $F_3 = 26...38$  ГГц.

тверждается измерениями изменения пропускания  $\delta T$  на разных частотах при разных величинах мощности  $P_{\lambda}$  относительно  $P_{\lambda} = 0$ .

Измеряем  $\delta T(P_{\lambda})$ , располагая полоску Si (22 × × 4.6 × 0.55 мм) в свободном пространстве в разрыве между приемным и передающим волноводами:

$$\delta T(P_{\lambda}) = T(P_{\lambda})/T \ (P_{\lambda} = 0). \tag{16}$$

Используем набор трех панорамных измерителей для диапазонов частот  $F_1 = 8...12$ ,  $F_2 = 18...28$  и  $F_3 = 26...38$  ГГц, поперечные размеры соответствующих волноводов имеют размеры  $23 \times 10$ ,  $11 \times 6$  и  $8 \times 4$  мм. Результаты измерений  $\delta T(P_{\lambda})$  приведены на рис. 3. Видим, что  $\delta T$  уменьшается с приближением к насыщению при  $P_{\lambda} > 200$  мВт. При этом значения  $\delta T(P_{\lambda})$  в диапазоне  $F_1$  больше соответствующих значений для  $F_2$ , которые больше, чем для  $F_3$ , что находится в согласии с теорией, отмечающей уменьшение роста  $\delta$ Ітє при понижении частоты в ГГц-диапазоне при  $f \leq \Delta f_{ex}$ .

# ЗАКЛЮЧЕНИЕ

Примененный теоретический подход позволил описать в рамках механизма экситонов поведение диэлектрической проницаемости полупроводников в широком диапазоне частот при оптическом облучении мощностью  $P_{\lambda}$  и выявить взаимосвязь между явлениями в фотонике и электродинамике.

Из полученных соотношений следует следующее.

1. Частотная зависимость изменения мнимой части диэлектрической проницаемости (Imɛ) при фотовозбуждении представляет собой колоколообразную кривую, поднимающуюся с увеличением  $P_{\lambda}$  на частотах  $\omega$  внутри диапазона частот экситонных переходов ( $\Delta \omega_{ex}$ ). Увеличение Imɛ с ростом  $P_{\lambda}$  осла-

бевает по мере удаления  $\omega$  от  $\Delta \omega_{ex}$  как в сторону низких, так и высоких частот.

2. Действительная часть Re є с ростом  $P_{\lambda}$  увеличивается при  $\omega < \Delta \omega_{ex}$  (не-друдеподобная зависимость, ГГц-диапазон), не меняется на частотах  $\Delta \omega_{ex}$  и уменьшается при  $\omega > \Delta \omega_{ex}$  (друдеподобный отклик, ТГц-диапазон).

Влияние экситонов слабо проявляется на частотах  $\omega \ge \Delta \omega_{ex}$  и  $\omega \ll \Delta \omega_{ex}$ . В этом случае Re $\epsilon(P_{\lambda})$ и Im $\epsilon(P_{\lambda})$  практически сохраняются относительно Re $\epsilon(P_{\lambda} = 0)$  и Im $\epsilon(P_{\lambda} = 0)$ .

Отличительные особенности не-друдеподобного поведения Ітє и Reє при  $\omega < \Delta \omega_{ex}$  наблюдали экспериментально в измерениях образцов Si при волоконно-оптическом облучении мощностью  $P_{\lambda} = 0...370$  мBt ( $\lambda = 0.97$  мкм):

а) обнаружено измерениями в резонаторе ( $f = \omega/2\pi = 4.7 \ \Gamma \Gamma_{II}$ ) увеличение Im $\epsilon^{\text{GHz}}$  (более чем на порядок) и увеличение Re $\epsilon^{\text{GHz}}$  (в 1.6 раз) с приближением к насыщению при  $P_{\lambda} > 200 \text{ мBT}$ ;

б) показано экспериментально, что в свободном пространстве (f = 8...36 ГГц) с ростом  $P_{\lambda}$  пропускание T уменьшается (это связано с увеличением Im $\epsilon^{GHz}$ ) с приближением к насыщению при  $P_{\lambda} > 200$  мВт и повышением T с понижением частоты при фиксированной мощности.

Результаты могут быть полезны для применений в метаструктурах с целью разработки оптически управляемых коммуникационных систем.

Авторы заявляют об отсутствии конфликта интересов.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИРЭ им. В.А. Котельникова РАН.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Chen H.T., O'Hara J.F., Azad A.K., Taylor A.J. // Laser Photonics Rev. 2011. V. 5. № 4. P. 513.
- Padilla W.J., Taylor A.J., Highstrete C. et al. // Phys. Rev. 2006. V. 96. № 10. P. 107401.
- Chen H.T., Padilla W.J., Zide J. et al. // Nature. 2006. V. 444. № 7119. P. 597. https://doi.org/10.1038/nature05343
- 4. Xiao S., Wang T., Jiang X. et al. // J. Phys. D: Appl. Phys. 2020. V. 53. № 50. P. 503002.
- 5. *Manceau J.M., Shen N.-H., Kafesaki M. et al.* //Appl. Phys. Lett. 2010. V. 96. № 2. P. 021111.
- 6. *Nemati A., Wang Q., Hong M.H., Teng J.H.* // Opto-Electron Advances. 2018. V. 1. № 18. P. 180009. https://doi.org/10.29026/oea.2018.180009
- Zhou J., Chowdhury D.R., Zha R. et al. // Phys. Rev. B. 2012. V. 86. № 3. P. 035448. https://doi.org/10.1103/PhysRevB.86.035448

- Маделуне О. Теория твердого тела. М.: Наука, 1980. С. 414.
- Rizza C., Ciattoni A., De Paulis F. et al. // J. Phys. D: Appl. Phys. 2015. V. 48. № 13. P. 135103. https://doi.org/10.1088/0022-3727/48/13/135103
- 10. *Рогалин В.Е., Каплунов И.А., Кропотов Г.И.* // Оптика и спектроскопия. 2018. Т. 125. № 6. С. 851. https://doi.org/10.21883/OS.2018.12.46951.190-18
- 11. Busch S., Scherger B., Scheller M., Koch M. // Optics Lett. 2012. V. 37. № 8. P. 1391.
- 12. *Мусаев А.М.* // Физика и техника полупроводников. 2017. Т. 51. № 10. С. 1341. https://doi.org/10.21883/FTP.2017.10.45010.8520
- Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н. и др.// Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 586.
- 14. Агекян В.Ф. // Соросовский образовательный журн. 2000. Т. 6. № 10. С. 101.

- 15. *Днепровский В.С.* // Соросовский образовательный журн. 2000. Т. 6. № 8. С. 88.
- Кашкаров П.К., Тимошенко В.Ю. Оптика твердого тела и систем пониженной размерности. М.: МГУ, 2009. С. 190.
- 17. Нокс Р. Теория экситонов. М.: Мир, 1966.
- Файн В.М. Фотоны и нелинейные среды. М.: Сов. радио, 1972. С. 472.
- 19. Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г. // ЖЭТФ. 1970. Т. 59. № 3. С. 921.
- 20. Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия света с веществом. М.: Наука, 1977.
- 21. *Ельяшевич М.А.* Атомная и молекулярная спектроскопия. М.: ГИФМЛ, 1962. Гл. 4, 5.
- 22. Агранович В.М. Теория экситонов. М.: Наука, 1968.

# – РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ

УДК 534:621.382,681.883

# ИССЛЕДОВАНИЕ УЛЬТРАЗВУКОВОГО ПОЛЯ В АКУСТООПТИЧЕСКОМ КРИСТАЛЛЕ АКУСТИЧЕСКИМИ МЕТОДАМИ<sup>1</sup>

© 2022 г. С. А. Титов<sup>а, \*</sup>, А. С. Мачихин<sup>а</sup>, В. Э. Пожар<sup>а</sup>, М. Ф. Булатов<sup>а</sup>

<sup>а</sup>Научно-технологический центр уникального приборостроения РАН, ул. Бутлерова, 15, Москва, 117342 Российская Федерация \*E-mail: sergetitov@mail.ru Поступила в редакцию 14.05.2022 г. После доработки 04.08.2022 г. Принята к публикации 09.08.2022 г.

Представлены два метода оценки структуры акустического поля, создаваемого в рабочей среде акустооптического (AO) модулятора его ультразвуковым излучателем. В первом методе в качестве чувствительного инструмента используется акустический микроскоп, фокусируемый на торцевую грань кристалла, противоположную той, на которой расположен пьезопреобразователь. Второй метод основан на использовании самого излучателя в качестве приемного элемента коротких акустических импульсов. Методы протестированы на рабочих образцах серийных АО-модуляторов. В результате проведенных экспериментальных исследований выявлены особенности поля акустического излучателя, в частности, наличие переотраженных волн и различие амплитуд волн, возбуждаемых разными секциями излучателя. Показано, что исследованные методы могут эффективно использоваться для контроля структуры акустических полей в рабочей среде АО-устройств.

DOI: 10.31857/S0033849422120221

# введение

Акустооптические (AO) устройства широко используются в современной технике для управления световыми потоками [1, 2]. В основе их работы лежит дифракция света на ультразвуковой волне, образующей за счет упругооптического эффекта в рабочей среде динамическую дифракционную решетку в виде периодической вариации диэлектрической проницаемости. Характеристики AO-устройств напрямую зависят от свойств этой решетки, повторяющей структуру акустического поля в среде [1, 2], а потому контроль этой структуры является важной задачей.

В то время как в теоретических моделях, как правило, предполагается идеальная форма поля в виде плоской волны, в реальных АО-устройствах возбуждаемый акустический пучок подвержен расходимости, затуханию и отражению от границ ячейки [3]. В частности, любая отраженная волна образует дифракционную решетку, а происходящая на ней дифракция света носит характер паразитного процесса. Для оценки степени влияния всех этих факторов следует иметь средства определения реальной структуры акустических пучков в среде.

Для контроля акустического поля часто используют дифракцию пробного лазерного пучка в направлении, ортогональном акустическому столбу, со стороны боковых граней [4]. Это позволяет исследовать затухание и расходимость акустической волны, ее снос, а также неоднородность, связанную в том числе с размерами и формой акустического излучателя. Однако на практике эти боковые грани, как правило, недоступны для проведения такого исследования, поскольку это требует их специальной полировки и в рабочем состоянии они зачастую перекрыты конструктивными элементами АО-устройств, например, теплоотводом.

Иным подходом, использованным в данной работе, является исследование акустической волны, прошедшей через АО-ячейку, акустическими датчиками. В этом качестве был использован акустический микроскоп, приемный элемент которого может быть сфокусирован в произвольную точку среды, и эта точка фокусировки может перемещаться по пространству [5]. Этот способ требует наличия доступа к соответствующим граням АО-ячейки, а потому в случае исследования действующего АО-устройства требует дополнитель-

<sup>&</sup>lt;sup>1</sup> Работа доложена на Пятой Международной молодежной конференции "Информационные технологии и технологии коммуникации: современные достижения" (Астрахань, 4–7 октября 2021 г.).



**Рис. 1.** Измерение акустического поля в АО-модуляторе: а – схема измерений; б – измерительная установка; *1* – рабочий кристалл, *2* – двухсекционный пьезопреобразователь АО-модулятора, *3* – направления акустических пучков; *4* – торцевая плоскость; *5* – поглотитель; *6* – иммерсионная жидкость; *7* – приемный элемент акустического микроскопа; *8* – ВЧ-генератор; *9* – ВЧ- приемник-усилитель; *10* – осциллограф.

ной подготовки, например, удаления защитного корпуса.

Другим способом анализа, при этом не требующим разборки действующего устройства, является эхо-импульсный метод [6], в котором акустический излучатель используется как в качестве источника ультразвука, так и в качестве его приемника.

В работе протестированы оба этих метода исследований акустического поля в рабочей среде АО-устройств и описаны возможные их применения.

# 1. МЕТОД АКУСТИЧЕСКОЙ МИКРОСКОПИИ

Этот метод предполагает поточечный анализ акустического поля на противоположной от излучателя грани рабочего кристалла. Принцип определения поля (рис. 1) заключается в последовательной регистрации распределения его амплитуды путем пошагового сканирования фокуса акустического микроскопа вдоль оси *х*. Для использования этого метода поглотитель был удален с исследуемой грани АО-устройства. Измерения осуществлялись в импульсном режиме и при этом ультразвуковой излучатель АО-устройства возбуждался электри-

ческим импульсом от генератора акустического микроскопа, что обеспечивало синхронизацию излучателя и приемника. Реализация этой схемы базируется на том, что рабочие полосы частот используемого приемного элемента акустического микроскопа и АО-излучателя в значительной степени перекрывалась (50...100 МГц). В ходе измерений акустический импульс возбуждается на нижней грани, проходит по рабочей области кристалла, достигает верхнего торца кристалла (z = 0), частично проходит в иммерсионную жидкость и принимается приемником акустического микроскопа, имеющим форму участка сферы.

Сигнал микроскопа фактически является сверткой по пространственным (x, y) и временной (t) переменным поля u(x, y, t) в иммерсионной среде в плоскости z = 0 с функцией импульсного отклика приемного акустического элемента h(x, y, t). Параметры последней определяют поперечную разрешающую способность, которая для использованного в эксперименте приемного элемента составляла приблизительно 30 мкм. Диапазон углов, в пределах которого данный элемент может принимать плоские волны в иммерсионной жидкости, ограничен в пределах  $\pm 30^{\circ}$  от нормали, что определяется конструкцией приемного ультразвукового преобразователя.



**Рис. 2.** Диаграммы сигналов, пришедших на торец кристалла (z = 0): а – однократный пробег, в координатах (x, t); б – трехкратный пробег, в координатах (x,  $t - \beta x$ ),  $\beta = 0.06$  мкс/мм.

# 2. СТРУКТУРА ПРОШЕДШЕЙ УЛЬТРАЗВУКОВОЙ ВОЛНЫ

Исследование метода проводили с использованием серийно выпускавшегося АО-модулятора МЗ-305-1, который содержит АО-ячейку из оптического плавленого кварца, схема которой представлена на рис. 1а. Светозвукопровод 1 выполнен в виде прямой призмы, верхняя грань которой наклонена на угол  $\alpha = 6.5^{\circ}$  по отношению к нижней и имеет небольшой (3 мм) скос (излом) на углу призмы, так что скошенный участок параллелен нижней грани. Поперечный и продольный размеры ячейки составляют  $L_0 = 28.3$  мм и  $L_x = 44.6$  мм соответственно. На нижней грани (основании) расположен ультразвуковой преобразователь 2 продольных волн из ниобата лития, состоящий из двух секций 2' и 2". Секции преобразователя имеют размеры 17.5 × 3.5 мм и расположены с зазором 4.0 мм. Они включены параллельно, а центральная частота и полоса частот преобразователя составляют 50 и 30 МГц соответственно.

При работе АО-ячейки в штатном режиме лазерное излучение проходит через оптические боковые грани кристалла. Световой пучок дифрагирует на ультразвуковой волне с изменением поляризации и направления распространения. При этом коэффициент дифракции пропорционален мощности возбужденной ультразвуковой волны [1, 2]. В функции оптического затвора используется прошедший без дифракции пучок. Изменение мощности ультразвуковой волны позволяет регулировать добротность лазерного резонатора и управлять временем появления лазерных импульсов.

Регистрируемый акустическим микроскопом пространственно-временной сигнал содержит множество составляющих, вызванных волнами различных мод и переотраженными волнами в кристалле, что видно из представленных полутоновых диаграмм (рис. 2). Отклик r(x, t) в виде наклонной прямой на рис. 2а образован акустическим импульсом продольной волны, излученным пьезопреобразователем: в каждом сечении (x = const) он представляет собой короткий импульс в виде примерно одного периода. При этом, поскольку верхняя грань кристалла наклонена по отношению к плоскости излучателя, задержка отклика, определяемая временем пробега, линейно зависит от х. На диаграмме выделяются две составляющие, соответствующие двум секциям преобразователя, причем правая секция дает заметно больший по амплитуде сигнал (проявляющийся на изображении в большем контрасте). Это различие не сводится к большему поглощению, вызванному различным расстоянием, проходимым волной от излучателя до выходной грани, а связано, вероятно, с неодинаковой амплитудой возбуждения двух секций излучателя. Отклик имеет плоский участок, протяженность которого примерно равна размеру преобразователя, и закругленные концы, образованные волнами, излученными краем излучателя и идущими под небольшим углом, а потому приходящими с соответствующей задержкой. Такая форма является характерной для широкополосного "поршневого" ультразвукового преобразователя [7]. Вычисленная фазовая скорость распространения волны составила приблизительно V = 5.97 км/с, что соответствует продольной моде для кварца, из которого изготовлена АО-ячейка [8].

Представляет интерес и изучение сигнала, соответствующего трехкратному прохождению продольной волны с отражением от верхней и нижней грани (рис. 26). Для удобства визуализации его



**Рис. 3.** Акустические хронограммы в АО ячейке с поглотителем (внизу) и без него (вверху); для наглядности сигнал с поглотителем инвертирован и смещен вниз на величину 0.1.

структуры он представлен на диаграмме в коорлинатах, компенсирующих наклон:  $(x, t - \beta x)$ , гле  $\beta = 0.06$  мкс/мм. На диаграмме наблюдается существенное (примерно на 10 мм) смещение отклика влево, вызванное клиновидностью АО-ячейки, и различаются две области, соответствующие двум секциям излучателя. На диаграмме видна только та часть волны левой секции, которая непосредственно достигает торцевой поверхности ячейки, тогда как остальная часть, отражающаяся от боковой грани, приходит на эту поверхность с дополнительной задержкой. В целом в структуре поля также наблюдаются как плоский участок, так и "краевые волны". Вместе с тем в поле правой секции видны существенные искажения в виде нарушения регулярности отклика в области  $x \approx 14$  мм, вызванные, видимо, тенью от зазора между секциями преобразователя.

# 3. ЭХО-ИМПУЛЬСНЫЙ МЕТОД

В этом методе для исследований используется собственный пьезопреобразователь АО-ячейки, т.е. не требуется разборка АО-устройства. Также этот метод не требует удаления поглотителя 5 (см. рис. 1а) и позволяет исследовать свойства отраженной волны.

Поскольку эта волна вызывает паразитные эффекты, для ее подавления используется поглотитель в виде поглощающей пасты (сплавы Розе и Вуда) или прикрепленной поглощающей пластины (индий). Чтобы в АО-ячейке не возникала стоячая акустическая волна, нижняя и верхняя грани кристалла, на которых размещены излучатель и поглотитель, делаются непараллельными.

Оценить коэффициент отражения можно путем сравнения эхо-сигналов, измеренных на двух идентичных АО-модуляторах — с поглотителем и без него. Следует отметить, что аналогичная схема использовалась для измерения акустического импеданса по изменению коэффициента отражения волны при приведении в соприкосновение твердотельного звукопровода с исследуемой жидкостью [6]. Однако в данной работе, поскольку противоположные грани не параллельны, в регистрируемые эхо-сигналы вносят дополнительный вклад волны, распространяющиеся в АО-ячейке по сложным траекториям и испытывающие многократные отражения. Ниже проведен анализ распространения ультразвуковых волн в АО-модуляторе МЗ-305-1 и оценен коэффициент отражения от торца, покрытого поглотителем ультразвука.

Поскольку в исследовании структуры ультразвукового поля излучатель выполняет функции источника и приемника, то для разделения сигналов используется импульсный режим. Импульсы длительностью 5 нс возбуждались ВЧ-генератором, а отраженные сигналы регистрировались приемником-усилителем 9, который имел полосу частот 10...120 МГц, регулируемый коэффициент усиления от 0 до 40 дБ и защиту от зондирующих импульсов. Усиленный аналоговый сигнал регистрировался цифровым осциллографом 10.

Результатом измерения являются хронограммы s(t) (рис. 3), отображающие последовательность эхо-импульсов. При этом время t отсчитывалось от начала зондирующего импульса, а огибающие вычислялись из зарегистрированного пьезопреобразователем знакопеременного сигнала с использованием преобразования Гильберта [9].

Каждая из зарегистрированных хронограмм содержит множество эхо-импульсов, вызванных отражениями в светозвукопроводе. При этом центральная частота эхо-импульсов составляет 51 МГц, а хронограммы для АО-ячеек с поглотителем и без него совпадают по форме и по времени прихода эхо-импульсов, но различаются по амплитуде. Таким образом, поглотитель не меняет радикальным образом картину распространения волн и, измеряя уменьшение амплитуды импульсов вследствие нанесения поглотителя, можно оценить его эффективность.



**Рис. 4.** Траектории распространения волн при формировании эхо-импульсов  $R_2$  (a) и  $R_3$  (б).

Сравниваемые хронограммы получены при возбуждении обеих секций ультразвукового излучателя. Следует, однако, отметить, что при отключении левой секции не наблюдается никаких откликов с заметной амплитудой, т.е. правая секция не дает значительного вклада в хронограмму. Это объясняется тем, что излученная ею плоская волна после отражения от наклонной верхней грани падает на поверхность преобразователя под углом 2α, превышающим угловую ширину его диаграммы направленности (см. рис. 1а).

## 4. АНАЛИЗ УЛЬТРАЗВУКОВОЙ ХРОНОГРАММЫ

Идентификация эхо-импульсов осуществлялась посредством сравнения времени их прихода с величинами времени пробега волн по разным траекториям, рассчитанным на основе геометрических размеров АО-ячейки и известных величин скорости звука ультразвука в плавленом кварце для продольной и поперечной волн  $C_L = 5.96$  км/с и  $C_T = 3.76$  км/с [8].

В дальнейшем анализе следует учесть, что регистрируемый пьезопреобразователем сигнал является суммой парциальных вкладов от разных точек излучателя. И поскольку вследствие клиновидности рабочего кристалла волна, испущенная плоским участком излучателя и отразившаяся от верхней грани, падает на приемник под углом, а потому достигает его в разной фазе, то она фактически гасится. Существенный отклик будут давать лишь волны, падающие на приемник нормально.

Слабый отклик R<sub>0</sub>, содержащий нескольких импульсов и имеющий минимальную задержку (см. рис. 3), вызван, очевидно, однократным отражением продольных волн от верхней грани при распространении параллельно кратчайшей линии  $E_1$  (см. рис. 1а). Он может быть порожден либо испускаемой левым краем излучателя цилиндрической волной, часть которой после отражения падает перпендикулярно его поверхности, либо участком плоской волны, падающим после отражения на правый край преобразователя. В обоих случаях доля таких волн в общем излучаемом потоке хотя и мала, с чем и связана низкая эффективность излучения или приема волн краем преобразователя [7], но достаточна для обнаружения этих эхо-импульсов. Оценка времени распространения дает значение  $t_0 \approx 7.9$  мкс, что согласуется с хронограммой.

Следующий эхо-импульс  $R_1$  образован плоской волной, распространяющейся по траектории  $E_4$  от левой части левой секции до небольшого участка верхней грани, параллельного основанию. Время распространения составляет

$$t_1 = \frac{2L_0}{C_L} \approx 9.4 \text{ MKC.} \tag{1}$$

Так как размер фаски относительно мал, то и амплитуда отклика  $R_1$  также мала, а поскольку отражение происходит от параллельной излучателю плоскости, этот отклик сосредоточен во времени.

Существенно большую амплитуду имеет отклик  $R_2$ , образованный четырехкратно отраженными лучами (рис. 4а). В этом случае при последовательном отражении от верхней, боковой, нижней и снова верхней граней длина траектории оказывается одинаковой для всех лучей, излученных участком секции 2' между точками B<sub>1</sub> и B<sub>2</sub>. Время пробега составляет:

$$t_2 = \frac{2L(1+\cos 2\alpha)}{C_L} \approx 18.8 \text{ MKc},$$
 (2)

что хорошо согласуется с хронограммой. В силу того, что в генерации и приеме импульса принимает участие заметная площадь преобразователя и принимаемая волна на участке  $B_1B_2$  падает перпендикулярно на его поверхность, амплитуда отклика  $R_2$  значительна.

Образование второго по величине эхо-импульса  $R_3$  объясняется аналогичным образом. В этом случае общее число отражений достигает шести, причем имеет место в том числе отражение от верхнего прямого угла OO<sub>1</sub>O<sub>2</sub> (см. рис. 4б). На схеме показан один из лучей, участвующих в формировании этого импульса. Время прохождения этого импульса составляет

$$t_3 = 2 \frac{L_0}{C_L \cos 2\alpha} [1 + (1 - \sin 2\alpha tg\alpha)(1 + \cos 2\alpha)] \quad (3)$$

и для небольшого угла наклона  $\alpha$  мало отличатся от времени шестикратного прохождения расстояния  $L_0$ . Так, для  $\alpha = 6.5^\circ$  расчет по формуле (3) да-

ет: 
$$t_3 = 6.03L_0C_L^{-1} = 28.33$$
 мкс.

-

Следующие три импульса,  $R_{31}$ ,  $R_{32}$  и  $R_{33}$ , расположены эквидистантно с интервалом  $dt \approx 2.7$  мкс. Возникновение этих откликов вызвано трансформацией волн, возможной при наклонном падении волны на границу. Если при отражении возникает поперечная волна, которая на другой границе трансформируется обратно в продольную, то траектория распространения волн сохраняется, но при этом возникает дополнительная задержка на величину

$$dt = L_0 \left( \frac{1}{C_T} - \frac{1}{C_L} \right). \tag{4}$$

В случае плавленого кварца численная оценка (4) дает значение  $dt \approx 2.75$  мкс, что равно наблюдаемой задержке импульса  $R_{31}$  относительно  $R_3$ . Импульсы  $R_{32}$  и  $R_{33}$  соответствуют двум и трем проходам поперечных волн из общих шести проходов. Следует отметить, что, несмотря на наличие трансформации мод, падение принимаемой волны происходит перпендикулярно поверхности преобразователя.

Происхождение импульса  $R_4$  аналогично  $R_2$ (см. рис. 4). В этом случае также происходит отражение продольной волны от нижнего прямого угла, но число отражений достигает восьми, что дает оценку времени задержки  $t_4 \approx 2t_2 = 37.6$  мкс. Амплитуда импульса  $R_4$  меньше, чем у импульсов  $R_2$ и  $R_3$ , вследствие увеличения длины пути и дополнительного влияния неполного отражения от ультразвукового преобразователя.

