Том 47, номер 12, 2021

Синтез, строение и применение органических соединений висмута В. В. Шарутин, А. И. Поддельский, О. К. Шарутина

719

_

_

УДК 546.87

СИНТЕЗ, СТРОЕНИЕ И ПРИМЕНЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ВИСМУТА

© 2021 г. В. В. Шарутин^{1, *}, А. И. Поддельский^{2, **}, О. К. Шарутина¹

¹Южно-Уральский государственный университет (национальный исследовательский университет), Челябинск, Россия

²Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия

*e-mail: vvsharutin@rambler.ru **e-mail: aip@iomc.ras.ru

Поступила в редакцию 16.02.2021 г. После доработки 21.04.2021 г. Принята к публикации 24.04.2021 г.

Настоящий обзор, включающий в себя описание современных достижений в области методов синтеза, исследовании особенностей строения и возможности практического использования органических соединений висмута, основан на анализе литературы, опубликованной за период с 2010 по 2020 г. Некоторые более ранние работы представлены в обзоре из-за их важности. Библиография – 190 ссылок.

Ключевые слова: висмут, органические соединения висмута, синтез, строение

DOI: 10.31857/S0132344X21120021

ОГЛАВЛЕНИЕ

Введение	719
Триорганильные соединения висмута	719
Производные висмута общей формулы RBiX ₂ и R ₂ BiX	732
Реакции отщепления органических заместителей от триорганилвисмута	732
Иные методы синтеза производных висмута RBiX ₂ и R ₂ BiX	742
Синтез соединений висмута с полидентатными арильными лигандами	752
Арильные производные висмута(V)	778
Заключение	785
Список литературы	785

введение

С момента открытия в 1975 г. возможности использования органических соединений висмута в тонком органическом синтезе [1], число публикаций, посвященных разработке методов синтеза, исследованию реакционной способности и особенностей строения висмуторганических производных, значительно возросло. Атом висмута в своих органических соединениях может быть непосредственно связан с 1, 2, 3, 4, 5 или 6 органическими радикалами, кроме того, известно много типов производных висмута, в которых имеет место замещение одного или нескольких органических заместителей на атомы галогенов или другие электроотрицательные группы. Разнообразие типов висмуторганических соединений привело к значительному расширению исследований в этой области [2], наблюдаемому за последние годы. Непосредственным поводом для этого явились непрекращающиеся попытки найти для висмуторганических соединений возможности их более широкого использования в химии и медицине. Ключевое положение в химии органических производных висмута занимают соединения R_3Bi , среди которых подавляющая часть — арильные производные. Из них могут быть получены многочисленные соединения висмута несимметричного строения ($RBiX_2$ и R_2BiX) и производные пятивалентного висмута.

ТРИОРГАНИЛЬНЫЕ СОЕДИНЕНИЯ ВИСМУТА

Триорганильные производные висмута R_3B_i , как правило, с высоким выходом синтезируют из магний- или литийорганических соединений. Так, бензильные производные висмута получены по реакции дихлорида арилвисмута Ar'BiCl₂ [Ar' = 2,6-(Me₂NCH₂)₂C₆H₃] с бензилмагнийхлоридом в тетрагидрофуране с образованием Ar'Bi(η¹-CH₂Ph)₂ с высоким выходом (схема 1) [3].

Аналогично синтезировали трибензилвисмут $Bi(\eta^1-CH_2Ph)_3$. Рентгеновская кристаллография и спектроскопические исследования подтверждают η^1 -связь бензильных лигандов в данных соединениях. В первом соединении Ar'Bi $(\eta^1-CH_2Ph)_2$ присутствует лишь один короткий контакт Bi···N (3.058(4) Å), расстояния Bi $-C_{Alk}$ (2.299(4) и 2.340(4) Å) длиннее, чем в Bi $(\eta^1-CH_2Ph)_3$ (2.289(4), 2.291(4) и 2.295(4) Å) и триметилвисмуте (2.23(2), 2.26(2) и 2.288(16) Å) [4]. Отметим особенность структуры последнего, в кристалле которого молекулы ассоциированы в димеры (расстояние Bi···Bi 3.899(1) Å).

Триаллилвисмут All₃Bi, синтезированый из аллилмагнийбромида и трихлорида висмута, был предложен в качестве инициатора контролируемой радикальной полимеризации стирола [5]. Протонолиз All₃Bi достаточно сильной кислотой Бренстеда [PhNMe₂H]⁺[B(C₆H₃Cl₂)₄]⁻ позволил выделить комплекс висмута [All₂Bi(THF)₂]⁺[B(C₆H₃Cl₂)₄]⁻ в виде твердого вещества желтого цвета (схема 2), в катионе которого атом висмута имеет *бис*-феноидальную координационную геометрию с апикально расположенными молекулами ТГФ.

 $[All_2Bi(THF)_2]^+[B(C_6H_3Cl_2)_4]^-$

Трис(метилаллил)висмут, полученный из реактива Гриньяра и трихлорида висмута, также был структурно охарактеризован. По данным PCA, в этом соединении алильные лиганды координируются с атомом висмута по η^1 -типу, причем средняя длина связи Bi-C (2.32(2) Å) близка к аналогичной связи для другого охарактеризованного соединения висмута, содержащего аллильный

лиганд — $\{2,6-(Me_2NCH_2)_2C_6H_3\}_2(\eta^1-All)Bi$ [6]. Комплекс $[All_2Bi(THF)_2]^+[B(C_6H_3Cl_2)_4]^-$ количественно реагирует с двумя эквивалентами альдегида в ТГФ при температуре окружающей среды с образованием продукта карбометаллирования $[(AllCH(Ar)O)_2Bi(THF)_2]^+[B(C_6H_3Cl_2)_4]^-$ с выходом до 99% (схема 3).

 $[All_2Bi(THF)_2]^+[B(C_6H_3Cl_2)_4]^-$

Схема 3.

Триорганилвисмут Bi(CH₂C₆H₄Cl-2)₃, полученный из трихлорида висмута и алкилмагнийбромида, охарактеризован с помощью рентгеноструктурного анализа, который выявил формирование двумерной сетки в результате π -координационных взаимодействий висмут—арен с расстояниями 3.659 Å (висмут-ареноцентроид) и 3.869 Å (ареновые центроиды) соответственно (схема 4) [7].

С целью сравнения с координационной химией лантанидов были синтезированы и структурно охарактеризованы соединения висмута несимметричного строения Ar_2BiR , содержащие N,C,N-лиганды 2,6- $(Me_2NCH_2)_2C_6H_3$ [6]. В частности, добавлением раствора аллилмагнийхлорида в тетрагидрофуране к хлориду диарилвисмута в ТГФ был син-

тезирован аллильный комплекс висмута (2,6- $(Me_2NCH_2)_2C_6H_3)_2Bi(All)$, в котором аллильный лиганд связан с атомом металла по η^1 -типу; один N,C,N-лиганд является тридентатным, а второй образует только одну координационную связь Bi···N (схема 5).

 $(2,6-(Me_2NCH_2)_2C_6H_3)_2Bi(All)$

Из пентафторэтиллития и треххлористого висмута в эфире при пониженной температуре получали *трис*(пентафторэтил)висмут Bi(CF₂-CF₃)₃ (схема 6), в котором длины связей Bi-C (2.331(5), 2.338(5), 2.351(5) Å) [8] максимальны в ряду производных R_3Bi из-за повышения электроотрицательности алкильных заместителей при атоме висмута.

Стабильный висмабензол был синтезирован из алюминийорганического производного (схема 7) [9].

Предполагаемая ароматичность этого тяжелого бензола, включающего элемент шестого периода, была исследована методами РСА. ЯМР. УФ-спектроскопии, а также теоретическими расчетами. Структурный анализ полученного висмабензола выявил плоское кольцо, содержащие ненасыщенные связи Ві-С и С-С. Также исследована реакция висмабензола с лиметилацетиленликарбоксилатом (схема 8), в результате которой был синтезирован висма-[2.2.2]-бициклооктадиен, охарактеризованный метолом РСА.

Висмуторганическое производное пропеллеровидного орто-замещенного фтортрифенилсилана (висмасилатриптицен) синтезировали из хлорида висмута и *mpuc*(2-литийфенил)фторсилана, который получали по реакции литирования трис(2-бромфенил)фторсилана или трис(2-иодфенил)фторсилана бутиллитием в гексане (схема 9) [10].

Схема 9.

Из данных РСА следовало, что взаимодействия между атомами кремния и висмута не наблюдалось несмотря на их большие размеры.

Висмуторганические соединения с N,Сарильным лигандом LBi(Ph)Cl и LMPh₂ были получены с хорошим выходом из дихлорида ариллития LBiCl₂ (L = o-(CH=N-Dipp)C₆H₄) и фениллития в соотношении 1 : 1 или 1 : 2 (схема 10) [11].

Схема 10.

722

Несимметричные соединения $(C_6F_5)_2BiR$ и $[2,4,6-(C_6F_5)_3C_6H_2]_2BiR$, где $R = 2-(Me_2NCH_2)C_6H_4$, были получены по реакции $RBiBr_2$ с C_6F_5MgBr и 2,4,6- $(C_6F_5)_3C_6H_2Li$, соответственно, при мольном соотношении 1 : 2 [12]. Бромиды $R(C_6F_5)BiBr$, R(Mes)BiBr и R(Ph)BiBr были получены из эквимолярных количеств $RBiBr_2$ и C_6F_5MgBr , MesMgBr или PhMgBr или из PhBiBr₂ и RLi в мольном соот-

ношении 1 : 1. Во всех соединениях, содержащих диметиламинометильную группу в арильном лиганде, присутствует весьма прочная координационная связь Bi····N (2.511(9)–3.334(16) Å).

Продуктом реакции RLi ($R = 2-(Et_2NCH_2)C_6H_4$) с BiCl₃ в мольном соотношении 3 : 1 является триарилвисмут ($2-(Et_2NCH_2)C_6H_4$)₃Bi (схема 11) [13].

По аналогичной схеме был получен (2 $iPr_2NCH_2-C_6H_4$)₃Bi, в котором координационный полиэдр центрального атома представляет искаженный октаэдр (Bi-C 2.272(3), 2.276(3), 2.279(3) Å и тесные контакты Bi···N 3.052(3), 3.021(3), 3.074(2) Å) (схема 11) [14]. Производные $(iPr_2P-Ace)_3Bi$ и $(iPr_2P-Ace)_2BiPh$ (Ace = аценафтен-5,6-диил) были синтезированы из хлорида висмута и ариллития [15] по следующей схеме (схема 12).

В [16] описан синтез нейтрального *трис*-2-пиридильного Ві-содержащего лиганда (6-Ме-2-Ру)₃Ві, который при действии [Cu(MeCN)₄]⁺[PF₆]⁻ в растворе ацетонитрила превращается в комплекс меди $\{[(6-Me-2-Py)_3Bi]Cu(MeCN)\}^+[PF_6]^-$ (схема 13).

Схема 13.

Схема 14.

 $[((6-Me-2-Py)_{3}Bi)Cu(CH_{3}CN)]^{+}PF_{6}^{-}$

Прибавление к $\{[(6-Me-2-Py)_3Bi]Cu(MeCN)\}^+$ - $[PF_6]^-$ хлорида тетрабутиламмония приводит к ко-

 $\begin{array}{c} Bi \\ N \\ N \\ Cu^{+} \\ CH_{3}CN \end{array} \xrightarrow{[Bu_{4}N]^{+}Cl^{-}} \\ PF_{6}^{-} \\ Cl \\ [((6-Me-2-Py)_{3}Bi)Cu(MeCN)]^{+}PF_{6}^{-} \end{array} \xrightarrow{Bi} \\ Cl \\ \end{array}$

личественному образованию димерного комплекса [(6-Me-2-Ру)Bi(6-Me-2-Ру)_CuCl]₂ (схема 14).

Реакция димезитил-1,8-нафталиндиилбората лития с хлоридом дифенилвисмута приводит к образованию 1-(дифенилвисмут)-8-(димезитилбор)нафталиндиила Mes₂B(1,8-Napht)BiPh₂ (схема 15) [17].

Из данных PCA следует, что 1,8-нафталиндиильный остов обеспечивает короткие расстояния Bi \rightarrow B (3.330 Å). За счет взаимодействия $p(Bi) \rightarrow p(B)$ стабильность комплекса возрастает на 6.32 ккал/моль.

Соединения висмута (o-PPh₂-C₆H₄)₂BiX (X = = Me, C₆F₅) были синтезированы из хлорида диарилвисмута и органиллития (схема 16) [18].

 $(o-PPh_2-C_6H_4)_2Bi(C_6F_5)$

Схема 16.

Авторы [19] из хлоридов дифенилфосфора и дифенилвисмута синтезировали P,Bi-содержащий ксантеновый лиганд Xan(PPh₂)(BiPh₂) (схема 17).

Схема 17.

Атомы фосфора и висмута в Xan(PPh₂)(BiPh₂) имеют тетраэдрическое окружение, однако расстояние между ними (4.2096(15) Å) незначительно меньше суммы их ван-дер-ваальсовых радиусов 4.3 Å [20]. Новое соединение висмута (*n*-Tol)₂BiR (схема 18), содержащий амидный фрагмент, было синтезировано и структурно охарактеризовано [21].

Из данных PCA следует наличие внутримолекулярных взаимодействий между висмутом и карбонильным атомом кислорода. Центральный атом имеет псевдотригонально-бипирамидальную координацию. Соединение показало сильную антипролиферативную активность во всех протестированных клеточных линиях. В частности, комплекс был более чувствительным, чем аналогичное соединение сурьмы.

Комлекс с N,C,N-пинцерным лигандом — [2-(диметиламинометил)фенил]-бис(4-метил-фенил)висмут (2-Me₂NCH₂C₆H₄)Bi(*n*-Tol)₂ получали из хлорида бис(*пара*-толил)висмута и*о*-литий-N-диметилбензиламина [22]. В молекулах соединения наблюдаются внутримолекулярные контакты Bi···N (2.902(4) Å).

Соединения висмута $[2-{E(CH_2CH_2)_2NCH_2}C_6H_4]_3Bi,$ где E = O или MeN, синтезировали по реакции соответствующего *орто*-литиевого производного с трихлоридом висмута в мольном соотношени 3 : 1 [23]. Для R_3Bi внутримолекулярные взаимодействия $N \cdots Bi$ средней силы (3.170(7) Å для [2-{O(CH₂CH₂)₂NCH₂}C₆H₄]₃Bi и 3.211(5) Å для [2-{MeN(CH₂CH₂)₂NCH₂}C₆H₄]₃Bi) приводят к искажению октаэдрического (C,N)₃Bi-ядра. Шестичленные кольца морфолина и пиперазина в этих комплексах принимают конформацию стула, которая препятствует внутримолекулярной координации атомов кислорода или азота.

Из замещенного ферроцениллития и хлорида дифенилвисмута получили $Ph_2Bi(2-Me_2NCH_2-Fc')$ (где $2-Me_2NCH_2-Fc' - ферроценильный заме$ $ститель (<math>2-Me_2NCH_2-C_3H_3$) FeCp, содержащий дополнительную функциональную группу Me_2NCH_2 во втором положении ферроценильного кольца, связанного с атомом висмута), квартенизацией которого иодистым метилом получили ферроценилвисмутинсодержащую соль аммония {[2-($Me_3N^+CH_2$)Fc]}[Ph_2Bi($2-Me_3N^+CH_2-Fc'$)][I]⁻ (схема 19) [24].

Схема 19.

Молекулярное строение висмутинов $Ph_2Bi(2-Me_2NCH_2-Fc')$ и $[Ph_2Bi(2-Me_3N^+CH_2-Fc')][I]^-$ в кристаллическом состоянии было определено с помощью рентгеновской кристаллографии. В соединении $Ph_2Bi(2-Me_2NCH_2-Fc')$ не наблюдалось гипервалентного взаимодействия $Bi\cdots N$.

N,C,N-хелатированные хлориды висмута(III) LBiCl₂, где L = 2,6-(tBu-N=CH)₂C₆H₃ и 2,6-(2',6'-

 $Me_2C_6H_3-N=CH)_2C_6H_3$) получали из производных лития и трихлорида висмута (схема 20) [25]. Обработка полученных дихлоридов арилвисмута LBiCl₂ алкил- или фениллитием (схема 20) приводит к образованию триорганильных соединений висмута LBiR'₂, в которых не наблюдаются внутримолекулярные контакты Bi…N.

Схема 20.

Вопросы синтеза триорганильных соединений висмута непосредственно связаны с поиском их возможного использования в тонком органическом синтезе [26]. С этой целью исследована реакционная способность ряда стерически затрудненных соединений триарилвисмута Ar₃Bi (Ar₃Bi = $= (2-MeOC_6H_4)_3Bi$, $(2-MeC_6H_4)_3Bi$, Mes₃Bi, (2,6-Me₂C₆H₃)₃Bi, (1-Napht)₃Bi, [2,4-(MeO)₂C₆H₃]₃Bi) в реакциях кросс-сочетания с арилиодидами или арилбромидами в присутствии Pd/Cu-содержащих соединений (схема 21).

Ожидается, что это исследование откроет перспективы для дальнейшего применения этих реагентов висмута в тонком органических синтезе. О подобном использовании функционализированных производных триарилвисмутавреакциях С-, N-иО-арилирования, катализируемых соединениями палладия и меди (схема 22), сообщали авторы [27].

Сообщается о катализируемыми соединениями палладия реакциях кросс-сочетания трифенилвисмута или функционализированного триарилвисмута (например, схема 23) с галогензамещенными пиридинами, пиразинами и пиридазинами, содержащими реакционноспособные фрагменты [28].

Реакции протекают в мягких условиях с превосходными выходами целевых продуктов.

Разработан хемоселективный медный катализатор реакции О-арилирования (1R,2R)-N-BOC-2-амино-1-(4-нитрофенил)-1,3-пропандиолов с использованием триарилвисмута, где BOC = = *трет*-бутоксикарбонильная группа (схема 24). Метод позволяет переносить *орто-*, *мета-* и *пара*замещенные арильные группы, имеет хорошую толерантность к функциональным группам и приводит к арилированию первичного спирта [29].

Кроме триарильных производных висмута с атомами азота в арильных заместителях описан синтез подобных комплексов с иными потенциальными координирующими центрами, такими как атом кислорода метоксигрупп. Так, *mpuc*(2бром-5-метоксифенил)висмут синтезирован из трихлорида висмута и 5-бром-2-метоксифениллития, полученного металлированием *пара*-броманизола фениллитием в эфире [30, 31].

Другие триорганильные соединения висмута (схема 25), в которых два атома висмута соединены между собой мостиковыми кислородсодержащими лигандами, такими как O{(CH₂)₂BiPh₂}₂, MeN(CH₂-2-C₆H₄BiR₂)₂ и S(CH₂-2-C₆H₄BiR₂)₂

(R = Me, Ph), были получены и охарактеризованы методом PCA [32].

Показано, что в структурах $O\{(CH_2)_2BiPh_2\}_2$ и $S(CH_2-2-C_6H_4BiPh_2)_2$ наблюдаются гипервалентные взаимодействия между атомами О или S и атомами висмута (Bi···O 3.203(3), 3.126(3) Å при сумме ван-дер-ваальсовых радиусов висмута и кислорода 3.52 Å и Bi···S 3.3254(12), 3.3013(12) Å при сумме ван-дер-ваальсовых радиусов висмута и серы 3.8 Å) [20]. Новый фотосенсибилизатор $[L^+BiR][PF_6]^-$ на основе замещенного триарилвисмута LBiPh (схема 26) синтезирован из дихлорида фенилвисмута и литиевого производного *бис*(4-диметиламино-2-бромфенил)-2-толилметана путем его литирования *втор*-ВиLi с последующим окислением *n*-хлоранилом образующегося LBiPh (схема 26). Целевое соединение получили с выходом 4% из LBiPh в виде соли гексафторфосфата $[L^+BiR][PF_6]^-$ [33].

лигандами — получали из β,β-дилитиобитиофенов и дигалогенида фенилвисмута (схема 27) [34].

Новое соединение висмута — [(2-ди-*n*-толилбисмутанофенил)диазенил]пирролидин (схема 28) синтезировано из хлорида ди(*n*-толил)висмута и соответствующего соединения лития, полученного литированием 1-[(2-иодфенил)диазенил]пирролидина бутиллитием в тетрагидрофуране, и протестировано на биологическую активность в отношении линий опухолевых клеток человека [35].

Схема 28.

Показано, что соединение обладает сильным антипролиферативным эффектом.

Предложен новый способ синтеза триорганильных соединений висмута Bi(2-C₄H₂X-5-R)₃ из силанолов и алкоксидов или амидов висмута (схема 29) [36, 37].

В полученных соединениях $Bi(2-C_4H_2X-5-R)_3$ (X = O, R = H; X = S, R = H; X = S, R = SiMe_3; X = = NMe, R = H; X = Se, R = H) и $Bi(3-C_4H_3S)_3$, по данным PCA, наблюдаются межмолекулярные $Bi \cdots \pi$ -гетероареновые взаимодействия, например, как показано на схеме 29.

Производные триарилвисмута $[2-(ArS)C_6H_4]_nBiAr_{3-n}$ с *орто*-тиоарильным заместителем удобно синтезировать путем вставки бензина в связь висмута с серой в соединения $(ArS)_nBiAr_{3-n}$ (n = 1, 2) (схема 30) [38].

Связь Ві—С в $[2-(2-BrC_6H_4S)C_6H_4]_nBiAr_{3-n}$ разрывается в присутствии Pd-катализатора, при этом образуется с хорошим выходом дибензотиофен. Рентгеноструктурное исследование 2-(2-BrC₆H₄S)C₆H₄Bi(*n*-Tol)₂ показывает присутствие внутримолекулярного контакта S···Bi (3.397(2) Å), что значительно меньше суммы ван-дер-ваальсовых радиусов данных элементов (4.2 Å [20]). Дегидробензол может внедряться сразу по двум связям Bi—S, что приводит к образованию функционализированных триарильных соединений висмута, синтез которых иными методами достаточно сложен (схема 31).

