СОДЕРЖАНИЕ

-

-

Том 99, номер 12, 2022

-

Стратегия и результаты наблюдений глобальной сетью МАСТЕР за гравитационно-волновыми событиями LIGO/Virgo в рамках кампаний O1, O2, O3	
В. Липунов, В. Корнилов, Е. Горбовской, Н. Тюрина, Д. Власенко, П. Балануца, А. Кузнецов, О. А. Гресс, К. Жирков, А. Часовников, В. Тополев, В. Сеник, К. Франсиле, Ф. Подеста, Р. Подеста, Д. Бакли, Р. Реболо, М. Серра, Н. М. Буднев, А. Тлатов, Я. Кечин, Ю. Целик, В. Юрков, А. Габович, Д. Дормидонтов, Д. Кувшинов, Е. Минкина, О. Ершова, Д. Черясов, В. Владимиров	1075
Нетепловые потери атмосферы для экзопланеты GJ 3470b	
А. А. Автаева, В. И. Шематович	1214
Особенность оценки физических параметров источников радио и рентгеновского излучения	
В. С. Артюх	1222
Эволюция сильных вспышек мазерного излучения H ₂ O в области активного звездообразования W51	
Н. Т. Ашимбаева, Е. Е. Лехт, В. В. Краснов, А. М. Толмачев	1227
KIC 2142183 – кандидат в звезды типа FK Com	
И. С. Саванов, Е. С. Дмитриенко, С. Дзян, Х. Ванг, М. Е. Сачков, А. С. Шугаров, В. Б. Пузин	1236
Твердотельный волоконный лазер желтого спектрального диапазона на красителе родамине 6Ж с волоконным оптическим усилителем для формирования натриевых "лазерных опорных звезд"	
В. Е. Поляков, А. В. Емельянов, В. В. Широбоков, А. А. Закутаев	1245
Отношение интенсивностей H ¹³ CN–HN ¹³ C как индикатор температуры межзвездных облаков	
А. Г. Пазухин, И. И. Зинченко, Е. А. Трофимова, К. Хенкель	1254
Использование обобщенных экспоненциальных функций при анализе статистических характеристик межзвездных мерцаний пульсаров	
М. В. Попов	1264
Темп потери массы атмосферы горячим нептуном GJ 436b	
Е.С. Калиничева, В.И. Шематович, И.С. Саванов	1272
О корреляции уровня межпланетных мерцаний и скорости солнечного ветра	
В. Р. Лукманов, И. В. Чашей, С. А. Тюльбашев	1280
Линейная поляризация излучения в линиях He I 5876 Å (D ₃) и 5015 Å в атмосфере Солнца	
С. А. Богачев, М. Б. Шапочкин	1284

СТРАТЕГИЯ И РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ ГЛОБАЛЬНОЙ СЕТЬЮ МАСТЕР ЗА ГРАВИТАЦИОННО-ВОЛНОВЫМИ СОБЫТИЯМИ LIGO/VIRGO В РАМКАХ КАМПАНИЙ O1, O2, O3

© 2022 г. В. Липунов^{1, 2, *}, В. Корнилов^{1, 2}, Е. Горбовской², Н. Тюрина², Д. Власенко^{1, 2}, П. Балануца², А. Кузнецов², О. А. Гресс³, К. Жирков^{1, 2}, А. Часовников^{1, 2}, В. Тополев^{1, 2}, В. Сеник⁴, К. Франсиле^{5, 6}, Ф. Подеста^{5, 6}, Р. Подеста^{5, 6}, Д. Бакли⁷, Р. Реболо⁸, М. Серра⁸, Н. М. Буднев³, А. Тлатов⁴, Я. Кечин³, Ю. Целик³, В. Юрков⁹, А. Габович⁹, Д. Дормидонтов⁴, Д. Кувшинов¹, Е. Минкина², О. Ершова³, Д. Черясов², В. Владимиров²

¹ Московский государственный университет им. М.В. Ломоносова, физический факультет, Москва, Россия

² Государственный астрономический институт им. П.К. Штернберга МГУ им. М.В. Ломоносова, Москва, Россия

³ Иркутский государственный университет, Институт прикладной физики, Иркутск, Россия