Из множества последующих откликов выделяется эхо-импульс  $R_5$  (см. рис. 3), запаздывающий относительно  $R_4$  примерно на время 2dt. Это позволяет предположить, что данный импульс формируется аналогично  $R_4$ , но в двух проходах из восьми волна имеет поперечную поляризацию. Общее время его задержки составляет  $t_5 = t_4 + 2dt \approx 43$  мкс, что наблюдается на хронограмме (см. рис. 3). За этим эхо-импульсом следует ряд эквидистантных откликов с периодом, равным приблизительно dt, что указывает на возрастающее число проходов в виде поперечной волны. Амплитуда этих импульсов оказывается малой, особенно при наличии поглотителя, поэтому включать их в дальнейший анализ представляется нецелесообразным.

#### 5. СТРУКТУРА ОТРАЖЕННОЙ УЛЬТРАЗВУКОВОЙ ВОЛНЫ

Проведенный выше анализ распространения импульсов в светозвукопроводе АО-модулятора позволяет утверждать, что для импульсов  $R_i$  (i = 1...5) число отражений от верхней границы ( $n_i$ ) составляет 1, 2, 4, 4 и 4 раза соответственно. Кроме того, направления распространения волн и размеры волновых пучков не меняются при изменении свойств среды, контактирующей с верхней гранью. Эффективность поглотителя можно оценить, сравнивая амплитуды  $A_{0i}$  откликов без поглотителя с амплитудами  $A_i$  при наличии поглотителя и учитывая число отражений  $n_i$ :

$$K_i = \left(\frac{A_i}{A_{0i}}\right)^{1/n_i}.$$
(5)

Этот коэффициент показывает примерно, во сколько раз уменьшается амплитуда паразитной однократно отраженной волны при нанесении поглотителя. В этих расчетах потерями на распространение можно пренебречь, поскольку декремент затухания продольных волн в плавленом кварце на частоте 50 МГц составляет лишь  $0.325 \ дБ/m$  [8]. Кроме того, поскольку падение волны на торец близко к нормальному, модуль коэффициента отражения от границы раздела звукопровод—воздух приблизительно равен 1 и величина *К* является оценкой коэффициента отражения от границы звукопровод—поглотитель.

Результаты измерений и расчетов приведены в табл. 1. Амплитуда отклика  $R_4$  мала, что не дает возможности получить состоятельную оценку коэффициента отражения. Также в силу малости амплитуды отклика  $R_1$  относительная погрешность *К* является весьма значительной. Кроме того, отклик  $R_1$  получен при отражении от малого плоского участка  $O_1O_3$  (см. рис. 1), где структура

#### ТИТОВ и др.

| Импульс               | n <sub>i</sub> | A <sub>0i</sub> , отн. ед. | A <sub>0</sub> , отн. ед. | K <sub>i</sub> |
|-----------------------|----------------|----------------------------|---------------------------|----------------|
| <i>R</i> <sub>1</sub> | 1              | $0.08 \pm 0.02$            | $0.11 \pm 0.02$           | $0.6 \pm 0.15$ |
| $R_2$                 | 2              | $0.46 \pm 0.02$            | $0.87\pm0.03$             | $0.73\pm0.04$  |
| $R_3$                 | 4              | $0.20 \pm 0.03$            | $0.51\pm0.02$             | $0.78\pm0.06$  |
| $R_4$                 | 4              | 0.04                       | 0.1                       | _              |
| $R_5$                 | 4              | $0.1 \pm 0.03$             | $0.28 \pm 0.03$           | $0.8\pm0.2$    |

Таблица 1. Коэффициент отражения ультразвуковой волны от поглотителя

поглотителя может быть особой. Невысокая точность соответствует коэффициенту отражения  $K_5$ , это связано кроме малой амплитуды  $A_{05}$  с трансформацией продольной моды в поперечную на границе поглотителя, что делает оценку  $K_5$  не вполне корректной. В целом наиболее надежными представляются оценки, полученные по от-кликам  $R_2$  и  $R_3$ .

Экспериментальные исследования показывают, что полученное оценочное значение коэффициента отражения продольной ультразвуковой волны от границы с поглотителем находится в пределах 0.7...0.8. Интересно сравнить это значение с оценками, рассчитанными для некоторых материалов по справочным данным. Амплитудный коэффициент отражения при нормальном падении на плоскую границу раздела равен [10]:

$$K = \frac{Z_2 - Z_1}{Z_2 + Z_1},\tag{6}$$

где  $Z_1$  и  $Z_2$  – акустические импедансы звукопровода и поглотителя соответственно, а импеданс определяется плотностью материала ρ и скоростью звука. Для уменьшения коэффициента отражения целесообразно использовать материал с импедансом, близким к импедансу среды. В случае плавленого кварца ( $Z_1 = \rho C_L = 13.1 \text{ кг м}^{-2} \text{ c}^{-1}$ ) в качестве такого материала часто используется индий с импедансом Z = 16.2 кг м<sup>-2</sup> с<sup>-1</sup> [8]. В этом случае оценка коэффициента отражения дает K== 0.11, что значительно отличается от результатов эксперимента. С другой стороны, нанесение достаточно толстого слоя индия на поверхность светозвукопровода является сложной технологической задачей, поэтому для присоединения поглотителя используется клеевое соединение. В этом случае коэффициент отражения на границе с эпоксидным компаундом, характерный импеданс которого равен Z = 3 кг м<sup>-2</sup> с<sup>-1</sup> [8], составляет K = 0.63, что намного ближе к полученным результатам. Некоторое различие может быть объяснено нестабильностью акустических свойств клея, влиянием

толщины клеевого слоя и частичной потерей адгезии на границе раздела.

## ЗАКЛЮЧЕНИЕ

Описанные методы оценки структуры ультразвукового поля в кристалле позволяют получать прямую информацию о его характеристиках и оценить однородность поля, относительную эффективность возбуждения ультразвука, расходимость пучка, наличие переотражений, степень затухания или ослабления ультразвуковой волны. С помошью описанных методов представляется возможным осуществлять контроль структуры ультразвукового поля в отсутствие акустического поглотителя в ходе изготовления АО-ячеек, а также на стадии согласования пьезопреобразователя с ВЧ-генератором. Сравнение полученных данных с результатами измерений при установленном поглотителе позволяет оценить его эффективность. Кроме того, акустические поля могут исследоваться и со стороны боковых граней, пока АО-ячейка не заключена в корпус. Регистрация ультразвуковых волн на границах ячейки в импульсном режиме может быть использована для оценки пространственно-временного распределения волн в объеме светозвукопровода и для выявления особенности полей, связанных со структурой источника ультразвука, формой АО-ячейки и другими факторами.

Авторы заявляют об отсутствии конфликта интересов.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках государственного задания НТЦ УП РАН (FFNS-2022-0010).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Балакший В.И., Парыгин В.Н., Чирков Л.Н. Физические основы акустооптики. М.: Радио и связь, 1985.
- Молчанов В.Я., Китаев Ю.И., Колесников А.И. и др. Теория и практика современной акустооптики. М.: МИСиС, 2015.
- 3. *Shutilov V.A.* Fundamental Physics of Ultrasound. London: CRC Press, 1988.
- 4. *Settles G.S.* Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Berlin: Springer-Verlag, 2001.
- 5. Титов С.А. // Письма в ЖТФ. 1988. Т. 14. № 1. С. 22.

- Физическая акустика. Т. 1. Методы и приборы ультразвуковых исследований. Часть А. / Под ред. У. Мэзона. М.: Мир, 1966.
- Кайно Г. Акустические волны: Устройства, визуализация и аналоговая обработка сигналов. М.: Мир, 1990.
- 8. *Birks A.S., Green R.E., McIntire P.* Ultrasonic Testing (Nondestructive Testing). Handbook. V. 7. Columbus: Amer. Soc. Nondestructive Testing, 1991.
- 9. *Oppenheim A.V., Schafer R.W.* Discrete-time Signal Processing. Upper Saddle River, Pearson Higer Education, Inc, 2010.
- 10. Бреховских Л.М., Годин О.А. Акустика слоистых сред. М.: Наука, 1989.

# ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 535.421

# ЛАЗЕРНОЕ СЧИТЫВАНИЕ РАДИОСИГНАЛОВ С УСТРОЙСТВ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ

© 2022 г. В. А. Комоцкий\*

Российский университет дружбы народов, ул. Миклухо-Маклая, 6, Москва, 117198 Российская Федерация \*E-mail: vkomotskii@mail.ru

> Поступила в редакцию 15.03.2021 г. После доработки 17.03.2022 г. Принята к публикации 20.03.2022 г.

Рассмотрены оптоэлектронные схемы, предназначенные для считывания радиосигналов с линий задержки на поверхностных акустических волнах (ПАВ), в которых вместо второго, считывающего встречно-штыревого преобразователя применена схема лазерного зондирования ПАВ с фазовой дифракционной решеткой. Приведены примеры и методика расчета амплитуды сигнала и отношения сигнала к шуму на выходе канала лазерного считывания при различных параметрах схем. Представлены результаты экспериментов по считыванию импульсных радиосигналов с длительностями в несколько микросекунд. Отмечены особенности метода лазерного считывания: возможность плавной регулировки времени задержки выходного сигнала относительно входного и исключения отражения поверхностной волны от считывающего встречно-штыревого преобразователя.

DOI: 10.31857/S0033849422120087

#### введение

Поверхностные акустические волны (ПАВ) используются для построения линий задержки, фильтров и устройств обработки радиосигналов [1-4]. Эти устройства содержат, как минимум, два встречно-штыревых преобразователя (ВШП) на поверхности подложки. Один из них предназначен для возбуждения ПАВ, а второй, расположенный на некотором расстоянии от первого ВШП, служит для считывания радиосигнала. В данной работе будут рассмотрены схемы лазерного считывания (ЛС) радиосигнала с линий задержки, в которых вместо второго ВШП применена одна из схем [5, 6] лазерного зондирования ПАВ с опорной дифракционной решеткой (ОДР). Схема ЛС линейно преобразует радиосигнал, который распространяется в форме ПАВ по подложке, в выходной электрический радиосигнал с сохранением несущей частоты и фазовых соотношений. Другие способы лазерного зондирования ПАВ, которые были описаны в работах [7, 8] и в обзорах [9, 10], не предназначены на практике для считывания сигнала с линии задержки на ПАВ. Лазерное считывание сигналов с применением ОДР дает возможность получить ряд новых качеств, которые не реализуются в традиционных устройствах на ПАВ. Во-первых, оно создает возможность плавного изменения длительности задержки выходного сигнала за счет перемещения следа лазерного пучка вдоль направления распространения ПАВ: во-вторых. позволяет устранить отраженную волну за счет того, что из схемы исключается считывающий ВШП. В традиционной линии задержки считывающий ВШП вызывает отражение ПАВ и так называемый трехпроходный сигнал на выходе. Дополнительно можно отметить, что схема ЛС с ОДР позволяет считывать сигнал с подложки, которая не обладает пьезоэлектрическими свойствами, в том случае, если ПАВ введена в подложку каким-либо способом, например, с помощью краевого возбудителя. Теоретический анализ процесса формирования выходного сигнала, а также методика выбора оптимальных параметров схем лазерного зондирования ПАВ, описаны в работах [5, 6, 11, 13]. Здесь мы рассмотрим практические аспекты построения схем ЛС, расчет амплитуды полезного сигнала и отношения сигнала к шуму на выходе схем ЛС с ОДР.

# 1. ВАРИАНТЫ СХЕМ ЛАЗЕРНОГО СЧИТЫВАНИЯ СИГНАЛА

# 1.1. Схема ЛС с ОДР на поверхности подложки

Рассмотрим схему ЛС с ОДР, представленную на рис. 1. На поверхности подложки 1 имеется ВШП 2, для ввода сигнала в линию задержки. На пути распространения ПАВ находится ОДР 4. Пе-


**Рис. 1.** Схема лазерного считывания сигнала с линии задержки, в которой ОДР расположена на поверхности подложки: *1* – подложка, *2* – ВШП, *3* – поглотители ПАВ, *4* – ОДР, *5* – лазер, *6* – диафрагма, *7* – фотодиод, *8* – нагрузка фотодиода в виде колебательного контура, *9* – усилитель радиосигнала, *10* – генератор радиосигнала.

риод ОДР,  $\Lambda_g$ , равен длине волны ПАВ,  $\Lambda = \Lambda_0$ , которая соответствует центральной частоте радиосигнала  $F_0$ . В данной схеме ОДР представляет собой отражающую свет рельефную периодическую структуру с прямоугольной формой профиля типа "меандр". Пучок излучения от лазера 5 направлен на ОДР под углом падения  $\Theta_{\text{пад}}$ , который достаточен для разделения в пространстве входного и отраженного пучков излучения лазера. Плоскость падения лазерного пучка параллельна линиям ОДР. На волновом фронте отраженного оптического пучка формируется пространственная фазовая модуляция (ПФМ), амплитуду которой  $\Phi_{\text{м}}$ можно рассчитать по формуле

$$\Phi_{\rm M} = \frac{2\pi}{\lambda} H_g \cos \Theta_{\rm mag}, \qquad (1)$$

где  $\lambda$  — длина волны излучения лазера,  $H_g$  — глубина рельефа ОДР,  $\Phi_{\rm M} = \Delta \Phi/2$  — амплитуда ПФМ волнового фронта,  $\Delta \Phi$  — величина скачка фазы на фронте отраженной оптической волны, на границе выступа и впадины рельефа.

В отраженном лазерном пучке, за диафрагмой 6, которая выделяет нулевой порядок дифракции, расположен фотодетектор 7. На нагрузке 8, которая включена последовательно в цепь фотодетектора, получаем выходной радиосигнал, подобный сигналу, введенному в линию задержки через ВШП. Колебательный контур в нагрузке фотодетектора настроен на центральную частоту радиосигнала  $F_0$ . Групповая задержка радиосигнала от входа до выхода схемы зависит от расстояния между ВШП и точкой падения лазерного пучка на подложку с ОДР, и она изменяется при перемещении точки падения пучка относительно подложки вдоль направления ПАВ.

### 1.2. Результаты испытаний ЛС с ОДР на поверхности подложки

В эксперименте, описанном ранее в [5], макет линии задержки был изготовлен на подложке из танталата лития У-среза, с Z направлением ПАВ. ВШП имел период 200 мкм и 14.5 пар штырей. Центральная частота ВШП составляла  $F_0 = 16.15$  МГц, а полоса пропускания  $\Delta F = 1.1$  МГц. Длина волны ПАВ, соответствующая центральной частоте радиосигнала, составляла  $\Lambda_0 = 200$  мкм. В схеме ЛС применялся гелий-неоновый лазер с длиной волны  $\lambda = 0.6328$  мкм и мощностью 5 мВт. Размер считывающего пучка на поверхности подложки составлял 2 мм. Фотодиод располагался в нулевом порядке дифракции в отраженном пучке. LC-контур в нагрузке фотодиода был настроен на центральную частоту радиоимпульса  $F_0 = 16.15$  МГц, а его полоса пропускания была равна  $\Delta F = 2 \text{ MFu}.$ 

Технология изготовления рельефной ОДР на поверхности подложки состояла из нескольких этапов. На первом этапе на поверхность подложки нанесли пленку алюминия с заданной толщиной:  $H_g = 0.087$  мкм. На втором этапе с помощью технологии фотолитографии и химического трав-

1201



**Рис. 2.** Осциллограммы, иллюстрирующие считывание импульсных радиосигналов: *1* – сигнал на входе ВШП, *2* и *3* – сигналы на выходе канала лазерного считывания при различных расстояниях от ВШП до точки считывания.

ления из этой пленки формировали структуру, состоящую из полосок пленки с шириной  $0.5\Lambda_g = 100$  мкм, которые чередовались с пустыми промежутками шириной  $0.5\Lambda_g$ . Период структуры был равен  $\Lambda_g = 200$  мкм. На третьем этапе на поверхность структуры из металлических полосок напыляли сплошную пленку алюминия. В результате была изготовлена рельефная, отражающая свет периодическая структура с заданной глубиной рельефа  $H_g = 0.087$  мкм и периодом  $\Lambda_g = 200$  мкм.

Рассчитать оптимальную глубину рельефа отражающей ОДР можно по формуле:  $H_{g \text{ опт}} = \lambda/(8\cos\Theta_{\text{пад}})$ . Например, если  $\Theta_{\text{пад}} = 25^{\circ}$ , то для лазера с длиной волны  $\lambda = 0.6328$  мкм расчетная оптимальная величина  $H_{g \text{ опт}} = 0.0872$  мкм.

На рис. 2 изображены три радиоимпульса: 1 – это радиоимпульс на входе ВШП, его несущая частота 16.15 МГц. Справа показан фрагмент входного радиоимпульса при увеличенной скорости развертки осциллографа. Импульс 2 с несущей частотой 16.15 МГц получен с выхода канала ЛС при некоторой исходной позиции следа лазерного пучка на поверхности линии задержки, а импульс 3 также получен с выхода канала ЛС, но при дополнительном сдвиге точки падения лазерного пучка в направлении распространения ПАВ на три миллиметра относительно исходной позиции, при которой был получен импульс 2. Этот сдвиг точки

падения лазерного пучка в направлении от ВШП привел к увеличению времени задержки выходного сигнала – импульса 3, по сравнению с задержкой сигнала — импульса 2. Форма огибающей импульсного сигнала на выходе канала ЛС несколько отличается от формы огибающей сигнала, поданного на вход ВШП, из-за частотных искажений, вносимых элементами схемы. Можно выделить три фактора, которые определяют частотные искажения сигнала: первый — это форма амплитудно-частотной характеристики ВШП, второй — это форма амплитудно-частотной характеристики *LC*-контура, установленного на выходе, в нагрузке фотодетектора; третий фактор – это форма частотной зависимости оптической части схемы ОДР-ПАВ. Роль первых двух факторов очевидна и хорошо изучена. Рассмотрим подробнее третий фактор. Как было установлено в [5], относительная полоса пропускания частот,  $\Delta F/F_0$ , радиосигнала в схеме ЛС зависит от количества периодов ОДР, Ng, которые находятся в пределах следа оптического пучка на подложке:  $\Delta F/F_0 \approx 1/N_g$ . В данном эксперименте число периодов в пределах следа оптического пучка была равна  $N_g = 10$ . При этом расчетная полоса пропускания оптической части схемы ЛС составила  $\Delta F =$  $= 0.1F_0 = 1.6$  МГц. Число периодов, которые охвачены следом оптического пучка, не должно быть



**Рис. 3.** Схема лазерного считывания радиосигнала, в которой ОДР расположена на расстоянии от поверхности подложки: *1* – подложка, *2* – ВШП, *3* – площадка, покрытая металлической отражающей пленкой, *4* – ОДР, *5* – лазер, *6* – диафрагма, *7* – фотодиод, *8* – нагрузка фотодиода в виде колебательного контура, *9* – усилитель выходного радиосигнала, *10* – генератор радиосигнала, *11* – поглотитель ПАВ.

менее четырех, чтобы выполнялось условие:  $\Delta F/F_0 \leq 0.25$ . При увеличении количества периодов ОДР, находящихся в пределах следа оптического пучка, уменьшается полоса пропускания системы ОДР-ПАВ. При этом амплитуда выходного сигнала не зависит от количества периодов ОДР, охваченных считывающим лазерным пучком. Так как в данной схеме ОДР расположена на поверхности подложки, то она вносит некоторые возмущения в распространение ПАВ. Как показали проведенные нами эксперименты, при длине волны ПАВ, равной 200 мкм, наличие препятствий в виде небольшого числа канавок с периодом  $\Lambda_g =$ = 200 мкм, с глубиной  $H_g$  менее 0.1 мкм не вызывали существенных отражений ПАВ, так как в этом случае глубина канавок значительно меньше эффективной глубины проникновения ПАВ в подложку.

# 1.3. Схема ЛС с отделенной от подложки ОДР

Рассмотрим схему ЛС с отделенной от подложки ОДР (рис. 3). На подложке *1* имеется ВШП *2* для возбуждения ПАВ. На пути распространения ПАВ расположена площадка *3*, покрытая отражающей свет металлической пленкой. В этой схеме ОДР *4* представляет собой рельефную структуру с периодом  $\Lambda_g$  на прозрачной пластине, которая закреплена на небольшом расстоянии  $d_g$  от поверхности подложки. Пучок излучения от лазера *5* 

проходит через ОДР 4, отражается от поверхности подложки, покрытой сплошной металлической пленкой 3, а затем отраженный пучок вторично проходит через ОДР. В отраженном пучке с помощью диафрагмы 6 мы выделяем нулевой порядок дифракции и направляем его на фотодетектор 7. Нагрузкой фотодетектора служит LC-контур 8, настроенный на центральную частоту радиосигнала  $F_0$ . Так как ОДР отделена от подложки, она не вносит каких-либо возмущений в распространение ПАВ. Однако в этой схеме требуется тщательная настройка положения ОДР по отношению к плоскости подложки и к направлению распространения ПАВ. Необходимо установить ОДР таким образом, чтобы линии рельефа ОДР были параллельны линиям ВШП, а плоскость ОДР была параллельна подложке и располагалась на малом расстоянии от нее:  $d_g \ll 0.5 \Lambda_g^2 / \lambda$ . Если, например, в качестве источника излучения мы применяем полупроводниковый лазер с длиной волны  $\lambda = 0.65$  мкм, то при  $\Lambda_g = 100$  мкм получим условие  $d_g \ll 7.7$  мм, что нетрудно выполнить на практике. При уменьшении длины волны ПАВ и периода ОДР расчетная величина dg быстро умень-

риода ОДР расчетная величина  $d_g$  быстро уменьшается. Например, при  $\Lambda_g = 30$  мкм получим условие  $d_g \ll 0.63$  мм. При дальнейшем уменьшении дины волны ПАВ требуемая величина  $d_g$  становится очень малой, порядка единиц или долей микрометра, что может быть неприемлемо на

практике. Вместе с тем, как было показано в работе [6], существует другой вариант расположения ОДР в плоскости, которая находится на расстоянии от подложки, равном  $d_g = \Lambda_g^2 / \lambda$ . При этом условии также получаем максимальную амплитуду сигнала с частотой ПАВ на выходе канала ЛС, однако в этом варианте необходимо выдерживать высокую точность установки расстояния между поверхностями ОДР и ПАВ. Допустимое отклонение положения ОДР от оптимальной плоскости составляет  $\Delta d_g \ll 0.5 \Lambda_g^2 / \lambda$ . При этом следует иметь в виду, что если расстояние между подложкой и ОДР будет равно  $d_g = 0.5 \Lambda_g^2 / \lambda$  или  $d_g = 1.5 \Lambda_g^2 / \lambda$ , то амплитуда сигнала на выходе схемы ЛС будет равна нулю. В схеме, изображенной на рис. 3, ОДР представляет собой прямоугольный рельеф на поверхности стеклянной пластины 4. Период рельефа равен средней длине волны ПАВ в заданном диапазоне. Ширина выступа рельефа равна ширине впадины и равна 0.5 Л<sub>g</sub>. Так как оптический пучок в этой схеме дважды проходит через ОДР, то оптимальная амплитуда пространственной фазовой модуляции волнового фронта оптической волны,  $\Phi_{M}$ , рассчитанная при однократном прохождении через ОДР, должна составлять  $\Phi_{\rm M}$ = 22.5°, а не 45°. Расчет величины  $\Phi_{\rm M}$  при прохождении оптической волны сквозь прозрачную пластинку с рельефом на ее поверхности можно провести по следующей формуле:

$$\Phi_{\rm M} = (\Delta \varphi/2) =$$

$$= \frac{\pi H_g}{\lambda} \Big( \sqrt{n_g^2 - \sin^2 \Theta_{\rm max}} - \cos \Theta_{\rm max} \Big), \qquad (2)$$

где  $H_g$  — глубина рельефа,  $n_g$  — показатель преломления пластины, Например, при величине угла падения  $\Theta_{\text{пад}} = 10^\circ$ , и при условии, что  $\lambda = 0.65$  мкм, для получения оптимальной величины  $\Phi_{\text{м}} = 22.5^\circ$ , расчетная глубина рельефа ОДР на поверхности пластины из стекла с показателем преломления  $n_g = 1.51$  составляет  $H_g = 0.16$  мкм. Плоскость падения лазерного пучка в схеме рис. 3 должна быть параллельна линиям рельефа ОДР, что связано с особенностями схемы ЛС с ОДР, отделенной от подложки [6].

### 1.4. Результаты измерений параметров схемы ЛС с ОДР, отделенной от подложки, с применением полупроводникового лазера [12]

Образец линии задержки был изготовлен на подложке из ниобата лития Y среза с Z направлением распространения ПАВ. При этом ВШП имел период 100 мкм, апертуру 10 мм и содержал пять пар электродов. Радиоимпульс с частотой  $F_0 = 34.6$  МГц, с длительностью 2 мкс и с амплитудой 3 В подавался на вход ВШП. В схеме был

использован полупроводниковый лазер с длиной волны 0.65 мкм и мощностью 4.5 мВт. В области падения лазерного пучка поверхность подложки была покрыта отражающей свет алюминиевой пленкой, а ОДР была выполнена в виде рельефа с прямоугольной формой с периодом  $\Lambda_g = 100$  мкм на отдельной стеклянной пластине. Пластина с рельефом располагалась параллельно подложке на расстоянии  $d_{q} = 0.1$  мм от ее поверхности. Выходной сигнал с нагрузки фотодетектора в виде LC-контура с шириной полосы 5 МГц, подавался на вход широкополосного усилителя с коэффициентом усиления k = 90. На выходе усилителя получали импульсный сигнал, подобный входному, с амплитудой 90 мВ. Длительность импульса была равна 2 мкс, длительность фронта импульса 0.5 мкс, несущая частота  $F_0 = 34.6$  МГц. Отношение напряжения сигнала к измеренному напряжению шума на выходе составляло с/ш = 18. Среднее напряжение шума на выходе усилителя составляло 5 мВ, а при перекрытии лазерного излучения среднее напряжение шума снижалось до уровня 2.5 мВ. Отсюда следует, что значительная часть шумов была вызвана дробовыми шумами фототока и дополнительными шумами лазерного излучения. При сдвиге подложки вдоль направления распространения ПАВ время задержки выходного импульса относительно входного изменялось пропорционально перемещению подложки относительно точки падения лазерного пучка на подложку.

## 2. РАСЧЕТ ОТНОШЕНИЯ СИГНАЛА К ШУМУ

В схемах ЛС, изображенных на рис. 1 и 3, колебания мощности с частотой ПАВ F в нулевом порядке дифракции происходят на фоне значительной постоянной мощности оптического излучения. В результате на выходе фотодетектора мы получаем полезный сигнал — переменный ток с частотой F, а также постоянный фототок, который порождает дробовый шум.