Несколько гетероциклических соединений висмута C_4R_4BiAr (R = Et, Ph; Ar = Ph, Mes) и L(Thi)₂BiMes были синтезированы с помощью

эффективного переноса металлоцикла с участием легкодоступных цирконоциклов и изучены их люминесцентные свойства (схема 32) [39].

$$2BiCl_3 + Ar_3Bi \xrightarrow{Et_2O} 3ArBiCl_2$$

Азид-алкиновое циклоприсоединение, катализируемое соединением меди(I), в настоящее время широко используется в качестве надежного метода ковалентного соединения различных строительных блоков [40]. Использование висмуторганического ацетиленида R¹−C≡C−BiAr₂ устраняет нежелательные реакции протодегалогенирования, и целевой продукт $N_3C_2(R^1R^2)$ —BiAr₂ выделяется из реакционной смеси с выходом до 99% (схема 33). На его основе описано получение различных функционализированных N-гетероциклических производных (схема 34).

1. PhC(O)Cl, Me₂N–Py, Et₃N (4 : 1 : 4)2. Дифосген, Me₂N–Py, Et₃N, NucH (2 : 1 : 4 : 20) $\mathbb{R}^3 = \mathbb{N}Et_2$, OMe3. Оксалил хлорид, *i*Pr₂NEt, NucH (2 : 3 : 20)4. SOCl₂, *i*Pr₂NEt, NucH (2 : 2 : 20)5. SOCl₂, Et₃N (2 : 2) или Br₂ (1.2 экв.)6. NO⁺[BF₄]⁻ (2 экв.)

Схема 34.

В [41] сообщается о получении ряда фосфоресцирующих висмутсодержащих полимеров и блок-сополимеров с арилированными норборненами (схема 35).

Схема 35.

Полученные полимеры с высокой молекулярной массой в углеродном каркасе имеют бензовисмолы, построенные с помощью реакций метатезиса с раскрытием кольца (схема 36).

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

Схема 36.

Дипиридиновисмол DPyBi получали по реакции дилитиевого производного 2,2'-дибром-4,4'бипиридила с дииодфенилвисмутом (схема 37). Циклическая вольтамперограмма данного соединения в ацетонитриле указывает на повышенное сродство к электрону по сравнению с бипиридилом без мостика. Это соединение и родственное производное сурьмы (DPySb) обладают слабой флуоресценцией при комнатной температуре и видимой фосфоресценцией при 77 К с максимумами излучения $\lambda_{max} = 453$ нм и временем жизни $\tau = 1.03$ мс для DPySb и $\lambda_{max} = 454$ нм, $\tau = 0.26$ мс для DPyBi соответственно. Твердофазная фосфоресценция также наблюдалась на этих дипиридиногетеролах при 77 К. Взаимодействие DPyBi с Cu₂I₂(PPh₃)₃ приводит к получению соответствующего медного комплекса [(PPh₃)CuI(DPy-Bi)CuI(PPh₃)]₂, который демонстрирует красную фосфоресценцию в твердом состоянии при комнатной температуре [42].

ПРОИЗВОДНЫЕ ВИСМУТА ОБЩЕЙ ФОРМУЛЫ RBiX₂ И R₂BiX

Производные трехвалентного висмута, содержащие одну или две органические группы у атома металла, получают несколькими способами. Наиболее простым и достаточно эффективным является метод отщепления от триорганилвисмута органических заместителей соединениями, содержащими активный атом водорода. Другие, не менее эффективные способы синтеза указанных соединений, основаны на реакциях замещения, присоединения и внедрения.

Реакции отщепления органических заместителей от триорганилвисмута. Опубликована серия работ, посвященных реакции дефенилирования трифенилвисмута карбоновыми кислотами, продуктами которых являются карбоксилаты арил- или диарилвисмута. Отличительна особенность карбоксилатов диарилвисмута — их полимерная структура, обусловленная бидентатными свойствами карбоксилатного лиганда. Однако подобные координационные полимеры представлены единичными примерами. Так, в [43] описан синтез 2-фенилкарборанилкарбоксилата дифенилвисмута по реакции замещения между трифенилвисмутом и 2-фенилкарборанилкарбоновой кислотой в бензоле (схема 38) и определены его структурные особенности методом РСА.

Схема 38.

По данным PCA, 2-фенилкарборанилкарбоксилат дифенилвисмута представляет собой координационный полимер, закристаллизовавшийся в виде сольвата с бензолом. Атомы висмута имеют бисфеноидную координацию с апикально расположенными атомами кислорода 2-фенилкарборанилкарбоксилатных заместителей. В экваториальной плоскости находятся два фенильных лиганда и неподеленная электронная пара.

Авторами [44] изучено взаимодействие трифенилвисмута с 4-нитрофенилуксусной и 2-нитробензойной кислотами в толуоле при 90°С. Показано, что при эквимолярном соотношении реагентов образуются *бис*(4-нитрофенилацетат) фенилвисмута и *бис*(2-нитробензоат) фенилвисмута с выходами 49 и 46% соответственно. Минорными продуктами реакций являются 4-нитрофенилацетат дифенилвисмута и 2-нитробензоат дифенилвисмута (27 и 16% соответственно).

С целью исследования влияния растворителя и природы карбоновой кислоты на образование карбоксилатов висмута, трифенилвисмут обрабатывали салициловой, 5-бромсалициловой, 3-метоксисалициловой, 5-нитрозалициловой, 3-метилантраниловой, 5-хлорантраниловой и N-ацетилантраниловой кислотами при мольном соотношении исходных реагентов 1 : 2 в различных условиях (схема 39) [45].

Соединения (Ar–COO)₂BiPhL (L = Me₂C=O, EtOH) мономерны и содержат молекулу координированного растворителя в экваториальном положении у атома висмута в пентагональной пирамиде. Такая же геометрия найдена в [(Ar-COO)₂BiPh]₂-(4,4'-Bipy), где две такие единицы связаны вместе через 4,4'-бипиридиновый лиганд. Соединения (Ar–COO)BiPh(ROH)(OOC–Ar)Bi(Ar–COO)₂Ph образуют димеры, в которых наблюдаются подобные координационные полиэдры атомов Bi. Соединения [(*o*-(NH–C(O)Me)–C₆H₄–COO)₂BiPh]_{*n*} и [(Ar–COO)BiPh(OOC–Ar)]_{*n*} полимерные. В (Ar–COO)₂BiPh(2,2'-Bipy) один из карбоксилатных лигандов бидентатный, в то время как другой остается монодентным, отображая ту же структурную геометрию, что и для описанных ранее. Соединения *цис-/mpaнc*-[(Ar-COO)₂BiPh(L)]₂ (L = = MeOH/MeCN), *цис*-[(Ar-COO)₂BiPh]₂, *mpaнc*-[(Ar-COO)₂BiPh]₂ представляют собой димерные структуры, связанные между собой общими атомами кислорода карбоксилатных групп.

Три дикарбоксилата фенилвисмута получены дефенилированием трифенилвисмута *о*-метоксибензойной, *м*-метоксибензойной, 5-[(R/S)-2,3дигидроксипропилкарбамоил]-2-пиридинкарбоновой кислотами (мольное соотношении 1 : 2) при кипячении смеси реагентов с обратным холодильником в метаноле или этаноле [46]. Прибавление к реакционной смеси эквимолярного количества 2,2'-бипиридила (Віру) приводит к синтезу устойчивого комплекса [PhBi(O₂CC₆H₄OMe-*o*)₂-(Bipy)] · 0.5ЕtOH. Полученные комплексы охарактеризованы ЯМР-спектроскопией и протестированы на антилейшманиозную активность. Дополнительно оценена их токсичность для клеток млекопитающих. Комплексы висмута замещенных бензойных кислот показывают значительную антилейшманиозную активность против промастиготов L, majorV121 при очень низких концентрациях, в то время как соответствующие свободные карбоновые кислоты не проявляют действенной активности. Однако соединения висмута ингибируют рост клеток млекопитающих при всех изученных концентрациях (от 1.95 до 500 мкг/мл) после 48 ч инкубации.

Показано, что реакции трифенилвисмута с такими гетероциклическими карбоновыми кислотами как 3-гидроксипиколиновая, пиразин-2-карбоновая, хинолин-2-карбоновая (хинальдиновая), фуран-2-карбоновая и тиофен-2-карбоновая кислоты, приводят к образованию карбоксилатов дифенилвисмута и дикарбоксилатов фенилвисмута [47]. По данным РСА, координационное число (**KY**) висмута в полученных комплексах вследствие координации потенциальных координирующих центров (гетероатомов и карбонильных атомов кислорода) изменяется от 5 до 8.

Повышение КЧ атома висмута имеет место в *бис*(хлорацетате) фенилвисмута, где хлорацетатные лианды являются тридентатными хелатно-мости-ковыми, связывающими через атомы кислорода со-седние молекулы в полимерные цепочки [48].

Два комплекса висмута (MICA)₂BiPh и (IGA)₂BiPh получали из индолкарбоновых кислот (MICAH = 1-метил-1H-индол-3-карбоновая кислота, IGAH = 2-(1H-индол-3-ил)-2-оксоуксусная кислота) и трифенилвисмута в кипящем этаноле (схема 40) [49].

Комплексы охарактеризованы с помощью элементного анализа, ИК-, масс-спектроскопии, спектроскопии ЯМР (¹H, ¹³C). Комплекс (IGA)₂BiPh охарактеризован рентгеновской кристаллографией как димер в твердом состоянии. *In vitro* антибактериальную активность индолкарбоновых кислот и их комплексов висмута оценивали в отношении *Helicobacter pylori*. Соединения проявляют высокую активность против лейшманиоза без какой-либо токсичности в отношении клеток млекопитающих при их эффективной концентрации.

В отсутствие растворителя из трифенилвисмута и 3-гидроксипиколиновой кислоты (**3-HpicH**) с последующей перекристаллизацией из диметилформамида был получен дикарбоксилат фенилвисмута (3-Hpic)₂BiPh (схема 41) [50].

В молекулах комплекса атомы висмута гексакоординированы в искаженной пентагонально-пирамидальной геометрии с двумя атомами N, двумя атомами O хелатирующих 3-Нріс-лигандов, атомом кислорода молекулы растворителя в экваториальной плоскости и фенильным заместителем в апикальном положении.

Полиядерные оксокластеры висмута получены из трифенилвисмута и *орто*-нитробензойной кислоты в различных условиях (схема 42) [51].

Схема 42.

 C_6H_4 -COO)₁₄](EtOH)_x. Рентгеноструктурные исследования монокристаллов четырех из пяти соединений (кроме (2-NO₂-C₆H₄-COO)₂BiPh) показывают, что все они являются полимерными в твердом состоянии, KЧ(Bi) равно 9, 8, 5 соответственно.

N,C,N-Внутримолекулярно координированный оксид висмута(III) (ArBiO)₂, где Ar = 2,6-(Me₂NCH₂)₂C₆H₃, реагирует с 1,1'-ферроцендикарбоновой кислотой с образованием соответствующего биядерного карбоксилата (Fc(COO)₂BiAr)₂ (схема 43) [52].

Схема 43.

Соединение охарактеризовано с помощью ЯМР, рамановской, ИК-, УФ-видимой спектроскопии и РСА.

Фенантролиновый комплекс висмута [Bi(Phen)- $(C_6H_5COO)(C_6H_4COO)$] (Phen = 1,10-фенантролин) в виде коричневых кристалов был синтези-

рован из нитрата висмута, 2-меркаптобензойной кислоты, 1,10-фенантролина в качестве вспомогательного лиганда, азотной кислоты и оксида неодима в воде при 160°С в течение 3 сут (схема 44) [53]. Комплекс охарактеризован РСА, ИК-спектроскопией, ТГ-анализом.

Схема 44.

Очевидно, что появление бензоатной группы в комплексе обусловлено протекающей в гидротермальных условиях реакцией десульфирования 2-меркаптобензойной кислоты.

Два комплекса висмута $(Napht-C(O)S)_2BiPh$ (схема 45) и (4-Br-C₆H₄-C(O)S)₂BiPh, полученные из тионафтойной и *n*-бромтиобензойной кислот и трифенилвисмута в растворе кипящего этанола (1 ч), были охарактеризованы и оценены на предмет активности *in vitro* против лейшманиоза и общей токсичности в отношении клеток фибробластов человека [54].

Необходимо отметить, что термолиз производных (R-C(O)S)BiPh₂ приводил к образова-

нию соединений $PhBiX_2$ и трифенилвисмута по реакции перераспределения радикалов (схема 46).

Схема 46.

По данным PCA, в комплексе $(4-Br-C_6H_4-C(O)S)_2$ BiPh два тиокарбоксилатных лиганда координируются с атомом висмута, формируя искаженную октаэдрическую геометрию координационного узла, в которой фенильная группа и неподеленная пара ориентированы аксиально по отношению к плоскости, образованной двумя тиокарбоксилатными лигандами. Межмолекулярные взаимодействия Bi···S (3.54 Å) связывают эти мономерные звенья в единое целое. Показано, что тиокарбоксилатные производные висмута в биологическом плане оказались более активными, чем соответствующие кислоты. Отмечают наиболее высокую активность комплексов (Napht–C(O)S)BiPh₂ и (4-Br-C₆H₄–C(O)S)₂BiPh. Несколько соединений висмута(III): (Ph-C(O)S)₂BiPh, (m-NO₂-C₆H₄-C(O)S)₂BiPh и (3-SO₃-C₆H₄-C(O)S)₂BiPh синтезировано из тиобензойных кислот и трифенилвисмута (схема 47) [55]. По реакции замещения из хлорида дифенилвисмута синтезировано производное с двумя фенильными группами при атоме висмута (Ph-C(O)S)BiPh₂, легко превращаемое по реакции перераспределения лигандов в монофенильный комплекс (Ph-C(O)S)₂BiPh.

 $2Ph-C(O)SH + BiPh_3 \longrightarrow (Ph-C(O)S)_2BiPh$

 $Ph-C(O)SNa + Ph_2BiCl \longrightarrow (Ph-C(O)S)BiPh_2$

 $2(Ph-C(O)S)BiPh_2 \longrightarrow (Ph-C(O)S)_2BiPh + BiPh_3$

Схема 47.

По данным PCA, комплекс $(Ph-C(O)S)_2BiPh$ образует дискретные тетрамерные единицы, скрепленные длинными межмолекулярными связями Bi···S (3.774 Å). Исследована активность комплексов (Ph-C(O)S)_2BiPh и (Ph-C(O)S)BiPh₂ против трех штаммов *Helicobacter pylori*. Показано, что высокий уровень бактерицидной активности не чувствителен к степени замещения у атома висмута.

Серия моноорганических дитиокарбоксилатных комплексов висмута $(Ar-C(S)S)_2BiR (R = Me, Ph, n-Tol; Ar = Ph, n-Tol)$ была синтезирована по реакциям замещения из триорганилвисмута, либо из дихлорида метилвисмута и дитиокарбоновых кислот в присутствии триэтиламина в качестве акцептора HCl (схема 48) [56].

$$R_{3}Bi + 2Ar - C(S)SH \xrightarrow{-2RH} (Ar - C(S)S)_{2}BiR$$

$$MeBiCl_{2} + 2Ar - C(S)SH \xrightarrow{2 Et_{3}N} (Ar - C(S)S)_{2}BiMe$$

$$R = Me, Ph, n - Tol; Ar = Ph, n - Tol$$

$$Creare 48$$

Схема 48.

Соединения были охарактеризованы элементным анализом и спектроскопическими исследованиями. Молекулярное строение $(n-Tol-C(S)S)_2BiR$ (R = Me или Ph) в кристаллическом виде установлено с помощью PCA. Показано, что атом висмута в этих соединениях принимает квадратно-пирамидальную конфигурацию с группой R в апикальном положении. Термолиз $(n-Tol-C(S)S)_2BiR$ (R = Meили Ph) при кипячении с обратным холодильником в дифениловом эфире приводил к образованию нанокристаллов Bi₂S₃. Комплекс $(n-Tol-C(S)S)_2BiPh$ использовался для осаждения тонких пленок Bi₂S₃.

Обработка трифенилвисмута 4-метил-4H-1,2,4-триазол-3-тиолом (**4-МТТН**) или 2-меркапто-1-метилимидазолом (**2-ММІН**) в смеси растворителей толуол—этанол при кипячении или микроволновом облучении приводит к окислению производных висмута и образованию в обоих случаях ярко-желтых веществ (4-ММТ)₄BiPh и (2-MMI)₄BiPh, соответственно, время синтеза которых при облучении было наименьшим (7 мин) (схема 49) [57].

Схема 49.

Однако перекристаллизация комплексов (4-MMT)₄BiPh и (2-MMI)₄BiPh из ДМСО приводила к образованию производных трехвалентного висмута [(4-MMT)₂(4-MMTH)₂BiPh]₃ и [(2-MMI)₂-(2-MMIH)₂BiPh]₄.

Продуктами реакций тетразол-, имидазол- и тиадиазол-гетероциклических тиолов: 1-метил-1H-тетразол-5-тиол (**1-ММТZH**); 4-МТТН; 5-

метил-1,3,4-тиадиазол-2-тиол (**5-ММТDH**); 1,3,4тиадиазол-2-дитиол (**2,5-DМТDH**₂) с трифенилвисмутом являются гетеролептические комплексы тиолатофенилвисмута общего вида (RS)₂BiPh, которые также были получены из дихлорида фенилвисмута и натриевой соли тиола (схема 50) [58]. Полученные комплексы были охарактеризованы спектральными методами и PCA.

Проведена оценка бактерицидных свойств полученных соединений против *Mycobacterium smegmatis* (*M. smegmatis*), золотистого стафилококка (*S. aureus*), метициллинрезистентного золотистого стафилококка (*MRSA*), устойчивого к ванкомицину энтерококка (*VRE*), *Enterococcus faecalis* (*E. faecalis*) и *Escherichia coli* (*E. coli*), наибольшую эффективность среди которых показали комплексы, содержащие лиганды 1-MMTZ и 4-MTT: (1-MMTZ)₂(1-MMTZH)₂BiPh и (4-MTT)₂(4-MTTH)₂BiPh. Все комплексы показали незначительную или нулевую токсичность в отношении клеток COS-7 млекопитающих при 20 мг/мл.

Тиолатовисмутовый комплекс (5-MMTD)₂(4-MMTH)ВіРһ был синтезирован из тиадиазол- и триазол-гетероциклических тионов и структурно охарактеризован (схема 51) [59].

5-MMTDH

25-MMTDH + 4-MMTH

<u>ВіРh</u>₃ (5-MMTD)₂(4-MMTH)ВіРh Кипячение, 12ч или MW, 115°С, 10 мин

4-MMTH

Схема 51.

Показано, что комплекс проявляет антибактериальные свойств против золотистого стафилококка, ванкомицин-резистентного энтерококка, *E. faecalis, E. coli* и низкую токсичность по отношению к клеточным линиям COS-7 млекопитающих в дозе 20 мкг/мл. Из 4-фенилтиазол-2-тиола (**MBTH**) и трифенилвисмута или BiPhCl₂ и соответствующего тиолата натрия (NaMBT) был получен (MBT)₂BiPh (схема 52) с выходом до 89% в различных условиях (без растворителя, 100°С, 4 ч; кипячение раствора толуола, 6 ч; микроволновое облучение, толуол, 115°С, 15 мин; метиловый спирт, 12 ч, 24°С), охарактеризованный методом PCA [60].

Схема 52.

Показано, что комплекс (MBT)₂BiPh, являющийся в кристалле димером, проявляет хорошую антилейшманиозную активность, обладает активными бактерицидными свойствами против микобактерий смегматис, *MRSA*, *E. faecalis*, устойчивый к *VRE* и *E.coli* и имеет низкую токсичность по отношению к клеткам COS-7 млекопитающих при 20 мкг/мл.

Ряд 5-замещенных фенилтиазолоксадиазолетионов вида (X-PTOT)₂BiPh, где X = Me, MeO, MeS, F, Cl, Br, CF₃; PTOTH = 5-(2-фенилти-

азол-4-ил)-1,3,4-оксадиазол-2-тиол) (схема 53), был синтезирован из трифенилвисмута и соот-

ветствующих тиоамидов или из дихлорида фенилвисмута и натриевых солей тиоамидов [61].

Комплексы (Cl–PTOT)₂BiPh и (Br–PTOT)₂BiPh после перекристаллизации из ДМСО были структурно охарактеризованы с помощью РСА как (X–PTOT)₂BiPh · 2DMSO (X = Cl, Br). Оценены антибактериальные свойства тионов и их Bi(III)-комплексов против *Mycobacterium smegmatis*, *S. aureus*, *MRSA*, *VRE*, *E. faecalis* и *E. coli*. Показано, что все комплексы висмута(III) высокоэффективны против всех бактерий, так как имеют очень низкие значения минимальной ингибирующей концентрации (МИК) (1.1–2.1 мкМ). Эти комплексы показали незначительную токсичность или отсутствие токсичности в отношении клеток COS-7 млекопитающих при 20 мкг/мл.

Комплексы висмута(III) $[(Sac)BiPh_2]_n$, $[(Sac)_2BiPh]_n$, $[(Tsac)BiPh_2]_n$, $[(Tsac)_2BiPh]_n$ (SacH = = сахарин, TsacH = тиосахарин) были синтезированы и охарактеризованы в [62]. Отщепление одной фенильной группы от атома висмута наблюдалось при кипячении эквимолярных количеств трифенилвисмута и сахарина или тиосахарина в этаноле в течение 30 мин (схема 54).

Схема 54.

При мольном соотношении 1 : 2 и увеличении времени нагревания до 1 ч имело место образование производных PhBiX₂ с выходом до 73%. Структуры [(Sac)BiPh₂]_n и [(Tsac)BiPh₂]_n были подтверждены методом рентгеновской кристал-

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

лографии. В [(Sac)BiPh₂]_n мостиковые лиганды Sac связывают группировки Ph₂Bi с четырехкоординированным атомом висмута через атом азота (Bi-N 2.353(4) Å) и один из атомов кислорода SO₂-группы (Ві-О 2.605(4) Å). Однако в структуре [(Tsac)BiPh₂]_n тиосахариновый лиганд σ-связан через экзоциклический атом серы, образуя тиолатный комплекс. полтверждая более тиофильный характер висмута(III). В кристалле комплекса [(Tsac)BiPh₂]_n также содержатся полимерные цепочки с формально четырехкоординированными атомами висмута. Была оценена активность комплексов против *H. pylori*. Активность зависит как от лиганда, так и от степени замещения лиганда. Сахаринатные комплексы $[(Sac)BiPh_2]_n$ и $[(Sac)_2BiPh]_n$ проявляют активность, сравнимую со стандартными для трикарбоксилатов висмута(III) (6.25 мкг/мл), в то время как активность тиолатных комплексов висмута резко возрастала с увеличением количества тиолатных групп. Сахарин, тиосахарин и трифенилвисмут являлись неактивными.

В [63] сообщалось о синтезе бис(2,5-диметилбензолсульфоната) фенилвисмута с выходом 94% из трифенилвисмута и 2,5-диметилбензлсульфоновой кислоты в толуоле. По данным РСА, атомы висмута с учетом стереохимически активной неподеленной электронной пары имеют искаженную октаэдрическую координацию, которую без "фантом"-лиганда можно рассматривать как квадратно-пирамидальную с атомами кислорода в экваториальных положениях и атомом углерода фенильной группы в аксиальном. Атом висмута выходит из средней экваториальной плоскости О₄ на 0.19 Å в направлении, противоположном атому углерода. Транс-углы в экваториальной плоскости ОВіО равны 177.7(1)° и 164.1(1)°. Два угла CBiO (89.0(5)°, 88.8(5)°) близки к теоретическому значению, тогда как другие два угла СВіО (81.6(5)°, 82.5(5)°) значительно отклоняются от него. Длина связи Bi-C равна 2.247(5) Å. Валентные связи Bi-O (2.394(9), 2.390(9) Å) и координационные связи Bi…O (2.396(10), 2.403(10) Å) практически не отличаются между собой.

О получении и характеристиках двух координационных полимеров винилсульфонатов висмута(III) сообщалось в [64]. Синтез комплексов висмута осуществляли из трифенилвисмута и винилсульфоновой кислоты в этаноле или ацетонитриле (схема 55).

Строение соединений доказано спектральными методами анализа и PCA. В кристалле координационного полимера $[(Vin-SO_3)BiPh_2]_n$ (Vin = винил) атомы висмута с учетом стереохимически активной неподеленной электронной пары имеют координацию искаженной тригональной бипирамиды, в которой атомы кислорода занимают апикальные позиции с углом OBiO 164.7(3)°. Один фенильный заместитель соседней молекулы ориентирован на атом висмута (Ві…арен 3.42 Å) при почти перпендикулярном расположении атома висмута над центром фенильного кольца (схема 56).

Кристалл координационного полимера [(Vin-SO₃)₂BiPh]_n содержит два типа кристаллографически независимых молекул, которые не взаимодействуют друг с другом. Молекулы каждого типа образуют вдоль кристаллографической оси b полимерную цепочку, в которой атомы висмута связаны между собой через атомы кислорода сульфонатных лигандов. Координационные сферы атомов висмута лучше всего описать как квадратную пирамиду с фенильным заместителем в вершине, а с учетом стереохимически активной неподеленной пары электронов как псевдооктаэдр.

Три органосульфоната дифенилвисмута $(R-SO_3)BiPh_2$, где R = n-толил (n-Tol), мезитил (Mes) или S-(+)-10-камфорил (S-(+)-10-Сатрр), были синтезированы взаимодействием эквимолярных количеств трифенилвисмута и органосульфоновой кислоты в спирте с выходом целевого продукта до 99% (схема 57) [65]. Перекристаллизация соединений из ацетона сопровождается реакцией перераспределения лигандов и образованием полимерного *бис*(органосульфонато)фенилвисмута [$(R-SO_3)_2BiPh$]_x и трифенилвисмута.

R-SO₃H
$$\xrightarrow{\text{BiPh}_3}$$
 (R-SO₃)BiPh₂ $\xrightarrow{\text{AlleTOH}}_{-y\text{BiPh}_3}$ [(R-SO₃)₂BiPh]_x

R = n-Tol, Mes, S-(+)-10-Camph

Схема 57.

По данным PCA, комплексы (Mes-SO₃)BiPh₂ и $(S-(+)-10-Camph-SO_3)BiPh_2$ структурно очень похожи со структурами полимерных спиральных цепей, в которых атомы висмута, имеющие тригонально-бипирамидальное окружение, соединены с атомами кислорода сульфонатных групп с почти линейными углами ОВіО. Два фенильных кольца с стереохимически активной парой электронов находятся в экваториальной плоскости, аксиальные положения занимают атомы кислорода. Присутствие одного сульфонатного лиганда в соединениях (R-SO₃)BiPh₂ приводило к резкому увеличению бактерицидной активности в отношении бактерии *H. pylori* относительно трифенилвисмута и сульфокислоты, которые были практически неактивными. В комплексах $[(R-SO_3)_2BiPh]_x$ (R = = n-Tol, Mes) атомы висмута связаны между собой двумя мостиковыми органосульфонатными лигандами через атомы кислорода. Координация

атомов висмута октаэдрическая, одно положение занято неподеленной электронной парой; длины связей Bi—C и Bi—O составляют 2.226(7), 2.221(10) Å и 2.361(4)—2.384(7) Å соответственно. Восьмичленные кольца, состоящие из атомов висмута, кислорода и серы, обладают конформацией "кресло", два противоположных атома кислорода выходят из плоскости остальных (компланарных в пределах 0.09 Å) в разные стороны на 0.93 Å.

Обработка трифенилвисмута 5-сульфосалициловой кислотой (H_3Ssal) приводит к образованию гидрата сульфосалицилата фенилвисмута (HSsal)BiPh · H_2O и его этанольного аналога (HSsal)BiPh · EtOH [66]. По данным PCA, оба комплекса в твердом состоянии являются полимерами с каркасами, построенными из димерных [(HSsal)Bi]₂. Первый из данных гетеролептических комплексов демонстрирует замечательную растворимость в воде (10 мг/мл), в результате чего получается прозрачный раствор с pH 1.5. Напротив, второй комплекс (с этанолом) практически нерастворим в воде. Комплексы проявляют значительную активность в отношении бактерии *H. pylori*. Трифлат дифенилвисмута был получен из трифлата димезитилтеллура и трифенилвисмута и встречным синтезом из трифенилвисмута и трифторметансульфоновой кислоты (схема 58) [67].

$$2\text{Mes}_{2}\text{Te} + F_{3}\text{C}-\text{SO}_{3}\text{H} \xrightarrow[-MesH]{-MesH} [\text{MesTe}(\text{Te}\text{Mes}_{2})]O_{3}\text{S}-\text{C}F_{3}$$

$$\xrightarrow{-Mes}_{-MesPhTe} \downarrow BiPh_{3}$$

$$F_{3}\text{C}-\text{SO}_{3}\text{H} + BiPh_{3} \xrightarrow[-C_{6}H_{6}]{-C_{6}H_{6}} (F_{3}\text{C}-\text{SO}_{3})BiPh_{2}$$

Схема 58.

По данным PCA, трифлат дифенилвисмута представляет собой полимер, в котором фрагменты Ph_2Bi связаны между собой через мостиковые атомы кислорода трифлатных групп (2.531(6), 2.473(5) Å).

Взаимодействие трифенилвисмута с 1,1,2,3,3пентаметилтриметилен-фосфиновой кислотой {cyc-P(O)OH · 2H₂O} в тетрагидрофуране при нагревании и комнатной температуре приводит к образованию 16-членного макроцикла [(cyc-PO₂)₈ -(BiPh)₄] и полимера [(cyc-PO₂)BiPh₂]_n соответственно (cyc-PO₂ = 1,1,2,3,3-пентаметилтриметиленфосфинат) (схема 59) [68].

Схема 59.

В обоих комплексах, охарактеризованных методом PCA, анизобидентатные фосфинатные лиганды мостиковые. Взаимодействие фосфатного диэфира (*t*BuO)₂PO(OH) с BiPh₃ в соотношении 1 : 1 при комнатной температуре в этаноле дает координа-

ционный полимер $[((tBuO)_2PO_2)BiPh_2]_n$, в котором атомы висмута соединены изобидентатными лигандами $[(tBuO)_2PO_2]$ (схема 60) [69].

Схема 60.

Термолиз соединения при 700°С дает чистую фазу BiPO₄. Новый координационный полимер [($Me_2N-C(S)S$)BiPhCl]_n был синтезирован из диметилдитиокарбамата натрия и трифенилвисмута (мольное соотношение 2 : 1) в смеси растворителей (метанол-тетрагидрофуран ($25^{\circ}C$, 24 ч) и охарактеризован ИК-, ЯМР ¹Н-спектроскопией и РСА [70]. В кристалле квадратно-пирамидальные блоки с фенильным лигандом в апикальном положении связываются между собой мостиковыми атомами хлора, образуя одномерную спиральную цепь (схема 61).

Комплекс обладает высокой фотокаталитической активностью, показанной на примерах метиленового синего, родамина В и метилового фиолетового.

Иные методы синтеза производных висмута **RBiX**₂ и **R**₂**BiX**. Соединения трехвалентного висмута с одним или двумя органическими заместителями при атоме висмута можно получать несколькими способами, среди которых достаточно эффективными являются методы, основанные на реакциях органических производных активных металлов с тригалогенидами висмута. Так, была получена серия производных трехвалентного висмута *t*Bu₂BiX (X = Cl, Br, I, CN, N₃, SCN) [71]. Хлорид tBu₂BiCl получали реакцией трихлорида висмута с двумя эквивалентами tBuMgCl, тогда как соединения tBu_2BiX (X = Br, I, CN, SCN) синтезированы из tBu_3BiX_2 . Азид tBu_2BiN_3 был получен по реакции $tBu_2BiCl c NaN_3$. Кристалл $tBu_2Bi(CN)$ состоит из полимерных цепей, в которых группы tBu₂Bi связаны между собой Bi-C=N…Bi мостиками (расстояние N····Bi составляет 2.548 Å).

Описаны подходы к синтезу первых адамантильных комплексов висмута из адамантилмагнийбромида или адамантиллития и 1- и 2-адамантилцинкбромидов (схема 62) [72].

Молекулярное строение бромида *бис*(2-адамантил)висмута в кристаллическом состоянии подтверждено методом PCA.

По схемам классического элементоорганического синтеза получен ряд пентафторэтильных производных висмута $Et^{F}_{n}BiX_{3-n}$ ($Et^{F} = CF_{2}-CF_{3}$, X = F, Cl, Br, I), охарактеризованых PCA [8]. Их химические свойства, индуцированные сильным электроноакцепторным характером пентафторэтильных групп, показаны на примерах реакций с галогенводородными кислотами и солями некоторых элементов (схема 63).

Et₂^FBiPh
$$\xrightarrow{HX, \Delta}$$
 Et₂^FBiX
 $-C_6H_6$ $X = Cl, Br$

$$Et^{F}BiPh_{2} \xrightarrow{2 \text{ HX}, \Delta}_{-2C_{6}H_{6}} \xrightarrow{Et^{F}BiX_{2}} Et^{P}BiCl \cdot Phen$$

$$X = Cl, Br$$

$$Phen$$

$$Et^{F}BiPh \xrightarrow{HF(\mu_{3}6)}_{-C_{6}H_{6}} \xrightarrow{Et^{F}}BiF \xrightarrow{AgF}_{-AgCl} Et^{F}_{2}BiCl$$

$$\begin{bmatrix}Et^{F}Et^{F}Et^{F}Et^{F}Et^{F}Et^{F}\\I \xrightarrow{Bi-I-Bi}I \end{bmatrix} Ph_{4}P]^{+} \xrightarrow{(Ph_{4}P)^{+}I^{-}} Et^{F}_{2}BiI$$

E

Схема 63.

Четыре новых стерически перегруженных терфенилзамещенных дигалогенида висмута типа $[Ar^mBiX_2]_2, m = 1, 2 (Ar^1 = 2, 6-Mes_2-C_6H_3, X = Br, I;$ $Ar^2 = 2, 6-Mes_2-4-tBu-C_6H_2, X = Cl, Br)$ синтезирова-

ны и структурно охарактеризованы (схема 64) [73]. В то время как соединения $[Ar^1BiBr_2]_2$, $[Ar^2BiCl_2]_2$, $[Ar^2BiBr_2]_2$ димерны в твердом состоянии, диодид висмута $[Ar^1BiI_2]_n$ — одномерный координационный полимер.

Схема 64.

При гидролизе соединения $[Ar^2BiBr_2]_2$ имеет место образование гидроксида арилбромвисмута $Ar^2Bi(OH)Br$, который был выделен вместо ожидаемого монооргановисмутдигидроксида. Устойчивость $Ar^2Bi(OH)Br$ к дальнейшему гидролизу можно объяснить внутримолекулярными π -взаи-

модействиями висмут…арен. Реакция $Ar^2Bi(OH)Br$ со стерически перегруженной фосфиновой кислотой $Ar^2PH(O)(OH)$ дает фосфинаторгановисмут ($Ar^2HP(O)O)BiAr^2Br$. Рентгеноструктурный анализ данного соединения выявил необычную двойную π -внутримолекулярную координацию висмут…арен (схема 65).

CAEMA US.

С целью исследования внутримолекулярных взаимодействий Ві··· π -арен был синтезирован ряд соединений непереходных металлов, в состав которых входили объемные амидные лиганды [(R₃Si)N(Ar*)] (Ar* = 2,6-(CHPh₂)₂-4-*t*Bu-C₆H₂, R = Me, Ph), которые синтезировали по схеме 66 [74].

Наименьший контакт Bi··· $\eta^6 - \pi$ -арен наблюдается в катионном комплексе [(R₃Si)N(Ar*)BiCl]⁺ -[AlCl₄]⁻ (2.85–2.98 Å). В остальных комплексах висмута расстояния Bi···C ($\eta^6 - \pi$ -арен) приближаются к сумме ван-дер-ваальсовых радиусов висмута и углерода, указывающие на слабое взаимодействие между ними. Отметим, что подобный контакт наблюдался в 3,4,5-трифторбензоатном четырехъядерном комплексе висмута с толуолом $Bi_4(O)_2(O_2CC_6H_2F_3-3,4,5)_8 \cdot 2(\eta^6-C_6H_5Me)$, в котором расстояние $Bi\cdots C$ ($\eta^6-\pi$ -арен) достигало значения 3.02 Å [75].

Реакция $Ph_2BiCl c PhSLi или (2,6-Me_2C_6H_3)SLi дает Ph_2BiSPh и Ph_2BiSC_6H_3Me_2-2,6 соответ$ ственно [76]. Оба соединения охарактеризованы ИК-, Раман, ЯМР ¹Н- и ¹³С-спектроскопией и РСА. Показано, что структура Ph_2BiSPh является полимерной с межмолекулярными взаимодействиями Bi(1)…S(2) (3.309(1) Å) и длиной связи Bi-S 2.588(1) Å. При увеличении объема фенилтиолатного лиганда в $Ph_2BiSC_6H_3Me_2$ -2,6 комплекс кристаллизуется в виде мономера.

Плохо растворимые в органических растворителях бесцветные кристаллы метоксида диметилвисмута [Me₂BiOMe]_∞ образуются при взаимодействии бензольного раствора триметилвисмута с кислородом воздуха (12 ч) [77]. По данным PCA, комплекс является координационным полимером, в котором MeO-лиганды соединяют фрагменты Me₂Bi в цепи; длины связей Bi–O равны 2.359(6) и 2.344(6) Å, что больше суммы ковалентных радиусов Bi и O (2.18 Å [20]), а расстояния C–Bi (2.243(6), 2.243(6) Å) обычны для такого типа соединений [78].

В основе одного из методов синтеза некоторых висмуторганических соединений лежат реакции внедрения малых молекул. Так, показано, что в катионный висмутамид встраивается монооксид углерода по связи Bi–N в мягких условиях (схема 67) [79].

Комбинированный экспериментальный и теоретический подход позволил понять механизм введения СО, который можно распространить и на изонитрилы.

Найдено, что полученный из 1,8-*бис*((триметилсилил)амино)нафталина и *mpuc*(диметиламида)висмута амид висмута 1,8-С₁₀Н₆(NSiMe₃)₂Bi– NMe₂ реагирует с 2-бензоилпиридином, 3-пиридинкарбоксальдегидом, 2-метил-2-пропеннитрилом и диэтилацетилендикарбоксилатом с образованием продуктов присоединения по связи Bi–N (схема 68) [80]. Полученные соединения охарактеризованы PCA и спектральными методами анализа.

С помощью амида висмута 1,8- $C_{10}H_6(NSiMe_3)_2Bi-NMe_2$ можно синтезировать производные трехвалентного висмута с такими углеводородными заместителями, как Me, C_5Me_5 и C=CPh (схема 69) [81].

Строение соединений доказано спектроскопией $MP^{1}H$, ¹³С и ²⁹Si и PCA.

Показано, что для 1,2,4,3-триазаборол-3-илдифенилвисмута (L^{N3B})BiPh₂ характерны реакции внедрения малых молекул арилизонитрилов (ArNC) и монооксида углерода по связи B-Bi (схема 70) [82].

Схема 70.

Исходное соединение (L^{N3B})BiPh₂ получали из амидразона (схема 71), комплексы (L^{N3B})BiPh₂ и (L^{N3B})-С(=NPh)-ВіРh₂ были охарактеризованы методом РСА.

Изучена реакционная способность трибромида висмута по отношению к N-гетероциклическому карбену 1,3-*бис*(2,6-диизопропилфенил)имидазол-2-илидену (**Dipp-NHC**) [83]. Показано, что добавление одного молярного эквивалента трибромида висмута к раствору IPr в диэтиловом эфире приводит к образованию аддукта (Dipp-NHC) · BiBr₃, который мгновенно осаждается из реакционной смеси в виде ярко-желтых кристаллов с выходом 90% (схема 72). Показано, что 1 : 1 аддукт (Dipp-NHC) \cdot BiBr₃ легко изомеризуется при нагревании до 75°C (12 ч) с образованием бесцветных кристаллов цвиттер-иона (схема 72, внизу слева), а его реакция с бромидом алюминия к ионному комплексу [(Dipp-NHC)BiBr₂]⁺[AlBr₄]⁻ (схема 72, внизу справа).

прибавление к раствору которого триметилсилилтрифторметансульфоната приводило к образованию аддукта (*i*Pr–NHC^{Me})BiCl₂(OTf)(THF), димерное строение которого в кристаллическом виде установлено с помощью PCA.

Описан синтез первых стабилизированных комплексами висмута циклических (алкил)(амино)карбенов (^{Et2}CAAC)Bi(Ph)Cl₂ и (^{Cy}CAAC)Bi(Ph)Cl₂, которые получали из карбенов и дихлорида фенилвисмута (схема 74) [85].

Комплексы висмута также могут быть получены депротонированием стабильных на воздухе солей $[^{Et2}CAAC-H]_2^{2+}[Cl_2(Ph)Bi(\mu-Cl_2)Bi(Ph)Cl_2]^{2-}$ и $[^{Cy}CAAC-H]_2^{2+}[Cl_2(Ph)Bi(\mu-Cl_2)Bi(Ph)Cl_2]^{2-}$ с помощью *бис*(триметилсилил)амида калия K[N(SiMe_3)_2]. В другой работе этих же авторов сообщается о синтезе карбен-стабилизированного висмутиниденового комплекса ($^{Et2}CAAC$)ВіРh из комплекса бериллия ($^{Et2}CAAC$)₂Be, который используют в

качестве восстанавливающего агента и реагента переноса лиганда (схема 74) [86].

Аддукт (CDP^{Ph})BiCl₃ гексафенилкарбодифосфорана (CDP^{Ph}) с трихлоридом висмута получен в растворе ТГФ при комнатной температуре (схема 75) [87]. Обработка (CDP^{Ph})BiCl₃ трифлатом TMS-OTf привела к образованию комплекса (CDP^{Ph})BiCl(OTf)₂.

Схема 75.

Все соединения охарактеризованы спектральными методами анализа и PCA.

Кинетически стабилизированный аналог карбена, содержащий ион висмутения [(2,6 $Mes_2C_6H_3)_2Bi]^+[BAr_4^F]^- (Mes = 2,4,6-Me_3C_6H_2, Ar^F = 3,5-(CF_3)_2C_6H_3))$ был получен из гидрида диарилвисмута и соли трифенилкарбения (схема 76) [88].

Для бирадикала [Bi(u-N(2,6тяжелого Mes₂C₆H₃))]₂ проведены реакции [2+2]-присоединения с использованием ацетилена или толана (схе-

ма 77), в результате чего образуются гетероциклические соединения, строение которых доказано PCAF [89].

Схема 77.

Весьма интересны реакции висмуторганических производных, сопровождающиеся образованием органических соединений неординарного строения. Так, в [90] была изучена реакционная способность аминовисмутана $Mes*N(SiMe_3)BiCl_2$ (Mes* = 2,4,6-три-*трет*-бутилфенил) с органическими производными металлов. Показано, что синтез Mes*N(SiMe₃)Bi-Cl₂ с выходом 33% сопровождается образованипродукта сочетания двух молекул ем Mes*N(SiMe₃)H с выходом 60% (схема 78).

Реакция Mes*N(SiMe₃)BiCl₂ с GaCl₃ привела к образованию только [Mes*N(SiMe₃)BiCl]⁺[GaCl₄]⁻ (схема 79). Использование соли Ag[WCA] (WCA = слабо координирующий анион) для связывания хлоридов позволило выделить продукт сочетания

C-C. Также были синтезированы дииодид $Mes^*N(SiMe_3)Bil_2$ и азидохлоридное соединение $Mes^*N(SiMe_3)Bi(N_3)Cl$, однако синтез указанных производных не сопровождался образованием продуктов сочетания.

В [91] описаны синтез и свойства фосфинатов висмута(III). Так, при обработке трифенилвисмута перфторалкилфосфиновой кислотой имеет место отщепление одной или двух фенильных групп от атома висмута (схема 80).