#### 2.1. Расчет амплитуды сигнала

Если ПАВ имеет амплитуду гофра поверхности, равную  $h_w$ , то при отражении от поверхности подложки оптическая волна получает пространственную фазовую модуляцию (ПФМ) волнового фронта, амплитуда  $\Phi_w$  которой определяется соотношением

$$\Phi_{w} = \frac{4\pi}{\lambda} h_{w} \cos \Theta_{\text{пад}}.$$
 (3)

Амплитуду колебаний мощности оптического излучения с частотой колебаний *F* в нулевом порядке дифракции будем рассчитывать по формуле [5]

$$P_{0F} = P_{\rm BX} R q_{0F} \Phi_w = P_{\rm bp} q_{0F} \Phi_w. \tag{4}$$

 $P_{\rm вx}$  — мощность входного лазерного излучения, R — коэффициент отражения лазерного пучка от поверхности подложки в области зондирования,  $P_{\rm эф} = P_{\rm Bx}R$  —эффективная мощность зондирующего лазерного излучения,  $\Phi_w$  — амплитуда ПФМ, которая получена в результате взаимодействия оптической волны с ПАВ,  $q_{0F}$  — коэффициент эффективности преобразования ПФМ в колебания мощности излучения с частотой ПАВ (F) в нулевом порядке дифракции. Коэффициент  $q_{0F}$  зависит от параметров ОДР. Для схемы, изображенной на рис. 1, в которой ОДР имеет прямоугольную форму типа "меандр", эта зависимость выражается следующей формулой, приведенной в [5] и в Приложении:

$$q_{0F} = (2/\pi)\sin 2\Phi_{\rm M} \,. \tag{5}$$

Здесь  $\Phi_{\rm M}$  — амплитуда ПФМ, которая получена в результате взаимодействия оптической волны с ОДР. Максимальная величина коэффициента  $q_{0F} = 0.63$  достигается при оптимальном значении  $\Phi_{\rm M} = 45^{\circ}$ .

Аналогично, для схемы на рис. 2, в которой ОДР расположена отдельно от подложки, коэффициент  $q_{0F}$  также может достигать максимального значения  $q_{0F} = 0.63$  при оптимальной для этой схемы глубине ОДР и при оптимальном расстоянии от подложки до ОДР [6].

Амплитуду колебаний тока сигнала с частотой ПАВ в цепи фотодиода, расположенного в нулевом порядке дифракции, рассчитываем по формуле

$$i_{0F} = S_{P-i} P_{0F} = S_{P-i} P_{9\Phi} q_{0F} \Phi_w.$$
(6)

 $S_{P-i}$  (А/Вт) — коэффициент, характеризующий эффективность преобразования мощности излучения лазера в выходной ток фотодиода.

### 2.2. Расчет шумового тока в цепи фотодиода

Постоянная составляющая мощности в нулевом порядке дифракции определяется формулой [5]

$$P_{0(=)} = P_{\Im \Phi} q_{0(=)} = P_{\Im \Phi} (\cos \Phi_{\rm M})^2, \tag{7}$$

 $q_{0(=)} = (\cos \Phi_{\rm M})^2 -$ коэффициент эффективности дифракции оптической волны на ОДР для нулевого порядка. Постоянная составляющая фототока, соответствующая мощности  $P_{0(=)}$ , равна

$$i_{0(=)} = S_{P-i} P_{0(=)} = S_{P-i} P_{\Im \Phi} q_{0(=)} = S_{P-i} P_{\Im \Phi} (\cos \Phi_{M})^{2}.$$
(8)

Среднеквадратическую величину тока дробового шума рассчитаем по формуле

$$\sqrt{i_{\text{ДШ}}^2} = \sqrt{2ei_{0(=)}\Delta F} = \sqrt{2eS_{P-i}P_{\ni\Phi}q_{0(=)}\Delta F},\qquad(9)$$

где *е* — заряд электрона,  $\Delta F$  — эффективная полоса частот нагрузки фотодиода и усилителя сигнала.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022

Кроме дробового шума следует учитывать тепловой шум нагрузки и усилителя. Среднеквадратическую величину тока теплового шума резистора нагрузки рассчитываем по формуле

$$\sqrt{\overline{i_T^2}} = \sqrt{4kTY_e\Delta F},\tag{10}$$

где k — постоянная Больцмана, T — абсолютная температура,  $Y_e$  — эквивалентная проводимость нагрузки:  $Y_e = 1/R_e$ , а  $R_e$  — эквивалентное активное сопротивление нагрузки. В данной схеме  $R_e$  — это активное сопротивление *LC*-контура на резонансной частоте. Для оценки влияния шумов усилителя дополнительно введем в расчетную формулу коэффициент шума  $\beta$ , который показывает во сколько раз уровень шума с учетом усилителя, превышает уровень теплового шума нагрузки фотодиода. Суммарный приведенный уровень шумового тока в цепи нагрузки фотодиода рассчитаем по формуле

$$\sqrt{\overline{i_{\Sigma}^2}} = \sqrt{\overline{i_{\beta \amalg}^2} + \overline{i_T^2}} = \sqrt{(2ei_{0(=)} + 4kTY_e\beta)\Delta F}.$$
 (11)

Отношение амплитуды тока сигнала с частотой ПАВ, F к среднеквадратической величине шумового тока в нагрузке фотодетектора с учетом формул (3), (6), (11) можно рассчитать, по формуле

$$\frac{\dot{l}_{0F}}{\sqrt{\frac{2eS_{P-i}P_{\ni\Phi}q_{0F}}{\sqrt{\left(2eS_{P-i}P_{\ni\Phi}q_{0(=)} + \frac{4kT}{R_e}\beta\right)\Delta F}}}} 4\pi \frac{h_w}{\lambda}\cos\Theta_{\text{пад}}.$$
(12)

Сопоставим величины первого и второго слагаемых в скобках в знаменателе выражения (12). Положим:  $S_{P-i} = 0.25$  A/BT,  $q_{0(=)} = 0.5$ ,  $P_{9\phi} = 7$  мBT,  $R_e = 10^3$  Ом, тогда при  $\beta = 1$  получаем, что первое слагаемое в знаменателе превышает второе слагаемое на порядок. Таким образом, при эффективной мощности зондирования более 7 мВт и при достаточно высоком (порядка 1 кОм и более) эквивалентном сопротивлении нагрузки, при расчетах можно исключить второе слагаемое в знаменателе. Тогда формула (12) примет вид

$$\frac{i_{0F}}{\sqrt{i_{\Sigma}^{2}}} \approx \frac{\sqrt{S_{P-i}}q_{0F}}{\sqrt{2eq_{0(=)}}} \sqrt{\frac{P_{3\Phi}}{\Delta F}} \frac{4\pi}{\lambda} h_{w} \cos \Theta_{\text{пад}}.$$
 (13)

В формуле (13) учтен только дробовый шум, а шум нагрузки отброшен. Это приближение выполняется в случае применения нагрузки с высоким эквивалентным сопротивлением. Например, *LC*-контур на резонансной частоте имеет эквивалентное сопротивление, равное

$$R_e = 2\pi F_0 L Q = \frac{1}{2\pi F_0 C} Q = \frac{1}{2\pi \Delta F C},$$
 (14)



**Рис. 4.** Расчетные кривые зависимости отношения амплитуды полезного сигнала с частотой ПАВ к среднеквадратической величине шума на выходе канала лазерного считывания при полосе пропускания:  $\Delta F = 1 \text{ M}\Gamma_{\text{H}}$ .

где Q – добротность, L – индуктивность, C – емкость,  $\Delta F$  – полоса пропускания – параметры колебательного контура. Оценки показывают, что на частотах F до 60 МГц вполне реально применить в качестве нагрузки колебательный LC-контур, у которого эквивалентное сопротивление на резонансной частоте будет порядка  $R_e = 1$  кОм. Однако при повышении резонансной частоты эквивалентное сопротивление LC-контура будет быстро уменьшаться. Как видно из формулы (12), уменьшение сопротивления нагрузки фотодиода приводит к тому же эффекту увеличения шумов, что и увеличение коэффициента шума  $\beta$ .

На рис. 4 приведен ряд расчетных кривых зависимостей отношения сигнала к шуму на выходе схемы ЛС от мощности лазера. Как видно из этих графиков, отношение сигнала к шуму возрастет при увеличении мощности считывающего лазера. Кривые 1, 3 и 5 были рассчитаны при одинаковых значениях эквивалентного сопротивления нагрузки:  $R_e = 1$  кОм, но при разных амплитудах ПАВ:  $h_w =$ = 3 (1), 1 (3) и 0.3 Å (5). Кривая 2 рассчитана при условии, что амплитуда ПАВ равна  $h_w = 1$  Å, но в предположении, что тепловые шумы нагрузки отсутствуют, а присутствует только дробовый шум. Из сравнения кривых 2 и 3 видно, что при эффективной мощности зондирующего излучения  $P_{\rm ab} > 7$  мВт, кривая 3 приближается к кривой 2, т.е. к асимптоте дробового шума. Кривая 4 построена для амплитуды ПАВ, равной  $h_w = 1$  Å, но при условии, что усилитель, подключенный к выходу, повышает уровень теплового шума в четыре раза ( $\beta = 4$ ). Остальные данные для кривой 4 такие же, как и для кривой 3. Как видно из сравнения кривых 2, 3 и 4, в области, где эффективная мощность зондирующего излучения превышает 7 мВт, тепловые шумы нагрузки (при величине  $R_e = 1$  кОм и  $\beta = 4$ )

незначительно влияют на отношение сигнала к шуму на выходе схемы ЛС, а основная доля шумов приходится на дробовые шумы фототока. Расчеты показывают, что при уменьшении величины сопротивления нагрузки в цепи фотодиода отношение сигнала к шуму уменьшается, и поэтому применение нагрузки фотодиода с низким сопротивлением нежелательно.

Связь между амплитудой волны  $h_w$  и мощностью ПАВ в расчете на единицу длины апертуры фронта ПАВ,  $P_a$  [Вт/м], определена формулой, приведенной в [2, с. 61]:

$$h_{w} = k_{P-h} \sqrt{\frac{P_{a}}{2\pi F_{w}}}$$

Величина коэффициента  $k_{P-h}$  для подложки, изготовленной из ниобата лития *YZ*-среза, равна  $k_{P-h} = (5.23) \times 10^{-6}$  (размерность коэффициента  $M\sqrt{\frac{M}{BT \times c}}$ ). Например, если мощность в расчете на единицу длины апертуры ВШП равна  $P_a = 1$  Вт/м (1 мВт/мм), то при частоте 34.5 МГц расчетная амплитуда ПАВ на поверхности подложи из ниобата лития *YZ*-среза составит 3.5 × 10<sup>-10</sup> м, т.е. 3.5 Å.

# ЗАКЛЮЧЕНИЕ

Лазерное считывание радиосигналов по схеме с ОДР может в некоторых случаях заменить традиционный метод считывания сигналов с применением ВШП. Область частот ПАВ, в которой применение ЛС с ОДР не будет иметь значительных технических проблем — это несколько десятков мегагерц. Применение ЛС с ОДР дает возможность реализовать ряд новых качеств, которые не реализуются в традиционных схемах устройств, использующих считывание сигнала с помощью ВШП. Метод лазерного считывания позволяет полностью или почти полностью устранить эффект отражения ПАВ от считывающего устройства, а кроме того, дает возможность плавно изменять длительность задержки сигнала. В принципе применение данной схемы дает возможность считывать сигналы с аморфных подложек, которые не обладают пьезоэлектрическими свойствами. Для получения большого отношения сигнала к шуму на выходе канала ЛС с ОДР, при широкой полосе частот, порядка единиц мегагерц, необходимо, чтобы амплитуда гофра ПАВ составляла не менее 1 Å. Для считывания можно применять широко используемые полупроводниковые красные лазеры с небольшой мощностью, порядка 7...10 мВт. Вместе с тем следует отметить некоторые негативные стороны метода лазерного считывания: это введение в схему дополнительного элемента – лазера и необходимость некоторой настройки оптической схемы,

при этом устройство фактически перестает быть интегральным.

### ПРИЛОЖЕНИЕ

Вывод соотношений, определяющих связь между амплитудой ПАВ и амплитудами колебаний мощности оптического излучения в дифракционных порядках в схеме лазерного зондирования ПАВ с ОДР.

Эквивалентная схема взаимодействия оптической волны с ОДР и ПАВ изображена на рис. 5. Стационарная ОДР с прямоугольным профилем рельефа создает неподвижную пространственную фазовую модуляцию (ПФМ) фронта оптической волны с амплитудой  $\Phi_{M}$ . Наряду с этим, ПАВ также создает ПФМ с амплитудой  $\Phi_{w}$  которая движется вдоль направления 0x со скоростью волны *V*. В результате наложения движущейся ПФМ на неподвижную ПФМ наблюдаются колебания мощности излучения в дифракционных порядках с частотой ПАВ, *F*.

Взаимодействие оптической волны с ОДР и с ПАВ эквивалентно прохождению волны через транспаранты, которые имеют комплексные функции пропускания:  $t_g(x)$  – для ОДР,

$$\dot{t}_g(x) = \exp(i\Phi_{\rm M}(x)), \qquad (\Pi.1)$$

$$\Phi_{_{\mathrm{M}}}(x) = \begin{cases} +\Phi_{_{\mathrm{M}}} & \text{при } n\Lambda + 0 < x < \frac{\Lambda}{2} + n\Lambda, \\ -\Phi_{_{\mathrm{M}}} & \text{при } n\Lambda - \frac{\Lambda}{2} < x < 0 + n\Lambda, \end{cases} (\Pi.2)$$

и функцию пропускания  $t_a(x) - для \Pi AB$ :

$$i_{a}(x) = \exp[i\Phi_{w}\sin 2\pi\xi_{1}(x - Vt - x_{0})] =$$

$$= \exp[i\Phi_{w}\sin (2\pi\xi_{1}x - \Omegat - \varphi_{0})] \approx$$

$$\approx t + \frac{\Phi_{w}}{2}\exp(i2\pi\xi_{1}x)\exp[-i(\Omega t + \varphi_{0})] - (\Pi.3)$$

$$- \frac{\Phi_{w}}{2}\exp(-i2\pi\xi_{1}x)\exp[i(\Omega t + \varphi_{0})].$$

Здесь  $\xi_1 = 1/\Lambda$  – пространственная частота ПАВ ( $\Lambda$  – длина волны ПАВ); V – скорость ПАВ;  $\Omega = 2\pi F$  – круговая частота ПАВ;  $x_0$  – начальное смещение,  $\varphi_0$  – начальная фаза,  $\Phi_w$  – амплитуда пространственной фазовой модуляции, вызванной ПАВ,  $\Phi_w \ll 1$ . Она связана с амплитудой рельефа ПАВ на поверхности подложки формулой

$$\Phi_{w} = 4\pi (h_{w}/\lambda) \cos \Theta_{\text{mag}},$$

где  $h_w$  – амплитуда ПАВ,  $\lambda$  – длина волны света,  $\Theta_{\text{пад}}$  – угол падения света на ПАВ. Период ОДР при расчетах полагаем равным длине волны ПАВ. Далее перейдем к анализу пространственного спектра оптической волны, прошедшей через систему из двух периодических дифракционных решеток (ДР) с функциями пропускания (П.1)–(П.3).

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022



**Рис. 5.** Эквивалентная схема для анализа схемы оптического зондирования ПАВ с ОДР, расположенной на подложке.

Разложим функцию пропускания фазовой ОДР (П.1), (П.2) в ряд Фурье, по гармоникам пространственной частоты ξ<sub>1</sub>:

$$\dot{t}_g(x) = \sum_{k=-\infty}^{\infty} \dot{a}_k \exp(ik2\pi\xi_1 x). \tag{\Pi.4}$$

При условии, что форма рельефа — прямоугольная типа "меандр", у которой ширина выступа равна ширине впадины, и равна 0.5Л, коэффициенты Фурье ОДР равны

$$a_{0} = \cos\Phi_{M}, \quad a_{1} = \frac{2}{\pi}\sin\Phi_{M}, \quad a_{-1} = -\frac{2}{\pi}\sin\Phi_{M}, \quad (\Pi.5)$$
$$a_{2} = 0, \quad a_{k} = \frac{1}{\pi k} [\sin\Phi_{M} + \sin(\pi k - \Phi_{M})].$$

Выражение для пространственного спектра функции ОДР имеет вид

$$\dot{S}_{g}(\xi) = \int_{-\infty}^{\infty} \dot{t}(x) \exp(-i2\pi\xi x) dx =$$

$$= \sum_{-\infty}^{\infty} \dot{a}_{k} \int_{-\infty}^{\infty} \exp[-i2\pi(\xi - k\xi_{1})x] dx = (\Pi.6)$$

$$= \sum_{n=-\infty}^{\infty} \dot{a}_{k} \,\delta(\xi - k\xi_{1}).$$

Выражение для пространственного спектра функции ПАВ имеет вид

$$\dot{S}_{w}(\xi) = \sum_{n=-\infty}^{\infty} \dot{b}_{n} \delta(\xi - n\xi_{1}), \qquad (\Pi.7)$$

где

$$b_0 \cong 1, \quad b_1 = \frac{\Phi_w}{2} \exp[-i(\Omega t + \varphi_0)],$$
  

$$b_{-1} = -\frac{\Phi_w}{2} \exp[i(\Omega t + \varphi_0)], \qquad (\Pi.8)$$
  

$$b_2 \cong 0, \quad b_3 \cong 0.$$

Если на вход оптической схемы, изображенной на рис. 5, падает плоская волна с амплитудой, равной  $a_{\rm BX}$ , то амплитуда выходного сигнала будет выражена через произведение функций пропускания двух решеток:  $a_{\rm BЫX} = a_{\rm BX}t_g(x)t_w(x)$ . Положим  $a_{\rm BX} = 1$ . При этом пространственный спектр на выходе схемы, составленной из двух ДР, будет равен свертке спектров ДР, входящих в состав этой схемы:

$$\dot{S}_{\text{BMX}} = \dot{S}_{w} \otimes \dot{S}_{g} =$$

$$= \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \dot{a}_{k} \dot{b}_{n} \delta(\xi - k\xi_{1} - n\xi_{1}) = (\Pi.9)$$

$$= \sum_{m=-\infty}^{\infty} \dot{A}_{m} \delta(\xi - m\xi_{1}),$$

где *m* = *k* + *n* – номер дифракционного порядка, а коэффициент *A<sub>m</sub>* – амплитуда волны в данном ди-фракционном порядке:

$$\dot{A}_m = \sum_{k=-\infty}^{\infty} \dot{a}_k \, \dot{b}_{m-k}. \tag{\Pi.10}$$

Для описания реальной оптической схемы с конечным размером апертуры введем "окно" с ограниченными размерами в плоскости ДР. Пусть функция пропускания окна по координате 0x -это f(x), а фурье-образ этой функции –  $F(\xi)$ . Тогда выражение (П.9), определяющее пространственный спектр на выходе схемы, будет иметь вид

$$\dot{S}_{\scriptscriptstyle \rm Bbix} = \dot{S}_{\scriptscriptstyle W} \otimes \dot{S}_{\scriptscriptstyle g} \otimes F(\xi) = \sum_{m=-\infty}^{\infty} \dot{A}_m F(\xi - m\xi_1). \ (\Pi.11)$$

Отношение мощности излучения  $P_m$  в дифракционном порядке с номером *m* к мощности излучения на входе схемы  $P_{\rm BX}$  равно:

$$P_m/P_{\rm BX} = \dot{A}_m \overset{*}{A}_m. \tag{\Pi.12}$$

*Нулевой порядок дифракции*. Положив m = 0, при условии, что коэффициенты при четных гармониках функции ОДР равны нулю,  $a_2 = 0$ ,  $a_4 = 0$ , ..., и при условии, что  $b_n = 0$  при n > 1, что соответствует условию  $\Phi_w \ll 1$ , из (П.10) получим выражение для амплитуды волны в нулевом порядке дифракции:

$$\dot{A}_0 = a_0 b_0 + a_1 b_{-1} + a_{-1} b_1 \approx$$

$$\approx \cos \Phi_{\rm M} - \Phi_{\rm W} \frac{2}{\pi} \sin \Phi_{\rm M} \cos(\Omega t + \phi_0). \qquad (\Pi.13)$$

Формула мощности излучения в нулевом порядке (при  $(\Phi_a)^2 \ll 1$ ) имеет вид

$$P_0/P_{\rm BX} = \dot{A}_0 \overset{*}{A}_0 = (\Pi.14)$$
$$= \cos^2 \Phi_{\rm M} - \Phi_w \left(\frac{2}{\pi} \sin 2\Phi_{\rm M}\right) \cos(\Omega t + \varphi_0).$$

Первый член этого выражения — постоянная составляющая мощности излучения в нулевом порядке дифракции. Второй член в (П.14) описывает колебания мощности излучения на выходе схемы с частотой, равной частоте ПАВ, *F*. После фотодетектора из этих колебаний формируется полезный радиосигнал. Амплитуда колебаний пропорциональна величине  $\Phi_w$ , а следовательно, и амплитуде ПАВ,  $h_w$ . Как следует из формулы (П.14), коэффициент эффективности детектирования ПАВ равен:

$$q_{0F} = \frac{2}{\pi} \sin 2\Phi_{_{\rm M}}.$$
 (П.15)

Как видно из формулы (П.15), *максимальное* значение  $q_{0F}$  достигается при  $\Phi_{\rm M} = 45^{\circ}$ , когда  $\sin 2\Phi_{\rm M} = 1$ . При этом  $q_{0F} = 0.63$ .

*Первый порядок дифракции*. Положив *m* = 1, при тех же условиях получим

$$A_{1} = a_{0}b_{1} + a_{1}b_{0} =$$

$$= (\cos\Phi_{M})\frac{\Phi_{W}}{2}\exp(i\Omega t) + \frac{2}{\pi}\sin\Phi_{M}.$$
(II.16)

Формула для расчета мощности излучения в первом порядке имеет вид

$$P_{1}/P_{\rm BX} = \dot{A}_{1} \overset{*}{A}_{1} = \frac{4}{\pi^{2}} \sin^{2} \Phi_{\rm M} +$$
  
+  $\Phi_{w} \left(\frac{1}{\pi} \sin 2 \Phi_{\rm M}\right) \cos(\Omega t + \phi_{0}).$  (II.17)

Здесь также видим, что существуют колебания мощности с частотой ПАВ, с амплитудой, пропорциональной  $\Phi_w$ . Коэффициент эффективности детектирования ПАВ в два раза меньше коэффициента для нулевого порядка, и он равен:

$$q_{l(F)} = \frac{1}{\pi} \sin 2\Phi_{M}.$$
 (П.18)

Амплитуду колебаний мощности излучения в нулевом порядке дифракции рассчитываем по формуле

$$P_{0F} = P_{\rm Bx} R q_{0F} \Phi_w = P_{9\phi} q_{0F} \Phi_w =$$
  
=  $P_{9\phi} q_{0F} 4\pi (h_w/\lambda) \cos \Theta_{\rm mag}$  (II.19)

и по аналогичной формуле в первом порядке:

$$P_{1F} = P_{\text{Bx}} R q_{1F} \Phi_w = P_{9\phi} q_{1F} \Phi_w =$$
  
=  $P_{9\phi} q_{1F} 4 \pi (h_w / \lambda) \cos \Theta_{\text{nag.}}$  (II.20)

Как видно из сравнения этих формул с учетом (П.15) и (П.18) амплитуда сигнала в нулевом порядке ровно в два раза больше, чем амплитуда сигнала в первом порядке дифракции. При этом максимальную амплитуду сигнала можно получить при оптимальном параметре ОДР  $\Phi_{\rm M} = 45^{\circ}$ .

# СПИСОК ЛИТЕРАТУРЫ

- 1. Поверхностные акустические волны / Под ред. А. Олинера. М.: Мир, 1981.
- Фильтры на поверхностных волнах / Под ред. Г. Мэтьюза. М.: Радио и связь, 1981.
- 3. *Морган Д.* Устройства обработки сигналов на поверхностных акустических волнах. М.: Радио и связь, 1990.
- 4. *Речицкий В.И.* Акустоэлектронные радиокомпоненты. М.: Сов. радио, 1980.
- 5. *Komotskii A.V., Black T.D.* // J. Appl. Phys. 1981. V. 52. № 1. P. 129.

- Бессонов А.Ф., Дерюгин Л.Н., Комоцкий В.А., Котюков М.В. // Оптика и спектроскопия. 1984. Т. 56. № 6. С. 1059.
- Whitman R.L., Korpel A. // Appl. Opt. 1969. V. 8. № 8. P. 1567.
- 8. Лин Э., Пауэлл К. // ТИИЭР. 1970. Т. 58. № 12. С. 72.
- 9. Stegeman G.J. // IEEE Trans. 1976. V. SU-23. № 1. P. 33.
- 10. Гранкин И.М., Запунный А.М., Кулаева И.Г. // Зарубеж. радиоэлектрон. 1984. № 11. С. 38.
- Black T.D., Komotskii V.A., Larson D.A. // Proc. IEEE 1984 Ultrasonics Symp. Dallas. 14–16 Nov. N.Y.: IEEE, 1984. IEEE. P. 274.
- Komotskii V.A., Korolkov V.I., Kashenko N.M. // Proc. IV Int. Symp. on Surface Waves in Solid and Layered Structures. SPb:. St-Petersburg State University of Aerospace Instrumentation. 1994, P. 389.
- Комоцкий В.А. Основы когерентной оптики и голографии. Конспект лекций. М.: Изд-во РУДН, 2011.

# ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ

УДК 53.08,534.29

# АКУСТИЧЕСКОЕ ДВУЛУЧЕПРЕЛОМЛЕНИЕ В СОСТАВНОМ МАГНИТОАКУСТИЧЕСКОМ РЕЗОНАТОРЕ

© 2022 г. Н. И. Ползикова<sup>*a*, \*</sup>, С. Г. Алексеев<sup>*a*</sup>

<sup>а</sup> Институт радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая, 11, стр. 7, Москва, 125009 Российская Федерация \*E-mail: polz@cplire.ru Поступила в редакцию 07.08.2022 г.

После доработки 07.08.2022 г. Принята к публикации 10.08.2022 г.