Схема 80.

Приведены примеры успешного применения полученных фосфинатов висмута в реакциях об-

разования углерод-углеродных связей (например, схема 81).

Схема 81.

В [92] описаны реакции карбометаллирования смешением галогенида висмута, углеродного нуклеофила и ненасыщенного углеводорода, причем

изменение типа галогена в соли висмута переключает региоселективность реакции (схема 82).

Необходимо отметить, что условия проведения реакций определяют количественный состав продуктов (схема 83).

Карбовисмутинизация алкина была подтверждена РСА продукта реакции трибромида висмута с 3,5-ди(*трет*-бутил)фенилацетиленом и диметилкетентриметилсилилметилацеталем в хлористом метилене при комнатной температуре, когда единственным продуктом является дибромид моноалкенилвисмута, выделенный из реакционной смеси в виде бесцветных кристаллов с количественным выходом (схема 84) [93].

Рентгеноструктурный анализ данного дибромида моноалкенилвисмута выявил *цис*-конформацию висмута и ароматического заместителя при двойной связи; что подтверждает регио- и стереоселективный характер карбовисмутинирования. Кристалл состоит из тетрамеров, образующихся за счет бромидных мостиков. Геометрия атомов висмута — искаженная тригонально-бипирамидальная с атомами брома в аксиальных положениях. Алкенильная группа, атом бром и неподеленная электронная пара занимают экваториальные позиции. Показано, что алкенилвис-

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

мут легко реагирует с иодом, при этом образуется алкенилйодид с сохранением стереохимии.

В [94] описано превращение связей С—Н в более реакционноспособные связи С—М, поддающиеся дальнейшей функционализации, что имеет фундаментальное значение в синтетической химии. Показано, что преобразование нейтральных соединений висмута в их катионные аналоги может быть использовано в качестве стратегии для облегчения реакций активации связей С—Н (схема 85).

Металлоорганические продукты первого и второго этапов активации связей С–Н были выделены с высоким выходом. Данные РСА и DFTрасчеты показали необычные свойства основного

состояния этих соединений (кольцевая деформация и умеренная гетероароматичность).

Синтез соединений висмута с полидентатными арильными лиганлами. В последнее время интенсивно развивается химия арильных соединений висмута с полидентатными лигандами при центральном атоме металла. Наиболее простыми представителями данного класса являются В-дикетонатные производные висмута, которые можно синтезировать из трифенилвисмута и В-дикетона. Так, были получены первые примеры F-содержащих дикетонатных комплексов арилвисмута – бис(гексафторацетилацетонат) фенилвисмута(III) (Hfac)₂BiPh и его аддукты $(Hfac)_{2}BiPh(L)$ (HfacH = 1,1,1,5,5,5-rekca ϕ top-2,4-пентандион; $L = H_2O$, Me₂CO, THF, DMAA (N,N-диметилацетамид), ДМСО, PhCN, а также смешанный комплекс гексафторацетилацетонатотрифторацетат [(Hfac)Biфенилвисмута, $Ph(CF_3COO)]_2$ (схема 86), которые охарактеризованы РСА [95].

$$Ph_{3}Bi \xrightarrow{2HiacH}{-2C_{6}H_{6}} (Hfac)_{2}BiPh \xrightarrow{L} (Hfac)_{2}BiPh(L)$$

$$L = H_{2}O, Me_{2}CO, THF, DMAA, DMSO, PhCN$$

$$Ph_{3}Bi \xrightarrow{CF_{3}COOH}{-2C_{6}H_{6}} 0.5 [(Hfac)BiPh(CF_{3}COO)]_{2} \xrightarrow{HfacH}{-C_{6}H_{6}} Ph_{2}Bi(CF_{3}COO)$$

$$Cxema 86.$$

Комплекс (Hfac)₂BiPh выделяют из реакции трифенилвисмута с 1,1,1,5,5,5-гексафтор-2,4пентандионом (мольное соотношение 1 : 2) в сухом гексане. Соединение $[(Hfac)BiPh(O_2CCF_3)]_2$ было синтезировано из эквимолярных количеств Ph₃Bi, HfacH и CF₃COOH, по второму методу использовали трифторацетат дифенилвисмута $Ph_2BiO_2CCF_3$ и β -дикетон (Hhfac). Попытки вырастить монокристаллы (Hfac), BiPh из растворов некоорлинирующих растворителей оказались безуспешными. Однако в присутствии координирующих растворителей (Hfac)₂BiPh образует желтые кристаллы соответствующих аддуктов (Hfac), BiPh(L), выделяющихся из гексанового раствора (Hfac), BiPh в присутствии малых количеств H₂O, Me₂CO, THF, DMAA, DMSO и PhCN. Все выделенные комплексы чувствительны к воздуху, умеренно растворимы в метаноле, ацетоне, дихлорметане и хлороформе, в меньшей степени – в диэтиловом эфире и углеводородах. Полученные соединения охарактеризованы ИК-, ЯМР-спектроскопией и РСА. В ИК-спектрах, как и ожидалось, наблюдаются полосы, отвечающие валентным колебаниям групп C=O в области 1634-1640 см⁻¹, что значительно отличается от аналогичной полосы, наблюдаемой в ИК-спектре свободного HfacH (1689 см $^{-1}$), и указывают на хелатирующий характер лиганда.

Из данных PCA следует, что конфигурация атома металла в аддуктах (Hfac)₂BiPh(L) представляет собой пятиугольную пирамиду. Двухъядерный комплекс [(Hfac)BiPh(CF₃COO)]₂ состоит из двух искаженных пятиугольных пирамид, соединенных в димеры с помощью мостиковых карбоксилатных групп.

Несколько большим числом в литературе представлены соединения висмута, содержащие бидентатные С, N-лиганды у атома висмута, которые, как правило, синтезируют из галогенидов висмута и производных активных металлов. Например, бромид $(2-(iPr_2NCH_2)C_6H_4)_2$ ВіВг был получен из реактива Гриньяра и трихлорида висмута (схема 87) [96].

Схема 87.

Соединение (2-(*i*Pr₂NCH₂)C₆H₄)₂BiBr было охарактеризовано методами многоядерной ЯМР-спектроскопии, масс-спектрометрии и PCA.
753

Длина связи Bi-Br (2.7294(10) Å) короче, чем у других родственных производных R_2BiBr (для $R = 2-(Me_2NCH_2)C_6H_4$ 2.8452(7), 2-(Et_2NCH_2)C_6H_4 2.7517(10), 2.7484(10), 2.8084(11) Å) [78]. Один из атомов азота не координирован с центральным атомом металла, однако расстояние между вторым атомом азота и атомом висмута Bi···N (2.737(6) Å) несколько больше суммы их ковалентных радиусов (2.19 Å, [20]), но существенно меньше суммы ван-дер-ваальсовых радиусов указанных элементов (3.94 Å, [20]), что указывает на взаимодействие между ними. Валентный угол BrBiN (164.80(13)°) меньше идеального значения

 180° и сопоставим с найденными в соединениях $R_2BiBr.$

С помощью комбинации выше указанных методов были получены хлориды диарилвисмута [13]. Так, реакция RLi или RMgBr (R = 2-(Et₂NCH₂)C₆H₄) с трихлоридом висмута в молярном соотношении 2 : 1 дает R₂BiCl и R₂BiBr соответственно (схема 88); по реакции перераспределения радикалов может быть получен дихлорид арилвисмута RBiCl₂, в котором атомы хлора легко могут быть заменены на атомы брома или иода действием водных растворов бромистого или иодистого калия.

Схема 88.

В полученных моногалогенидах один азот координируется с атомом висмута (2.557(8)– 2.645(6) Å), тогда как второй практически не координирован с центральным атомом металла (2.992(12)–3.170(8) Å). Общее ядро (C,N)₂BiX (X = = Cl, Br, I) имеет искаженную квадратно-пирамидальную форму. Аналогично синтезировали бромиды $R(C_6F_5)BiBr$, R(Mes)BiBr и R(Ph)BiBr ($R = 2-(Me_2NCH_2)C_6H_4$) из эквимолярных количеств $RBiBr_2$ и C_6F_5MgBr , MesMgBr или PhMgBr или из PhBiBr₂ и RLi в молярном соотношении 1 : 1 (схема 89) [12].

 $RBiBr_{2} \xrightarrow[-MgBr_{2}]{ArMgBr_{2}} R(Ar)BiBr$ $Ar = C_{6}F_{5}, Mes, Ph$ $R = 2-(Me_{2}NCH_{2})C_{6}H_{4}$ $PhBiBr_{2} \xrightarrow[-LiBr]{R(Ph)BiBr} R(Ph)BiBr$

Схема 89.

По сходным схемам были получены и структурно охарактеризованы $\delta uc(2-((диметиламино)$ $метил)фенил)азидовисмут (2-(Me_2NCH_2)C_6H_4)_2BiN_3$ и диазид (2-(диметиламинометил)фенил)висмута $(2-(Me_2NCH_2)C_6H_4)Bi(N_3)_2 [14]. В качестве про$ межуточного продукта использовали триарилвисмут, из которого по реакции перераспределения радикалов получали соответствующие хлориды арил- и диарилвисмута. Последние действием избытка иодида натрия в тетрагидрофуране превращали в иодиды, обработка которых азидом серебра приводила к целевым продуктам (схема 90).

Полученные соединения представляют собой редкие примеры азидов висмута. В то время как в кристалле моноазида $(2-(Me_2NCH_2)C_6H_4)_2BiN_3$ присутствовали мономерные молекулы с координацией атомов азота аминогрупп на центральный атом (2.555(2), 3.131(3) Å), то диазид $(2-(Me_2NCH_2)C_6H_4)Bi(N_3)_2$, в котором координация атома азота аминогруппы с центральным атомом металла весьма существенна (2.568(2) Å), представлен в виде димера с двумя типами соединения

азидогрупп. Кроме того, слабые ван-дер-ваальсовы взаимодействия между этими центросимметричными димерами приводят к цепочечной структуре в кристалле.

Триоргановисмутины $R(C_6F_5)_2Bi$ и $R[2,4,6-(C_6F_5)_3C_6H_2]_2Bi$, где $R = 2-(Me_2NCH_2)C_6H_4$, были синтезированы из $RBiBr_2$ и C_6F_5MgBr или 2,4,6- $(C_6F_5)_3C_6H_2Li$ соответственно в молярном соотношении 1 : 2 (схема 91) [12].

$$R(Ar)_{2}Bi$$

$$ArMgBr$$

$$Ar = C_{6}F_{5}$$

$$RBiBr_{2} \xrightarrow{ArMgBr} R(Ar)BiBr$$

$$Ar = C_{6}F_{5}, Mes, Ph$$

$$2 ArLi$$

$$-2LiBr$$

$$R(Ar)_{2}Bi$$

$$Ar = 2,4,6-(C_{6}F_{5})_{3}C_{6}H_{2}$$

$$R = 2-(Me_{2}NCH_{2})C_{6}H_{4}$$

$$Cxema 91.$$

Аналогичным образом были получены бромиды $R(C_6F_5)BiBr$, R(Mes)BiBr и R(Ph)BiBr из $RBi-Br_2$ и C_6F_5MgBr , MesMgBr, PhMgBr или из PhBiBr_2 и RLi в эквимолярном соотношении (схема 91). Молекулярные структуры данных соединений определены методом PCA. В хиральных бромидах $R(C_6F_5)BiBr$, R(Mes)BiBr и R(Ph)BiBr ($R = 2-(Me_2NCH_2)C_6H_4$) в твердом состоянии наблюдается сильная внутримолекулярная координация $N \rightarrow Bi.$ Расстояния N—Bi в данных соединениях примерно одинаковы, что указывает на отсутствие влияния второго органического заместителя (C_6F_5 , Ph, Mes) на длину координационной связи N····Bi.

Хлориды $(2-{E(CH_2CH_2)_2NCH_2}C_6H_4)_2BiCl,$ где E = O, MeN, и дихлориды $(2-{E(CH_2CH_2)_2NCH_2}C_6H_4)BiCl_2$, где E = O, MeN, синтезированы по реакции соответствующего *орто*литиевого производного с трихлоридом висмута в соответствующих молярных соотношениях (схема 92) [23].

Дигалогениды $(2-\{E(CH_2CH_2)_2NCH_2\}C_6H_4)BiX_2,$ где X = Br, E = O, MeN; X = I, E = O, MeN, а также $(2-(Me_2NCH_2)C_6H_4)BiBr_2$ получены реакциями галогенидного обмена между RBiCl₂ и избытком водного раствора КХ. Во всех соединениях атомы азота координированы с атомами висмута. В монохлоридах один атом азота сильно координирован с атомом висмута (2.660(11) Å в (2-{O(CH₂CH₂)₂NCH₂}C₆H₄)₂BiCl и 2.744(14) Å в (2- ${MeN(CH_2CH_2)_2NCH_2}C_6H_4)_2BiCl)$, тогда как второй участвует в слабом внутримолекулярном взаимодействии N → Bi (3.095(11) Å в (2-{O(CH₂CH₂)₂NCH₂}C₆H₄)₂BiCl и 3.061(14) Å в (2-{MeN(CH₂CH₂)₂NCH₂}C₆H₄)₂BiCl). В целом ядро (C,N)2BiCl тетрагонально-пирамидальное. Кристаллы дигалогенидов $(2-\{O(CH_2CH_2)_2NCH_2\}C_6H_4)_2BiCl_2$ и $(2-(Me_2NCH_2)C_6H_4)BiBr_2$ содержат дискретные димерные единицы. Атом азота аминогрупп в $(C,N)BiX_2$ (X = Cl, Br) ядра координирован на атом металла (2.548(9) Å в (2-{O(CH₂CH₂)₂NCH₂}C₆H₄)₂BiCl₂ и 2.485(13) Å в (2-(Me₂NCH₂)C₆H₄)BiBr₂). В кристаллах данных двух соединений и (2-{O(CH₂CH₂)₂NCH₂}C₆H₄)₂BiCl образуются супрамолекулярные архитектуры, основанные на межмолекулярных взаимодействиях Bi···Br, Cl···H и Br···H. Шестичленные морфолиновые и пиперазиновые кольца принимают конформацию стула, которая препятствует внутримолекулярной координации атомов кислорода или азота на атом висмута.

Четыре устойчивых к воздуху гипервалентных соединения органовисмута $R_2BiCl c (C,O)$ - или (C,S)-хелатирующими лигандами, где $R = 2-(MeECH_2)C_6H_4$ (E = O или S), а также (2-(MeOCH_2)C_6H_4)_2Bi(OTf) и [{2-(MeSCH_2)-C_6H_4}_2Bi]^+[OTf]^- получены из трихлорида висмута и литийарила (схема 93) [97].

В отличие от первых трех соединений, ионный комплекс $[\{2-(MeSCH_2)C_6H_4\}_2Bi]^+[OTf]^-$ состоит из висмутсодержащих катионов и трифлатных анионов. Соединение $[2-(MeOCH_2)C_6H_4]_2Bi(OTf)$ показало хорошую каталитическую эффективность и возможность повторного использования в реакциях аллилирования различных альдегидов тетрааллилоловом в метаноле (или ТГФ, MeCN, EtOH, $T_{\text{комн}}$, 1 ч) для получения соответствующих

гомоаллильных спиртов с выходом до 96% (схема 94).

Схема 94.

Взаимодействием хлоридов органовисмута(III) $R_2BiCl \ u \ RBiCl_2$, где R = 2-(Me₂NCH₂)C₆H₄, с псевдогалогенидами щелочных металлов в молярном соотношении 1 : 1 и 1 : 2 соответственно, получены соединения гипервалентного висмута R_2BiX (X = NCO, SeCN) и RBiX₂ (X = NCO, NCS и SeCN) (схема 95) [98].

Определена молекулярная структура соединений $R_2Bi(NCO)$, $R_2Bi(SeCN)$. Во всех комплексах атомы азота аминогрупп участвуют во внутримолекулярной координации с металлом, что приводит к искаженной квадратной координационной геометрии атома висмута.

Реакции эквимолярных количеств хлорида R_2BiCl , где $R = 2-(Me_2NCH_2)C_6H_4$, с солями натрия или серебра (NaSCN, AgOTf или AgNO₃) приводят к замещению атома хлора на другой электроотрицательный заместитель и образованию производных висмута R₂Bi(NCS), R₂Bi(OTf) и R₂BiNO₃ соответственно (схема 95). Структуры данных соединений были определены методом РСА [99]. Оба атома азота аминогрупп участвуют во внутримолекулярной N. Ві координации разной силы. Для изотиоцианата R₂Bi(NCS) это приводит к искаженному квадратно-пирамидальному ядру (C,N)₂BiN. В случае трифлата $R_2Bi(OTf)$ и нитрата R_2BiNO_3 оксоанионы сильно координированы к асимметрично атому Ві через атомы кислорода (Ві---О 2.337(12) -3.317(15) Ă в R₂Bi(OTf) И 2.476(5)-3.088(5) Å в R₂BiNO₃). Таким образом, для соединений R₂Bi(OTf) и R₂BiNO₃ наблюдается пентагонально-пирамидальная координация атома висмута.

Хлорид мезитил(2-диметиламинометилфенил) висмута R(Mes)BiCl, где R = $2-(Me_2NCH_2)C_6H_4$, получен из дихлорида мезитилвисмута (схема 96) [100].

Схема 96.

Комплекс R(Mes)BiCl при обработке трифлатом серебра превращается в R(Mes)BiOTf. Последовательные реакции R(Mes)BiCl с AgPF₆ и Et₃PO

приводят к синтезу $[R(Mes)Bi(OPEt_3)]^+PF_6^-$, в котором связь Bi-N (2.501(5) Å) более длинная, чем в R(Mes)BiOTf (2.446(2) Å).

Неоднозначность реакций литийорганических соединений с трихлоридом висмута показана в [101]. Так, взаимодействие эквимолярных количеств $BiCl_3$ с (Dipp-NacNac)Li (Dipp-Nac-Nac = Dipp-N-C(Me)=CH-C(Me)=N-Dipp, Dipp = 2,6-*i*Pr₂C₆H₃) в различных условиях приводили к синтезу разнообразных соединений висмута: [(Dipp-NacNac)BiCl₂]₂, [(Dipp-Nac-Nac)Bi,Cl(µ-Cl)Bi(*n*Bu)Cl(µ-Cl)]₂, [LBiCl(µ-Cl)]₂ (L = N(Ar)=C(Me)CH=C(NHAr)CH₂) и L'Bi₂Cl₄ (L' = N(Ar)=C(Me)CC(Me)=N(Ar)) (схема 97).

Схема 97.

Соединения [(Dipp-NacNac)BiCl₂]₂ и [LBi-Cl(µ-Cl)]₂ являются изомерами, и термическая конверсия от [(Dipp-NacNac)BiCl₂]₂ в [LBiCl(µ-Cl)]₂ была реализована. В этой реакционной системе при небольшом избытке *н*-BuLi и BiCl₃ выделяли [(Dipp-NacNac)BiCl(µ-Cl)Bi(*н*-Bu)Cl(µ-Cl)]₂ как побочный продукт после выделения [(Dipp-Nac-Nac)BiCl₂]₂. Строение комплексов подтверждено данными спектроскопии ЯМР ¹Н и ¹³С и рентгеновской кристаллографии.

Дихлорид арилвисмута LBiCl₂ (L = o-(CH=N-2, $6-iPr_2C_6H_3$)C₆H₄]) реагирует с дифенилдихалькогенидом PhEEPh (E = S, Se или Te) с образованием соответствующих комплексов LBi(EPh)₂ (E = = S, Se, Te), из которых в различных условиях можно синтезировать производные висмута с одной или двумя группами EPh (схема 98) [102].

Устойчивость соединений $L_2Bi(EPh)$ обусловлена жесткой координацией обоих атомов-доноров азота лиганда L с атомом висмута.

BiCl₃ был получен дихлорид арилвисмута LBiCl₂, содержащий (N,C,N)-лиганд (схема 99). LBiBr₂ и RBiI₂ были получены реакциями обмена галогена из LBiCl₂ [103].

По сходной схеме из эквимолярных количеств LLi, где L = $2,6-(MeN(CH_2CH_2)_2NCH_2)_2C_6H_3$, и

Данные дигалогениды арилвисмута(III) LBi-Hal₂ были охарактеризованы как в растворе, так и в твердом состоянии. Молекулярное строение соединений в кристаллическом виде установлено методом PCA. Все они имеют Т-образное ядро CBiHal₂, стабилизированное двумя сильными внутримолекулярными взаимодействиями $N \rightarrow Bi$ в *транс*-положениях друг к другу. Общее (N,C,N)BiHal₂-ядро имеет искаженную квадратно-пирамидальную координационную геометрию с арильным лигандом в вершине. ЯМР-спектроскопические исследования подтверждают наличие внутренней координации азот—висмут в растворе.

Дихлорид арилвисмута вида L*BiCl₂, содержащий тридентатный N,C,N-лиганд L* (схема 100), использовали в качестве прекурсора для синтеза мономерного соединения висмута L*Bi [104].

Схема 100.

Реакция L^*BiCl_2 с двумя эквивалентами К[B(*i*Bu)₃H] в ТГФ протекает с изменением цвета реакционной смеси на темно-синий, при этом заметно выделение газа, что указывало на образование нестабильного гидрида LBiH₂, который сразу теряет водород. Соединение L*Bi выделяли кристаллизацией из насыщенного гексанового раствора в виде темно-синего микрокристаллического порошка с выходом 35%. Соединения охарактеризованы элементным анализом и спектрами ЯМР ¹Н и ¹³С в дейтерированном бензоле, в которых присутствовали сигналы, соответствующие лиганду L*.

С целью сравнения координационной химии Bi^{3+} и лантанидов Ln^{3+} , имеющих аналогичные размеры ионов, исследованы некоторые реакции хлорида диарилвисмута с (N,C,N)-лигандами (2,6-(Me₂NCH₂)₂C₆H₃)₂BiCl (L₂BiCl) (схема 101) [6].

Комплекс L₂BiCl (L = 2,6-(Me₂NCH₂)₂C₆H₃) реагирует с *t*BuOK и L^{Me}OK с образованием алкоксида L₂Bi(OtBu) и арилоксида L₂Bi(OL^{Me}) соответственно, но аналогичная реакция с калиевой солью более объемного фенола L^{tBu}OK приводила к образованию ионного комплекса [L₂Bi]⁺[OL^{tBu}], в котором арилоксидный лиганд действует как анион внешней сферы. Замести-

тель Cl удаляется из L_2BiCl с помощью NaBPh₄, при этом образуется другой ионный комплекс $[L_2Bi]^+[BPh_4]^-$.

В работе [105] описаны синтез и молекулярные структуры производных висмута с O,C,O-лигандом (4-*t*Bu-2,6-[(EtO)₂P=O]₂C₆H₂)BiCl₂ и (4-*t*Bu-2,6-[(EtO)₂P=O]₂C₆H₂)BiCl (схема 102).

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

Соединение $(4-tBu-2,6-[(EtO)_2P=O]_2C_6H_2)BiCl_2$ кристаллизуется в триклинной пространственной группе с двумя парами кристаллографически независимых молекул на элементарную ячейку. Каждый атом висмута имеет искаженную октаэдрическую конфигурацию CCl_2O_2Bi с атомами хлора и кислорода в *транс*-положении. Внутримолекулярные расстояния Ві····О находятся в диапазоне от 2.378(5) до 2.414(5) Å. Производное фосфависмола (4-*t*Bu-2,6-[(EtO)₂P=O]₂C₆H₂)ВіСІ образует димер по типу "голова к хвосту" через межмолекулярные связи Ві····О (2.426(2), 2.278(3) Å) (схема 103).

Расчеты DFT показывают высокий *s*-характер неподеленных электронных пар на атомах висмута в $(4-tBu-2,6-[(EtO)_2P=O]_2C_6H_2)BiCl_2$ и $(4-tBu-2,6-[(EtO)_2P=O]_2C_6H_2)BiCl.$

Взаимодействие эквимолярных количеств ариллития LLi, $L = 2-(Me_2NCH_2)-6-(MeOCH_2)-C_6H_3$, с трихлоридом висмута привело к образованию соответствующего дихлорида арилвисмута LBiCl₂ с хорошим выходом (схема 104) [106].

Новый хелатирующий лиганд L, $2-(Me_2NCH_2)-6-(MeOCH_2)-C_6H_3$, получали из *м*-толуолнитрила. Последующее литирование этого лиганда бутиллитием в гексане и прибавление к реакционной смеси трихлорида висмута завершилось синтезом целевого продукта, строение которого доказано методом PCA.

В нескольких публикациях описан синтез и особенности строения производных висмута с

С,Е,С-лигандами (E = N, O, S). Так, несколько соединений циклических хлоридов и трифенилгермилпропионатов висмута(III), $[(C_6H_4CH_2)_2X]BiCl и$ $[(C_6H_4CH_2)_2X]BiOC(O)CH_2CH_2GePh_3$ (X = S или NR с атомом азота или серы в качестве дополнительного внутримолекулярного координирующего центра) были синтезированы из дилитиевого производного и хлорида висмута (схема 105) [107].

Результаты РСА показывают, что длины связи Bi–S или Bi–N в тиабисмоцине или азабисмоцине в восьмичленных циклах зависят от природы замещенных групп при атомах Bi. Замена атома хлора в азависмоцине и тиависмоцине на трифенилгермилпропионовую группу (Ph₃GeCH₂CH₂COO) приводит к удлинению связей Bi–N и Bi–S. Обнаружено, что соединения проявляют более высокую антипролиферативную активность в отношении клеток карциномы желудка, чем у цисплатина. Более того, наблюдается усиление антипролиферативной активности, когда атом хлора бисмоциновых соединений заменяется на трифенилгермилпропионовый заместитель.

Несколько других соединений диоргановисмута(III), например $[(C_6H_4CH_2)_2S]$ ВіХ на основе гетероциклического каркаса типа бабочки — тетрагидродибензо[c,f][1,5]-тиависмоцина (схема 106) также были получены и структурно охарактеризованы [108].

Схема 106.

Реакция между дилитиевым производным бис(2-бромбензил)сульфида с трибромидом висмута в мольном соотношении 1 : 1 привела к образованию (($C_6H_4CH_2$)₂S)BiBr. Дальнейшие обменные реакции [($C_6H_4CH_2$)₂S]BiBr с KI, AgNO₃ и AgOTf, соответственно, дали соединения гипервалентного висмута [($C_6H_4CH_2$)₂S]BiX (X = I, ONO₂ и OTf). Во всех соединениях атом серы внутримолекулярно координирован с висмутом, межмолекулярные взаимодействия X…HC, Bi…Ar и Bi…O приводят к образованию полимерных цепей в кристаллах.

В другой работе этих авторов сообщается о синтезе бромидов диоргановисмута(III) [(C₆H₄CH₂)₂NR]BiBr

 $(R = C_6H_5CH_2, C_6H_5CH_2CH_2$ и MeOCH₂CH₂), содержащих гетероциклический каркас дибензо[1,5]азависмоцина, из соответствующего дибромида (2-Br-C₆H₄CH₂)₂NR последовательными реакциями, включая *орто*-литирование и обработку дилитиевого производного бромидом висмута в молярном соотношении 1 : 1 (Схема 107) [109].

Дальнейшие обменные реакции между бромидами и соответствующими галогенидами металлов или фторидом аммония (схема 107) приводили к образованию $[(C_6H_4CH_2)_2NR]BiX$, где R = $= C_6H_5CH_2$, X = Cl, I; R = C_6H_5CH_2CH_2, X = Cl, I; и R = MeOCH_2CH_2, X = F, Cl и I. Все десять соединений были охарактеризованы методами ЯМР и PCA. Сильные трансаннулярные взаимодействия N \rightarrow Bi наблюдались во всех исследованных галогенидах диоргановисмута(III). Молекулы связаны в димеры сильными взаимодействиями Ві… π -арен в [(C₆H₄CH₂)₂N(CH₂CH₂OMe)]ВіВг, [(C₆H₄CH₂)₂N(CH₂C₆H₅)]ВіСІ и [(C₆H₄CH₂)₂N-(CH₂CH₂OMe)]ВіІ (около 3.50 Å) и взаимодействиями Ві…Х в [(C₆H₄CH₂)₂N(CH₂C₆H₅)]ВіВг, [(C₆H₄CH₂)₂N(CH₂C₆H₅)]ВіІ и [(C₆H₄CH₂)₂N-(CH₂CH₂C₆H₅)]ВіІ и [(C₆H₄CH₂)₂N-(CH₂CH₂C₆H₅)]ВіІ.

Два прекурсора асимметричного тридентатного C,E,C-хелатирующего лиганда 1-Br-2-[(2'-BrC₆H₄CH₂E)CH₂]C₁₀H₆ (E = O, S) были получены с большим выходом (схема 108) [110].

После их литирования бутиллитием и обработки треххлористым висмутом получены два хлорида гипервалентного висмута с асимметричным C,E,Cхелатным лигандом (C₆H₄CH₂OCH₂C₁₀H₆)BiCl и $(C_6H_4CH_2SCH_2C_{10}H_6)BiCl (E = O, S).$ Рентгеноструктурный анализ соединений выявил, что донорные атомы (O, S) сильно координированы с атомами висмута. Отметим, что некоторые из соединений висмута с С, Е, С-лигандами являются эффективными катализаторами различных реакций органического синтеза. Например, стабильный на воздухе трифлатный комплекс органовисмута { $[(C_6H_4CH_2)_2O]Bi(H_2O)\}^+$ [OTf]⁻ с дибензо[1,5]оксависмоциновым каркасом проявляет высокую каталитическую активность по отношению к открытию кольца в реакциях эпоксидов в водных средах с ароматическими аминами при комнатной температуре (схема 109) [111].

 $((C_6H_4CH_2)_2O)BiCl$

ArNH₂ +
$$O$$
 Ph $\xrightarrow{(5 \text{ MOI. }\%)}$ Ar N Ph

Cat = $[((C_6H_4CH_2)_2O)Bi(H_2O)]^+[OTf]^-$ Схема 109.

Этот катализатор демонстрирует хорошую стабильность, пригодность к регенерации и повторному использованию. Каталитическая система обеспечивает простой и эффективный способ синтеза β-аминоспиртов с выходом до 93%.

В другой работе сообщается о синтезе двухъядерных органовисмутовых комплексов $\{[(C_6H_4CH_2)_2NR]Bi\}_2E$ (E = O, S; R = *t*Bu, Cy, Ph) с двумя дибензо[1,5]азависмоциновыми каркасами, сшитыми через атом серы или кислорода путем обработки хлоридов органовисмута гидроксидом натрия или Na₂S · 9H₂O (схема 110) [112].

Комплексы $\{[(C_6H_4CH_2)_2NR]Bi\}_2E$ показывают высокую каталитическую эффективность в синтезе циклических карбонатов из 2-(хлорме-

тил)оксирана и CO₂, наибольшую активность из которых проявляет комплекс $\{[(C_6H_4CH_2)_2NtBu)Bi]_2S$ (схема 111).

$$Cat = [((C_6H_4CH_2)_2NtBu)Bi]_2S$$

Схема 111.

По сравнению с их предшественниками хлоридом $[(C_6H_4CH_2)_2NR]BiCl$, метоксидом $[(C_6H_4CH_2)_2NtBu]BiOMe$ И метантиолатом $[(C_6H_4CH_2)_2NtBu]BiSMe,$ которые являются одноядерными органовисмутовыми комплексами, лвухъялерные комплексы органовисмута показывают более высокую каталитическую активность. Однако комплексы с кислородным мостиком $[((C_6H_4CH_2)_2NR)Bi]_2O$ не стабильны на воздухе и теряют свою каталитическую эффективность изза гидролиза или адсорбции СО₂ (с образованием карбонатов органовисмута в последнем случае). Тем не менее двуядерные комплексы органовисмута с серным мостиком $\{[(C_6H_4CH_2)_2NR]Bi\}_2S$ очень устойчивы на воздухе и могут применяться при синтезе циклических карбонатов (в присутствии Bu₄NI) через различные виды эпоксидов, демонстрируя удовлетворительную эффективность и селективность.

Ионные комплексы, содержащие C,S,C-лиганды, проявляют высокую каталитическую активность в реакциях Манниха для получения α , β ненасыщенных кетонов [113]. Прекурсором для получения катализатора является хлорид органовисмута [(C₆H₄CH₂)₂S]BiCl, который синтезируют из лиганда в форме бабочки с серой, *н*-BuLi и треххлористого висмута в диэтиловом эфире. Комплекс [(C₆H₄CH₂)₂S]BiCl содержит тридентатный лиганд, в котором атом серы имеет две пары электронов: одна координируется с центром висмута, а другая свободна. Из этого соединения были синтезированы комплексы с противоанионом общего вида {[(C₆H₄CH₂)₂S]Bi(H₂O)}⁺X⁻ (X⁻ = ClO₄⁻, BF₄⁻, OSO₂C₄F₉⁻, OSO₂C₈F₁₇⁻), которые показывали

 BF_4 , $OSO_2C_4F_9$, $OSO_2C_8F_{17}$), которые показывали высокую электроноакцепторную способность и проявляли свойства эффективных катализаторов в реакции Манниха (схема 112).

Схема 112.

При этом наблюдается высокая диастереоселективность, продукты *транс*-конформации выделяются из реакционной смеси с выходом до 99%.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

765

N,C,N-хелатные комплексы висмута с объемными замещенными *бис*(дифенил(арилимино) фосфорано)метановыми заместителями $H_2C(Ph_2PN-Dipp)_2$ могут быть получены из трихлорида висмута и соответствующих соединений лития (схема 113) [114].

Комплексы охарактеризованы с помощью РСА и ЯМР-исследований. Обнаружено, что дианионный комплекс имеет редкий структурный мотив формальной двойной связи углерод-висмут(III).

Во многих работах, посвяшенных синтезу арильных производных трехвалентного висмута, в качестве исходного органического соединения металла используют оксиды арилвисмута, содержащие в своем составе тридентатные арильные лиганды. Так, взаимодействие RBiCl₂, (R = 2,6- $MeN(CH_2CH_2)_2NCH_2]_2C_6H_3)$ с КОН приводит к образованию оксида цикло-R2Bi2O2 (схема 114) [115]. Циклический оксил способен улавливать газообразный CO₂ с образованием "RBiCO₃". Реакция дихлорида RBiCl₂ с этиленгликолем, пинаколом или пирокатехином ($CatH_2$) в присутствии КОН приводит к образованию 2-органо-1,3,2-диоксависмоланов RBi(OCH₂)₂, RBi(OCMe₂)₂ и к 2-органо-1,3,2-диоксависмолу RBi(Cat) соответственно.

Строение полученных соединений исследовано методами ЯМР-спектроскопиии и РСА. Выявлено, что органическая группа R действует как хелатный N,C,N-лиганд. Непланарность пятичленных хелатных циклов BiC₃N объясняется внутримолекулярными взаимодействиями N \rightarrow Bi. Молекулы соединений R₂Bi₂O₂, RBi(OCH₂)₂ и RBi(Cat), независимо от природы оксолиганда, имеют искаженную квадратно-пирамидальную форму.

Реакция висмуторганического оксида (LBiO)₂ (L = $[2,6-\delta uc$ (диметиламино)метил]фенил) с борорганическими кислотами (1 : 4 мольн.) дает гетеробороксины LBi[(OBR)₂O], R = Ph, 4-CF₃C₆H₄ и Fc (схема 115) [116].

Схема 115.

Соединения охарактеризованы методами элементного анализа и ЯМР-спектроскопии. Их структура описана как в растворе (исследования ЯМР), так и в твердом состоянии. По данным РСА, все комплексы содержат центральный фрагмент BiB₂O₃, неароматический характер которого подтвердили DFT-расчетами. Синтез и строение висмагетеробороксинов общей формулы LBi[(OBR)₂O] с N,C,N-хелатирующим лигандом L = $2,6-(Me_2NCH_2)_2C_6H_3$ (схема 116) описаны в [117]. Целевые соединения получали из оксида (LBiO)₂ и соответствующей борорганической кислоты (1 : 4 мольн.).

в различных комбинациях

Схема 116.

Гетеробороксин LBi[(OBR)₂O], содержащий донорную группу (R = 4-пиридил) в борной кис-

лоте, был синтезирован по аналогичной схеме (схема 117).

Полученные соединения были охарактеризованы методами многоядерной ЯМР-спектроскопии и РСА.

Взаимодействием N,C,N-внутримолекулярнокоординированного оксида висмута(III) (LBiO)₂, где L = $2,6-(Me_2NCH_2)_2C_6H_3$), с (HO)SiPh₂OSiPh₂(OH) при молярном соотношении 1 : 2 получен *цикло*-LBi[(OSiPh₂)₂O], содержащий шестичленный цикл BiSi₂O₃ (схема 118) [118].

Схема 118.

Альтернативно, *цикло*-LBi[(OSiPh₂)₂O] может быть получен из дигидроксида дифенилолова Ph₂₋Si(OH)₂ и (LBiO)₂ при молярном соотношении 4 : 1.

Соединение $(LBiO)_2$ реагирует с циклосилоксаном $(Me_2SiO)_3$ с образованием шестичленного висмутсилоксана *цикло*-LBi(OSiMe_2)_2O (схема 119).

Соединения были охарактеризованы с помощью элементного анализа, спектроскопии ЯМР ¹H, ¹³C, ²⁹Si и PCA.

Для гетеробороксинового комплекса висмута(III) LBi[(OBDipp)₂O], полученного из оксида (LBiO)₂, $R = 2,6-(Me_2NCH_2)_2C_6H_3$, и замещенной борной кислоты (схема 120), были получены кристаллы с сольватной молекулой бензола. Обнаруженная непланарность бензольного кольца в кристалле сольвата хелатного комплекса не была поддержана DFT-D квантово-химическими расчетами [119]. Наблюдаемая изогнутая структура бензола на самом деле является наложением (тепловое среднее) ансамбля термонаселенных бензольных структур в комплексе.

Схема 120.

Беспрецедентный перенос арильной группы от бора на атом висмута наблюдается в реакции гетеробороксинов общей формулы LBi[(OBR)₂O] (L = 2,6-(Me₂NCH₂)₂C₆H₃; R = Ph, 4-CF₃C₆H₄, 4-BrC₆H₄) с соответствующей борной кислотой RB(OH)₂ (схема 121) [120].

Схема 121.

Были получены ионные пары $[LBiR]^+$ - $[R_4B_5O_6]^-$ (R = Ph, 4-CF₃C₆H₄, 4-BrC₆H₄), строение фенил-содержащего комплекса доказано методом PCA.

Взаимодействие димерного оксида висмута(III) (LBiO)₂ ($\mathbf{R} = (Me_2NCH_2)_2C_6H_3$) с уксусной кислотой приводило к образованию ацетата LBi(OAc)₂ [121]. При использовании трифторметансульфоновой кислоты был получен гидроксид LBi(OH)(OTf) (схема 122).

Схема 122.

Комплексы LBi(OAc)₂ и LBi(OH)(OTf) охарактеризованы с помощью масс-спектрометрии, ЯМР ¹H-, ¹³C-спектроскопии и PCA. В кристалле LBi(OH)(OTf) присутствуют слабосвязанные димерные звенья LBi(μ -OH)₂BiL, а трифлат-анионы связаны с мостиковыми фрагментами OH посредством водородных связей, наряду с взаимодействиями Bi···O, приводящими к бесконечной цепочке супрамолекулярной структуры LBi(OH)-(OTf).

Реакции (LBiO)₂, где R = $(Me_2NCH_2)_2C_6H_3$, с фосфорорганическими кислотами при молярном соотношении 1 : 4 давали фосфонаты органовисмута LBi[OP(*t*Bu)(O)(OH)]₂ (схема 123) [122]. При молярном соотношении 1 : 2 имеет место образование [LBi(O(O)P(*t*Bu)O)]₃. Реакция [LBi(O(O)P(*t*Bu)O)]₃ с EtP(O)(OH)₂ приводит к смешанному фосфонату LBi[OP(Et)(O)(OH)][OP(*t*Bu)(O)(OH)].

$[LBi(O(O)P(tBu)O)]_3$

Схема 123.

Все соединения были охарактеризованы элементным анализом, масс-спектрометрией, ¹H-, ¹³C-, ³¹P-спектроскопии и ИК-спектроскопией. Вторичный фосфонат LBi[OP(*t*Bu)(O)(OH)]₂ состоит из слабосвязанных димерных единиц через водородные мостики типа PO–H···O=P. С другой стороны, комплекс [LBi(O(O)P(*t*Bu)O)]₃ является тримером с центральным 12-членным циклом, сформированым тремя блоками LBi(O(O)P(*t*Bu)O) через межмолекулярные контакты Bi···O=P.

Этот же оксид (LBiO)₂ реагирует с оксидами мышьяка As_2O_5 и As_2O_3 с образованием молекулярных соединений (LBi)₃(AsO₄)₂ и (LBi)₂(As₂O₅) (схема 124) [123].

Схема 124.

Полученные комплексы охарактеризованы с помощью масс-спектрометрии, спектроскопии 1 Н и 13 С ЯМР, а в случае (LBi)₂(As₂O₅) – РСА.

В [124] сообщается о синтезе N→Bi внутримолекулярно координированного селенита висмута [LBi(O(O)SeO)]₃ (схема 125).

Висмуторганический селенит [LBi(O(O)SeO)]₃ является редким примером смешанного оксида селена и висмута, который охарактеризован спектроскопией ЯМР ¹H, ¹³C, ⁷⁷Se, ИК-спектроскопией и РСА.

Реже в синтезе производных трехвалентного висмута с тридентатными лигандами используют сульфиды арилвисмута, которые получают из ди-

хлоридов арилвисмута и сульфидов натрия или лития. Так, взаимодействием дихлорида арилвисмута(III) LBiCl₂, содержащим O,C,O-хелатирующий лиганд L = 2,6-(*t*BuOCH₂)₂C₆H₃, с сульфидом натрия в смеси толуол-вода синтезирован сульфид висмута (LBiS)₂ (схема 126), стабильный при -30° С, но разлагающийся при комнатной температуре [125].

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

Сульфид (LBiS)₂ охарактеризован элементным анализом, масс-спектрометрией, ЯМР ¹Н- и ¹³С-спектроскопией и РСА.

Сульфид органовисмута(III) (LBiS)₂ (L = 2,6- $(Me_2NCH_2)_2C_6H_3$), полученный из дихлорида арилвисмута и сульфида лития, также является димерным в твердом состоянии (схема 127) [126].

Тем не менее наличие в растворе мономерной структуры с концевыми связями Bi-S было доказано [2+2]-реакцией циклоприсоединения с CS_2 , приводящей к образованию молекулярного тритиокарбоната $LBi(S_2CS)$. Оба соединения были охарактеризованы в твердом состоянии методами дифракции рентгеновских лучей на монокристаллах и ИК-спектроскопии. Дисульфид углерода может быть удален из тритиокарбоната $LBi(S_2CS)$ при его нагревании до 160°C с восстанавлением до исходного сульфида. В растворе тритиокарбонат $LBi(S_2CS)$ находится в равновесии с исходным сульфидом, но это равновесие может быть сдвинуто влево путем добавления избытка сероуглерода.

Сульфид арилвисмута (LBiS)₂ также может быть использован в элементоорганическом синтезе. Так, (LBiS)₂, содержащий NCN-хелатирующий лиганд L = 2,6-(Me₂NCH₂)₂C₆H₃, реагирует с одним молярным эквивалентом элементарной серы с образованием циклического *бис*(пентасульфида) LBi(μ -S₅)₂BiL с центральным двенадцатичленным циклом Bi₂S₁₀ (схема 128) [127].

Схема 128.

Соединение LBi $(\mu$ -S₅)₂BiL получено в виде стабильных оранжевых кристаллов и охарактеризовано с помощью PCA, ИК- и Рамановской спектроскопии.