Рассмотрена одномерная модель акустической резонаторной структуры с ферромагнитным слоем на немагнитной подложке и пьезоэлектрическим тонкопленочным пьезопреобразователем. Акустическая генерация спиновых волн в условиях двойного резонанса: магнитоупругого резонанса в магнитном слое и чисто упругого во всей многослойной структуре, характеризуется поведением электрического импеданса преобразователя в магнитном поле. Получено аналитическое выражение для импеданса, при выводе которого учитывалась разориентация поляризации преобразователя и магнитного поля. Численные расчеты показали, что даже слабая разориентация ~5° приводит к проявлению эффекта акустического двулучепреломления.

**DOI:** 10.31857/S0033849422120166

### введение

Фононные системы с возможностью управления их характеристиками при помощи внешних магнитных полей и наоборот – магнонные с электрическим управлением или гибридные системы с двойным управлением – представляют интерес в качестве современных перестраиваемых телекоммуникационных микроволновых элементов и устройств на их основе, а также элементов магнонных и спинтронных сетей [1-8]. Для практики важно, чтобы такое управление и собственно возбуждение внешними источниками магнонов квантов спиновых волн (СВ) – происходило с минимальным энергопотреблением. В гибридных магнон-фононных структурах, содержащих пьезоэлектрические и ферро(ферри)магнитные слои, электроакустическое возбуждение СВ может осуществляться без приложения переменных магнитных полей (и создающих их токов), что позволяет сушественно снизить омические потери в низкоэнергетических устройствах микроволновой спинтроники и магноники [6-8]. Будем называть далее акустически возбужденные спиновые волны ADSW – Acoustically Driven Spin Waves.

Для генерации ADSW используются как поверхностные акустические волны (AB), возбуждаемые встречно-штыревыми преобразователями [1, 9–12], так и объемные AB [7, 13], в частности, возбуждаемые в композитных CBЧ-резонаторах высоких гармоник (HBAR – High overtone Bulk Acoustic wave Resonator) [14–20]. Возбуждение ADSW происходит за счет сочетания магнитоупругости и пьезоэффекта, существующих в различных слоях структуры, необязательно находящихся в непосредственном контакте.

Ранее в работах [14-16] мы продемонстрировали и теоретически обосновали эффективное возбуждение как линейных, так и параметрических ADSW в гиперзвуковом HBAR со слоистой структурой, содержащей пьезоэлектрический преобразователь из ZnO, нанесенный на структуру, состоящую из подложки из галлий-гадолиниевого граната (ГГГ) с эпитаксиальными пленками железо-иттриевого граната (ЖИГ). Также было показано, что HBAR, содержащий в контакте с пленкой ЖИГ тонкую пленку Pt, является эффективным источником спинового тока [16-20]. Использование спиновой накачки в виде спинового тока в комбинации с обратным спиновым эффектом Холла в Pt делает возможным прямое электрическое детектирование магнитной динамики на границе ферромагнетика с тяжелым немагнитным металлом, таким как Pt [21, 22].

В данной работе мы продолжили развитие теоретической модели [14, 17] для описания магнитоупругих явлений в условиях двойного резонанса: магнитоупругого резонанса в ЖИГ и чисто упругого во всей многослойной структуре HBAR. Получено аналитическое выражение для электрического импеданса структуры, которое описывает частотные и магнитополевые характеристики резонатора в случая произвольной поляризации воз-





**Рис. 1.** Схема резонатора, материалы и геометрические параметры: 1 - пленка ZnO толщиной  $l_1$ , 2 - электроды из Al толщиной  $l_2 \approx 0$ , 3 - монокристаллическая подложка из ГГГ толщиной  $l_3 = d$ , 4 - эпитаксиальная пленка ЖИГ с толщиной  $l_4 = s$ .

буждаемой AB относительно внешнего магнитного поля. При этом мы учли эффект акустического двулучепреломления, обусловленный тем, что компоненты AB с параллельным и перпендикулярным смещениями относительно поля имеют разный набег фаз по толщине магнитной пленки. В результате распространения в пленке ЖИГ и отражения от ее границ линейно поляризованная AB превращается в эллиптически поляризованную. Расчет показывает, что даже при достаточно малом угле (~5°) между направлениями поляризации возбуждаемой AB и магнитного поля возникает допол-

нительная гребенка резонансных частот  $f_n^0$ , независящих от величины магнитного поля. Такое возбуждение и детектирование немагнитноактивной моды (с поляризацией, ортогональной полю) не влияет на сдвиги частот другой серии,  $f_n(H)$ , связанной с магнитоактивной компонентой поляризации (параллельной полю). Понимание природы особенностей спектра представляется важным для интерпретации эксперимента и оценки параметров магнитных пленок.

# 1. СТРУКТУРА МАГНОН-ФОНОННОГО НВАК

Схема рассматриваемой структуры резонатора приведена на рис. 1. Резонатор состоит из толстой (порядка 500 мк) монокристаллической пластины галлий-гадолиниевого граната (*3*), на которой



**Рис. 2.** Дисперсионные диаграммы для связанных магнитоупругих волн: зависимость приведенной частоты от приведенного волнового числа при  $\vec{u} \parallel \vec{H}$  (сплошные линии). Штриховая и пунктирная линии – частоты невзаимодействующих СВ и АВ при  $\vec{u} \perp \vec{H}$ . На левой панели показаны решения, соответствующие эванесцентным модам.

расположены эпитаксиальная пленка ЖИГ (4) и преобразователь (2-1-2) из пленки ZnO (1) между двумя электродами из алюминия (2). Пьезопреобразователь возбуждает в гигагерцовом диапазоне частот высокие ( $n \sim 500$ ) толщинные моды резонатора с частотами  $f_n$  и межмодовым расстояние  $\Delta f_n \sim 2...3$  МГц (рис. 2). Это расстояние определяется толщинами слоев резонатора и их упругими свойствами и, строго говоря, не является константой, а испытывает осцилляции относительно среднего значения с амплитудами, зависящими от соотношения акустических импедансов слоев [23].

Будем считать, что магнитное поле  $\vec{H} = (0, 0, H)$ лежит в плоскости слоев и намагничивает пленку ЖИГ до насыщения, причем намагниченность насыщения есть  $\vec{M}_s = (0, 0, M_s)$ . Будем также считать, что показанные на рис. 1 оси *x*, *y*, *z* совпадают с кристаллографическими кубическими осями как в ГГГ, так и в ЖИГ. Кроме того, кубическая анизотропия упругих модулей мала, и ею будем пренебрегать. Мы рассматриваем только распространяющиеся по толщине структуры сдвиговые АВ, для которых в принятых приближениях возможно взаимодействие с намагниченностью [24]. Отметим, что для возбуждения преимущественно сдвиговых АВ используют преобразователь с осью текстуры  $\vec{c}$ , наклоненной под определенным углом (порядка 45<sup>°</sup>) к нормали слоев [14, 25, 26]. При этом упругая поляризация возбуждаемой сдвиговой АВ определяется проекцией  $\vec{c}'$  этой оси на плоскость (*x*, *z*), которая составляет угол  $\phi$  с магнитным полем. Будем называть вектор  $\vec{c}'$  поляризацией преобразователя.

# 2. МЕТОД ВЫЧИСЛЕНИЯ ЭЛЕКТРИЧЕСКОГО ИМПЕДАНСА ПРЕОБРАЗОВАТЕЛЯ НВАК

Для нахождения электрического импеданса  $Z_e$  мы используем развитый в [14, 17] подход, основанный на решении уравнений движения во всех слоях структуры при соответствующих граничных условиях и последовательном применении формулы трансформации импеданса для каждого слоя:

$$z_{\rm BX}^{(i)} = T_{zX} (x_i + l_i) / (du_z (x_i + l_i) / dt) =$$
  
=  $z_L^{(i)} \frac{Z_L^{(i)} \cos \theta_i + i z^{(i)} \sin \theta_i}{z^{(i)} \cos \theta_i + i Z_L^{(i)} \sin \theta_i}, \quad Z_L^{(i)} = z_{\rm BX}^{(i+1)}.$  (1)

Здесь  $z_{Bx}^{(i)}$  — входной акустический импеданс слоя с индексом i;  $u_z(x)$ ,  $T_{zx}(x)$  — решения для упругих смещений и напряжений;  $z^{(i)} = \rho^{(i)} V^{(i)}$ ,  $\theta_i = k^{(i)} l_i$ ,  $\rho^{(i)}$ ,  $V^{(i)}$  — материальные акустические импедансы, набеги фазы, плотности, скорости AB для соответствующих слоев,  $Z_L^{(i)}$  — импеданс нагрузки каждого слоя. Координаты нижних поверхностей слоев с индексом i обозначены как  $x_i$ , толщины слоев как  $l_i$ . Формула трансформации записана для магнитоактивной волны с поляризацией, параллельной полю. В случае немагнитоактивной AB с поляризацией, перпендикулярной полю, для входных акустических импедансов

$$z_{\rm BX0}^{(i)} = T_{\rm VX} (x_i + l_i) / (du_{\rm V} (x_i + l_i) / dt)$$

справедлива аналогичная (1) формула трансформации. Конечным результатом применения формулы (1) является нахождение импеданса нагрузки преобразователя (набегом фазы по толщине электродов можно пренебречь)

$$Z_{L} = Z_{L}^{(1)} = z_{Bx}^{(2)} = z_{Bx}^{(3)} =$$
  
=  $z_{Rx}^{(3)} \frac{z_{Bx}^{(4)} \cos \theta_{3} + i z^{(3)} \sin \theta_{3}}{z^{(3)} \cos \theta_{3} + i z_{Bx}^{(4)} \sin \theta_{3}},$  (2)

после чего электрический импеданс преобразователя находится с помощью известной формулы [27]

$$Z_e = \tilde{U}/I = \frac{1}{i\omega C_0} \times \left(1 + \frac{K_t^2}{\theta_1} \frac{iz\sin\theta_1 - 2z^{(1)}(1 - \cos\theta_1)}{z^{(1)}\sin\theta_1 - iZ_L\cos\theta_1}\right).$$
(3)

Здесь  $\tilde{U}$  и *I* – переменные электрическое напряжение и ток, протекающий между электродами;  $C_0$  – емкость пьезоэлектрического слоя;  $K_t$  – эффективная пьезоэлектрическая постоянная, за-

висящая от угла наклона пьезоэлектрической оси [26, 28].

Итак, проблема заключается в нахождении импеданса магнитоупругого слоя  $z_{Bx}^{(4)}$ , входящего в соотношение (2), поскольку эта среда не может быть описана единственным волновым числом  $k^{(4)}$  и соответствующими набегом фазы и акустическим импедансом. В магнитном поле, соответствующем синхронизму АВ и СВ, т.е. пересечению дисперсионных кривых невзаимодействующих волн, образуются связанные магнитоупругие волны. При этом, как видно из рис. 2, дисперси-

онное уравнение имеет три корня  $k_{1,2,3}^2(f)$ , которые должны быть учтены при построении общего решения для упругого смещения и переменной намагниченности. Соответственно, необходимо учесть и дополнительные граничные условия условия на переменную намагниченность на границах слоя. Увеличение порядка дисперсионного уравнения связано с учетом неоднородного обмена, характеризующегося константой обменной жесткости D. Этот учет приводит к отличию частоты магнитоупругого резонанса (МУР)  $f_{MYP}$  от частоты ферромагнитного резонанса ( $\Phi$ MP)  $f_{\Phi$ MP всего на 30 МГц при частоте возбуждения 3 ГГц. Однако величина магнитоупругой щели оказывается того же порядка, а в диапазоне от $f_{\Phi MP}$  до $f_{MYP}$ помещается около 10 резонансных частот HBAR, и поэтому вклад неоднородного обмена оказывается принципиальным [17-20].

В работе [20] получена формула для трансформации импеданса в магнитоупругом слое для случая свободных спинов на его границах. Характерно, что она может быть записана в прежнем виде (1), но с соответствующими заменами, а именно

$$z^{(4)} \rightarrow \frac{j\sqrt{z_1 z_2}}{\tilde{\omega}}, \quad \sin \theta^{(4)} \rightarrow \frac{2\sqrt{z_1 z_2}}{z_1 + z_2},$$

$$\cos \theta^{(4)} \rightarrow \frac{z_2 - z_1}{z_1 + z_2}.$$
(4)

Здесь

$$z_{1} = \sum_{p=1}^{3} \alpha_{p} \gamma_{p} \operatorname{tg}(k_{p} s/2), \quad z_{2} = \sum_{p=1}^{3} \alpha_{p} \gamma_{p} \operatorname{ctg}(k_{p} s/2),$$
$$\tilde{\omega} = \omega \sum_{p=1}^{3} \gamma_{p},$$

 $s = l^{(4)}$ ,  $\alpha_p, \gamma_p$  – амплитудные коэффициенты, приведенные в явном виде в [17]. Набег фазы в ферромагнитном слое  $\theta^{(4)}$  может быть выражен через аргумент тригонометрических функций (4):

$$\theta^{(4)} = \operatorname{arctg} \frac{2\sqrt{z_1 z_2}}{z_2 - z_1}.$$
(5)

Тогда вместо трех волновых чисел получаем для магнитоактивной AB эффективное волновое число  $k^{(4)} \equiv K = \theta^{(4)}/s$ . Искомые импедансы слоя для волн со смещениями  $u_z$  или  $u_y$  запишутся в виде

$$z_{\rm BX}^{(4)} \equiv z_{\rm BX}(K) = iz^{(4)} \operatorname{tg}(Ks),$$
  

$$z_{\rm BX0}^{(4)} \equiv z_{\rm BX}(k_0) = i\rho^{(4)} V^{(4)} \operatorname{tg}(k_0 s),$$
(6)

где  $k_0 = \omega / V^{(4)}$ .

Правила замены (4), (5) оказываются весьма удобными и позволяют рассчитывать в одномерном приближении сложные слоистые структуры с произвольным количеством магнитных слоев. Далее мы используем полученные формулы соответствия для описания эффекта акустического двулучепреломления в рассматриваемой резонаторной структуре.

### 3. ДВУЛУЧЕПРЕЛОМЛЕНИЕ В РЕЗОНАТОРНОЙ СТРУКТУРЕ

Акустическое двулучепреломление является аналогом эффекта Коттона—Мутона в магнитооптике и возникает при распространении поперечных AB в направлении, перпендикулярном магнитному полю, что соответствует рассматриваемой геометрии. Волны со смещениями  $u_z$  и  $u_y$ , параллельным и перпендикулярным относительно поля, приобретают разницу в набегах фаз на толщине магнитной пленки тем большую, чем ближе к области МУР в заданном поле располагается частота возбуждаемых волн. Волна с линейной поляризацией под углом к магнитному полю в результате прохождения магнитного слоя превращается в эллиптически поляризованную [29].

Как отмечалось выше, в нашем случае поляризация возбуждаемой АВ определяется проекцией пьезоэлектрической оси на плоскость (x, y). Введем новую систему координат (x, y', z') с осью  $\vec{z}' \| \vec{c} \,$ (см. рис. 1). Детектирование АВ осуществляется тем же преобразователем, следовательно, детектироваться будет только компонента смещения *и*<sub>z'</sub>. Получим выражение для импеданса нагрузки преобразователя в новой системе координат. Для этого воспользуемся соотношениями для преобразования компонент вектора при повороте системы координат вокруг оси  $\vec{x}$  на угол  $\phi$ . Так. компоненты тензора напряжения и упругого смещения на верхней границе магнитоупругого слоя  $x = x_4 + s$  в повернутой системе координат будут равны

$$T_{z'x} = T_{yx} \sin \varphi + T_{zx} \cos \varphi,$$
  

$$T_{y'x} = T_{yx} \cos \varphi - T_{zx} \sin \varphi,$$
  

$$u_{z'} = u_y \sin \varphi + u_z \cos \varphi,$$
  

$$u_{y'} = u_y \cos \varphi - u_z \sin \varphi.$$

Используя определения для компонент тензора напряжения

$$T_{zx} = i\omega u_z z_{\text{BX}}(K), \quad T_{yx} = i\omega u_y z_{\text{BX}}(k_0)$$

и условия непрерывности напряжений и смещений на границе раздела, получим выражения для двух входных импедансов магнитоупругого слоя в новой системе координат:

$$z_{BX1}^{(4)} = \frac{z_{BX}(K) + z_{BX}(k_0)\Delta tg\phi}{1 + \Delta tg\phi},$$
(7)

$$z_{\text{BX 2}}^{(4)} = \frac{z_{\text{BX}}(k_0)\Delta - z_{\text{BX}}(K)\text{tg}\phi}{\Delta - \text{tg}\phi}.$$
(8)

Здесь импеданс (7) относится к коллинеарной составляющей  $u_{z'}$ , и его следует использовать для вычисления электрического импеданса Z<sub>e</sub>. Импеданс (8) относится к перпендикулярной компоненте  $u_{v'}$ , и его следует использовать для нахождения величины  $\Delta = (u_y/u_z)|_{x=x_4+s}$ . Отметим, что при разориентации направлений магнитного поля и поляризации преобразователя в магнон-фононном резонаторе происходит возбуждение и опосредованное (через величину  $\Delta$ ) детектирование сдвиговой AB не только с коллинеарной  $u_{z'}$ , но и перпендикулярной  $u_{v'}$  компонентами. Источником перпендикулярной компоненты является не преобразователь, а магнитоупругая пленка, в которой происходит поворот поляризации АВ вследствие двулучепреломления. В этом случае импеданс  $z_{\text{вх 2}}^{(4)}$  должен совпадать с импедансом нагрузки слоя 4 слоями 3-1. причем при условии. что импеданс верхней поверхности преобразователя равен нулю. Производя обратный пересчет по формуле (1), находим

$$z_{\rm BX\,2}^{(4)} = iz^{(3)} \frac{z^{(3)} tg \varphi^{(3)} + z^{(1)} tg \varphi^{(1)}}{z^{(1)} tg \varphi^{(1)} tg \varphi^{(3)} - z^{(3)}}.$$
(9)

В результате импеданс  $Z_e$  с учетом двулучепреломления описывается формулой (3) с учетом соотношения (2), в котором следует положить

$$z_{\rm \scriptscriptstyle BX}^{(4)} = z_{\rm \scriptscriptstyle BX\,1}^{(4)} = \frac{z_{\rm \scriptscriptstyle BX}(K) + z_{\rm \scriptscriptstyle BX}(k_0)\,\delta\,{\rm tg}^2\phi}{1 + \delta\,{\rm tg}^2\phi}, \qquad (10)$$

где

$$\delta = 1 - \frac{z_{\text{BX}}(K) - z_{\text{BX}}(k_0)}{z_{\text{BX 2}}^{(4)} - z_{\text{BX}}(k_0)}.$$

# 4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Приведем результаты численного расчета по полученным формулам для намагниченности насыщения, обменной жесткости, константы магнитоупругости, характерных для ЖИГ:  $4\pi M_s =$ 

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022



**Рис. 3.** Частотные зависимости  $|Z_e(f)|$  при разных магнитных полях: 530 (a), 540 (б) и 550 Э (в). Темные пунктирные кривые соответствуют  $\varphi = 0^\circ$ , светлые сплошные кривые –  $\varphi = 5^\circ$ .

= 1750 Гс,  $D = 5 \times 10^{-9}$  Э см<sup>2</sup>,  $b = 6 \times 10^{6}$  эрг/см<sup>3</sup>, упругих параметров слоев:  $V^{(1)} = 2.88 \times 10^{5}$  см/с,  $\rho^{(1)} = 5.68$  г/см<sup>3</sup>,  $V^{(3)} = 3.57 \times 10^{5}$  см/с,  $\rho^{(3)} =$ = 7.08 г/см<sup>3</sup>,  $V^{(4)} = 3.9 \times 10^{5}$  см/с,  $\rho^{(4)} = 5.17$  г/см<sup>3</sup> и геометрических размеров слоев структуры:  $l_1 =$ = 3 мкм,  $l_2 = 0$ ,  $l_3 = d = 500$  мкм,  $l_4 = s = 31$  мкм.

На рис. За–Зв приведены частотные зависимости модуля электрического импеданса для трех различных магнитных полей. Для каждого поля расчет проводился для случаев  $\varphi = 0^{\circ}$  и  $\varphi = 5^{\circ}$ . В поле H = 530 Э (рис. За) область МУР находится со стороны меньших частот выбранного диапазона, в поле H = 540 Э (рис. За) область МУР приходится на середину диапазона, увеличенный фрагмент которого показан на рис. 4, в поле H = 550 Э область МУР сдвигается в сторону больших частот. В полях H > 570 Э или H < 510 Э область МУР не попадает в рассматриваемый диапазон частот, а спектры при  $\varphi = 0^{\circ}$  и  $\varphi = 5^{\circ}$  совпадают с большой точностью. На рис. 5 показаны магнитополевые



**Рис. 4.** Увеличенный фрагмент рис. 36 в области МУР.



**Рис. 5.** Зависимость положения резонансных частот от магнитного поля при  $\phi = 0^{\circ}$  (темные точки) и  $\phi = 5^{\circ}$  (светлые кружки).

зависимости резонансных частот в диапазоне магнитных полей вблизи МУР.

Из рис. 3–5 следует, что даже при малом угле разориентации  $\varphi$  в довольно широком диапазоне полей вблизи МУР возникает дополнительная гребенка резонансных частот  $f_n^0$ , независящих от величины магнитного поля. При этом поведение другой серии резонансных частот  $f_n(H)$ , связанной с магнитоактивной компонентой поляризации, остается неизменным и полностью соответствует поведению при  $\varphi = 0^\circ$ . Перестройка резонансных обертонов  $f_n(H)$  в магнитном поле несет информацию о возбуждении ADSW за счет магнитоупругого взаимодействия в пленке ЖИГ и обратного действия ADSW на упругую подсистему всех слоев HBAR [14, 17, 20].

1215

Серию частот  $f_n^0$  можно использовать для подстройки ориентации магнитного поля, добиваясь ее исчезновения, например, при оптимизации геометрии структуры для спиновой накачки. При больших углах разориентации представляется интересной возможность управления поляризацией AB в условиях МУР.

### ЗАКЛЮЧЕНИЕ

Получены аналитические выражения для электрического импеданса композитного СВЧрезонатора объемных акустических волн со структурой ZnO-ГГГ-ЖИГ, учитывающее магнитоупругую связь в слоях ЖИГ, влияние неоднородного обмена на формирование спектра связанных волн и разориентацию поляризации преобразователя и магнитного поля, которая приводит к возникновению явления акустического двулучепреломления. Численный расчет показал, что в условиях резонансного возбуждения и детектирования сдвиговых акустических волн двулучепреломление в слое ЖИГ проявляется в виде двух серий резонансных частот, одна из которых не зависит от магнитного поля, а другая перестраивается в магнитном поле, соответствующем магнитоупругому резонансу. Независяшая от поля серия частот хорошо определена уже при достаточно малой разориентации порядка 5°, что делает возможным ее использование для подстройки ориентации магнитного поля.

Авторы заявляют об отсутствии конфликта интересов.

### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания "Спинтроника" и при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 20-07-01075).

# СПИСОК ЛИТЕРАТУРЫ

- 1. *Puebla J., Hwang Y., Maekawa S., Otani Y. //* Appl. Phys. Lett. 2022. V. 120. № 22. P. 220502.
- Li Y., Zhao C., Zhang W. et al. // APL Mater. 2021. V. 9. № 6. P. 060902.
- 3. *Latcham O.S., Gusieva Y.I., Shytov A.V. et al.* // Appl. Phys. Lett. 2019. V. 115. № 8. P. 4.

- 4. An K., Litvinenko A.N., Kohno R. et al. // Phys. Rev. B. 2020. V. 101. № 6. P. 060407.
- 5. *Kamra A., Keshtgar H., Yan P., Bauer G.E.W.* // Phys. Rev. B, 2015. V. 91. № 10. P. 104409.
- Azovtsev A.V., Nikitchenko A.I., Pertsev N.A. // Phys. Rev. Mater. 2021. V. 5. № 5. P. 054601.
- Cherepov S., Amiri P.K., Alzate J.G. et al. // Appl. Phys. Lett. 2014. V. 104. № 8. P. 082403.
- Yang W.-G., Schmidt H. // Appl. Phys. Rev. 2021. V. 8. № 2. P. 0213047.
- 9. *Geilen M., Nicoloiu A., Narducci D. et al.* // Appl. Phys. Lett. 2022. V. 120. № 24. P. 242404.
- 10. *Küβ M., Heigl M., Flacke L. et al.* // Phys. Rev. Appl. 2021. V. 15. № 3. P. 034046.
- 11. Uchida K., An T., Kajiwara Y. et al. // Appl. Phys. Lett. 2011. V. 99. № 21. P. 212501.
- 12. Bhuktare S., Bose A., Singh H., Tulapurkar A.A. // Scientific Reports. 2017. V. 7. P. 840.
- 13. Chowdhury P., Jander A., Dhagat P. // IEEE Magnetics Lett. 2017. V. 8. P. 3108204.
- 14. *Polzikova N., Alekseev S., Kotelyanskii I. et al.* // J. Appl. Phys. 2013. V. 113. № 17. P. 17C704.
- Ползикова Н.И., Алексее С.Г., Раевский А.О. // РЭ. 2021. Т. 66. № 11. С. 1133.
- 16. *Alekseev S.G., Dizhur S.E., Polzikova N.I. et al.* // Appl. Phys. Lett. 2020. V. 117. № 7. P. 072408.
- 17. Ползикова Н.И., Алексеев С.Г., Лузанов В.А., Раевский А.О. // ФТТ. 2018. Т. 62. № 11. С. 2170.
- Polzikova N.I., Alekseev S.G., Pyataikin I.I. et al. // AIP Advances. 2018. V. 8. № 5. P. 056128.
- Alekseev S.G., Polzikova N.I., Raevskiy A.O. // J. Commun. Technol. Electron. 2019. V. 64. № 11. P. 1318.
- Polzikova N.I., Alekseev S.G., Luzanov V.A., Raevskiy A.O. // J. Magn. Magn. Mater. 2019. V. 479. P. 38.
- 21. *Tserkovnyak Y., Brataas A., Bauer G.E.W.* // Phys. Rev. Lett. 2002. V. 88. № 11. P. 117601.
- 22. Saitoh E., Ueda M., Miyajima H., Tatara G. // Appl. Phys. Lett. 2006. V. 88. № 18. P. 182509.
- Алексеев С.Г., Котелянский И.М., Ползикова Н.И., Мансфельд Г.Д. // РЭ. 2015. Т. 60. № 3. С. 317.
- 24. Kittel C. // Phys. Rev. 1958. V. 110. № 4. P. 836.
- 25. Лузанов В.А. // РЭ. 2017. Т. 62. № 10. С. 1018.
- 26. Лузанов В.А., Алексеев С.Г., Ползикова Н.И. // РЭ. 2018. Т. 63. № 9. С. 1015.
- Кайно Г. Акустические волны. Устройства, визуализация и аналоговая обработка сигналов. М.: Мир, 1990.
- 28. Foster N.F., Coquin G.A., Rozgonyi G.A., Vanatta F.A. // IEEE Trans. 1968. V. SU-15. № 1. P. 28.
- 29. Lüethi B. // J. Appl. Phys. 1966. V. 37. № 3. P. 990.