Реакционная способность комплексов висмута с полидентатными лигандами мало изучена, за исключениемреакцийзамещения, которыеболее всего представлены реакциями органических галогенидов висмута с серебряными солями различных кислот. Например, из 12-хлоро-6-циклогексил-5,6,7,12-дибензо[1,5]азависмоцина и трифлата серебра был получен соответствующий трифлат гетероциклического соединения висмута $[(C_6H_4CH_2)_2NCy]Bi(OTf)$ (схема 129) и определена его кристаллическая структура [128].

((C₆H₄CH₂)₂NCy)Bi(OTf)

 $[((C_6H_4CH_2)_2NCy)Bi]^+BF_4^-$

Схема 129.

Центральная висмутсодержащая часть комплекса обладает искаженной псевдотригональнобипирамидальной структурой. Атомы углерода и неподеленная электронная пара атома Ві располагаются в экваториальной плоскости, в то время как атомы азота и кислорода расположены в апикальных положениях. Расстояния Ві-С составляют 2.216(9) и 2.219(9) Å. Угол СВіС составляет 96.3(3)°, а угол NBiO равен 151.7(2)° (а не 180°). Расстояние Ві-N составляет 2.430(6) Å, циклогексильная группа разупорядочена по двум положениям. По этой же схеме синтезирован стабильный на воздухе тетрафторборат гетероциклического арилвисмута [$(C_6H_4CH_2)_2NCy$]Bi}⁺BF₄⁻ (схема 129), который проявляет каталитическую эффективность в реакциях аллилирования различных альде-гидов тетрааллилоловом в водном метаноле (схема 130), давая соответствующие гомоаллильные спирты с превосходной селективностью [129]. Такая активность комплекса {[$(C_6H_4CH_2)_2NCy$]Bi}⁺BF₄⁻ близка к каталитической активности ранее описанного [2-(MeOCH₂)C₆H₄]₂Bi(OTf) (схема 94) [97].

Аналогично получен воздухостойкий перфтороктансульфонат органовисмута $\{[(C_6H_4CH_2)_2S] Bi(H_2O)$ }⁺[OSO₂C₈F₁₇]⁻, обладающий высокой каталитической активностью и возможностью повторного использования в синтезе (Е)-α,β-ненасыщенных кетонов благодаря высокоселективперекрестной конденсации кетонов ной И альдегидов в воде [130]. Стабильный на воздухе катионный висмуторганический комплекс, полученный из перхлората серебра и хлорида диарилвисмута, использовали в качестве высокоэффективного катализатора прямой диастереоселективной реакции Манниха в воде (схема 112) [131].

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

Органовисмутовый комплекс 5H-дибензо[1,5]оксависмоцин-12(7H)-ил нитрат [($C_6H_4CH_2$)₂-O]BiONO₂ синтезировали прибавлением раствора хлорида арилвисмута в ТГФ к раствору нитрата серебра в воде [132]. Обнаружено, что этот комплекс проявляет противоопухолевую активность и имеет большой потенциал в лечении рака.

Реакции бромидов органилвисмута $[(C_6H_4CH_2)_2NR]$ BiBr (R = $C_6H_5CH_2$, $C_6H_5CH_2CH_2$) и соответствующих солей серебра привели к образованию соединений висмута общей формулы $[(C_6H_4CH_2)_2NR]$ BiX (схема 131) [133].

Полученные соединения катализируют реакции окисления тиофенола в дифенилдисульфид с использованием воздуха в качестве окислителя в циклогексане при температуре ниже 100°С, что обеспечивает высокие скорости реакции (100% конверсии через 5 ч).

Аналогично полученный стабильный на воздухе перфтороктилсульфонат органовисмута(III) $[(C_6H_4CH_2)_2NCy]BiOSO_2C_8F_{17}$ проявляет высокую каталитическую эффективность к реакции Манниха с ароматическими альдегидами и ароматическими аминами в воде (схема 132) [134] (как и его серасодержащие аналоги {[(C_6H_4CH_2)_2S]Bi(H_2O)}⁺X⁻ (X⁻ = ClO₄⁻, BF₄⁻, OSO_2C_4F₉⁻, OSO_2C_8F₁₇⁻), представленные на схеме 113).

Схема 132.

Этот катализатор также показывает хорошую рециркуляцию и возможность повторного использования в синтезе β-аминокетонов.

Из 12-хлор-6-фенил-дибензо[1,5]азависмоцина и перхлората серебра в тетрагидрофуране получен комплекс висмута 6-фенил-дибензо[1,5]азависмоцин-12(5Н)-ил перхлорат с выходом 93% [135]. По данным РСА, центральный атом имеет тригонально-бипирамидальное окружение с атомами кислорода и азота в аксиальных позициях и двумя атомами углерода и неподеленной электронной парой в экваториальных положениях. Длины связей Bi–C составляют 2.250(13), 2.204(12) Å, углы CBiC и NBiO равны 92.5(5)° и 154.0(3)° соответственно. Расстояние Ві \cdots N (2.388(10) Å) короче, чем в прекурсоре $C_6H_5N(CH_2C_6H_4)_2$ BiCl (2.607(5) Å).

Ряд гетероциклических карбоксилатов органовисмута(III) [$(C_6H_4)_2SO_2$]ВіОС(О)R (схема 133)

был синтезирован для определения влияния структуры карбоксилатного лиганда на липофильность и противогрибковую активность в отношении дрожжей *Saccharomyces cerevisiae* [136].

R = Ph, 1-Нафтил (1-С ₁₀H₇), 2-Нафтил (2-С ₁₀H₇), Стирил (Ph–CH=CH–), 9-Антраценил (9-G₄H₉), 4-NH₂–C₆H₄, 4-AcO–C₆H

Схема 133.

Взаимодействием дихлорида арилвисмута LBiCl₂ (L = 2,6-(Me₂NCH₂)₂C₆H₃) с Na₂CO₃ или Ag₂SO₄ (мольное соотношение 1 : 1) получены карбонат RBiCO₃ и сульфат арилвисмута RBiSO₄

соответственно (схема 134) [137]. Динитрат арилвисмута $RBi(NO_3)_2$ синтезировали из дихлорида арилвисмута и нитрата серебра при мольном соотношении исходных реагентов 1 : 2.

$$LBiCO_{3}$$

$$Ag_{2}SO_{4}$$

$$-2AgCl$$

$$LBiSO_{4}$$

$$LBiCl_{2}$$

$$2AgNO_{3}$$

$$LBiCl_{2}$$

$$-2AgCl$$

$$LBi(NO_{3})_{2}$$

$$LBiCl_{2}$$

$$LBi(NO_{3})_{2}$$

$$L=2,6-(Me_{2}NCH_{2})_{2}C_{6}H_{3}$$

Схема 134.

Молекулярные структуры $RBiCO_3 \cdot 0.5CH_2Cl_2$, $RBiSO_4$, $RBi(NO_3)_2 \cdot H_2O$ были установлены методом PCA. Карбонат и сульфат имеют полимерную структуру на основе мостиковых оксоанионов, тогда как динитраты являются димерами с мостиковыми и концевыми нитрат-анионами. Из дихлорида арилвисмута с арильным NCOлигандом $L = 2-(Me_2NCH_2)-6-(tBuOCH_2)C_6H_3$ и солей серебра были синтезированы два ионных комплекса висмута вида [LBiCl]⁺X⁻ (схема 135) [138].

Схема 135.

Если кристаллы комплексов LBiCl₂ и [LBiCl]⁺-(OTf)⁻ представляют собой в твердом состоянии димеры, то ионный комплекс [LBiCl]⁺(CB₁₁H₁₂)⁻ состоит из мономерных структурных единиц. Все изученные соединения охарактеризованы с помощью спектроскопии ЯМР ¹Н и ¹³С, ESI массспектрометрии и методом дифракции рентгеновских лучей на монокристаллах.

Нитрат диарилвисмута с потенциальными координирующими центрами в арильных лигандах $[(C_6H_4CH_2)_2NCy]Bi(NO_3)$ получен из хлорида диарилвисмута и нитрата серебра в воде [139]. В кристалле атомы висмута имеют тригонально-бипирамидальное окружение с атомами N (Bi···N 2.495(3) Å) и О в апикальных позициях и двумя арильными лигандами и неподеленной электронной парой в экваториальной плоскости. Нитратная группа является несимметричным бидентатным лигандом (Bi-O 2.416(3) и 3.0451(4) Å).

Обработка N,C,N-хелатного дихлорида висмута LBiCl₂ (L = 2,6-(R-N=CH)₂C₆H₃, R = *t*Bu, 2,6-Me₂C₆H₃) одним мольным эквивалентом Ag[CB₁₁H₁₂] приводит к образованию ионных пар [LBiCl]⁺[CB₁₁H₁₂]⁻ [140]. Аналогичная реакция C,N-хелатного аналога L'BiCl₂ (L' = 2-(Dipp– N=CH)-4,6-(*t*Bu)₂C₆H₂) дает соединение [L'BiCl]⁺-[CB₁₁H₁₂]⁻ (схема 136).

При обработке комплекса $[LBiCl]^+[CB_{11}H_{12}]^-$ (L = 2,6-(*t*Bu-N=CH)₂C₆H₃) другим эквивалентом Ag[CB₁₁H₁₂] был выделен аддукт исходного материала с Ag[CB₁₁H₁₂], а именно $[(2,6-(tBu-N=CH)_2C_6H_3)BiCl]^+[Ag(CB_{11}H_{12})_2]^-$. Кристаллы данного ионного соединения разлагаются при дневном свете, судя по спектрам ¹H ЯМР, до исходных соединений.

₃ [(2-Et₂NCH₂C₆H₄)₂Bi]₂CO₃ Схема 137.

Расстояния Ві $\cdot\cdot\cdot$ O с CH₂OCH₂-группой (2.587(4) и 2.618(3) Å) указывают на сильную координацию О \rightarrow Ві в комплексе.

Аналогично получен другой карбонат диарилвисмута [$(2-Et_2NCH_2C_6H_4)_2Bi$]₂CO₃ (схема 138), в котором мостиковая карбонатная группа связывает две группы ($2-Et_2NCH_2C_6H_4$)₂Bi. Выход атомов висмута и *ипсо*-атомов углерода из плоскости карбонатной группы составляет 0.323(1) и 0.330(9) Å соответственно. Арильные лиганды находятся в *транс*-положении относительно квазиплоских групп (CBi) $_2$ CO $_3$ [142]. Атом металла сильно координируется на атом N одной аминогруппы (Bi···N 2.739(6) Å), в то время как атом N другой аминогруппы слабо связан с атомом металла (Bi···N 3.659(7) Å). С учетом этих внутримолекулярных взаимодействий можно считать, что общая координационная геометрия у висмута становится искаженной квадратно-пирамидальной.

РеакциямеждуN,C,N-хелатнымарилвисмутом(I) [LBi]_n, приготовленным *in situ* из LBiCl₂ [L = 2,6- $C_6H_3(CH_2NMe_2)_2$] и K[B(втор-Bu)₃H], и диорганодисульфидами ArSSAr приводит к образованию висмуторганических соединений LBi(SAr)₂ (Ar = 2-пиридил, 4-метилтиазол-2-ил, тиофен-2-ил, 4-*трет*бутил-1-изопропил-1Н-имидазол-2-ил, 1-фенил-1Н-тетразол-5-ил- 2-аминофенил) (схема 138) [143].

Схема 138.

Соединения охарактеризованы спектроскопией ЯМР ¹Н и ¹³С, а в случае 2-пиридильного, 4-метилтиазол-2-ильного и 1-фенил-1Н-тетразол-5-ильного производных – с помощью РСА. Комплекс на основе *о*-аминотиофенола неустойчив в растворе и разлагается до соединения $LBi[S(NH)C_6H_4]$, содержащего пятичленное кольцо $BiSNC_2$, и 2-аминотиофенола (схема 139).

Попытки селективного расщепления связи Bi-N в этом кольце соляной или уксусной кислотами приводили только к выделению LBiCl₂ или диацетата LBi(OAc)₂ и 2-аминотиофенола.

N,C,N-пинцерный комплекс дихлорида арилвисмута LBiCl₂, где L = 2,6-(Me₂NCH₂)₂C₆H₃, реагирует с двумя эквивалентами калиевых солей фенолов (2,6-Me₂C₆H₃O)К и (2,6-*i*Pr₂C₆H₃O)К с образованием ожидаемых диарилоксидов висмута LBi(OAr^R)₂, где Ar^R = 2,6-R₂C₆H₃, R = Me, *i*Pr (схема 140) [144].

Схема 140.

Однако аналогичная реакция с двумя эквивалентами ($Ar^{Bu}O$)K, где $Ar^{Bu} = 2,6-tBu_2C_6H_3O$, приводит к образованию фенола $Ar^{Bu}OH$ и темнооранжевого ароксида арилвисмута $LBi(C_6H_2tBu_2O)$, являющимся продуктом активации *пара*-CH-связи (схема 141).

Комплекс LBi(C₆H₂tBu₂O), где L = 2,6-(Me₂NCH₂)₂C₆H₃, при действии эквимолярного количества тетрафторбората триэтиламмония в тетрагидрофуране превращается в ионный комплекс [LBi(C₆H₂tBu₂OH)]⁺[BPh₄]⁻ (схема 142).

Весьма интересны реакции комплексов висмута, содержащие тридентатные лиганды, с малыми молекулами. Так, были исследованы реакции пинцерного комплекса висмута LBi($C_6H_2tBu_2O$), где L = 2,6-(Me₂NCH₂)₂C₆H₃, с CO₂ и COS в ацетонитриле (схема 142) [145]. Показано, что красная окраска раствора LBi($C_6H_2tBu_2O$) в течение 1 ч меняется на желтую, присущую растворам оксиарилкарбоксильных комплексов LBi[O(E)C- $C_6H_2tBu_2O$], где E = O, S соответственно. В этих реакциях введения CO₂ и COS по связи Bi-C наблюдаются генерация новых дианионов, которые имеют хиноидный характер, сходный с оксиарилдианионным лигандом в LBi($C_6H_2tBu_2O$).

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

Силилгалогениды и псевдогалогениды R_3SiX (X = Cl, CN, N₃; R = Me, Ph) реагируют с LBi(C₆H₂*t*Bu₂O), где L = 2,6-(Me₂NCH₂)₂C₆H₃, присоединяя X с образованием комплексов LBiX(C₆H₂*t*Bu₂OSiR₃) (схема 142), в которых имело место увеличение KЧ центрального атома металла до пяти. Они реагируют с дополнительным количеством R_3SiX с образованием комплексов LBiX₂, L = 2,6-(Me₂NCH₂)₂C₆H₃ и 2,6-*t*Bu₂C₆H₃-OSiR₃. Реакция LBi(C₆H₂*t*Bu₂O) [L = 2,6-(Me₂NCH₂)₂C₆H₃] с иодом протекает по схеме окислительного сочетания с образованием дииодида Ar'BiI₂ и 3,3',5,5'-тетра-*трет*-бутил-4,4'дифенохинона (схема 142).

Красный ацетонитрильный раствор оксиарильного комплекса LBi(C₆H₂/Bu₂O), где L = = 2,6-(Me₂NCH₂)₂C₆H₃, реагирует с NO при 1 атм. с образованием темно-зеленого раствора, содержащего несколько идентифицированных с помощью спектроскопии ЯМР ¹Н продуктов (схема 143). Реакции, проводимые при низкой температуре (-35°C) и со стехиометрическими количествами газа NO, дали сложные смеси продуктов [146].

Схема 143.

При доведении температуры реакционной смеси до комнатной, удаления растворителя и перекристаллизации остатка из сырого ацетонитрила были выделены желтые кристаллы $[LBi(OR)]_2O$ (схема 143). Из сухого ацетонитрила были выделены желтые кристаллы $LBi(OR)_2$ ($R = -N = C_6H_2tBu_2 = O$).

АРИЛЬНЫЕ ПРОИЗВОДНЫЕ ВИСМУТА(V)

Сообщалось о галогенировании арильных соединений трехвалентного висмута бромом, хлористым сульфурилом и дифторидом ксенона. Так, из три-*n*-толилвисмута и брома в растворе четыреххлористого углерода получен дибромид три-*п*-толилвисмута [147]. Тригалогениды диарилвисмута получить указанным способом невозможно, однако в случае присутствия при атоме висмута N,C-хелатного лиганда L (L = (2-Dipp-N=CH)C₆H₄, Dipp = 2,6-ди-изопропилфенил) и обработке исходного хлорида LBi(Ph)Cl хлористым сульфурилом имеет место стабилизация комплекса LBi(Ph)Cl₃, который был выделен и структурно охарактеризован (схема 144) [11].

Отметим, что аналогичным образом было синтезировано и производное LBiPh₂Cl₂.

Об эффективном фторировании дифторидом ксенона дифениларилвисмута $[2-(Me_2NCH_2)C_6H_4]$ -BiPh₂, содержащего в *орто*-положении арильного лиганда диметиламинометильный заместитель (схема 145), сообщалось в [148].

Схема 145.

Соединения $[2-(Me_2NCH_2)C_6H_4]_2BiN_3$ и $[2-(Me_2NCH_2)C_6H_4]Bi(N_3)_2$ представляют собой редкие примеры азидов висмута [14]. В то время как

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 12 2021

779

в кристалле моноазида $[2-(Me_2NCH_2)C_6H_4]_2BiN_3$ присутствовали мономерные молекулы, то диазид $[2-(Me_2NCH_2)C_6H_4]Bi(N_3)_2$ представлен в виде димера с двумя типами соединения азидогрупп. Кроме того, слабые ван-дер-ваальсовы взаимодействия между этими центросимметричными димерами приводят к цепочечной структуре в кристалле.

Весьма обширным классом органических соединений висмута являются дикарбоксилаты триорганилвисмута, которые представлены прежде всего арильными производными. Известно, что дикарбоксилаты триарилвисмута успешно получают по реакции окислительного присоединения из триарилвисмута и карбоновой кислоты в диэтиловом эфире в присутствии гидропероксидов [149—156]. Синтез дикарбоксилатов триарилвисмута проводили, как правило, с использованием гидропероксида третичного бутила в диэтиловом эфире (схема 146).

$$Ar_3Bi + tBuOOH + 2HOC(O)R \longrightarrow Ar_3Bi(OC(O)R)_2 + H_2O + tBuOH$$

Схема 146.

Однако в случае триарилвисмута, содержащего в своем составе потенциальные координирующие центры, например *mpuc*(2-метокси-5-бромфенил)висмута, целесообразнее было использовать в реакции в качестве окислителя пероксид водорода [31]. Целевые продукты выделяли из реакционной смеси с выходом не менее 70%.

Серия дикарбоксилатов трифенилвисмута общей формулы (RCOO)₂BiPh₃ (схема 147) получена по этой же схеме с целью определения их антилейшманиозной активности [157, 158].

BiPh₃

$$HO \longrightarrow O_{2} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & O \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & Ph \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph & Ph \\ Q \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \\ Ph & Ph \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \\ Ph & Ph \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \\ Ph & Ph \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \end{pmatrix} BiPh_{3} \qquad \begin{pmatrix} HO & O \\ Ph & Ph \end{pmatrix}$$

 $H_2O_2 \rightarrow (PCOO)$ P:Dh

Схема 147.

Показано, что они менее активны по сравнению с аналогичными производными сурьмы.

По той же схеме были синтезированы одиннадцать дикарбоксилатов трифенилвисмута на основе функционализированных производных бензойной или салициловой кислот (схема 148), которые показали хорошую активность против лейшманиоза [159].

Подобная большая серия дикарбоксилатов тритолилвисмута (RCOO)₂BiTol₃ на основе функционализированных производных бензойной или салициловой кислот с *орто-*, *мета-* или *пара-*толильными лигандами была синтезирована аналогично [160]. Из них 15 были оценены на токсичность по отношению к промастиготам лейшмании и клеткам фибробластов человека, с десятью затем проводилась последующая оценка против амастигот паразитов. Наилучшая активность и селективность наблюдается у соединений висмута, содержащими *о-* и *м-*толильные лиганды.

Замена диэтилового эфира на изопропиловый спирт не изменяет схемы реакции. В этом случае из трифенилвисмута, карбоновой кислоты и пероксида водорода в растворе изопропанола были получены дикарбоксилаты трифенилвисмута (RCOO)₂BiPh₃, где R = 5-Br-2-OH-C₆H₃, 2OH $-C_6H_4$, 2,6-(OH)₂- C_6H_3 , 3-Me-2-NH₂ $-C_6H_3$, Ph, Me, с более высокими выходами, чем в известных способах синтеза целевых продуктов [161].

В основе другого метода получения дикарбоксилатов триарилвисмута лежит реакция замещения атомов галогена в дигалогенидах триарилвисмута. Именно по этой схеме были синтезированы дикарбоксилаты трифенилвисмута $Ph_3Bi[OC(O)R]_2$ ($R = C_6H_3F_2$ -3,5, $C_6H_4CF_3$ -4, C_4H_3S), которые получали смешением растворов дихлорида трифенилвисмута и натриевой соли кислоты в метаноле [162].

Из натриевых или калиевых солей *пара*- и *мета*пиридинкарбоновых кислот и дихлорида трифенилвисмута (схема 149) в растворе спирта были синтезированы соответствующие дикарбоксилаты трифенилвисмута [163].

Реакции полученных дикарбоксилатов трифенилвисмута с трифлатом серебра приводили к образованию координационных полимеров, в которых атомы серебра сшивают молекулы дикарбоксила-

тов в цепочку за счет координации атомов переходного металла с атомами азота пиридинкарбоксилатных лигандов.

Дикарбоксилат трифенилвисмута (4-FC₆H₄COO)₂BiPh₃ был выбран в качестве объекта для изучения фотохимической активности из-за его химической стабильности, малой токсичности и простоты синтеза в реакциях фотодеградации трех распространенных красителей [164]: метиленового синего, родамина В и метилового фиолетового. К раствору кислоты и метоксида натрия в метаноле прибавляли раствор дихлорида трифенилвисмута в толуоле, реакционную смесь перемешивали 2 ч при 25°С. Выход 66%. Показано, что комплекс обладает хорошей фотокаталитической способностью в деградации органических красителей под действием ультрафиолета или видимого света. Результат этого исследования может помочь в разработке новых фотокаталитических материалов.

В некоторых случаях эффективный синтез дикарбоксилатов триарилвисмута можно осуществить из триарилвисмута и карбоновой кислоты в присутствии триэтиламина (схема 150) [165].

Соединение $[(2-Me)(3-OMe)C_6H_3C(O)O]_2Bi(n-Tol)_3$ оказалось весьма эффективным против лейшманиоза.

Реакция дихлорида трифенилвисмута с лапахолом (**Lp**) в присутствии триэтиламина приводила к образованию биядерного соединения висмута (LpPh₃Bi)₂O, который был охарактеризован PCA [166]. Двухъядерный комплекс содержит два шестикоординированных атома висмута, соединенных через атом кислорода $(Lp)_2(Ph_3Bi)_2O$. Соединение ингибирует рост линии клеток хронического миелогенного лейкоза, причем комплекс примерно в 5 раз более активен, чем свободный лапахол.

Известен случай, когда дихлорид трифенилвисмута реагирует с карбоновой кислотой с образованием дикарбоксилата трифенилвисмута, например с салициловой кислотой (схема 151) [167].

Известно, что в дикарбоксилатах триарилвисмута реализуется внутримолекулярное взаимодействие атома висмута с карбонильными атомами кислорода — потенциальными координирующими центрами карбоксилатных лигандов, что позволяет отнести эти производные к комплексам высококоординированного висмута [152–172]. Прочность внутримолекулярных контактов Ві····O(=C), основой которых являются донорно-акцепторные взаимодействия, во многом определяется природой заместителей в арильных кольцах при атоме металла (влияют на акцепторные способности металла) и в органическом радикале остатка карбоновой кислоты (усиливают или ослабляют донорные свойства карбонильного кислорода). Показано, что внутримолекулярные расстояния Ві-О(=С) различаются между собой в большей степени: меньшему расстоянию Bi-O(=C) соответствует большая длина связи Ві-О, что свидетельствует о перераспределении электронной плотности при возникновении прочного донорно-акцепторного взаимодействия. Меньшим расстояниям Ві-О(=С) в соединениях (RCOO)₂BiAr₃ соответствует большая длина связи Ві-О, что свидетельствует о перераспределении электронной плотности при возникновении прочного донорно-акцепторного взаимодействия. Самые слабые внутримолекулярные взаимодействия наблюдаются в молекулах тех дикарбоксилатов триарилвисмута, в которых донорные способности карбонильного атома кислорода ослаблены из-за смещения электронной плотности, обусловленного наличием электроотрицательных заместителей в органическом радикале кислоты (-І-эффект). В молекулах дикарбоксилатов триарилвисмута с одинаковыми арильными заместителями при атомах висмута невалентные взаимодействия усиливаются с повышением донорных свойств карбонильного атома кислорода за счет +М-эффекта радикала. В молекулах дикарбоксилатов укорочение расстояний Ві-О(=С) коррелирует с увеличением одного из экваториальных углов CBiC (до 152.9°) со стороны внутримолекулярных контактов.

Дикарбоксилаты триарилвисмута могут быть использованы для получения других классов соединений, например в синтезе дисульфонатов триарилвисмута, когда диацетат трифенилвисмута при действии трифторметансульфоновой кислоты превращался в соответствующий дисульфонат (схема 152), весьма эффективный в реакциях гликозилирования при комнатной температуре. Этот промотирующий агент продемонстрировал преимущества перед большинством современных тиогликозидных активаторов, а именно высокую растворимость и стабильность к действию воздуха и света [173].

Ph₃Bi $\xrightarrow{2PhI(OAc)_2} CH_2Cl_2 CH_2Cl_2$ Ph₃Bi $\xrightarrow{T_{KOMH}, 10 \text{ q}} Ph_3Bi(OAc)_2 \xrightarrow{T_{KOMH}, 12 \text{ q}} Ph_3Bi(OTf)_2$ Cxema 152.

Ряд бис(аренсульфонатов) триарилвисмута синтезирован из трифенил-, *mpuc(мета*-толил)и *mpuc*(2-метокси,5-бромфенил)висмута и аренсульфоновой кислоты в эфире. В качестве окислителя использовали пероксид водорода, поскольку в присутствии *mpem*-бутилгидропероксида не наблюдалось образование целевого продукта. При соотношении исходных реагентов 1:2:1 (мольн.) из реакционной смеси выделяли дисульфонаты триарилвисмута Ph₃Bi(OSO₂C₆H₃Me₂-3,4)₂ [172], $(M-Tol)_{3}Bi(OSO_{2}C_{6}H_{3}Me_{2}-3,4)_{2}[171] \ \mu [(2-MeO)(5-1)] \ \mu [(2-MeO)(5-1$ Br)C₆H₃]₃Bi(OSO₂Ph)₂ [174] с выходом до 85%. Из данных РСА следует, что атомы висмута в молекулах дисульфонатов триарилвисмута имеют тригонально-бипирамидальную координацию с аренсульфонатными заместителями в аксиальных положениях. Относительно экваториального фрагмента С₃Ві аренсульфонатные группы в первых двух дисульфонатах имеют цис-ориентацию. Со стороны максимального экваториального угла СВіС (140.77(11)° и 133.69(17)°) наблюдаются внутримолекулярные контакты между центральным атомом Ві и атомами О аренсульфонатных групп (3.189(4), 3.122(3) и 3.244(6), 3.406(6) Å соответственно). Для третьего соединения также обнаруживаются внутримолекулярные контакты между атомом металла и атомами кислорода сульфонатных групп, однако расстояния Ві-О в двух кристаллографически независимых молекулах (3.265(4)-3.296(4) Å) несколько больше, чем в первых двух соединениях. Отметим, что подобная тенденция лигандов к проявлению бидентатных свойств характерна для дикарбоксилатов триарилвисмута [78]. Кроме того, в молекулах третьего дисульфоната присутствует внутримолекулярная координация атомов кислорода метоксиг-(Bi…OMe рупп на атом висмута 3.062(9)-3.215(9) Å).

Реакция *трис*(2-метокси,5-бромфенил)висмута с бензолсульфоновой кислотой (1 : 2 мольн.), проходящая в растворе диэтилового эфира в присутствии кислорода воздуха, сопровождалась образованием *бис*(бензолсульфоната) *трис*(5-бром-2-метоксифенил)висмута [174], который через 48 ч был выделен из реакционной смеси с выходом 7%. Очевидно, что в отсутствие пероксида роль окислителя триарилвисмута выполнял кислород воздуха.

Из дихлорида трифенилвисмута и трифлата серебра может быть получен *бис*(трифторметансульфонат) трифенилвисмута, реакции которого с донорными лигандами, такими как оксид трифенилфосфина, аминопиридин и бипиридил, приводят к образованию ионных комплексов с катионами пятикоординированного висмута (схема 153) [175]. $[Ph_{3}Bi(OPPh_{3})_{2}]^{2+}(OTf^{-})_{2}$ $Ph_{3}Bi(OTf)_{2} \xrightarrow{2Me_{3}P} [Me_{3}P-PMe_{3}]^{2+}(OTf^{-})_{2} + Ph_{3}Bi$ $\xrightarrow{2,2'-Bipy} [Ph_{3}Bi(2,2'-Bipy)(OTf)]^{+}(OTf^{-})$ $[Ph_{3}Bi(Me_{2}N-Py)_{2}(OTf)]^{+}(OTf^{-})$

Схема 153.

Этот синтетический метод имеет потенциал для широкого развития химии координационных соединений висмута.

Взаимодействием дибромида три-*n*-толилвисмута с перхлоратом серебра и его гидратом получены диперхлорат три-*n*-толилвисмута и μ -оксо*бис*((перхлорато)три-*n*-толилвисмут) [176]. В молекулярной структуре первого атомы висмута имеют искаженную тригонально-бипирамидальную координацию с апикально расположенными атомами кислорода перхлоратных групп (связи Bi-C 2.180(5)–2.201(5), Bi-O 2.324(4)–2.355(4) Å; аксиальные углы OBiO 170.1(1)°, 174.5(1)°). Структура второго соединения содержит биядерные молекулы [*n*-Tol₃Bi(ClO₄)]₂O (связи Bi-O 2.371(15), 1.9107(7) Å, аксиальный угол OBiO 180.0°).

Первый перфторалкилфосфинат трифенилвисмута, $[(C_2F_5)_2PO_2]_2BiPh_3$, был синтезирован из Ph₃BiCl₂ и $[(C_2F_5)_2PO_2]Ag$ (схема 154). Данный фосфинат был успешно использован в качестве катализатора в реакции Дильса—Альдера [91].

Схема 154.

Авторы [148] разработали эффективный метод генеририрования катионов трифенилфторвисмутония [Ph₃BiF]⁺ и трифенил(диацетонитрило)висмутония [Ph₃Bi(NCMe)₂]²⁺ из легкодоступного Ph₃BiF₂ (схема 155).

Схема 155.

При действии кислот на пентафенилвисмут образуются соли тетрафенилвисмутония. Так, титрование пентафенилвисмута эфирным раствором хлористого водорода сопровождается исчезновением фиолетовой окраски, характерной для пентафенилвисмута, и образованием лабильных бесцветных кристаллов хлорида тетрафенилвисмута, разлагающихся при комнатной температуре до трифенилвисмута и хлорбензола [177]. Авторы [178] методом РСА установили его строение и нашли, что в тригонально-бипирамидальном окружении центрального атома хлор занимает аксиальное положение. Атом висмута выходит из экваториальной плоскости в направлении аксиально расположенного атома углерода. Длина связи Bi-Cl (2.9116(19) Å) превышает сумму ковалентных радиусов атомов висмута и хлора (2.50 Å), но существенно меньше суммы их ван-дер-ваальсовых радиусов (3.82 Å) [20].

Аналогичной структурой обладает и кинетически неустойчивый бромид тетрафенилвисмута, полученный из пентафенилвисмута и раствора бромистого водорода в ацетоне [179].

Взаимодействием пентафенилвисмута с эквимолярными количествами серной, 2,4-динитробензолсульфоновой и азотной кислот синтезированы гидросульфат тетрафенилвисмута (HOSO₃)BiPh₄, 2,4-динитробензолсульфонат тетрафенилвисмута (2,4-(NO₂)₂C₆H₃SO₂O)BiPh₄ и гидрат нитрата тетрафенилвисмута Ph₄BiNO₃ · 1/3H₂O [180]. Кристаллические структуры соединений висмута определены методом PCA. Если в первых двух атомы висмута пентакоординированы (окружение C₄BiO), то в последнем присутствуют молекула нитратотетрафенилвисмута и два типа катионов тетрафенилвисмутония, один из которых координирован с нитрат-анионом и молекулой воды.

С целью установления природы заместителей в ароксильной группе на значения валентных углов и длин связей при атоме висмута в ароксидах тетрафенилсурьмы был синтезирован ряд указанных производных по реакции пентафенилвисмута (толуол, 0.5–5 мин, 20°С) с фенолами, содержащими электроноакцепторные заместители (схема 156) [181].

Ph₅Bi + ArOH
$$\xrightarrow{\text{Толуол}}_{-C_6H_6}$$
 (ArO)BiPh₄

Схема 156.

Цвет раствора в результате взаимодействия реагентов изменялся на желтый или желто-коричневый; целевые продукты выделяли кристаллизацией из смеси бензол—октан. Ароксиды тетрафенилвисмута представляют собой устойчивые на воздухе кристаллические вещества желтого или желто-коричневого цвета, растворимые в алифатических и ароматических углеводородах. Выходы полученных ароксидов тетрафенилвисмута достигали 86%.

В 1999 году была открыта реакция перераспределения лигандов для фенильных соединений пятивалентного висмута на примере взаимодействия пентафенилвисмута с *бис*(2,5-диметилбензолсульфонатом) трифенилвисмута и *бис*(2,4-диметилбензолсульфонатом) трифенилвисмута [182]. Ароксиды тетрафенилвисмута были синтезированы также аналогичным способом из пентафенилвисмута и диароксида трифенилвисмута в бензоле (схема 157) [181].

> Ph₅Bi + Ph₃Bi(OAr)₂ $\xrightarrow{C_6H_6}$ 2(ArO)BiPh₄ Ar = 4-*t*Bu-2,6-Br₂-C₆H₂, 2,6-Cl₂-C₆H₃, 4-NO₂-2,6-Br₂-C₆H₂, 2,4-(NO₂)₂-C₆H₃, 2,4,6-(NO₂)₃-C₆H₂

Схема 157.

Молекулы ароксидов тетрафенилвисмута имеют характерную для большинства производных пентакоординированного висмута тригонально-бипирамидальную конфигурацию, причем наиболее электроотрицательный заместитель – ароксильный лиганд — занимает одно из аксиальных положений. Аксиальные углы СВіО близки к идеальному значению, атом висмута выходит из экваториальной плоскости в сторону атома углерода аксиально расположенного фенильного лиганда, что вызывает искажение валентных углов между аксиальными и экваториальными заместителями. Расстояния Bi-O (2.451-2.925 Å) больше суммы ковалентных радиусов атомов (2.31 Å [20]), причем наибольшее значение длины связи Ві-О наблюдалось в пикрате тетрафенилвисмута [183].

Во всех исследуемых структурах выявлена общая закономерность в расположении экваториальных фенильных групп. Так, два фенильных кольца в каждой структуре повернуты вокруг экваториальных связей Bi-C на значительные торсионные углы, тогда как плоскость третьего практически перпендикулярна аксиальной связи Bi-O. Ароксигруппа располагается над этим экваториальным фенилом, что обусловливает взаимодействие их π -систем (так называемый π - π -*стекинг*-эффект). В ароксидах тетрафенилвисмута характерная для π - π -*стекинг*-взаимодействия геометрия искажена — межцентровые расстояния равны 3.6664.021 Å, а межплоскостные углы составляют 14.2°-32.4°, что близко по значению к идеальным для этого типа взаимодействий [184, 185].

В препаративной химии органических соединений пятивалентного висмута с помощью реакций замещения синтезируют ряд производных платины и золота. Так, продуктом взаимодействия хлорида тетрафенилвисмута Ph₄BiCl с гексабромоплатинатом калия (2:1 мольн.) в воде после перекристаллизации из диметилсульфоксида является *S*-диметилсульфоксидотрибромплатинат *O*-диметилсульфоксидотетрафенилвисмута [Ph₄Bi · DMSO-*O*]⁺[PtBr₃ · DMSO-*S*]⁻. Перекристаллизация из ацетонитрила комплекса, полученного из хлорида тетрафенилвисмута и гексахлороплатината калия, дает гексахлорплатинат

тетрафенилвисмута $[Ph_4Bi]_2^+[PtCl_6]^{2-}$ [178].

Взаимодействием бромида тетрафенилвисмута с дихлоро- и дибромодицианоауратом калия в воде с последующим удалением воды и перекристаллизацией твердого остатка из ацетонитрила синтезированы и структурно охарактеризованы комплексы золота $[Ph_4Bi]^+[Au(CN)_2Cl_2]^-$ и $[Ph_4Bi]^+ [Au(CN)_2Br_2]^-$ [186].

Эквимолярные количества сульфосалицилата тетрафенилвисмута и иодида висмута в ацетоне реагируют с образованием красно-оранжевых кристаллов ионного комплекса $[Ph_4Bi]_4^+ [Bi_4I_{16}]^{4-}$. · 2(Me₂C=O) [187]. Из данных РСА следует, что в комплексе два независимых катиона тетрафенилвисмутония имеют несколько различную геометрию. В одном из них координация атома висмута искаженная тетраэдрическая (длины связей Ві-С лежат в интервале 2.184-2.207 Å, а валентные углы CBiC – 106.0°-113.7°). В координационной сфере другого катиона находится молекула ацетона (расстояние Bi…O составляет 3.094 Å), что приводит к появлению в тетраэдрической структуре вклада тригонально-бипирамидальной составляющей: заметное отклонение валентных углов СВіС от идеального для тетраэдра значения (102.1°-120.8°). Четырехъядерный центросимметричный анион $[Bi_4I_{16}]^{4-}$ (схема 158) в комплексе состоит из двух пар объединенных по общим ребрам октаэдров Bil₆. Атомы Bi(2) и Bi(2') имеют в своем окружении по три концевых и мостиковых атомов иода (расстояния Bi-I составляют 2.909-2.947 и 3.284-3.337 Å соответственно), атомы Bi(1) и Bi(1') – по два концевых и четыре мостиковых атомов иода (соответствующие связи равны 2.898, 2.904 и 3.027-3.312 Å).

Схема 158.

При увеличении количества иодида висмута (мольное соотношение аренсульфоната тетрафенилвисмута и иодида висмута 1 : 2) наблюдается образование комплекса с линейным пятиядерным трехзарядным анионом $[Ph_4Bi]^+_3[Bi_5I_{18}]^{3-}$ [188]. В центросимметричном анионе $[Bi_5I_{18}]^{3-}$ (схема 158) октаэдрически координированные атомы Ві попарно объединены тройными иодными мостиками. Концевой атом Ві(3) соединен с соседним атомом Ві(2) менее прочными связями Ві(3)–I(4–6), чем Ві(2)–I(4–6) (3.423–3.582 и 2.940–2.954 Å соответственно). Концевые связи Ві(3)–I(7,8,9) 2.842–2.860 Å — самые короткие в анионе $[Bi_5I_{18}]^{3-}$.

Отметим эффективный метод синтеза фторидов трифениларилвисмута, заключающийся в обработке дифторида трифенилвисмута фенилборной кислотой в присутствии эфирата трифторида бора в хлористом метилене с последующей обработкой реакционной смеси избытком фторида цезия, который впервые описали японские авторы в 2003 году [189] и продолжили авторы [190], получившие по аналогичной схеме фториды трифениларилвисмутония и изучившие транспортные свойства катионов общей формулы [Ph₃BiAr]⁺, где Ar = фенил, нафтил, антрил или пиренил. Показано, что эти катионы эффективно переносят гидроксид-, фторид- и хлорид-анионы через фосфолипидный бислой.

ЗАКЛЮЧЕНИЕ

Органические соединения висмута привлекают все большее внимание исследователей по всему миру. Обусловлено это обнаруженной в последнее время каталитической активностью ряда органических соединений висмута по отношению к различным группам реакций важного значения в органической и элементоорганической химии, а также их большим потенциалом применения в качестве реагентов в тонком органическом синтезе. С точки зрения биохимии и медицины данный класс соединений висмута также имеет большой потенциал применения в качестве противораковых, противогрибковых и противобактериальных препаратов. Кроме этого, органические соединения висмута(III,V) способны образовывать моно-, би- и полиядерные структуры разнообразного строения, стабильные гетеролигандные соединения как молекулярного, так и ионного типов, что несомненно важно для развития фундаментальных исследований висмуторганических соединений. В ближайшее время следует ожидать еще более активного развития катализа висмуторганическими соединениями, областей их биохимического и медицинского использования.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Разуваев Г.А., Осанова Н.А., Шарутин В.В. //* Докл. АН СССР. 1975. Т. 225. № 3. С. 581.
- 2. Шарутин В.В., Мосунова Т.В. // Вестник ЮУрГУ. Сер. Химия. 2020. Т. 12. № 3. С. 7.
- 3. *Kindra D.R., Peterson J.K., Ziller J.W., Evans W.J. //* Organometallics. 2015. V. 34. P. 395.
- Schulz S., Kuczkowski A., Blaser D. et al. // Organometallics. 2013. V. 32. P. 5445.
- 5. *Lichtenberg C., Pan F., Spaniol T.P. et al.* // Angew. Chem., Int. Ed. 2012. V. 51. P. 13011.
- Casely I.J., Ziller J.W., Mincher B.J., Evans W.J. // Inorg. Chem. 2011. V. 50. P. 1513.
- Auer A.A., Mansfeld D., Nolde C. et al. // Organometallics. 2009. V. 28. P. 5405.
- Solyntjes S., Bader J., Neumann B. et al. // Chem. Eur. J. 2017. V. 23. P. 1557.
- Ishii T., Suzuki K., Nakamura T., Yamashita M. // J. Am. Chem. Soc. 2016. V. 138. P. 12787.
- 10. Tomaschautzky J., Neumann B., Stammler H.-G. et al. // Dalton Trans. 2017. V. 46. P. 1645.
- 11. Urbanova I., Jambor R., Ruzicka A. et al. // Dalton Trans. 2014. V. 43. P. 505.
- 12. *Olaru M., Nema M.G., Soran A. et al.* // Dalton Trans. 2016. V. 45. P. 9419.
- 13. Soran A., Breunig H.J., Lippolis V. et al. // J. Organomet. Chem. 2010. V. 695. P. 850.
- Schulz A., Villinger A. // Organometallics. 2011. V. 30. P. 284.
- Chalmers B.A., Meigh C.B.E., Nejman P.S. et al. // Inorg. Chem. 2016. V. 55. P. 7117.
- 16. *Plajer A.J., Colebatch A.L., Rizzuto F.J. et al.* // Angew. Chem., Int. Ed. 2018. V. 57. P. 6648.
- 17. Wade C.R., Saber M.R., Gabbai F.P. // Heteroat. Chem. 2011. V. 22. P. 500.
- Tschersich C., Hoof S., Frank N. et al. // Inorg. Chem. 2016. V. 55. P. 1837.