\_\_\_\_\_ ЭЛЕКТРОНИКА \_\_\_\_\_ Свч

УДК 621.382.2,621.372.622,621.3.019.3

# ПРИМЕНЕНИЕ МЕТОДА КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЙ ОПТИМИЗАЦИИ ДЛЯ ПОВЫШЕНИЯ НАДЕЖНОСТИ СУБГАРМОНИЧЕСКОГО СМЕСИТЕЛЯ СВЕРХВЫСОКОЧАСТОТНЫХ РАДИОСИГНАЛОВ НА БАЗЕ РЕЗОНАНСНО-ТУННЕЛЬНОГО ДИОДА

© 2022 г. К. В. Черкасов<sup>а,</sup> \*, С. А. Мешков<sup>а</sup>, М. О. Макеев<sup>а</sup>, В. Д. Шашурин<sup>а</sup>, Б. В. Хлопов<sup>а</sup>

<sup>а</sup> Московский государственный технический университет им. Н.Э. Баумана, 2-я Бауманская ул., 5, Москва, 105005 Российская Федерация \*E-mail: kvche@mail.ru Поступила в редакцию 14.05.2022 г. После доработки 14.05.2022 г. Принята к публикации 30.07.2022 г.

Представлены результаты решения задачи повышения надежности субгармонического смесителя CBЧ-радиосигналов на второй гармонике гетеродина на базе резонансно-туннельного диода в заданных условиях эксплуатации путем конструкторско-технологической оптимизации электрических характеристик смесителя. Оптимальное сочетание электрических характеристик смесителя и обеспечивающие его параметры конструкции определены посредством разработанного авторами программного комплекса. В результате оптимизации гамма-процентная наработка до отказа увеличена в 1.49 раза.

**DOI:** 10.31857/S003384942212004X

### введение

Нелинейные преобразователи частоты (ПЧ) радиосигналов являются ключевыми элементами радиотехнических систем, так как с их помощью осуществляются основные радиотехнические преобразования. Одним из путей улучшения электрических характеристик ПЧ-радиосигналов является использование наноэлектронных приборов, к которым относятся резонансно-туннельные диоды (РТД) на основе AlGaAs/GaAs многослойных гетероструктур с поперечным токопереносом [1] в качестве нелинейных элементов (НЭ). Применение РТД в данной роли позволяет расширить рабочий диапазон частот и повысить помехоустойчивость ПЧ-радиосигналов [2–11]. Производство РТД возможно с использованием отработанных технологий микроэлектроники.

При проектировании ПЧ радиосигналов помимо обеспечения заданного уровня электрических характеристик прибора одной из приоритетных является задача обеспечения надежности в заданных условиях эксплуатации. В [12] изложена методология проектирования микро и наноприборов и предложен вариант решения данной задачи, при котором в процесс проектирования прибора вводится этап конструкторско-технологической (КТ) оптимизации. Цель данной работы — определить номинальные значения параметров конструкции прибора и его электрических характеристик, максимизирующих заданную целевую функцию, без изменения технологических допусков на параметры конструкции и определяемых конструктором допусков на электрические характеристики оптимизируемого прибора.

Приведены результаты КТ-оптимизации электрических характеристик субгармонического смесителя (СГС) на второй гармонике гетеродина на базе РТД в заданных условиях эксплуатации с целью обеспечения его надежности.

# 1. ОПИСАНИЕ ОБЪЕКТА ИССЛЕДОВАНИЯ И МЕТОДОВ ОПТИМИЗАЦИИ

Объектом исследования является однодиодный СГС диапазона 10...11 ГГц с РТД в качестве нелинейного элемента. Резонансно-туннельная структура (РТС) диода состоит из двух AlAs-барьеров и располагающейся между ними GaAsквантовой ямы. Смеситель состоит из делителя мощности; диодной секции, в которой располагается нелинейный элемент (НЭ), и полоснопропускающего фильтра. В качестве электрических характеристик оптимизируемого СГС РТД рассматривали коэффициент передачи (КП) промежуточной частоты и верхние границы динамиче-



Рис. 1. Начальный участок ВАХ РТД (1) и ДБШ (2).

ского диапазона по 1 дБ-компрессии и интермодуляции. На основании представленных разработчиком требований на них установлены следующие допуски: коэффициент передачи не менее – 16 дБ; верхняя граница динамического диапазона по 1 дБ-компрессии не менее 6 дБм; положение точки IP3, по которому определяется верхняя граница динамического диапазона по интермодуляции, – не ниже 20 дБм.

Методология КТ-оптимизации подробно описана в [12], а ее практическая реализация в виде программного комплекса – в [13]. В качестве целевой функции был выбран гамма-процентный ресурс при  $\gamma = 0.99 T_{\gamma = 0.99}$ .

Моделирование вольт-амперной характеристики (ВАХ) РТД и ее кинетики в заданных условиях эксплуатации выполнено с помощью специализированного модуля разработанного нами программного комплекса (рис. 1). Алгоритмы моделирования начального участка ВАХ РТД и воздействия эксплуатационных факторов на электрические характеристики диода описаны в [14]. Параметры AuGeNiомических контактов РТД, отражающие восприимчивость РТД к воздействию эксплуатационных факторов, а также параметры деградационных процессов, протекающих в РТД в заданных условиях эксплуатации, определены в ходе экспериментальных исследований [15–21].

#### 2. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Сравнение электрических характеристик СГС на основе РТД до оптимизации (параметры конструкции диода до и после оптимизации приведены ниже) с аналогом на основе диода с барьером Шоттки (ДБШ) показало, что КП промежуточной частоты СГС на основе РТД на 3 дБ ниже аналога на ДБШ. В то же время прибор на основе



Рис. 2. Номинальная (1) и оптимальная (2) формы начального участка ВАХ НЭ оптимизируемого смесителя на основе РТД и начальный участок ВАХ ДБШ (3).

РТД обладает в 3.55 раз более широким динамическим диапазоном по 1 дБ-компрессии (верхняя граница динамического диапазона смесителя на основе РТД расположена на 7 дБм правее аналога на ДБШ) и в 2.26 раз более широким динамическим диапазоном по интермодуляции (точка IP3 СГС на основе РТД расположена на 16 дБм правее аналога на ДБШ).

Конструкторско-технологическую оптимизацию проводили с целью повышения надежности СГС в условиях воздействия температурного фактора. Критериями годности являются установленные разработчиком допуски на рассматриваемые электрические характеристики. Анализ надежности СГС показал, что основным механизмом отказа СГС является постепенный отказ, возникающий в результате падения коэффициента передачи промежуточной частоты ниже порогового значения из-за необратимых деградационных процессов, протекающих в РТД в заданных условиях эксплуатации. Кинетика других рассматриваемых электрических характеристик СГС имеет аналогичный характер, однако КП промежуточной частоты достигает порогового значения быстрее. В результате анализа надежности установлено, что наиболее опасной с точки зрения возникновения отказов является частота сигнала 10.90 ГГц, так как на ней КП промежуточной частоты наиболее близок к пороговому значению.

В результате проведенной КТ-оптимизации СГС определено сочетание параметров конструкции РТД, обеспечивающих оптимальную для данного прибора форму ВАХ (рис. 2), и параметров пассивных элементов СГС. Синтезированное сочетание параметров конструкции смесителя позволяет при воздействии температуры 125°С увеличить  $T_{\gamma=0.99}$  в 1.49 раза (рис. 3). Гамма-процентный ресурс СГС определен в результате ана-



**Рис. 3.** Зависимость ВБР субгармонического смесителя на основе РТД от времени при температуре эксплуатации  $125^{\circ}$ С: 1 - BБР до оптимизации; 2 - BБР после оптимизации;  $3 - T_{\gamma=0.99}$  до оптимизации;  $4 - T_{\gamma=0.99}$  после оптимизации.

лиза зависимости вероятности безотказной работы (ВБР) смоделированной выборки из 100 СГС от наработки в условиях воздействия температуры 125°С. Указанная вероятность выборки серии в момент времени *t* определяется как отношение числа отказавших приборов к размеру выборки. Отказ прибора фиксируется при выходе хотя бы одной из рассматриваемых электрических характеристик за пределы установленных допусков. Гамма-процентный ресурс при  $\gamma = 0.99$  определяется как наработка, при которой ВБР составляет 0.99.

Оптимальная форма ВАХ РТД достигается посредством увеличения ширины симметричных барьеров двухбарьерной AlAs/GaAs PTC в шесть раз по сравнению с исходной (с 1.13 до 6.79 нм), увеличения ширины ямы на 71% (с 3.96 до 6.79 нм) и увеличения лиаметра мезы на 13% (с 37 до 42 мкм) без изменения химического состава слоев РТС. Параметры пассивных элементов СГС были оптимизированы под новую форму ВАХ НЭ в процессе КТ-оптимизации. В результате оптимизации номинальные значения электрических характеристик СГС изменились следующим образом: КП промежуточной частоты на частоте сигнала 10.90 ГГц увеличен на 2.39 дБ (с -12.32 до -9.93 дБ), динамический диапазон по 1 дБ-компрессии расширен на 1 дБ (с 9.80 до 10.80 дБм), по интермодуляции — на 1.40 дБ (точка IP3 смещена с 28.75 на 30.15 дБм) СГСм. В результате КТ-оптимизации удалось приблизить значение КП промежуточной частоты СГСм на основе РТД к значению аналога на основе ДБШ (9.93 дБ у СГСм на основе РТД и 9.82 дБ у аналога на основе ДБШ).

# ЗАКЛЮЧЕНИЕ

В результате КТ-оптимизации широкополосного СГС посредством разработанного программного комплекса гамма-процентный ресурс  $T_{\gamma = 0.99}$  в заданных условиях эксплуатации увеличен в 1.49 раза. Полученный результат достигнут за счет определения оптимального сочетания параметров конструкции РТД и СГСм, обеспечивающих наилучшее с точки зрения надежности сочетание электрических характеристик смесителя. Достигнутый результат подтверждает возможность решения задачи обеспечения надежности ПЧ-радиосигналов на основе РТД в заданных условиях эксплуатации с помощью КТ-оптимизации электрических характеристик ПЧ без изменения технологии его изготовления.

Авторы заявляют об отсутствии конфликта интересов.

#### ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-29-00615, https://rscf.ru/project/22-29-00615/).

### СПИСОК ЛИТЕРАТУРЫ

- 1. *Mizuta H., Tanoue T.* The Physics and Applications of Resonant Tunnelling Diodes. Cambridge: Univ. Press, 2006. P. 133.
- Asada M., Suzuki S. // Sensors. 2021. V. 21. № 4. P. 1384.
- 3. Sinyakin V.Yu., Makeev M.O., Meshkov S.A. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012160.
- Wang J., Al-Khalidi A., Zhang C. et al. // Proc. 10th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). Liverpool. 11–13 Sept. 2017. N.Y.: IEEE, 2017. Article No. 8068497.
- Nagatsuma T., Fujita M., Kaku A. et al. // Proc. 3rd Int. Conf. Telecommunications and Remote Sensing (ICTRS). Luxembourg. 26–27 Jun. 2014. Setúbal: Scitepress, 2014. P. 41.
- Hori T., Ozono T., Orihashi N., Asada M. // Appl. Phys. 2006. V. 99. № 6. P. 064508.

2022

- 7. *Kanaya H., Shibayama H., Suzuki S., Asada M.* // Appl. Phys. Express. 2012. V. 5. № 12. P. 124101.
- 8. *Maekawa T., Kanaya H., Suzuki S., Asada M.* // Appl. Phys. Express. 2016. V. 9. № 2. P. 024101.
- Srivastava A. // Europ. J. Advances in Engineering and Technology. 2015. V. 2. № 8. P. 54
- Nishida Y., Nishigami N., Diebold S. et al. // Sci. Rep. 2019. V. 9. Article No. 18125.
- 11. *Diebold S., Tsuruda K., Kim J.-Y. et al.* // Proc. SPIE 2016. V. 9856. P. 98560U.
- Мешков С.А. // Изв. вузов. Приборостроение. 2019. Т. 62. № 10. С. 921.
- 13. Черкасов К.В., Мешков С.А., Макеев М.О., Шашурин В.Д. // РЭ. 2022. Т. 67. № 6. С. 590.
- Макеев М.О., Черкасов К.В., Иванов Ю.А., Мешков С.А. // Успехи совр. радиоэлектроники. 2019. № 3. С. 28.

- 15. *Макеев М.О., Иванов Ю.А., Мешков С.А.* // Физика и техника полупроводников. 2016. Т. 50. № 1. С. 83.
- Makeev M.O., Meshkov S.A., Ivanov Y.A. // Key Engineering Mater. 2017. V. 724. P. 48.
- 17. *Makeev M.O., Meshkov S.A., Sinyakin V.Yu.* // J. Phys.: Conf. Ser. 2017. V. 917. P. 092004.
- Makeev M.O., Sinyakin V.Yu., Meshkov S.A. // Adv. Astronautical Sci. 2020. V. 170. P. 655.
- 19. Vasilyev F., Isaev V., Korobkov M. // Przeglad Elektrotechniczny. 2021. V. 97. № 3. P. 91.
- 20. *Khayrnasov K.Z.* // Amazonia Investiga. 2019. V. 8. № 23. P. 664.
- Sokolsky M., Sokolsky A. // Amazonia Investiga. 2019.
   V. 8. № 22. P. 757.

# = НОВЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ И ЭЛЕМЕНТЫ

УДК 535.8

# ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК АКУСТООПТИЧЕСКОГО ФИЛЬТРА, РАБОТАЮЩЕГО В ДИАПАЗОНЕ 450...1700 нм<sup>1</sup>

© 2022 г. В. И. Батшев<sup>*a*, *b*, \*, А. Б. Козлов<sup>*a*, *c*</sup>, М. О. Шарикова<sup>*a*</sup>, А. С. Мачихин<sup>*a*, *d*</sup>, Г. Н. Мартынов<sup>*a*</sup>, А. В. Горевой<sup>*a*</sup>, С. В. Боритко<sup>*a*, *e*</sup>, В. А. Ломонов<sup>*s*</sup>, Н. А. Моисеева<sup>*s*</sup></sup>

<sup>а</sup>Научно-технологический центр уникального приборостроения РАН,

ул. Бутлерова, 15, Москва, 117342 Российская Федерация

<sup>b</sup>Московский государственный технический университет им. Н.Э. Баумана,

ул. 2-я Бауманская, 5 корп. 1, Москва, 105005 Российская Федерация

<sup>с</sup>Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха,

ул. Введенского, 3 к.1, Москва, 117342 Российская Федерация

<sup>d</sup>Национальный исследовательский университет "МЭИ",

ул. Красноказарменная, 14, Москва, 111250 Российская Федерация

<sup>е</sup>Московский физико-технический институт (национальный исследовательский университет),

Институтский пер. 9, Долгопрудный Московской обл., 141701 Российская Федерация

<sup>g</sup>Федеральный научно-исследовательский центр "Кристаллография и фотоника" РАН,

Ленинский просп., 59, Москва, 119333 Российская Федерация

\**E-mail: batshev@bmstu.ru* Поступила в редакцию 14.05.2022 г. После доработки 23.06.2022 г. Принята к публикации 28.06.2022 г.

Разработан акустооптический (AO) перестраиваемый фильтр на основе кристалла парателлурита (TeO<sub>2</sub>) с двумя пьезопреобразователями, обеспечивающий произвольную спектральную адресацию в диапазоне 450...1700 нм. Геометрические параметры кристалла рассчитаны из условия минимизации хроматического сдвига изображения в конфокальной оптической системе спектрометра в пределах всего рабочего спектрального диапазона. Представлены результаты экспериментального исследования разрешающей способности и функции пропускания в зависимости от апертуры АО-фильтра и рабочей длины волны. Приведены примеры спектральных изображений тестовых объектов, полученных с помощью макета видеоспектрометра, собранного на основе разработанного АО-фильтра.

**DOI:** 10.31857/S0033849422120026

### введение

Акустооптические (АО) перестраиваемые спектральные фильтры основаны на брэгговской дифракции электромагнитного излучения на объемной фазовой решетке, образованной акустической волной в среде за счет фотоупругого эффекта [1]. Они достаточно широко используются при решении различных научных, биомедицинских и промышленных задач. Компактность, отсутствие подвижных частей, произвольная спектральная адресация и другие достоинства таких фильтров позволяют создавать на их основе как классические спектрометры для анализа спектрального состава излучения [2, 3], так и видеоспектрометры — приборы для получения пространственноспектральных данных для дистанционного зондирования [4], микроскопии [5, 6], эндоскопии [7, 8], интерферометрии [9] и других приложений.

Одним из основных недостатков АО-фильтров принято считать относительно небольшой спектральный диапазон перестройки. Он, как правило, не превышает одну октаву и ограничен диапазоном согласования пьезопреобразователя, используемого для возбуждения ультразвука, с управляющим генератором [10]. Для преодоления данного ограничения могут использоваться два АО-фильтра, согласованных на соседние спектральные диапазоны, но при этом увеличиваются габариты, масса, сложность управления и стоимость видеоспектрометра. Расширить спектральный диапазон АО-фильтра на основе одиночной АО-ячейки можно за счет увеличения размера кристалла и применения двух пье-

<sup>&</sup>lt;sup>1</sup> Работа доложена на Пятой Международной молодежной конференции "Информационные технологии и технологии коммуникации: современные достижения" (Астрахань, 4– 7 октября 2021 г.).



Рис. 1. Векторная диаграмма (а) и оптическая схема (б) АО-ячейки.

зопреобразователей, согласованных на различные поддиапазоны [11]. Несмотря на то, что принципиальная реализуемость такого подхода экспериментально продемонстрирована [12, 13], информации о серийно выпускаемых видеоспектрометрах на основе АО-фильтров с двумя пьезоапреобразователями нет.

В предыдущих работах авторов [14-16] представлена оптимальная с точки зрения пространственных искажений геометрия АО-фильтра для широкого спектрального диапазона и экспериментально исследованы два АО-фильтра, построенные по этой геометрии: первый согласован на видимый диапазон, второй – на ближний ИКдиапазон. Также в работах [15, 16] предложена оптическая система на основе АО-фильтра с этой геометрией. В данной работе впервые описан макет видеоспектрометра, работающего в спектральном диапазоне 450...1700 нм, в котором используется одиночная АО-ячейка из кристалла парателлурита (TeO<sub>2</sub>) с двумя пьезопреобразователями, форма и геометрия АО-взаимодействия которой оптимизированы для обеспечения высокого качества изображения во всем диапазоне.

### 1. АКУСТООПТИЧЕСКАЯ ЯЧЕЙКА

На рис. 1 представлены векторная диаграмма (а) и оптическая схема (б) изготовленной АО-ячейка с двумя пьезопреобразователями. Материалом ячейки является наиболее распространенный для устройств видимого и ИК-диапазонов анизотропный одноосный кристалл TeO<sub>2</sub> (парателлурит). Угол среза  $\gamma = 7^{\circ}$ . Символами  $n_o$  и  $n_e$  обозначены показатели преломления материала для обыкновенно и необыкновенно поляризованных волн, k — волновое число. Излучение падает на входную грань по нормали. Угол между волновым вектором падающего излучения  $\vec{k}_i$  с осью *x* составляет  $\theta = 73.85^{\circ}$ . При выбранных  $\gamma$  и  $\theta$  обеспечивается используемый в изображающих АО-устройствах

широкоугольный режим дифракции. Падающее необыкновенно поляризованное оптическое излучение в результате дифракции меняет состояние поляризации на обыкновенное, отклоняется на угол  $\delta$ , распространяется внутри АОЯ вдоль вектора  $\vec{k}_d$  и выходит из АОЯ вдоль направления, обозначенного цифрой З. Падающее обыкновенно поляризованное излучение тоже дифрагирует, меняя состояние поляризации и отклоняясь в противоположную сторону. Оно выходит из АОЯ по направлению 5. Недифрагированное широкополосное излучение-распространяется вдоль вектора  $\vec{k}_i$  после двулучепреломления на выходной грани АО-ячейки выходит по двум близким направлениям, как показано штриховой линией 4. В разработанном видеоспектрометре используется только излучение, выходящее вдоль направления 3, остальные направления диафрагмируются.

Пьезопреобразователи 1 и 2 для видимого и инфракрасного (ИК) диапазонов находятся на нижней грани ячейки. Управление АО-фильтром выполняется с помощью высокочастотного (ВЧ)ячейки генератора. Частота *f* управляющего сигнала определяет длину волны  $\lambda$ , на которой происходит дифракция, а также влияет на ширину  $\Delta\lambda$  спектральной линии пропускания АО-фильтра, а именно  $\lambda \sim 1/f$  и  $\Delta\lambda \sim 1/f^2$  [17]. Пьезопреобразователь 2 работает на частотах f = 28...55 МГц, что соответствует спектральному диапазону  $\lambda = 900...1700$  нм; преобразователь 1 работает на частотах f == 55...120 МГц, что соответствует диапазону длин волн  $\lambda = 450...900$  нм.

Длина каждого пьезопреобразователя 10 мм. Углы сноса акустических волн, сформированных в кристалле обоими пьезопреобразователями (угол между волновым вектором  $\vec{q}$  и вектором групповой скорости звука  $\vec{v}$ ), приблизительно равны 50°. Угол наклона выходной грани, при котором обеспечивается минимальный хроматический сдвиг изображения во всем рабочем спектральном диапазоне, составляет  $\beta = 2.3^{\circ}$  [14, 15].



Рис. 2. Зависимость длины волны дифрагируемого света (а) и ширины спектральной линии (б) от частоты подаваемого ультразвука.



Рис. 3. Частотная зависимость КСВ АО-фильтра.

На рис. 2 представлены экспериментально полученные зависимости длины волны  $\lambda$  и ширины спектрального интервала  $\Delta\lambda$  от частоты звука *f*. Эти зависимости измерены с помощью спектрометра Avesta ASP-IR. Сплошной линией представлены теоретические зависимости.

Одним из показателей эффективности работы АО-фильтра является коэффициент стоячей волны (КСВ), являющийся мерой согласования пьезопреобразователя с генератором управляющего напряжения. Для рассматриваемого типа устройств приемлемым обычно считается КСВ не более 3, при этом амплитуда прошедшего сигнала вдвое больше амплитуды отраженного. В изготовленном АО-фильтре это условие удовлетворено в обоих диапазонах звуковых частот, как показано на рис. 3.

# 2. ОПТИЧЕСКАЯ СХЕМА ВИДЕОСПЕКТРОМЕТРА

Разработанный АО-фильтр предназначен для работы в изображающем спектрометре, оптическая схема которого предложена в [15, 16]. В данной работе макет этого прибора изготовлен и экспериментально исследован. Функциональная оптико-электронная схема и фотография макета показана на рис. 4.

Объект 2 освещается с помощью источника излучения 1. Излучение от объекта коллимируется объективом 3 и направляется в спектрометр. Диафрагма 4 является входным элементом спектрометра. Через нее в спектрометр попадет излучение в виде пучков параллельных лучей, идущих от объекта наблюдения. Вошедшее излучение фо-



(б)



Рис. 4. Функциональная схема (а) и внешний вид (б) макета видеоспектрометра.

кусируется объективом 5 внутри АО-фильтра 6, а затем вновь коллимируется объективом 7. Объективы 5 и 7 идентичны и расположены симметрично относительно АО-фильтра. Дихроичное зеркало 8 делит излучение по спектральному составу: ИКизлучение (0.9...2.7 мкм) отражается зеркалом 8, а видимое (0.45...0.9 мкм) — проходит сквозь него. Объективы 9 и 12 фокусируют излучение на матричных приемниках 11 и 14 через апертурные диафрагмы 10 и 13. Система диафрагм 4, 10 и 13 необходима для устранения излучения, идущего через АО-фильтр без дифракции [18].

Объективы 5 и 7 спроектированы для компенсации хроматизма положения, вносимого АО-фильтром [19] и изготовлены специально для макета спектрометра; в качестве объектива *12* использован объектив для ИК-диапазона с фокусным расстоянием 50 мм LM50HC-SW (Kowa), а в качестве объектива *9* стандартный объектив для задач машинного зрения с фокусным расстоянием 35 мм TBL35 (The Imaging Source). В качестве видеокамеры *14* ИК-диапазона использована охлаждаемая камера Goldeye G-032 (Allied Vision Technologies) с размером сенсора 15.9 × 12.7 мм<sup>2</sup>; в видимом диапазоне использована камера *11* на основе монохромной КМОП-матрицы размером 7.4 × 4.9 мм<sup>2</sup> DMK 37BUX178 (The Imaging Source).

#### БАТШЕВ и др.



Рис. 5. Спектральные изображения тестового объекта.

АО-фильтр 3 управляется с помощью двухканального драйвера 15, содержащего ВЧ-генераторы 16 и 18, формирующие управляющий электрический сигнал в диапазонах 27...54 МГц (генератор 18) и 54...120 МГц (генератор 16), и усилители 17 и 19.

Видеокамеры 11 и 14 видимого и ИК-диапазонов, а также драйвер АО- фильтра 15 управляются персональным компьютером 20 через оригинальное специализированное программное обеспечение.

На рис. 5 показаны некоторые из зарегистрированных изображений тестового объекта, по которым вычислена разрешающая способность. Рисунок 5ж иллюстрирует увеличенный фрагмент рис. 5а; соответствующая область показана прямоугольником. Как видно из рис. 5ж, размытие горизонтальных линий меньше, чем вертикальных. Это объясняется тем, что АО-фильтр ориентирован так, что акустическая волна распространяется горизонтально и при АО-взаимодействии происходит небольшое снижение качества изображения, которое становится заметным в конфокальной схеме АО-фильтрации [20].

На рис. 6 представлены графики модуляционно-передаточной функции (МПФ), являющейся одним из показателей качества, по которым принято оценивать изображающие оптические системы. Сплошными линиями представлены результаты, полученные стандартным методом пограничной кривой [21, 22] по изображениям тестового объекта, представленным на рис. 5. Множество линий на каждом графике идентифицирует различные участки изображений. Штриховая линия является результатом расчета оптической системы в программе ZEMAX [19] и показывает усредненную по всему полю зрения МПФ. Для каждой длины волны приведены по два графика – полученные по обработке горизонтальных или вертикальных линий изображения. По указанным причинам величина размытия горизонтальных линий меньше, что проявляется в заметно больших значениях соответствующих МПФ. При моделировании не удается в полной мере учесть искажения при АОвзаимодействии, поэтому теоретические (штриховые) кривые для горизонтальных и вертикальных линий почти идентичны.

В ИК-области использован приемник излучения с размером пикселя 25 мкм. В данном случае его влияние на разрешающую способность оказывается больше, чем влияние аберраций оптической системы. Этим объясняется существенное различие теоретических и экспериментальных кривых рис. 6 на длинах волн 1000 и 1680 нм, так как дискретизация приемника не учитывается при моделировании оптической системы в ZEMAX.

Из графиков видно, что разрешающая способность (по уровню контраста 0.2) в коротковолновом диапазоне меняется в пределах от 25 до 50 линий на 1 мм, а в длинноволновом — от 3 до 10 линий на 1 мм. Таким образом, учитывая размеры изображений, сформированных на приемниках излучения, пространственное разрешение видеоспектрометра в коротковолновой (видимой) области составляет приблизительно 250 × 180 элементов, а в длинноволновой (ИК) — 120 × 100 элементов.



**Рис. 6.** Расчетные (штриховая кривая) и экспериментально определенные (сплошные кривые) МПФ для горизонтальных (слева) и вертикальных (справа) элементов изображения.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022

# ЗАКЛЮЧЕНИЕ

Элементная база оптико-электронных приборов быстро развивается во всем мире, что позволяет создавать новые типы приборов и существенно расширять возможности существующих. В последнее время появились матричные приемники излучения на основе InGaAs структуры, работающие в широком спектральном диапазоне (400...1700 мкм) https://www.photonics.com/Products/ (например. Visible SWIR Camera/pr60732). Использование одного такого приемника излучения и одного АО-фильтра, подобного представленному в данной работе, позволяет создать компактный АОвидеоспектрометр, работающий в широком спектральном диапазоне, обычно покрываемом двумя различными АО-фильтрами и двумя приемниками излучения. Таким образом, в двухдиапазонном видеспектрометре вдвое расширен спектральный диапазон при неизменных массогабаритных характеристиках, что делает этот прибор перспективным для применения, например, в дистанционном зонлировании с использованием беспилотных летательным аппаратов, где масса и габариты особо важны. Прибор может найти применение и в других отраслях – в микроскопии, биомедицине, в технической лиагностике.

Авторы заявляют об отсутствии конфликта интересов.

# ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-29-20095). В части технологии изготовления АО-кристаллов работа проводилась в рамках государственного задания ФНИЦ "Кристаллография и фотоника" РАН (№ АААА А19 119073190049 2).

При выполнении работы использовано оборудование Центра коллективного пользования НТЦ УП РАН (https://ntcup.ru/ckp-i-unu/) и оборудование Уникальной научной установки "Лазерный нагрев в ячейках высокого давления" НТЦ УП РАН (https://ckprf.ru/usu/507563/).

# СПИСОК ЛИТЕРАТУРЫ

1. Балакший В.И., Парыгин В.Н., Чирков Л.И. Физические основы акустооптики. М: Радио и связь, 1985.

- 2. *Мазур М.М., Пожар В.Э.* // Измерит. техника. 2015. № 9. С. 29.
- Молчанов В.Я., Китаев Ю.И., Колесников А.И. и др. Теория и практика современной акустооптики. М.: ИД МИСиС, 2015.
- 4. *Dekemper E., Loodts N., Opstal B.V. et al.* // Appl. Optics. 2012. V. 51. № 25. P. 6259.
- Morris H.R., Hoyt C.C., Treado P.J. // Appl. Spectroscopy. 1994. V. 48. № 7. P. 857.
- 6. *Yushkov K.B., Champagne J., Kastelik J.-C. et al.* // Biomed. Opt. Express. 2020. V. 11. № 12. P. 7053.
- Bouhifd M., Whelan M., Aprahamian M. // Proc. SPIE. 2003. V. 5143. P. 305.
- 8. *Мачихин А.С., Пожар В.Э., Батшев В.И.* // Приборы и техника эксперимента. 2013. № 4. С. 117.
- 9. Machikhin A., Pozhar V., Viskovatykh A., Burmak L. // Appl. Optics. 2015. V. 54. № 25. P. 7508.
- Design and Fabrication of Acousto-Optic Devices / Eds. by Goutzoulis A., Pape D. Boca Raton: CRC Press, 1994.
- Gupta N., Voloshinov V.B. // Appl. Optics. 2007. V. 46. № 7. P. 1081.
- *Zhao H. et al.* // Opt. Express. 2017. V. 25. № 20. P. 23809.
- Kozun M.N., Bourassa A.E., Degenstein D.A., Loewen P.R. // Rev. Scientific Instruments. 2020. V. 91. № 10. P. 103106.
- 14. *Мачихин А.С., Батшев В.И., Пожар В.Э., Борит*ко С.В. // Оптический журн. 2019. Т. 86. № 12. С. 59.
- 15. Батшев В.И., Мачихин А.С., Козлов А.Б. и др. // РЭ. 2020. Т. 65. № 7. С. 667.
- Batshev V., Boritko S., Kozlov A. et al.// Proc. Int. Conf. Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 31 May–4 June, 2021, P. 1–4.
- 17. *Chang I.C.* // Electron. Lett. 1975. V. 11. № 25–26. P. 617.
- Batshev V., Machikhin A., Martynov G. et al. // Sensors. 2020. V. 20. № 16. P. 4439.
- Machikhin A., Batshev V., Pozhar V. // J. Opt. Soc. Amer. A. 2017. V. 34. № 7. P. 1109.
- 20. Wachman E.S., Niu W., Farkas D.L. // Appl. Optics. 1996. V. 35. № 5. P. 220.
- 21. Photography–Electronic Still Picture Cameras–Resolution Measurements, ISO Standard 12233: 2000 Geneva: Int. Organization for Standardization, 32 p.
- 22. Kenichiro M., Takayuki Y., Yukihiro N., Masayuki S. // Opt. Express. 2014. V. 22. № 5. P. 6040.

# = НОВЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ И ЭЛЕМЕНТЫ

УДК 621.373.8

# ЛАЗЕРНЫЕ СИСТЕМЫ НА АИГ:Nd<sup>3+</sup> ДЛЯ МОРСКОГО ЛИДАРА УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА<sup>1</sup>

© 2022 г. А. И. Ляшенко<sup>а,</sup> \*, Е. М. Володина<sup>а</sup>, Ю. А. Гольдин<sup>b</sup>, Б. А. Гуреев<sup>b</sup>

<sup>а</sup>Научно-технологический центр уникального приборостроения РАН, ул. Бутлерова, 15, Москва, 117342 Российская Федерация <sup>b</sup>Институт океанологии им. П.П. Ширшова РАН, Нахимоский просп., 36, Москва, 117218 Российская Федерация \*E-mail: alexs1407@yandex.ru Поступила в редакцию 14.05.2022 г. После доработки 14.05.2022 г. Принята к публикации 30.07.2022 г.

Показано, что лидарное зондирование водной среды лазерным излучением на длине волны 266 нм обеспечивает высокую чувствительность и достоверность обнаружения нефтепродуктов. Для использования в морских лидарах предложены две лазерные системы (лазер-усилитель) на АИГ:Nd<sup>3+</sup> с преобразованием излучения в четвертую гармонику (с ламповой и с диодной накачкой).

DOI: 10.31857/S0033849422120154

# введение

Морские спектральные лидары, осуществляющие зондирование водной среды лазерным излучением ультрафиолетового (УФ) диапазона, эффективный инструмент мониторинга загрязнений морских акваторий и внутренних водоемов нефтепродуктами [1–3]. Спектральные лидары позволяют обнаруживать присутствие нефтепродуктов при достаточно низких концентрациях, оконтуривать область загрязнения, оценивать толщину нефтяной пленки на поверхности воды, определять тип загрязняющего нефтепродукта, оценивать объём загрязнения.

Информация о наличии нефтепродуктов в приповерхностном слое и на поверхности воды в этих лидарах получается в результате спектрального анализа эхо-сигнала, сформировавшегося лазерно-индуцированной флуоресценцией нефтепродуктов и растворенного органического вещества, а также комбинационным рассеянием на молекулах воды. Обычно в спектральных лидарах используются источники зондирующего излучения ближнего УФ-диапазона – твердотельный лазер на АИГ:Nd<sup>3+</sup> с преобразованием частоты излучения в третью гармонику ( $\lambda_3 = 355$  нм) и эксимерные лазеры на XeCl ( $\lambda = 308$  нм) и на XeF ( $\lambda = 351$  нм) [1–4]. В то же время для решения за-

дачи обнаружения загрязнений водоемов нефтепродуктами лидарным методом ряд преимуществ лает использование зонлирующего излучения среднего УФ-лиапазона. Зонлирование излучением этого диапазона позволяет частично разделить спектры флуоресценции нефтепродуктов и природного растворенного органического вещества. В этом случае полосы флуоресценции легких нефтяных углеводородов попадают в широкий спектральный интервал между полосой комбинационного рассеяния воды и полосой флуоресценции природного растворенного органического вещества, в котором флуоресцируют только нефтепродукты. Регистрация излучения возбуждаемой флуоресценции в этом спектральном интервале позволяет обнаруживать и количественно оценивать нефтепродукты с высокой чувствительностью, точностью и достоверностью.

Оптимальным для использования в морских лидарах источником зондирующего излучения среднего УФ-диапазона является твердотельный лазер на АИГ:Nd<sup>3+</sup> с преобразованием частоты излучения в четвертую гармонику ( $\lambda_4 = 266$  нм) [5, 6]. Преимущества использования четвертой гармоники были продемонстрированы в натурном эксперименте, выполненном в Каспийском море с судовым лидаром СФПЛ-24 [7]. В качестве источника зондирующего излучения был использован импульсный лазер ЛТИ-24 с ламповой накачкой (длина волны излучения 266 нм, энергия импульса излучения 8 мДж, длительность импульса 8 нс, расходимость зондирующего пучка 3 мрад).

<sup>&</sup>lt;sup>1</sup> Работа доложена на Пятой Международной молодежной конференции "Информационные технологии и технологии коммуникации: современные достижения" (Астрахань, 4–7 октября 2021 г.).



**Рис. 1.** Оптическая схема УФ-ИЗЛН: 1 -квантрон, 2 -диффузный отражатель, 3 -активный элемент из АИГ:Nd<sup>3+</sup> размером  $\emptyset$ 5 × 100 мм, 4 -активный элемент из АИГ:Nd<sup>3+</sup> размером  $\emptyset$ 6.3 × 100 мм, 5 -лампа ИНП-2-5/90, 6 -выходное зеркало, 7, 8 -призмы-крыши, 9 -пластина-поляризатор, 10 -электрооптический элемент из LiNbO<sub>3</sub>, 11, 12 -поворотные призмы-клинья, 13 -пластина  $\lambda_1/4, 14 -$ нелинейный элемент из KTP в термостате, 15 -нелинейный элемент из BBO в термостате, 16, 17 -параметрические зеркала, селектирующие излучение с длиной волны  $\lambda_4 = 266$  нм.

Регистрация "нефтяных" эхо-сигналов без вклада флуоресценции растворенного органического вещества осуществлялась приемными каналами с максимумом чувствительности на длинах волн 320 и 350 нм. Результаты натурных испытаний показали, что чувствительность этих каналов к присутствию загрязняющих нефтепродуктов существенно выше, чем у более длинноволновых измерительных каналов.

Практическое использование лидаров, предполагающее их установку на авианоситель или стационарную платформу, выдвигает дополнительные требования к техническим характеристикам используемого лазера. В первую очередь, это более высокая энергия импульсов излучения, большой ресурс работы, виброустойчивость, низкое энергопотребление и в некоторых случаях возможность работы при отрицательных температурах.

С учетом сформулированных требований была изготовлена лазерная система (лазер-усилитель) на основе квантрона с ламповой накачкой и предложена оптическая схема лазерной системы на основе двух квантронов с диодной накачкой. Системы обеспечивают генерацию излучения на длине волны 266 нм и предназначены для использования в морских "нефтяных" лидарах. В работе представлены описания этих систем.

# 1. ЛАЗЕРНЫЕ СИСТЕМЫ

Повышенную энергию импульсов излучения обеспечивает лазерная система: лазер-усилитель с ламповой или с диодной накачкой.

При эксплуатации лазера в нормальных климатических условиях наиболее эффективной представляется лазерная система, использующая квантрон, содержащий одну лампу накачки и два активных элемента, охлаждаемых дистиллированной водой. При необходимости работать с лидаром в полевых условиях, допускающих отрицательные температуры окружающего воздуха, предлагается использовать лазерную систему с двумя квантронами с боковой накачкой активных элементов решетками лазерных диодов, охлаждаемых морозостойкой жидкостью типа тосола или антифриза.

В системах используются зеркально-призменные резонаторы, обеспечивающие двукратное снижение порога генерации за счет дополнительного прохода излучением активного элемента и уменьшение расходимости выходного излучения в плоскости критического синхронизма нелинейного элемента из кристалла бета-бората бария (BBO) в преобразователе излучения в четвертую гармонику [8, 9]. Резонаторы устойчивы к деформациям корпуса и термическим эффектам в активных элементах.

В качестве лазера с диодной накачкой предложено использовать лазер, представленный в [9], который отличается большей энергией импульсов и более низкой расходимостью излучения по сравнению с известным лазером [10]. Рассмотрены особенности работы этих систем, в том числе во время переходных процессов после включения.

### 2. ЛАЗЕРНАЯ СИСТЕМА С ЛАМПОВОЙ НАКАЧКОЙ

Лазерная система с ламповой накачкой активных элементов (ЛСЛН) с оптической схемой на рис. 1 представляется наиболее эффективной в составе УФ-лидара, эксплуатируемого в нормальных климатических условиях.

Высокая эффективность ЛСЛН обеспечена прежде всего за счет следующих технических и конструктивных решений при изготовлении излучателя (УФ-ИЗЛН):

1) выбор квантрона *1*, охлаждаемого дистиллированной водой, с одной лампой, помещенной в отражатель *2* между двумя активными элементами (генераторным *3* и усилительным *4*), что исключает эффект затенения лампой 5 излучения накачки при передаче его в активные элементы;

2) использование призмы-крыши 7 с ребром при вершине в вертикальной плоскости, "делящим" поперечное сечение генераторного активного элемента пополам, что обеспечивает снижение порога генерации в два раза вследствие дополнительного прохода лазерным излучением активного элемента *3*, повышает устойчивость резонатора при появлении термического клина в активном элементе *3* и снижает расходимость лазерного излучения в горизонтальной плоскости;

3) использование второй призмы-крыши 8 в качестве концевого отражателя с ребром при вершине в горизонтальной плоскости повышает устойчивость резонатора при возможной деформации корпуса излучателя УФ-ИЗЛН в вертикальной плоскости;

4) применение призм-клиньев 11, 12, увеличивающих размер пучка излучения в 2.25 раза в горизонтальной плоскости, снижает расходимость излучения во столько же раз.

Лучевая прочность оптических элементов резонатора, а также нелинейных элементов из кристаллов титанил-фосфата калия (КТР) и ВВО, в которых происходит генерация второй ( $\lambda_2 = 532$  нм) и четвертой ( $\lambda_4 = 266$  нм) гармоник соответственно, является высокой, но на практике оказывается вполне достижимой. Поэтому для предотвращения оптического пробоя элементов ИК-лазер следует настраивать и эксплуатировать в режиме включения добротности резонатора после окончания свободной (пичковой) генерации. Этот режим основан на внесении потерь в резонатор в начале импульса пичковой генерации и включении добротности резонатора полностью после последнего пичка через отрезок времени ~20 мкс. В указанном режиме осуществляется стабилизация энергетических параметров (максимальной плотности энергии в сечении луча и энергии импульсов) и временных параметров импульсов излучения в широкой области энергии импульсов накачки вследствие излучения "излишков" запасенной в активном элементе энергии (инверсной населенности) в процессе пичковой генерации [11].

Внесение начальных потерь в резонатор целесообразно проводить отклонением оптической оси Z электрооптического элемента 10 от оси резонатора на небольшой угол (~2°) в пределах первого кольца коноскопической картины, используя собственное двулучепреломление элемента. Начальные потери резонатора при этом практически не зависят от температуры элемента. Для того чтобы полностью "открыть" резонатор, необходимо подать на электроды элемента 10 импульс высоковольтного напряжения с блока управления электрооптическим затвором (БУЗ), причем амплитуда импульса также не зависит от температуры элемента.

Лазерная система ЛСЛН обеспечивает генерацию импульсов излучения с  $\lambda_4 = 266$  нм с энергией до 25 мДж при частоте повторения до 30 Гц и энергии импульсов накачки 25 Дж. При смене лампы через каждые  $1.8 \times 10^7$  импульсов ресурс системы на порядок выше.

### 3. ЛАЗЕРНАЯ СИСТЕМА С ДИОДНОЙ НАКАЧКОЙ

Существенное повышение эффективности инфракрасного (ИК) лазера за счет снижения энергопотребления до семи раз достигается при замене ламповой накачки активного элемента на диодную, в частности, на одностороннюю боковую накачку активного элемента решетками лазерных диодов (РЛД), излучающих на длине волны  $\lambda_{\rm H} = 808$  нм, совпадающей с узкой полосой поглошения ионов неодима. При этом в активном элементе тепловыделение существенно снижается и возникает возможность применить контактный отвод тепла от активного элемента и корпусов РЛД на радиатор, через который может прокачиваться морозостойкая жидкость, не испытываюшая фотодеструкции вследствие отсутствия взаимодействия с излучением накачки [10].

Лазерная система с диодной накачкой (ЛСДН) с оптической схемой (рис. 2) представляется наиболее эффективной при эксплуатации УФ-лидара при отрицательных температурах окружающей среды.

Высокая эффективность ЛСДН обеспечивается также за счет оптимизации конструкции квантрона и новых схемотехнических решений в излучателе с диодной накачкой активных элементов (УФ-ИЗДН), таких как, например:

1) выбор квантронов с односторонней боковой накачкой моноспектральными РЛД с улучшенным контактным отводом тепла от лазерных диодов к корпусу РЛД, что позволяет создать инверсную населенность в большом объеме активной среды [10];

2) выбор зеркально-призменного резонатора на основе оптической схемы двухпроходного усилителя с концевым отражателем в виде призмыкрыши, что снижает порог генерации и уменьшает расходимость излучения в два раза [9, 12];

3) выбор двухпроходного усилителя с телескопом Галилея позволяет увеличить выходную энергию моноимпульсов излучения ЛСДН и минимизировать расходимость излучения;

4) применение в оптических схемах генератора и усилителя призмы и четвертьволновые пластины позволяет устранить влияние деполяризующих эффектов в оптических компонентах [10].



**Рис. 2.** Оптическая схема УФ-ИЗДН: 1 - глухое зеркало, 2 - выходное зеркало, 3 - поворотная призма, 4 - призмакрыша, 5 - квантрон с сегментом зеркального отражателя и с генераторным активным элементом из АИГ:Nd<sup>3+</sup> размером Ø5 × 100 мм, 6, 7 - квантрон с сегментом зеркального отражателя и с усилительным элементом из АИГ:Nd<sup>3+</sup> размером Ø6.3 × 100 мм, 8, 9 - решетки лазерных диодов, 10 - четвертьволновая пластина с  $\varphi = 0^{\circ}$  к плоскости рисунка, 11 - четвертьволновая пластина с  $\varphi = 45^{\circ}$ , 12 - пластина-поляризатор, 13 - электрооптический элемент из LiNbO<sub>3</sub>, 14 - поворотное зеркало, 15 - телескоп Галилея, 16 - нелинейный элемент из KTP в термостате, 17 - нелинейный элемент из BBO в термостате, 18 - стопа из стеклянных пластинок (марки KУ-1).

Изменение длины волны излучения лазерных диодов (ЛД) от температуры со скоростью 0.3 нм/°С вследствие изменения температуры окружающей среды и саморазогрева диодов приводит к необходимости применения энергозатратных систем термостабилизации охлаждающей жидкости. Во время переходных процессов при выходе на стационарный тепловой режим температура ЛД и, следовательно, эффективность накачки и распределение инверсной населенности по сечению активного элемента меняются. что может привести к превышению максимальной плотности энергии моноимпульсов излучения предельно допустимого уровня и разрушению оптических компонентов излучателя УФ-ИЗДН. Применение режима включения добротности резонатора после окончания свободной генерации, рассмотренного в предыдущем разделе для ЛСЛН, позволяет исключить возможность этой ситуации. При этом ресурс ЛСДН становится близким к ресурсу РЛД  $(1.8 \times 10^{9}$ импульсов).

# ЗАКЛЮЧЕНИЕ

Моноимпульсные лазерные системы на АИГ:Nd<sup>3+</sup> по схеме лазер-усилитель с преобразованием частоты излучения в четвертую гармонику ( $\lambda_4 = 266$  нм) могут быть построены на основе квантронов с ламповой или с поперечной диодной накачкой активных элементов из АИГ:Nd<sup>3+</sup>. Выбор типа квантрона определяет оптическую схему излучателей. От режима охлаждения источников накачки (лампы или решетки лазерных диодов) зависит выбор хладагента (дистиллированная вода или морозостойкая жидкость типа тосол).

Для обеспечения надежности при работе ЛСЛН и ЛСДН в переходных режимах предложено использовать режим включения добротности резонатора после окончания свободной генерации. ЛСДН обеспечивает возможность работы с более высокой энергией импульсов излучения при более высоких частотах повторения импульсов. Преимуществом ЛСДН является длительный ресурс, низкий уровень электромагнитных помех, низкое энергопотребление и возможность работы при отрицательных температурах окружающей среды. К недостаткам ЛСДН следует отнести необходимость термостабилизации охлаждающей жидкости и высокую стоимость РЛД.

ЛСЛН и ЛСДН могут быть использованы в УФ-лидарах для дистанционного обнаружения нефтяных загрязнений в акваториях.

Авторы заявляют об отсутствии конфликта интересов.

### ФИНАНСИРОВАНИЕ РАБОТЫ

Исследования выполнены в рамках государственного задания: по теме FMWE-2021-0001 Института океанологии им. П.П. Ширшова РАН и по теме FFNS- 4. Pelevin V., Zlinszky A., Khimchenko E., Toih V. // Int. J. of Remote Sensing, 2017. V. 38. № 7. P. 1967.

2022-0010 Научно-технологический центра уникаль-

СПИСОК ЛИТЕРАТУРЫ

1. Brown E., Fingas M.F. // Marine Pollution Bulletin.

2. Reuter R., Wang H., Willkom R.W. et al. // Advances in

3. Pashayev A., Tagiyev B., Allahverdiyev K. et al. // Proc.

Remote Sensing. 1995. V. 3. № 3. VII.

ного приборостроения РАН.

2003. V. 47. P. 477.

- 5. Таер Абд Дейдан, Пацаева С.В., Фадеев В.В., Южаков В.И. // Вестн. моск. ун-та. Сер. 3. Физика. Астрономия. 1994. Т. 35. № 2. С. 51.
- 6. Федотов Ю.В., Белов М.Л., Матросова О.А., Городничев В.А. // Изв. вузов.2012. Т. 55. № 9/2. С. 105.
- Ляшенко А.И., Гольдин Ю.А., Гуреев Б.А. // Сб. научн. тр. симп. "Методы измерений и математическое моделирование физических процессов: биофото-

ника, оптика и радиолокация". Астрахань: Триада, 2018. С. 54.

- Казаков А.А., Ляшенко А.И., Струкова В.В. Импульсный твердотельный лазер с генерацией высших гармоник. Пат. РФ № 2325021. Опубл. офиц. бюл. "Изобретения. Полезные модели" № 14 от 20.05.2008.
- 9. Володина Е.М., Ляшенко А.И. Моноимпульсный твердотельный лазер. Пат. РФ на полезную модель № 204719. Опубл. офиц. бюл. "Изобретения. Полезные модели" № 16 от 08.06.2021.
- 10. Ляшенко А.И., Володина Е.М., Сапожников С.М., Подкопаев А.В. // Матер. Четвертой Междунар. научн. конф. "Информационные технологии и технологии коммуникаций. Современные достижения", посвященной 90-летию со дня основания Астраханского гос. техн. ун-та. Астрахань: АГТУ, 2020. С. 53.
- Ляшенко А.И. // Физические основы приборостроения. 2017. Т. 6. № 3. С. 38.
- 12. Гармаш В.М., Исаева Е.А., Ляшенко А.И. // Физические основы приборостроения. 2016. Т. 5. № 3. С. 48.

= НОВЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ И ЭЛЕМЕНТЫ

УДК 538.945

# **π-КОНТАКТЫ В ЯЧЕЙКАХ АДИАБАТИЧЕСКОЙ** СВЕРХПРОВОДНИКОВОЙ ЛОГИКИ

© 2022 г. И. И. Соловьев<sup>*a*</sup>, Г. С. Хисматуллин<sup>*a*, *b*</sup>, Н. В. Кленов<sup>*a*, \*</sup>, А. Е. Щеголев<sup>*a*, *c*</sup>

<sup>а</sup> Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, стр. 2, Москва, 119991 Российская Федерация <sup>b</sup> Российский квантовый центр.

ул. Новая, 100, Сколково, Московской области, 143025 Российская Федерация

<sup>с</sup>Московский технический университет связи и информатики,

ул. Авиамоторная, 8а, Москва, 111024 Российская Федерация

\*E-mail: nvklenov@mail.ru

Поступила в редакцию 25.04.2022 г. После доработки 30.05.2022 г. Принята к публикации 02.06.2022 г.

Адиабатическая сверхпроводниковая логика в последнее время активно используется для обработки широкополосных групповых сигналов в ситуациях, когда критически важна сверхнизкая диссипация энергии при вычислениях (например, в сопроцессорах, управляющих работой перспективных квантовых компьютеров). Представлен общий подход к анализу базовых принципов работы логических схем на основе сверхпроводникового квантового параметрона; выделены ключевые параметры, отвечающие за эффективность функционирования рассмотренных ячеек. Предложены на основе общего подхода и исследованы усовершенствованные ячейки, содержащие джозефсоновские контакты с отрицательным критическим током (*π*-контакты).