- 19. *Materne K., Braun-Cula B., Herwig C. et al.* // Chem. Eur. J. 2017. V. 23. P. 11797.
- 20. *Бацанов С.С. //* Журн. неорган. химии. 1991. Т. 36. № 12. С. 3015.
- 21. Obata T., Matsumura M., Kawahata M. et al. // J. Organomet. Chem. 2016. V. 807. P. 17.
- 22. Kawahata M., Yasuike S., Kinebuchi I. et al. // Acta Crystallogr. E. 2011. V. 67. P. m25.
- 23. Breunig H.J., Nema M.G., Silvestru C. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. P. 2378.
- Alcantara E., Sharma P., Perez D. et al. // Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2012. V. 42. P. 1139.
- Vranova I., Jambor R., Ruzicka A. et al. // Organometallics. 2015. V. 34. P. 534.
- Rao M.L.N., Dhanorkar R.J. // RSC Advances. 2016. V. 6. P. 1012.
- Hebert M., Petiot P., Benoit E. et al. // J. Org. Chem. 2016. V. 81. P. 5401.
- 28. Petiot P., Gagnon A. // Eur. J. Org. Chem. 2013. P. 5282.
- 29. *Ahmad T., Dansereau J., Hebert M. et al.* // Tetrahedron Lett. 2016. V. 57. P. 4284.
- 30. Шарутин В.В., Сенчурин В.С., Шарутина О.К., Чагарова О.В. // Журн. общ. химии. 2011. Т. 81. № 10. С. 1649.
- Шарутин В.В., Шарутина О.К., Ермакова В.А., Смагина Я.Р. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1049.
- 32. Benjamin S.L., Karagiannidis L., Levason W. et al. // Organometallics. 2011. V. 30. P. 895.
- 33. Hirayama T., Mukaimine A., Nishigaki K. et al. // Dalton Trans. 2017. V. 46. P. 15991.
- Ohshita J., Matsui S., Yamamoto R. et al. // Organometallics. 2010. V. 29. P. 3239.
- 35. Onishi K., Douke M., Nakamura T. et al. // J. Inorg. Biochem. 2012. V. 117. P. 77.
- 36. *Preda A.M., Schneider W.B., Rainer M. et al.* // Dalton Trans. 2017. V. 46. P. 8269.
- 37. Preda A.M., Schneider W.B., Schaarschmidt D. et al. // Dalton Trans. 2017. V.46. P. 13492.
- Chen J., Murafuji T., Tsunashima R. // Organometallics. 2011. V. 30. P. 4532.
- 39. Parke S.M., Narreto M.A.B., Hupf E. et al. // Inorg. Chem. 2018. V. 57. P. 7536.
- 40. Worrell B.T., Ellery S.P., Fokin V.V. // Angew. Chem., Int. Ed. 2013. V. 52. P. 13037.
- 41. Parke S.M., Hupf E., Matharu G.K. et al. // Angew. Chem., Int. Ed. 2018. V. 57. P. 14841.
- 42. Ohshita J., Yamaji K., Ooyama Y. et al. // Organometallics. 2019. V. 38. P. 1516.
- Брегадзе В.И., Глазун С.А., Ефремов А.Н., Шарутин В.В. // Вестник ЮУрГУ. Сер. Химия. 2020. Т. 12. № 1. С. 5.
- 44. Егорова И.В., Жидков В.В., Гринишак И.П. // Журн. общ. химии. 2015. Т. 85. № 7. С. 1172.
- 45. *Kumar I., Bhattacharya P., Whitmire K.H.* // J. Organomet. Chem. 2015. V. 794. P. 153.
- 46. Andrews P.C., Frank R., Junk P.C. et al. // J. Inorg. Biochem. 2011. V. 105. P. 454.

- 47. *Anjaneyulu O., Maddileti D., Swamy K.C.K.* // Dalton Trans. 2012. V. 41. P. 1004.
- 48. Егорова И.В., Шарутин В.В., Иваненко Т.К. и др. // Коорд. химия. 2006. Т. 32. № 5. С. 336.
- Pathak A., Blair V.L., Ferrero R.L. et al. // J. Inorg. Biochem. 2017. V. 177. P. 266.
- Stavila V., Whitmire K.H. // Acta Crystallogr. E. 2010. V. 66. P. m1547.
- 51. Andrews P.C., Deacon G.B., Junk P.C. et al. // Organometallics. 2009. V. 28. P. 3999.
- 52. Jambor R., Ružicková Z., Erben M., Dostál L. // Inorg. Chem. Commun. 2017. V. 76. P. 36.
- 53. Sun Y.-Q., Zhong J.-C., Liu L.-H. et al. // J. Mol. Struct. 2016. V. 1124. P. 138.
- 54. Andrews P.C., Junk P.C., Kedzierski L., Peiris R.M. et al. // Aust. J. Chem. 2013. V. 66. P. 1297.
- 55. Andrews P.C., Ferrero R.L., Junk P.C. et al. // Aust. J. Chem. 2012. V. 65. P. 883.
- Chaudhari K.R., Yadav N., Wadawale A. et al. // Inorg. Chim. Acta. 2010. V. 363. P. 375.
- 57. Luqman A., Blair V.L., Bond A.M., Andrews P.C. // Angew. Chem., Int. Ed. 2013. V. 52. P. 7247.
- 58. Luqman A., Blair V.L., Brammananth R. et al. // Chem. Eur. J. 2014. V. 20. P. 14362.
- Luqman A., Blair V.L., Brammananth R. et al. // Eur. J. Inorg. Chem. 2016. P. 2738.
- 60. *Luqman A., Blair V.L., Brammananth R. et al.* // Eur. J. Inorg. Chem. 2015. P. 725.
- 61. *Luqman A., Blair V.L., Brammananth R. et al.* // Eur. J. Inorg. Chem. 2015. P. 4935.
- 62. Andrews P.C., Ferrero R.L., Forsyth C.M. et al. // Organometallics. 2011. V. 30. P. 6283.
- 63. *Шарутин В.В., Шарутина О.К.* // Журн. неорган. химии. 2014. Т. 59. № 10. С. 1356.
- 64. Wrobel L., Ruffer T., Korb M. et al. // Chem. Eur. J. 2018. V. 24. P. 16630.
- 65. *Andrews P.C., Busse M., Deacon G.B. et al.* // Dalton Trans. 2010. V. 39. P. 9633.
- 66. Andrews P.C., Deacon G.B., Ferrero R.L. et al. // Dalton Trans. 2009. P. 6377.
- 67. Beckmann J., Bolsinger J., Duthie A. et al. // Inorg. Chem. 2012. V. 51. P. 12395.
- Metre R.K., Kundu S., Narayanan R.S., Chandrasekhar V. // Phosphorus, Sulfur, Silicon Relat. Elem. 2015. V. 190. P. 2134.
- Chandrasekhar V., Metre R.K., Narayanan R.S. // Dalton Trans. 2013. V. 42. P. 8709.
- Cui L.-S., Meng J.-R., Gan Y.-L. et al. // Inorg. Nano-Metal Chem. 2017. V. 47. P. 1537.
- *Ritter C., Ringler B., Dankert F. et al.* // Dalton Trans. 2019. V. 48. P. 5253.
- 72. Armstrong D., Taullaj F., Singh K. et al. // Dalton Trans. 2017. V. 46. P. 6212.
- 73. *Breunig H.J., Haddad N., Lork E. et al.* // Organometallics. 2009. V. 28. P. 1202.
- 74. Schwamm R.J., Fitchett C.M., Coles M.P. // Chem. Asian J. 2019. V. 14. P. 1204.
- 75. Шарутин В.В., Егорова И.В., Шарутина О.К. и др. // Коорд. химия. 2003. Т. 29. № 12. С. 902.

- 76. Briand G.G., Decken A., Hunter N.M. et al. // Polyhedron. 2012. V. 31. P. 796.
- 77. *Breunig H.J., Lork E., Nema M.-G.* // Z. Naturforsch. B. 2009. V. 64. P. 1213.
- 78. Cambridge Crystallographic Data Centre, 2019. http://www.ccdc.cam.ac.uk/data_request/cif.
- Ramler J., Poater J., Hirsch F. et al. // Chem. Sci. 2019. V. 10. P. 4169.
- Nekoueishahraki B., Sarish S.P., Roesky H.W. et al. // Angew. Chem., Int. Ed. 2009. V. 48. P. 4517. https://doi.org/10.1002/anie.200901215
- 81. Nekoueishahraki B., Samuel P.P., Roesky H.W. et al. // Organometallics. 2012. V. 31. P. 6697.
- Lu W., Hu H., Li Y. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 6650.
- Waters J.B., Chen Q., Everitt T.A., Goicoechea J.M. // Dalton Trans. 2017. V. 46. P. 12053.
- 84. Aprile A., Corbo R., Tan K.V. et al. // Dalton Trans. 2014. V. 43. P. 764.
- 85. Wang G., Freeman L.A., Dickie D.A. et al. // Inorg. Chem. 2018. V. 57. P. 11687.
- Wang G., Freeman L.A., Dickie D.A. et al. // Chem. Eur. J. 2019. V. 21. P. 4335.
- Munzer J.E., Kneusels N.-J.H., Weinert B. et al. // Dalton Trans. 2019. V. 48. P. 11076.
- 88. Olaru M., Duvinage D., Lork E. et al. // Angew. Chem., Int. Ed. 2018. V. 57. P. 10080.
- Bresien J., Hinz A., Schulz A., Villinger A. // Dalton Trans. 2018. V. 47. P. 4433.
- Bresien J., Schulz A., Thomas M., Villinger A. // Eur. J. Inorg. Chem. 2019. P. 1279.
- 91. Solyntjes S., Neumann B., Stammler H.-G. et al. // Chem. Eur. J. 2017. V. 23. P. 1568.
- 92. Nishimoto Y., Takeuchi M., Yasuda M., Baba A. // Chem. Eur. J. 2013. V. 19. P. 14411.
- Nishimoto Y., Takeuchi M., Yasuda M., Baba A. // Angew. Chem., Int. Ed. 2012. V. 51. P. 1051.
- 94. *Ritschel B., Poater J., Dengel H. et al.* // Angew. Chem., Int. Ed. 2018. V. 57. P. 3825.
- 95. *Stavila V., Dikarev E.V.* // J. Organomet. Chem. 2009. V. 694. P. 2956.
- Chirca I., Silvestru C., Breunig H.J., Rat C.I. // Inorg. Chim. Acta. 2018. V. 475. P. 155.
- 97. *Tan N., Chen Y., Zhou Y. et al.* // ChemPlusChem. 2013. V. 78. P. 1363.
- 98. Toma A., Rat C.I., Silvestru A. et al. // J. Organomet. Chem. 2013. V. 745. P. 71.
- 99. Nema M.G., Breunig H.J., Soran A., Silvestru C. // J. Organomet. Chem. 2012. V. 705. P. 23.
- 100. Kannan R., Kumar S., Andrews A.P. et al. // Inorg. Chem. 2017. V. 56. P. 9391.
- 101. Li Y., Zhu H., Tan G. et al. // Eur. J. Inorg. Chem. 2011. P. 5265.
- Simon P., Jambor R., Ruzicka A., Dostal L. // Organometallics. 2013. V. 32. P. 239.
- 103. Soran A., Breunig H.J., Lippolis V. et al. // Dalton Trans. 2009. V. 7. P. 77.
- 104. Simon P., Proft F., Jambor R. et al. // Angew. Chem., Int. Ed. 2010. V. 49. P. 5468.

- 105. Peveling K., Schurmann M., Herres-Pawlis S. et al. // Organometallics. 2011. V. 30. P. 5181.
- 106. Vrana J., Jambor R., Ruzicka A. et al. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1041.
- 107. Zhang X.-W., Xia J., Yan H.-W. et al. // J. Organomet. Chem. 2009. V. 694. P. 3019.
- 108. *Toma A., Rat C.I., Silvestru A. et al.* // J. Organomet. Chem. 2016. V. 806. P. 5.
- 109. Toma A.M., Pop A., Silvestru A. et al. // Dalton Trans. 2017. V. 46. P. 3953.
- 110. *Tan N., Chen Y., Yin S.-F. et al.* // Dalton Trans. 2013. V. 42. P. 9476.
- 111. Tan N., Yin S., Li Y. et al. // J. Organomet. Chem. 2011. V. 696. P. 1579.
- 112. *Qiu R., Meng Z., Yin S. et al.* // ChemPlusChem. 2012. V. 77. P. 404.
- 113. *Qiu R., Yin S., Song X. et al.* // Dalton Trans. 2011. V. 40. P. 9482.
- 114. Sindlinger C.P., Stasch A., Wesemann L. // Organometallics. 2014. V. 33. P. 322.
- 115. Strimb G., Pollnitz A., Rat C.I., Silvestru C. // Dalton Trans. 2015. V. 44. P. 9927.
- 116. *Mairychova B., Svoboda T., Stepnicka P. et al.* // Inorg. Chem. 2013. V. 52. P. 1424.
- 117. Korenkova M., Mairychova B., Ruzicka A. et al. // Dalton Trans. 2014. V. 43. P. 7096.
- 118. Fridrichova A., Mairychova B., Padelkova Z. et al. // Dalton Trans. 2013. V. 42. P. 16403.
- Fanfrlik J., Sedlak R., Pecina A. et al. // Dalton Trans. 2016. V. 45. P. 462.
- 120. Dostal L., Jambor R., Ruzicka A. et al. // Inorg. Chem. 2015. V. 54. P. 6010.
- 121. Fridrichova A., Svoboda T., Jambor R. et al. // Organometallics. 2009. V. 28. P. 5522.
- 122. Svoboda T., Jambor R., Ruzicka A. et al. // Eur. J. Inorg. Chem. 2010. P. 1663.
- 123. Svoboda T., Jambor R., Ruzicka A. et al. // Organometallics. 2012. V. 31. P. 1725.
- 124. Mairychova B., Svoboda T., Erben M. et al. // Organometallics. 2013. V. 32. P. 157.
- Chovancova M., Jambor R., Ruzicka A. et al. // Organometallics. 2009. V. 28. P. 1934.
- Dostal L., Jambor R., Ruzicka A. et al. // Organometallics. 2010. V. 29. P. 4486.
- 127. Dostal L., Jambor R., Erben M., Ruzicka A. // Z. Anorg. Allg. Chem. 2012. Bd. 638. S. 614.
- 128. *Tan N., Zhang X.* // Acta Crystallogr. E. 2011. V. 67. P. m252.
- 129. Zhang X., Qiu R., Tan N. et al. // Tetrahedron Lett. 2010. V. 51. P. 153.
- Qiu R., Qiu Y., Yin S. et al. // Adv. Synth. Catal. 2010.
 V. 352. P. 153.
- 131. *Qiu R., Yin S., Zhang X. et al.* // Chem. Commun. 2009. P. 4759.
- 132. *Liu Y.-P., Lei J., Tang L.-W. et al.* // Eur. J. Med. Chem. 2017. V. 139. P. 826.
- 133. *Toma A.M., Rat C.I., Pavel O.D. et al.* // Cat. Sci. Tech. 2017. V. 7. P. 5343.
- 134. Zhang X., Yin S., Qiu R. et al. // J. Organomet. Chem. 2009. V. 694. P. 3559.

- *Zhang X.-W., Fan T.* // Acta Crystallogr. E. 2011. V. 67. P. m875.
- 136. Murafuji T., Kitagawa K., Yoshimatsu D. et al. // Eur. J. Med. Chem. 2013. V. 63. P. 531.
- 137. Breunig H.J., Nema M.G., Silvestru C. et al. // Dalton Trans. 2010. V. 39. P. 11277.
- 138. *Dostal L., Jambor R., Ruzicka A. et al.* // Dalton Trans. 2011. V. 40. P. 8922.
- 139. *Tan N., Wu S., Huiqiong Y. et al.* // Z. Kristallogr. New Cryst. Struct. 2019. V. 234. P. 509.
- 140. Vranova I., Erben M., Jambor R. et al. // Z. Anorg. Allg. Chem. 2016. V. 642. P. 1212.
- 141. *Tan N., Dang L., Lan D. et al.* // Z. Kristallogr.-New Cryst. Struct. 2018. V. 233. P. 875.
- 142. Soran A.P., Nema M.G., Breunig H.J., Silvestru C. // Acta Crystallogr. E. 2011. V. 67. P. m153.
- 143. Simon P., Jambor R., Ruzicka A., Dostal L. // J. Organomet. Chem. 2013. V. 740. P. 98.
- 144. *Casely I.J., Ziller J.W., Fang M. et al.* // J. Am. Chem. Soc. 2011. V. 133. P. 5244.
- 145. *Kindra D.R., Casely I.J., Fieser M.E. et al.* // J. Am. Chem. Soc. 2013. V. 135. P. 7777.
- 146. *Kindra D.R., Casely I.J., Ziller J.W., Evans W.J. //* Chem. Eur. J. 2014. V. 20. P. 15242.
- 147. Егорова И.В., Жидков В.В., Гринишак И.П., Резванова А.А. // Журн. общ. химии. 2014. Т. 84. № 7. С. 1179.
- 148. Solyntjes S., Neumann B., Stammler H.-G. et al. // Eur. J. Inorg. Chem. 2016. P. 3999.
- 149. Verkhovykh V.A., Kalistratova O.S., Grishina A.I. et al. // Вест. Южно-Урал. гос. ун-та. Сер. Химия. 2015. Т. 7. № 3. С. 61.
- 150. Gushchin F.V., Kalistratova O.S., Maleeva A.I. et al. // Вест. Южно-Урал. гос. ун-та. Сер. Химия. 2016. Т. 8. № 1. С. 51.
- 151. *Гущин А.В., Шашкин Д.В., Прыткова Л.К. и др. //* Журн. общ. химии. 2011. Т. 81. № 3. С. 397.
- 152. Шарутин В.В., Сенчурин В.С., Шарутина О.К. // Журн. неорган. химии. 2011. Т. 56. № 10. С. 1644.
- 153. Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. неорган. химии. 2014. Т. 59. № 1. С. 42.
- 154. *Шарутин В.В., Шарутина О.К.* // Журн. неорган. химии. 2014. Т. 59. № 6. С. 734.
- 155. *Гусаковская А.А., Калистратова О.С., Андреев П.В. и др. //* Кристаллография. 2018. Т. 63. № 2. С. 203.
- 156. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Журн. неорган. химии. 2019. Т. 64. № 2. С. 159.
- 157. Duffin R.N., Blair V.L., Kedzierski L., Andrews P.C. // Dalton Trans. 2018. V. 47. P. 971.
- Duffin R.N., Blair V.L., Kedzierski L., Andrews P.C. // J. Inorg. Biochem. 2018. V. 189. P. 151.
- 159. Ong Y.C., Blair V.L., Kedzierski L., Andrews P.C. // Dalton Trans. 2014. V. 43. P. 12904.
- 160. Ong Y.C., Blair V.L., Kedzierski L. et al. // Dalton Trans. 2015. V. 44. P. 18215.
- Kumar I., Bhattacharya P., Whitmire K.H. // Organometallics. 2014. V. 33. P. 2906.
- 162. *Cui L., Bi C., Fan Y. et al.* // Inorg. Chim. Acta. 2015. V. 437. P. 41.

- 163. *Kiran A.B., Mocanu T., Pollnitz A. et al.* // Dalton Trans. 2018. V. 47. P. 2531.
- 164. Zhang X.-Y., Wu R.-X., Bi C.-F. et al. // Inorg. Chim. Acta. 2018. V. 483. P. 129.
- 165. Feham K., Benkadari A., Chouaih A. et al. // Cryst. Struct. Theor. Appl. 2013. V. 2. P. 28.
- 166. *Андреев П.В., Сомов Н.В., Калистратова О.С. и др. //* Кристаллография. 2015. Т. 60. № 4. С. 571.
- 167. Шарутин В.В., Егорова И.В., Казаков М.А., Шарутина О.К. // Журн. неорган. химии. 2009. Т. 54. № 7. С. 1156.
- 168. Andreev P.V., Somov N.V., Kalistratova O.S. et al. // Acta Crystallogr. E. 2013. V. 69. P. m333.
- 169. Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др. // Журн. общ. химии. 2010. Т. 80. № 10. С. 1630.
- 170. Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Бутлеровские сообщения. 2012. Т. 29. С. 51.
- 171. Шарутин В.В., Шарутина О.К. // Журн. общ. химии. 2016. Т. 86. № 5. С. 811.
- 172. Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. неорган. химии. 2016. Т. 61. № 3. С. 334.
- 173. *Goswami M., Ellern A., Pohl N.L.B.* // Angew. Chem., Int. Ed. 2013. V. 52. P. 8441.
- 174. Шарутин В.В., Шарутина О.К. // Журн. неорган. химии. 2016. Т. 61. № 8. С. 1023.
- 175. Robertson A.P.M., Burford N., McDonald R., Ferguson M.J. // Angew. Chem., Int. Ed. 2014. V. 53. P. 3480.
- 176. *Егорова И.В., Жидков В.В., Гринишак И.П. и др. //* Журн. неорган. химии. 2018. Т. 63. № 7. С. 816.
- Wittig G., Clauβ K. // Lieb. Ann. 1952. Bd. 578. № 1. S. 136.
- 178. Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. неорган. химии. 2020. Т. 65. № 11. С. 1516.
- 179. *Сенчурин В.С., Шарутин В.В., Шарутина О.К. //* Журн. неорган. химии. 2020. Т. 65. № 3. С. 320.
- 180. Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. структур. химии. 2020. Т. 61. № 5. С. 776.
- 181. Шарутин В.В., Егорова И.В., Шарутина О.К. и др. // Коорд. химия. 2008. Т. 34. № 2. С. 89.
- 182. Шарутин В.В., Шарутина О.К., Егорова И.В. и др. // Изв. АН. Сер. хим. 1999. № 12. С. 2350.
- 183. *Егорова И.В.* Дис. ... докт. хим. наук. Н. Новгород, 2008. 298 с.
- 184. Glowka M.L., Martynowski D., Kozlowska K. // J. Mol. Struct. 1999. V. 474. P. 81.
- 185. *Tsuzuki S., Honda K., Uchimaru T. et al.* // J. Am. Chem. Soc. 2002. V. 124. № 1. P. 104.
- 186. Сенчурин В.С. // Вест. Южно-Урал. гос. ун-та. Сер. Химия. 2019. Т. 11. № 3. С. 50.
- 187. Шарутин В.В., Егорова И.В., Клепиков Н.Н. и др. // Журн. неорган. химии. 2009. Т. 54. № 1. С. 53.
- 188. Шарутин В.В., Егорова И.В., Клепиков Н.Н. и др. // Журн. неорган. химии. 2009. Т. 54. № 11. С. 1847.
- 189. Ooi T., Goto R., Maruoka K. // J. Am. Chem. Soc. 2003. V. 125. P. 10494.
- 190. Park G., Brock D.J., Pellois J.-P., Gabbai F.P. // Chem. Cell Press. 2019. V. 5. P. 2215.