DOI: 10.31857/S003384942212021X

# введение

Современные тенденции развития систем обработки информации требуют перехода к гибридным вычислительным комплексам, блоки которых работают в классическом, квантовом и нейроморфном режимах [1–5]. Энергоэффективность является одним из важнейших параметров работы таких систем, но для современных полупроводниковых технологий этот показатель существенно хуже требуемого (менее аДж на операцию). И радикально решить эту проблему весьма затруднительно по фундаментальным причинам.

В частности, при неадиабатических необратимых вычислениях энергетический барьер, разделяющий "логические" состояния базовой ячейки, обычно составляет  $(10^3 - 10^4)k_BT$ , где T – рабочая температура,  $k_B$  – постоянная Больцмана. Минимальный энергетический барьер и, следовательно, минимальная энергия на операцию определяются в этом случае "термодинамическим пределом" Ландауэра [6],  $E_{\min} = k_B T \ln 2$ . Под порогом Ландауэра различимость логических состояний теряется из-за тепловых флуктуаций.

Необходимость уменьшения рабочих температур подтолкнула в свое время исследователей к использованию возможностей сверхпроводниковой цифровой электроники. Для выполнения неадиабатической логической операции в таких системах (где логические "0" и "1" – это отсутствие и наличие кванта магнитного потока в контуре) необходимая энергия обычно определяется процессами переключения джозефсоновского перехода между устойчивыми состояниями и составляет  $E_T \approx 2 \times 10^{-19}$  Дж. В пределе эта величина может

быть снижена до  $E_{\rm min} \approx 4 \times 10^{-23}$  Дж (при T = 4.2 K).

В то же время для физически и логически обратимых процессов такого предела не существует. Следовательно, энергия, рассеиваемая за одну логическую операцию, может приближаться к нулю в адиабатических обратимых схемах на основе сверхпроводниковой технологии. Анализу возможностей совершенствования таких схем и посвящена данная работа.

# 1. ОСНОВНЫЕ ПРИНЦИПЫ РАБОТЫ БАЗОВОЙ ЯЧЕЙКИ АДИАБАТИЧЕСКОЙ СВЕРХПРОВОДНИКОВОЙ ЛОГИКИ

Функционирование идеальных адиабатических схем должно происходить без обмена теплом или зарядом с окружением. Однако термин "адиаба-



**Рис.** 1. Теоретическая схема параметрического квантрона, состояние ячейки определяется потоком  $\Phi_e$  и током  $I_e$ , управляющим критическим током  $I_c$  джозефсоновского перехода; L – индуктивность контура.

тический" в контексте электроники устойчиво используется шире для обозначения схем, работа которых может быть адиабатической в предельном случае бесконечно долгого времени операции. На практике это означает требование физической обратимости, когда в каждый момент времени система находится в квазистационарном состоянии.

Рассмотрим принципы работы схем адиабатической сверхпроводниковой логики (Adiabatic Superconducting Logic – ASL) на простейшем примере параметрического квантрона (ПК). Эта ячейка состоит из сверхпроводникового контура индуктивности L с одним переходом (контактом) Джозефсона, как показано на рис. 1. Его состояние определяется внешним магнитным потоком  $\Phi_e$  и током  $I_e$ , управляющим критическим током перехода Джозефсона  $I_c(I_e)$ . Потенциальная энергия этой ячейки – сумма энергии джозефсоновского перехода и магнитной энергии:

$$U_{\Pi K} = U_J + U_M =$$
  
=  $\frac{E_J}{2\pi} [1 - \cos \varphi] + \frac{E_J}{2\pi} [\varphi - \varphi_e]^2 / 2l$ , (1)

где  $\varphi$  — джозефсоновская фаза контакта,  $\varphi_e = 2\pi \Phi_e / \Phi_0$ ,  $l = 2\pi I_c L / \Phi_0$  — нормированные внешний магнитный поток и индуктивность,  $E_J = I_c \Phi_0$  — джозефсоновская энергия контакта,  $\Phi_0$  — квант магнитного потока.

Видно, что внешние параметры  $\Phi_e$  и  $I_e$  управляют максимумом (через  $\varphi_e[\Phi_e]$ ) и наклоном (через  $l[I_c(I_e)]$ ) компоненты потенциальной энергии  $U_M$  в уравнении (1). При соответствующем потоке смещения  $\varphi_e \approx \pi$  потенциальная энергия ПК  $U_{\Pi K}(\varphi)$  может иметь вид "параболической ямы" с одним (для l < 1) или с двумя (для l > 1) минимумами в зависимости от  $I_e$  (рис. 2).

Логические "0" и "1" могут быть представлены состояниями ячеек с фазой джозефсоновского перехода  $\varphi$  меньше или больше  $\pi$  соответственно.



1233

**Рис. 2.** Потенциальная энергия параметрического квантрона  $U_{\Pi K}$  (сплошные кривые) и его слагаемые: магнитная энергия  $U_M$  (штриховые) и энергия джозефсоновского перехода  $U_J$  (точки); случай одноямного потенциала соответствует  $\varphi_e = 4$ , l = 0.5, двухьямного –  $\varphi_e = \pi$ , l = 1.

При l > 1 эти состояния соответствуют минимумам потенциальных ям. Физически они соответствуют двум разным магнитным потокам в контуре (с токами, циркулирующими в контуре в противоположных направлениях, если  $\varphi \neq 2\pi n$ , где n – целое число).

Передача логического состояния может быть реализована в массиве ПК с магнитной связью, смещенных в точку  $\phi_e = \pi$ . Импульсы тока  $I_e$  следует подавать последовательно на ячейки, увеличивая их нормированную индуктивность по очереди, причем можно считать, что логическое состояние будет локализовано в ячейке с наибольшим *l* в определенный момент времени. Обсуждаемые состояния в линии передачи данных должны быть разделены группами ячеек с малыми индуктивностями. Динамику этого процесса переноса можно сделать адиабатической, регулируя форму импульса управляющего тока І, так как потенциальная энергия базовых ячеек ASL в отличие от быстрой одноквантовой логики (Rapid Single Flux Quantum – RSFQ) может адиабатически варьироваться в процессе их переключения. На практике диссипируемая энергия будет обратно пропорциональна времени операции. Перекрестное соединение ячеек позволяет выполнять адиабатические обратимые логические операции.

На базе ячеек ASL возможно также построение обратимых схем, энергия переключения которых может быть сделана сколь угодно малой. По сравнению со схемами одноквантовой логики, где бит информации представлен в виде наличия/отсутствия кванта магнитного потока на периоде одного цикла в квантующих контурах с джозефсоновскими контактами, в адиабатических схемах джозефсоновские контакты заменены на сверхпроводящие интерферометры (параметрические квантроны, ПК). Потенциальную энергию ПК воздействием внешнего тактирующего сигнала можно варьировать (осуществлять переход от одноямного к двухъямному виду). Пусть бит информации будет представлен через состояние квантрона в одном из минимумов потенциальной энергии. В ASL передача бита информации соответствует передачи асимметрии (наклона) потенциала при переходе от одноямного к двухъямному виду от ячейки к ячейке, что возможно из-за существования магнитной связи между квантронами. Энергия переключения зависит от вида профиля потенциальной энергии конкретного квантрона.

### 2. МОДИФИКАЦИИ ПАРАМЕТРИЧЕСКОГО КВАНТРОНА, Н-СКВИД

Базовые ячейки адиабатической сверхпроводниковой логики являются модификациями ПК – одноконтактного сверхпроводящего интерферометра (см. рис. 1), в котором критический ток джозефсоновского контакта может изменяться под воздействием внешнего сигнала. Для удобства последующего рассмотрения перепишем потенциальную энергию ПК в виде

$$\frac{2\pi U_{\Pi K}}{E_{I}} = \frac{\left(\phi - \phi_{e}\right)^{2}}{2l} - \cos\phi.$$
 (2)

Увеличение критического тока джозефсоновского контакта ПК приводит к увеличению нормированного значения индуктивности *l* и, следовательно, к уменьшению крутизны параболы индуктивной компоненты потенциальной энергии, что вызовет трансформацию потенциала ПК от одноямного к двухъямному виду, как показано на рис. 2.

В эксперименте быстро управлять критическим током сосредоточенного джозефсоновского контакта оказывается трудно, поэтому джозефсоновский контакт обычно заменяют на двухконтактный сверхпроводящий квантовый интерферометр (СКВИД D), эффективный критический ток которого зависит от приложенного к нему магнитного потока. Параметрический квантрон с заменой джозефсоновского контакта на СКВИД носит название квантового потокового параметрона (КПП). Поскольку последние сейчас используются в основном в адиабатическом режиме, к аббревиатуре была добавлена буква "А", АКПП (Adiabatic Quantum Flux Parametron – AOFP) [8-14]. В то же время, как будет показано ниже, одиночный СКВИД, не включенный в

контур ПК, может давать такую же функциональность, что и квантрон.

Другой современный подход к реализации ASL возник при попытке избежать сложностей, связанных с переменным током питания. С этой целью была предложена ячейка параметрического квантрона постоянного тока [15]. Позже ее авторы отметили, что данная модификация квантрона обладает излишней степенью свободы, поэтому было предложено заменить ее на н-СКВИД (СКВИД с отрицательной взаимной индуктивностью плеч, nSOUID в англоязычной литературе) [16]. Принцип функционирования этой ячейки аналогичен работе квантрона, в котором роли активационного тока и входа/выхода взаимно обращены. Поясним введенную терминологию: активационный ток наводит циркулирующий ток в основной петле квантрона, делая выгодной циркуляцию тока в контуре двухконтактного интерферометра в одном из двух возможных направлений. с которыми и ассоциировано логическое состояние ячейки. Отрицательная взаимная индуктивность обеспечивает лучшую связь состояния н-СКВИДа с тактирующей фазой (активационным током) и также позволяет фазе, с которой ассоциировано логическое состояние (разности фаз джозефсоновских контактов двухконтактного интерферометра), изменяться в более широких пределах.

В цепях н-СКВИДов переменный ток питания заменен на циркулирующий ток, связанный с квантами магнитного потока, как показано на примере линии передачи данных на рис. 3. В такой линии н-СКВИДы используются вместо джозефсоновских контактов обычной джозефсоновской линии передачи данных в RSFQ логике [16–19]. Схемы на базе н-СКВИДов успешно тестировались на частоте 5 ГГц [18]. Согласно оценкам их энергопотребление близко к термодинамическому пределу ~ $2k_{\rm B}T\ln 2$  на частоте 50 МГц [7].

Поскольку в схемах н-СКВИДов используется одноквантовое тактирование, их энерговыделение может быть оперативно изменено, подобно тому, как это реализовано в цепях RSFQ. Отметим, что энергия  $E_J$ , связанная с рождением/уничтожением кванта магнитного потока заметно больше термодинамического предела. Для предотвращения растрат этой энергии количество квантов магнитного потока в процессе работы схемы остается неизменным. Цепи организованы в виде замкнутых петлей, "как ремень газораспределительного механизма в двигателе автомобиля" [19], что создает определенные сложности при их проектировании.

Сравнивая адиабатические и неадиабатические схемы, можно отметить лучшую энергоэффективность первых при сравнительно более низких тактовых частотах, ведь "термодинамический предел" Ландауэра накладывает нижнее ограниче-



**Рис. 3.** Линия передачи данных на базе н-СКВИДов и аналогичная линия, используемая в RSFQ-логике; круговыми линиями внутри схем показаны циркулирующие токи, стрелками, направленными слева направо, — переключающиеся элементы, круговыми линиями под схемой ASL — магнитная связь.

ние по энергии лишь на неадиабатические схемы. В адиабатических схемах возможна работа с энергиями переключения, много меньшими чем  $E_J = I_c \Phi_0$ , а данная величина обычно порядка  $10^{-19}$  Дж. По принципу функционирования рассмотренные логики можно условно подразделить на использующие в основном стационарный (ASL) или нестационарный (RSFQ) эффект Джозефсона. При этом во всех логиках используется эффект квантования магнитного потока.

# 3. ПАРАМЕТРИЧЕСКИЕ КВАНТРОНЫ НА БАЗЕ СКВИДА

Представим предварительно качественное описание разновидностей квантронов на базе СКВИДа.

### 3.1. СКВИД

Выражение для потенциальной энергии симметричного СКВИДа имеет вид

$$\frac{2\pi U}{E_J} = \frac{\left[ \left( \phi_+ - \phi_c \right)^2 + \left( \phi_- - \phi_e \right)^2 \right]}{l} - (3)$$
$$- 2\cos(\phi_+)\cos(\phi_-),$$

где  $\varphi_{+/-} = (\varphi_1 \pm \varphi_2)/2$ ,  $\varphi_{1,2} - д$ жозефсоновские фазы контактов,  $\varphi_c$  – "ведущая" фаза, т.е. фаза в средней точке СКВИДа (рис. 4),  $\varphi_e = \pi \Phi_e/\Phi_0$  – фаза, отвечающая внешнему магнитному потоку  $\Phi_e$ , задаваемому в контур с двумя джозефсоновскими контактами.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022

Сравнивая выражения (2) и (3), можно заметить, что при переходе от одноконтактного интерферометра, т.е. от ПК, к двухконтактному СКВИДу потенциал перестает быть функцией лишь одной переменной и становится зависимым от двух координат (суммарной и разностной джозефсоновских фаз  $\phi_{+/-}$ ). Тогда парабола индуктивного слагаемого принимает вид параболоида, центр которого по разностной фазе по-прежнему определяется приложенным магнитным потоком Ф. Центр параболоида по суммарной фазе определяется ведущей фазой  $\phi_c$ . Также "гармонический профиль" джозефсоновского слагаемого в (2) заменяется на периодический гармонический рельеф в (3). Индуктивное и джозефсоновское слагаемые потенциальной энергии СКВИДа представлены на рис. 5.



Рис. 4. Принципиальная схема СКВИДа.



**Рис. 5.** Индуктивное (а) и джозефсоновское (б) слагаемые в потенциальной энергии СКВИДа в формуле (3); потенциальная энергия *U* нормирована на джозефсоновскую энергию *E*<sub>J</sub>.

Очевидно, что переход от одноямного к двухъямному потенциальному профилю СКВИДа может осуществляться и при неизменной (но относительно малой) крутизне параболоида индуктивного слагаемого (3) при перемещении его центра, например, вдоль одной из координат,  $\phi_+$  или  $\phi_-$ . Для примера на рис. 6 показаны отдельно слагаемые в потенциальной энергии СКВИДа при значениях ведущей фазы  $\phi_c = 0, \pi$  (рис. 6а, 6б) и их сумма (рис. 6в, 6г).

Таким образом, управляя, например, ведущей фазой  $\phi_c$ , можно реализовать переключение между логическими состояниями подобно случаю с ПК, у которого последнее осуществлялось за счет изменения критического тока джозефсоновского контакта  $I_c$ . Но тогда приходящая информация, отвечающая наклону потенциала, будет по-прежнему содержаться в фазе  $\phi_e$ , соответствующей внешнему магнитному потоку.

Вид потенциальной энергии СКВИДа для значений разностной фазы (в)  $\varphi_c = 0$  и (г)  $\varphi_c = \pi$ . Величина безразмерной индуктивности l = 2. Потенциальная энергия U нормирована на джозефсоновскую энергию  $E_J$ .

Для передачи информации предложенным способом джозефсоновские переходы линии передачи данных можно заменить на СКВИДы, связанные взаимными индуктивностями, как показано на рис. 7а. Работа источника напряжения  $V_{dc}$ , подключенного к одному из концов линии передачи данных, вызовет увеличение фазы  $\varphi_c$  на каждом последовательно включенном СКВИДе в данной цепочке (что эквивалентно введению флаксона в цепь). Это повлечет за собой последовательное изменение потенциалов СКВИДов от одноямного к двухъямному виду и обратно ввиду периодичности по магнитному потоку джозефсоновской потенциальной энергии (см. рис. 5, 6). Градиент изменения потенциальной энергии (ее наклон) будет передаваться за счет существования магнитной связи СКВИДов.

Но из-за наличия у схемы, представленной на рис. 7а, асимметрии по отношению к токам, текущим через СКВИДы и отвечающим ведущей фазе  $\phi_c$ , тактирование ячеек будет препятствовать передаче информации. Решить данную проблему можно с помощью симметризации схемы СКВИДа относительно топологии линии передачи данных. Идея такого изменения схемы показана на рис. 76: тактирующий ток и ток, циркулирующий в ячейке, оказываются развязанными, что является необходимым условием правильного функционирования схемы. Это позволяет исключить индуцирование тактирующим током циркулирующего тока в ячейке, а значит, данные токи могут задаваться независимо.

Стоит отметить, что параметр Маккамбера  $\beta_c = \omega_c R_n C$  туннельных контактов, в том числе используемых в СКВИДах, соответствующий эффективной емкости, оказывается слишком большим для контролируемой манипуляции квантронами при разумном темпе переключения ячейки (в данном случае темп переключения определяется временем изменения ведущей фазы,  $V_{\rm dc} = d\phi_c/dt$ ). Для решения этой проблемы джозефсоновские переходы шунтируются дополнительным внешним сопротивлением. Но добавление сопротивления влечет за собой дополнительную диссипацию энергии, что идет вразрез с идеей реализации энергоэффективных схем. На практике величина сопротивления подбирается так, чтобы при заданной скорости переключения ячеек (частоте


**Рис. 6.** Изображение индуктивного и джозефсоновского слагаемых из формулы (3) потенциальной энергии СКВИДа для значений разностной фазы  $\varphi_c = 0$  раздельно (а) и суммарно (в),  $\varphi_c = \pi$  раздельно (б) и суммарно (г).



**Рис. 7.** Иллюстрация к замене джозефсоновских переходов одноквантовой линии передачи данных на СКВИДы (а), в том числе и с последующей симметризацией схемы (б).

тактирования) динамика ячейки оставалась бы квази-адиабатической.

Результаты анализа эволюции вида потенциальной энергии в процессе переключения СКВИДа между логическими состояниями при равномерном увеличении ведущей фазы представлен в виде "снимков" в моменты времени, соответствующие значениям ведущей фазы,

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022



**Рис. 8.** Расчет потенциальной энергии и динамических процессов при переключении СКВИДа при равномерном увеличении ведущей фазы  $\varphi_c$ : 0 (а),  $\pi/2$  (б),  $\pi$  (в),  $3\pi/2$  (г); кривая соответствует эволюции состояния системы, точкой показано состояние системы в фиксированный момент времени, вертикальной линией показано значение ведущей фазы; параметры системы: l = 2,  $\beta_c = 1$ ,  $\varphi_e = 0.5$ ,  $V_{dc} = 0.1$ .

 $\varphi_c = 0, \pi/2, \pi, 3\pi/2$  (рис. 8). Сплошная черная линия соответствует траектории эволюции фаз  $\varphi_{+/-}$  СКВИДа. Черной точкой показаны значения фаз СКВИДа в текущий момент. Вертикальной линией отмечено значение ведущей фазы. Оттенками серого показан профиль потенциальной энергии СКВИДа при текущих значениях фаз  $\varphi_c$ ,  $\varphi_e$ .

Можно отметить, что при заданных параметрах положение системы в динамике значительно отклоняется от значения ведущей фазы  $\varphi_c$ , что в свою очередь свидетельствует о недостаточном контроле над системой внешним тактирующим сигналом. На рис. 8 влияние емкости видно в асимметрии траектории эволюции состояния системы.

Помимо емкости достаточному контролю над системой мешает тот факт, что минимум потенциальной энергии не всегда достигается при значении ведущей фазы  $\varphi_c$  (рис. 8). В приведенном примере процесс переключения оказывается физически необратимым и, соответственно, неадиабатическим.

#### 3.2. н-СКВИД

Возможным преобразованием топологии СКВИДа (см. рис. 7а) является переход к упомянутым выше н-СКВИДам с отрицательной взаимной индуктивностью между индуктивными плечами. Рассмотрим подробнее это схемотехническое решение, представленное на рис. 9.

Потенциальная энергия теперь может быть представлена в виде

$$\frac{2\pi U}{E_J} = \frac{1}{l} \left[ \frac{(\phi_+ - \phi_c)^2}{1 - m} + \frac{(\phi_- - \phi_e)^2}{1 + m} \right] - (4) - 2\cos(\phi_+)\cos(\phi_-),$$



Рис. 9. Преобразование схемы СКВИДа в н-СКВИД.

где m = 2M/L — коэффициент взаимной индукции между индуктивными плечами н-СКВИДа. Согласно выражению (4), за счет существования отрицательной взаимной индуктивности крутизна параболоида индуктивного слагаемого потенциальной энергии увеличивается для суммарной фазы  $\phi_+$ , что приводит к лучшему контролю состояния ячейки тактирующим сигналом. При этом крутизна параболоида для разностной фазы уменьшается, что позволяет системе дальше отклоняться от исходного положения по разностной фазе  $\phi_-$ , что делает логические состояния более различимыми (разделенными большим потенциальным барьером). Также по этой причине можно ослабить требования к взаимной магнитной связи соседних ячеек, необходимой для передачи логического состояния.

Расчет эволюции потенциальной энергии и состояния н-СКВИДа в процессе переключения представлен на рис. 10. Параметры системы аналогичны выбранным при расчете динамики СКВИДа. Величина взаимной индуктивности m = 0.77.



**Рис. 10.** Расчет потенциальной энергии и динамических процессов при переключении н-СКВИДа между состояниями при равномерном увеличении ведущей фазы  $\varphi_c$ : 0 (а),  $\pi/2$  (б),  $\pi$  (в),  $3\pi/2$  (г); кривая соответствует эволюции состояния системы, точкой показано состояние системы в фиксированный момент времени, вертикальной линией показано значение ведущей фазы; параметры системы: l = 2, m = 0.77,  $\beta_c = 1$ ,  $\varphi_e = 0.5$ ,  $V_{dc} = 0.1$ .

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022



Рис. 11. Джозефсоновское слагаемое в формуле (5) для потенциальной энергии би-СКВИДа с  $\pi$ -контактом; потенциальная энергия U нормирована на джозефсоновскую энергию  $E_J$ .

Хорошо видно, что динамические процессы в н-СКВИДе можно контролировать лучше, чем в случае со СКВИДом (см. рис. 8). Тем не менее траектория эволюции системы все еще асимметрична. Оптимизация джозефсоновского потенциального рельефа ячейки с целью обеспечения адиабатического процесса переключения системы может решить данную проблему.

#### 3.3. Новая ячейка: би-СКВИД с **π**-контактом

Повлиять на эффективность переключения адиабатической ячейки между логическими состояниями можно посредством изменения профиля джозефсоновской составляющей потенциальной энергии, например, добавляя в СКВИД дополнительный джозефсоновский контакт и формируя таким образом ячейку би-СКВИДа. Далее будет показано, что энергоэффективнее использовать в качестве дополнительного контакта джозефсоновский  $\pi$ -контакт со сдвинутой на  $\pi$  ток-фазовой зависимостью (ТФЗ). В таком случае выражение для потенциальной энергии би-СКВИДа имеет следующий вид:

$$\frac{2\pi U}{E_J} = \frac{1}{l} \left[ \left( \phi_+ - \phi_c \right)^2 + \left( \phi_- - \phi_e \right)^2 \right] - \\ - 2\cos(\phi_+)\cos(\phi_-) + i_{c3}\cos(2\phi_-),$$
(5)

где  $i_{c3}$  — нормированный критический ток третьего джозефсоновского контакта. Сдвиг ТФЗ третьего контакта на  $\pi$  эквивалентен смене знака его критического тока.

Гармонический профиль джозефсоновского слагаемого потенциальной энергии СКВИДа при переходе к би-СКВИДу с  $\pi$ -контактом изменяет-ся следующим образом (рис. 11).

За счет появления дополнительного слагаемого в потенциальной энергии в ее сечениях при фиксированной суммарной фазе образуются вытянутые долины, траектория движения системы по которым становится ближе к эквипотенциальной (см. рис. 11). При прежней скорости роста ведущей фазы

$$\frac{d\varphi_c}{dt} = V_{\rm dc} = 0.1$$

данное обстоятельство обеспечивает более плавную динамику, делая процесс переключения би-СКВИДа с  $\pi$ -контактом близким к адиабатическому (рис. 12). При этом следует отметить, что динамика би-СКВИДа с  $\pi$ -контактом контролируется тактирующим сигналом хуже динамики н-СКВИДа. Топология н-СКВИДа является более компактной, что также улучшает возможности по контролю динамики ячейки, наиболее оптимальным выбором для практической реализации квантрона может являться н-би-СКВИД с  $\pi$ -контактом.

#### 3.4. Новая ячейка: н-би-СКВИД с π-контактом

Преобразование схемы би-СКВИДа в н-би-СКВИД показано на рис. 13. В соответствии с (4) и (5) выражение для потенциальной энергии нби-СКВИДа имеет следующий вид:

$$\frac{2\pi U}{E_J} = \frac{1}{l} \left[ \frac{(\varphi_+ - \varphi_c)^2}{1 - m} + \frac{(\varphi_- - \varphi_e)^2}{1 + m} \right] - (6) - 2\cos(\varphi_+)\cos(\varphi_-) + i_{c3}\cos(2\varphi_-).$$

На рис. 14 для наглядности представлены две траектории движения системы в осях суммарной и ведущей фаз — меньшее отклонение суммарной фазы от ведущей соответствует большей близости к адиабатическому процессу переключения ячейки. Результаты расчета динамики переключения н-би-СКВИДа с  $\pi$ -контактом представлены на рис. 15. Совмещение преимуществ би-СКВИДа и н-би-СКВИДа позволяет лучше контролировать динамику переключения системы за счет внешнего тактирующего сигнала.

Сравнение энергии  $E_D$ , выделяемой при однократном переключении (изменении ведущей фазы  $\varphi_c$  от 0 до  $2\pi$ ) рассмотренных ячеек СКВИДа, н-СКВИДа, би-СКВИДа и н-би-СКВИДа с  $\pi$ контактом в зависимости от различных параметров, представлено на рис. 16. Из анализа энергии диссипации СКВИДа были найдены оптимальные параметры, позволяющие минимизировать выделяемую в ячейке энергию: l = 0.5,  $\beta_c = 0.5$ . Полученные значения индуктивности и емкости использовались для анализа диссипации модифицированных ячеек.



**Рис. 12.** Расчет потенциальной энергии (показана цветом) и динамических процессов при переключении би-СКВИДа с  $\pi$ -контактом между устойчивыми состояниями при равномерном увеличении ведущей фазы  $\varphi_c$ : 0 (а),  $\pi/2$  (б),  $\pi$ (в),  $3\pi/2$  (г); кривая соответствует эволюции состояния системы, точкой показано состояние системы в фиксированный момент времени, вертикальной линией показано значение ведущей фазы, параметры системы: l = 2,  $i_{c3} = 1$ ,  $\beta_c = 1$ ,  $\varphi_e = 0.5$ ,  $V_{dc} = 0.1$ .



**Рис. 13.** Преобразование схемы би-СКВИДа в н-би-СКВИД.



**Рис. 14.** Зависимости  $\phi_+$  от  $\phi_c$  для би-СКВИДа с пиконтактом (кривая *I*) и н-би-СКВИДа с пи-контактом (кривая *2*).

СОЛОВЬЕВ и др.



**Рис. 15.** Расчет потенциальной энергии и динамических процессов при переключении н-би-СКВИДа с  $\pi$ -контактом между устойчивыми состояниями при равномерном увеличении ведущей  $\varphi_c$ : 0 (а),  $\pi/2$  (б),  $\pi(B)$ ,  $3\pi/2$  (г); кривая соответствует эволюции состояния системы, точкой показано состояние системы в фиксированный момент времени, вертикальной линией показано значение ведущей фазы; параметры системы: l = 2, m = 0.77,  $i_{c3} = 1$ ,  $\beta_c = 1$ ,  $\varphi_e = 0.5$ ,  $V_{dc} = 0.1$ .

При проведении всех расчетов мы использовали уравнения фазового баланса, которые на примере простого СКВИДа можно записать в форме:

$$\phi_c = \phi_1 + i_1 * \frac{l}{2} + \phi_e, \quad \phi_c = \phi_2 + i_2 * \frac{l}{2} + \phi_2, \quad (7)$$

где  $i_1$ ,  $i_2$  — токи через индуктивности. В рамках модели джозефсоновских контактов с резистивным шунтированием ток через k-й элемент представим в виде

$$i_k = \frac{d^2 \varphi_k}{dt^2} + \alpha \frac{d \varphi_k}{dt} + i_c \sin(\varphi_k).$$

Здесь α – безразмерный коэффициент затухания, все токи нормированы на критический тока джозефсоновских контактов симметричного СКВИДа. Для вычисления диссипируемой энергии мы пользовались простым выражением:

$$E_D = \int \frac{V^2}{R} dt = \left(\frac{\hbar}{2e}\right)^2 \int \frac{(\dot{\varphi})^2}{R} dt, \qquad (8)$$

где V — напряжение на одиночном джозефсоновском контакте с нормальным сопротивлением R. На рис. 16  $E_D$  является суммарной диссипируемой энергией на всех джозефсоновских контактах в ячейках.

Из представленных данных расчета видно, что ячейка н-би-СКВИДа является оптимальной с точки зрения энергоэффективности по сравнению с рассмотренными выше ячейками. Топология н-би-СКВИДа позволяет сохранять в процессе функционирования выделение энергии на одном уровне в достаточно широком диапазоне

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022



**Рис. 16.** Расчет рассеиваемой за однократное переключение энергии в СКВИДе (а), би-СКВИДЕ с  $\pi$ -контактом (б), н-СКВИДе (в), н-СКВИДе с  $\pi$ -контактом (г); параметр Маккамбера для расчетов, представленных на рис. 166—16г  $\beta_c = 0.5$ ; значение индуктивности н-би-СКВИДа l = 1.5,  $V_{dc} = 0.1$ ,  $\varphi_e = 0.5$ .

изменения ключевых параметров системы. Сравнение энергии диссипации н-би-СКВИДа с диссипацией рассмотренных выше ячеек позволяет дать оценку его эффективности. Так, энерговыделение при равных условиях в н-би-СКВИДе на 28% меньше, чем в СКВИДе и н-СКВИДе, и на 17% ниже, чем в би-СКВИДе.

#### ЗАКЛЮЧЕНИЕ

Предложена оптимизация характеристик схем ячеек адиабатической сверхпроводниковой логики посредством добавления в них джозефсоновских контактов с отрицательным критическим током ( $\pi$ -контактов). Показано, что привнесение таких гетероструктур со смещенной на  $\pi$  ток-фазовой зависимостью позволяет увеличить индуктивности сверхпроводящих контуров при сохранении адиабатического характера эволюции ячеек в процессе их переключения. При этом увеличивается

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 67 № 12 2022

магнитный поток, передаваемый от ячейки к ячейке в процессе распространения информации по шине данных, что снижает требования к взаимной связи элементов схемы. Также предлагаемые модернизации схем адиабатической сверхпроводниковой логики улучшают контроль состояния ячейки тактирующим сигналом, что позволяет увеличивать рабочую частоту устройства при сохранении высокой энергоэффективности. Предложенные в работе би-СКВИД [20, 21] и н-би-СКВИД с  $\pi$ -переходами могут быть реализованы в технологии с двумя слоями для стандартных джозефсоновских структур и одним слоем для π-контактов с магнитным материалом в области слабой связи [22, 23]. Это очень близко к современным технологическим возможностям, что упрощает экспериментальную реализацию таких схем [24, 25] для использования в составе классических, квантовых и нейроморфных [26] вычислительных систем.

Авторы заявляют об отсутствии конфликта интересов.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках гос. бюджетной темы 8.1 НИИЯФ МГУ. Доступ к необходимой научно-технической литературе получен при поддержке Программы развития Междисциплинарной научно-образовательной школы Московского университета "Фотонные и квантовые технологии. Цифровая медицина". Работа авторов была поддержана Росатомом в рамках Дорожной Карты по Квантовым Вычислениям (Договор № 868-1.3-15/15-2021 от 05 октября 2021 г.).

### СПИСОК ЛИТЕРАТУРЫ

- 1. *Holmes D.S., Ripple A.L., Manheimer M.A.* // IEEE Trans. 2013. V. AS-23. № 3. P. 1701610. https://doi.org/10.1109/TASC.2013.2244634
- Huang H.L., Wu D., Fan D. et al. // Sci. China Inf. Sci. 2020. V. 63. № 8. P. 180501.
- 3. *Liu J., Lim K.H., Wood K.L. et al.* // Sci. China Phys. Mech. Astron. 2021. V. 64. P. 290311.
- Вожаков В.А., Бастракова М.В., Кленов Н.В. и др. // Успехи физ. наук. 2022. Т. 192. № 5. С. 457. https://doi.org/10.3367/UFNr.2021.02.038934
- 5. Bastrakova M.V., Klenov N.V., Soloviev I.I. et al. // Supercond. Sci. Technol. 2022. V. 35. № 5. P. 055003.
- 6. Landauer R. // IBM J. Res. Dev. 1961. V. 5. P. 183.
- 7. *Mukhanov O.A.* // IEEE Trans. 2011. V. AS-21. № 3. Pt. 1. P. 760.
- Takeuchi N., Yamanashi Y., Yoshikawa N. // Sci. Rep. 2014. V. 4. № 6354.
- 9. Takeuchi N., Ozawa D., Yamanashi Y., Yoshikawa N. // Supercond. Sci. Technol. 2013. V. 26. № 3. P. 035010.

- 10. *Takeuchi N., Yamanashi Y., Yoshikawa N.* // Appl. Phys. Lett. 2013. V. 102. № 5. P. 052602.
- 11. *Takeuchi N., Yamanashi Y., Yoshikawa N. //* Appl. Phys. Lett. 2013. V. 103. № 6. P. 062602.
- 12. *Takeuchi N., Ortlepp T., Yamanashi Y., Yoshikawa N. //* J. Appl. Phys. 2014. V. 115. № 10. P. 103910.
- 13. *Takeuchi N., Yamanashi Y., Yoshikawa N. //* J. Appl. Phys. 2015. V. 117. № 17. P. 173912.
- 14. Takeuchi N., Yamanashi Y., Yoshikawa N. // Supercond. Sci. Technol. 2015. V. 28. P. 015003.
- Rylov S.V., Semenov V.K., Likharev K.K. // Proc. IEEE Int. Superconductive Electonics Conf. (ISEC'87). Tokyo. 28–29 Aug. N.Y.: IEEE, 1987. P. 135.
- 16. *Semenov V.K., Danilov G.V., Averin D.V.* // IEEE Trans. 2003. V. AS-13. № 2. Pt. 1. P. 938.
- 17. Semenov V.K., Danilov G.V., Averin D.V. // IEEE Trans. 2007. V. AS-17. № 2. Pt. 1. P. 455.
- 18. *Ren J., Semenov V.K., Polyakov Y.A. et al.* // IEEE Trans. 2009. V. AS-19. № 3. Pt. 1. P. 961.
- Ren J., Semenov V.K. // IEEE Trans. 2011. V. AS-21. № 3. Pt. 1. P. 780.
- 20. Kornev V.K., Soloviev I.I., Klenov N.V., Mukhanov O.A. // Physica C. 2010. V. 470. № 19. P. 886.
- 21. *Soloviev I.I., Klenov N.V., Schegolev A.E. et al.* // Supercond. Sci. Technol. 2016. V. 29. № 9. P. 094005.
- 22. Bolginov V.V., Rossolenko A.N., Shkarin A.B. et al. // J. Low Temperature Phys. 2018. V. 190. № 5–6. P. 302.
- 23. *Tolpygo S.K., Bolkhovsky V., Rastogi R. et al.* // IEEE Trans. 2019. V. AS-29. № 5. Pt. 1. Article № 1101208.
- 24. L. N. Karelina, R. A. Hovhannisyan, I. A. Golovchanskiy et al. // J. Appl. Phys. 2021. V. 130. № 17. P. 173901.
- 25. Soloviev I.I., Bakurskiy S.V., Ruzhickiy V.I. et al. // Phys. Rev. Appl. 2021. V. 16. № 4. P. 044060.
- Schegolev A.E., Klenov N.V., Soloviev I.I., Tereshonok M.V. // Supercond. Sci. Technol. 2021. V. 34. № 1. P. 015006.

# АВТОРСКИЙ УКАЗАТЕЛЬ

DOI: 10.31857/S0033849422220016

#### A

Аверин С. В. 7, 715–721 Акиншин Н. С. 5, 493–499 Алексеев С. Г. **12**, 1210–1215 Аликулов Е.А. **1**, 51–67 Алтухов И. В. 7, 683–685 Аль-Нозайли Б. М. А. 7, 651–659 Анисимкин В. И. **8**, 807–815 Анисимов В.И. **4**, 404–410 Анненков А. Ю. **6**, 567–575 Антонец И. В. **2**, 174–180, **9**, 908–915 Анютин А. П. **1**, 38–43, **5**, 440–448, **6**, 533–540, **7**, 638– 644 Арзамасцева Г. В. **8**, 793–796

#### Б

Бабенко В. П. 7. 704-714 Баймагамбетова Л. Т. 10, 946-954 Бакаева Г. А. 4, 345-352 Баландин И.А.1, 44-50 Балашов В. В. 6, 612-614 Балышева О. Л. 11, 1152-1156 Банков С. Е. 3, 213-224, 4, 328-338, 5, 419-429, 6, 557-561, 7, 628–637, 8, 835–846 Баранов А. Н. 7, 683-685 Басков К. М. 3, 244-258 Батанов В. В. 8, 782-787, 11, 1133-1139 Батшев В. И. 1, 44-50, 12, 1220-1226 Бахтеев И. Ш. 10, 935-945 Бахтизин Р. З. 10, 964-972 Безручко Б. П. 10, 993-1000 Бейлис Г. А. 9. 859-867 Белокуров В. А. 4, 361-368 Бессонов Д. А. 10, 935-945, 1030-1043 Битюков В. К. 2, 149-156, 7, 704-714 Богачев Р. Ю. 10, 946-954 Богаченков А. Н. 4, 377-383 Бойков К. А. 11, 1087-1095 Бордонский Г. С. **3**, 259–267 Борзов А. Б. 2, 185-196 Боритко С. В. 12, 1220-1226 Боровкова Е. И. 10, 993-1000, 1001-1005 Брянцева Т. А. 6, 601-611 Булатов М.Ф. 12, 1192-1199 Бурлаков А. Б. 4, 377-383 Бутылкин В. С. 5, 430-439, 12, 1185-1191 Буянкин А. В. 9, 916–922

#### В

Васильев С. А. 4, 404-410

Васильков М. Ю. **10**, 1023–1029 Вдовин В. А. **8**, 816–824 Венецкий А.С. **5**, 447–453, **8**, 754–760 Верба В. С. **1**, 68–77 Верещагин В.Ю. **12**, 1179–1184 Ви Ут Нам **2**, 140–148, **3**, 249–258 Власов В. С. **7**, 676–682 Вовшин Б. М. **2**, 149–156 Володина Е. М. **12**, 1227–1231

## Γ

Гавлина А. Е. 1, 44-50 Галдецкий А. В. **10**, 973–980 Галкин А. Д. 10, 935-945 Галушка В. В. 10, 935-945 Гарсия Е. И. 11, 1157-1164 Герман С. В. 10, 935-945 Герус С. В. 6, 567-575 Глазунов П. С. 8, 816-824 Глухова О. Е. 10, 1006-1014, 1015-1022 Голубев Е. А. 2, 174–180 Голунов В. А. **1**, 30-37 Гольдин Ю. А. 12, 1227-1229 Горевой А. В. 12, 1220-1226 Горшкова А. С. 7, 686-692 Гоц С. С. 10, 964–972 Гранков А. Г. 7, 660–667 Григорьев А. Д. 10, 1052–1057 Гридин В. Н. 4, 404-410 Гриднев В. И. 10, 993-1000 Гринев А. Ю. 9, 859-867 Гроо И. А. 7, 668-675 Губин С. П. 2, 99-116 Гуляев Ю. В. 2, 99-116 Гуреев Б. А. 12, 1227–1229 Гурулев А. А. 3, 259-267

#### Д

Давидович М. В. **10**, 955–963 Даниелян Г. Л. **4**, 384–390 Дармаев А. Н. **10**, 1030–1043 Детков А. Н. **5**, 485–492 Джиоева М. И. **11**, 1067–1075 Дижур С. Е. **7**, 683–685 Дмитриев А. С. **8**, 797–806 Дмитриев С. Г. **2**, 181–184, **4**, 411–416, **11**, 1140–1145 Дубинов А. Е. **6**, 596–600 Дупленкова М. Д. **5**, 419–429, **6**, 557–561, **7**, 645–650 Дятлов Р. Н. **1**, 78–83 Е

Енученко М. С. **1**, 3–19 Еремин И. С. **9**, 923–930 Ефремова Е. В. **8**, 797–806

#### Ж

Жбанова В. Л. **4**, 353–360 Житов В. А. **7**, 715–721 Жуков А. А. **9**, 916–922 Журавлев С. Д. **10**, 946–954

3

Завьялов М. А. **3**, 309–312 Зайцев Б. Д. **10**, 1044–1051 Зайцев Г. В. **3**, 275–285 Закалкин П. В. **5**, 500–508 Заргано Г. Ф. **1**, 20–29 Захаров Л. Ю. **7**, 715–721 Захаров Ю. А. **10**, 964–972 Зеленчук П. А. **6**, 584–589 Зиатдинов С. И. **6**, 562–566 Зиенко С. И. **4**, 353–360 Злобина Е. А. **2**, 130–139 Зограф Ф.Г. **8**, 774–781

И

Иванов А. В. 7, 686–692 Иванов С. А. 5, 500–508 Измайлов А. А. 9, 859–867 Ильина О. В. 2, 166–173 Ильинская Н. Д. 7, 683–685 Инденбом М. В. 6, 546–556 Ицков В. В. 8, 797–806 Ишбулатов Ю. М. 10, 1001–1005

#### K

Кабыченков А. Ф. 8, 793-796 Каган М. С. 7, 683-685 Казанцев Ю. Н. 4, 339-344, 5, 430-439, 8, 736-744, 9, 847-854, 12,1185-1191 Калашников А. Ю. 9, 916-922 Калёнов Д. С. 5, 430-439, 9, 923-930, 12, 1185-1191 Калиничев В. И. 3, 213-224, 4, 328-338, 7, 628-637 Калошин В. А. 2, 140-148, 3, 249-258, 5, 447-453, 7, 645–650, **8**, 754–760 Кандауров Н. А. **3**, 294-300 Караваев А. С. 10, 993-1000 Кашин В. А. 9. 868-874 Кириченко Д. И. 10, 946-954 Киселев А. П. 2, 130-139 Киселев А. Р. 10, 993-1000 Кленов Н. В. 3, 294-300, 12, 1232-1244 Климов В. В. **6**, 541–545 Климов К. Н. 8, 745-753 Коваленко А. Н. 11, 1096-1102 Кожевников И. О. 10, 935-945 Козина О. Н. 10, 1058-1062 Козлов А.Б. 12, 1220-1226

Койгеров А. С. 11, 1152–1156 Кокошкин А.В. 12, 1167–1178 Кокшаров Ю. А. 2, 99-116 Колесникова В. М. 9, 923-930 Комонкий В. А. 12. 1200-1209 Конов К. И. 8. 745-753 Коновалов Я. Ю. 8, 761-773 Коротков А. С. 1, 3-19 Кособудский И. Д. 10, 1023-1029 Костин М. С. 11, 1110–1115 Котов А. Ф. **11**, 1103–1109 Котов В. М. 7. 715–721. 9. 900–907 Кочмарев Л. Ю. 4. 384-390 Кошелев В. И. 4, 361-368 Кравченко В. Ф. 8, 761–773 Красикова Н. С. **10**, 993–1000 Краснолобов И.И.3, 244-258 Крафтмахер Г. А. 4, 339–344, 5, 430–439, 8, 736–744, 9, 847-854, 12, 1185-1191 Крачковская Т. М. 10, 946-954 Крюковский А. С. 2, 117-129 Кузнецов В. А. 1, 51-67 Кузнецова И. Е. 8, 807-815 Кузьмин Е.В. 8, 774-781 Кузьмич К. В. 10, 1030-1043 Кулигин А. В. 10, 993-1000 Кульминский Д. Д. **10**, 1001–1005 Курбако А. В. 10, 993-1000, 1001-1005 Кюркчан А. Г. **11**, 1116–1126

#### Л

Лабунец Л. В. 2, 185–186 Лагуткин В. Н. 2, 157–165 Лерер А. М. 1, 20–29, 9, 855–858 Лесняк В. В. 4, 315–327 Липаткин В. И. 3, 294–300 Лисовский Ф. В. 8, 793–796 Лобов Е. М. 3, 294–300 Локк Э. Г. 6, 567–575 Ломонов В. А. 12, 1220–1226 Лопухин К. В. 6, 612–614 Лузанов В. А. 3, 301–302, 6, 612–614 Лукин Д. С. 2, 117–129 Любченко Д. В. 6, 601–611 Ляшенко А. И. 12, 1227–1231

# Μ

Макаров П. А. **6**, 576–583, **7**, 676–682 Макарова Н. Ю. **2**, 185–196 Макеев М. О. **6**, 590–595, **11**, 1157–1164, **12**, 1216–1219 Максименко В. Г. **3**, 268–274 Мальцев В. П. **4**, 339–344, **5**, 430–439, **8**, 736–744, **9**, 847–854, **12**, 1185–1191 Мамедов И. М. **7**, 722–726 Мамонтов Е. В. **1**, 78–83 Маненков С. А. **11**, 1116–1126 Мансветова Е. Г. **8**, 793–796 Маречек С.В. **4**, 384 Марков И. А. **6**, 601–611

### АВТОРСКИЙ УКАЗАТЕЛЬ

Мартьянов П. С. 2, 203-208, 8, 825-828 Мартынов Г. Н. 12, 1220-1226 Масленников С. П. 7, 722-726 Мачихин А.С. 12, 1192-1199, 1220-1226 Мельников Л. А. 10, 1058-1062 Мешков С. А. 6. 590-595. 12. 1216-1219 Мещеряков В. В. 10, 1052-1057 Мильшин А. А. 7, 660-667 Минаков Е. И. 5, 493-499 Миронов С. А. 10, 993-1000 Михайлов И. Н. 10, 1023-1029 Михалёва Е. В. 2. 117-129 Моисеева Н. А. 12,1220-1226 Молчанов С. Ю. 10, 935-945 Морев С. П. 10, 1030–1043 Мошков А. В 11, 1127-1132 Муравьев Э. К. 10, 1030-1043

# H

Назаров Л. Е. **8**, 782–787, **11**, 1133–1139 Новиков Д. А. **1**, 44–50 Новичихин Е. П. **4**, 384–390 Ножкин Д. А. **10**, 935–945

#### 0

Онищенко А. П. **10**, 98–992 Орлов А. О. **3**, 259–267 Осипков А. С. **11**, 1157–1164

### Π

Папроцкий С. К. 7, 683-685 Парфенов Д. В. 11, 1067-1075, 1076-1086 Пархоменко М. П. 9, 923-930, 12, 1185-1191 Пелевин А. О. 1, 20-29 Перлов А. Ю. 5, 493-499 Петросян М. М. 8, 797-806 Петрунин А. А. 10, 1006-1014 Пилипенко А. С. 5, 514-519 Подстригаев А. С. 4, 369-376 Пожар В.Э. 12, 1192-1199 Поймалин В. Э. 9, 916-922 Ползикова Н. И. 12, 1210-1215 Политико А. А. 3, 244-258 Пономаренко В. И. 10, 993-1000 Потапов А. А. 1, 51-67, 5, 493-499 Прохоров М. Д. 10, 993-1000 Пухова Е.А. 12,1179–1184

# P

Растягаев Д. В. 2, 117–129 Расулов И. И. 10, 935–945 Рожнёв А. Г. 10, 981–986 Румянцева В. Д. 7, 686–692 Рыженко Д. С. 11, 1157–1164 Рыжов А. И. 8, 797–806 Рыскин Н. М. 10, 935–945, 981–986

С

Саблин В. М. 10, 1030-1043 Савченко А. В. 3, 286-293 Савченко В. В. 3. 286-293 Саламатов Е. И. 6, 523-532 Салецкий А. М. 8, 816-824 Сапронова Т. М. 3. 309-312. 4. 391-403. 5. 509-313 Сахаров В. К. 10, 935-945 Светличный В. А. 3, 225-233, 234-243 Семененко В. Н. 3, 244-258 Сергеев В. А. 11, 1146-1151 Сердобинцев А. А. 10, 935-945 Синягаева К. П. 11. 1157-1164 Сказкина В. В. 10, 993-1000 Слепченков М. М. 10, 1006-1014, 1015-1022 Смирнов И. Ю. 5, 500-508 Смирнова О. В. 3, 225-233, 234-243 Соловьев И. И. 12, 1232-1244 Солосин В. С. 4, 339-344, 8, 736-744, 9, 847-854 Стариковский А. И. 11, 1076-1086 Стародубов А. В. 10, 935-945, 981-986 Стародубцев В. Г. 8, 788-792 Стрелец Д. Ю. 4, 315-327 Стрелков Г. М. 8, 729-735 Суровцев Р. С. 1. 84-90 Сыровой В. А. 3, 303-312, 4, 391-403, 5, 509-513, 6, 615-624, 7, 693-703

# Т

Табаков Д. П. 7, 651–659 Тараканов В. П. 6, 596–600 Таранов А. В. 6, 523–532 Таранов И. В. 2, 99–116 Тен Ю. А. 6, 601–611 Терешонок М. В. 2, 166–173, 3, 294–300 Тесье Р. 7, 683–685 Тимошенко А. В. 5, 493–499 Титов С. А. 4, 377–383, 12, 1192–1199 Толстиков А. В. 10, 1044–1051 Торгашов Р. А. 10, 981–986 Турканов И. Ф. 8, 797–806

#### У

Усикова А. А. 7, 683–685 Ушаков Н. М. **10**, 1023–1029

#### Φ

Федоров С. А. **3**, 244–258 Федосеев Н. А. **9**, 923–930 Филяев А. А. **11**, 1157–1165 Фишер П.С. **12**, 1185–1191 Фролова Е. В. **3**, 213–224, **4**, 328–338

#### Х

Хазанов Е. Н. **6**, 523–532 Хвальковский Н. А. **7**, 683–685 Хзмалян А. Д. **3**, 275–285 Хисматуллин Г. С. **12**, 1232–1244

### АВТОРСКИЙ УКАЗАТЕЛЬ

Хлопов Б. В. **12**, 1216–1219 Ходаков А. М. **11**, 1146–1151 Хомутов Г. Б. **2**, 99–116 Храмков А. Н. **10**, 1001–1005 Худак Ю. И. **11**, 1067–1075, 1076–1086 Худышев Ю. С. **8**, 729–735

### Ц

Царев В. А. 10, 987-992

#### Ч

Чан Т. Т. **5**, 447–453, **8**, 754–760 Черкасов К. В. **6**, 590–595, **12**, 1216–1219 Чистяев В. А. **3**, 244–258 Чистяков Е. А. **11**, 1103–1109 Чичигин Б. А. **7**, 668–675 Чуриков Д. В. **2**, 203–208

## Ш

Шавров В. Г. **2**, 174–180, **6**, 576–583, **7**, 676–682, **9**, 908– 915 Шалаев П. Д. **10**, 946–954 Шамин А. Е. **11**, 1087–1095 Шамсутдинова Е. С. **8**, 807–815 Шарикова М. О. **12**, 1220–1226 Шарипов Т. И. **10**, 964–972 Шашурин В. Д. **6**, 590–595, **12**, 1216–1219 Шестеркин В. И. **10**, 946–954 Шилов И. П. **4**, 384–390, **7**, 686–692 Шильцин А. В. **11**, 1110–1115 Шошин Е. Л. **9**, 890–899 Шубин Д. Н. **3**, 294–300 Шурыгина И. С. **9**, 868–874

### Щ

Щеглов В. И. **2**, 174–180, **6**, 576–583, **7**, 676–682, **9**, 908–915 Шеголев А. Е. **12**, 1232–1244

### Ю

Юрков Г. Ю. 11, 1157–1164

### Я

Ярлыков А. Д. 11, 1096-1102 Ярлыков М. С. 5, 454, 9, 875-889 Ярлыкова С. М. 9, 875-889 Яфаров Р. К. 2, 197-202 Правила лля авторов 1. 90-96 К 90-летию Анатолия Васильевича Вашковского 2, 209 - 210К 75-летию Вадима Анатольевича Калошина 5. 520 К 70-летию Александра Осиповича Раевского, 7, 627 К 90-летию Владимира Григорьевича Шаврова 8, 829-830 К 75-летию Александра Степановича Бугаева 8, 831-832 Памяти Александра Гавриловича Кюркчана 9, 931-932 К 90-летию Сергея Николаевича Иванова (13.10.1932-02.05.2006) 10, 1063-1064

### 1248