⁴ Кисловодская Горная астрономическая станция Главной астрономической обсерватории РАН, Кисловодск, Россия ⁵ Астрономическая обсерватория им. Φ. Агилара, Сан-Хуан, Аргентина

⁶ Институт астрономии, Земли и космического пространства, Сан-Хуан, Аргентина

⁷ Южноафриканская астрономическая обсерватория, Кейптаун, ЮАР

⁸ Канарский институт астрофизики, Тенерифе, Испания

⁹ Благовещенский государственный педагогический университет, Благовещенск, Россия

**E-mail: lipunov@sai.msu.ru* Поступила в редакцию 12.05.2022 г. После доработки 12.07.2022 г. Принята к публикации 30.08.2022 г.

В работе представлены результаты участия Глобальной сети телескопов-роботов МАСТЕР в программе поддержки гравитационно-волновых экспериментов aLIGO (O1) и LIGO/Virgo (O2, O3) в электромагнитном канале. Это исследование касается первой серии наблюдений О1 с сентября 2015 г. по январь 2016 г., второй серии наблюдений O2 с ноября 2016 г. по август 2017 г. (только LIGO в январе-июле, совместные LIGO/ VIRGO (LVC) в августе) и третьего периода наблюдений ОЗ с апреля 2019 г. по апрель 2020 г. Основная цель этих наблюдений состояла в том, чтобы впервые в истории астрономии выполнить точную локализанию источников гравитанионных волн, которая успешно завершилась независимым открытием килоновой с помощью телескопов МАСТЕР в процессе поиска источника события GW170817. Во многих других событиях были обнаружены десятки оптических транзиентов, не связанных с гравитационными волнами. Тем не менее опыт оптической локализации гравитационных волн имеет исключительное значение для разработки будущей успешной стратегии локализации гравитационно-волновых событий с участием релятивистских звезд. Кроме того, объекты, обнаруженные при анализе огромных областей на небе, определяемых ошибками локализации ГВ источника, были особенно подробно изучены телескопами по всему миру. Были найдены и проанализированы такие объекты, как сверхновые, новые, активные ядра галактик, карликовые новые и другие взрывные явления во Вселенной. Глобальной сетью телескопов роботов МАСТЕР было исследовано более 220000 квадратных градусов внутри области наиболее вероятной локализации гравитационно-волнового источника. В данной статье сообщается о наблюдениях глобальной сети телескопов роботов МАСТЕР за всеми алертными событиями из сетов наблюдения 01, 02 и 03.

Ключевые слова: гравитационные волны: LIGO/Virgo – гравитационные волны: килоновая – звезды: нейтронные звезды – звезды: черные дыры – оптические транзиенты – многоканальная астрономия – MACTEP

DOI: 10.31857/S0004629922110123

1. ВВЕДЕНИЕ

Открытие гравитационных волн (ГВ) экспериментом aLIGO открывает перспективу исследования Вселенной в принципиально новом канале [1–3]. Опыт оптической поддержки первых наблюдений показывает, что оптическая локализация ГВ событий является чрезвычайно сложной задачей по двум причинам. Во-первых, большинство обнаруженных событий были связаны со слияниями черных дыр (в полном согласии с предсказанием, рассчитанным в Машине Сценариев Липунова и др. [4–6]). Во-вторых, малое время, в течение которого такой объект может быть доступен наблюдателям в любом электромагнитном диапазоне. Третье – это большие области ошибок всех ГВ событий, которые необходимо проверить в короткие сроки, чтобы обнаружить такие короткоживущие объекты в электромагнитном диапазоне, получить их энергетическое распределение и понять их природу. Сеть телескопов роботов МАСТЕР работала одинаково интенсивно на всех ГВ событиях, независимо от их характера. В результате сеть МАСТЕР внесла решающий вклад в оптическую проверку первого в истории события GW, которое произошло 14 сентября 2015 г., отсняв 90% от окончательного поля ошибок GW150914 [1, 7, 8] вплоть до предельной звездной величины (~19-20 м). В 2017 г. (О2¹) МАСТЕР-ОАҒА (Аргентина) [9] и 5 оптических телескопов в Чили [10-14] независимо открыли килоновую в галактике NGC4993 [15, 16]. Стоит также заметить решающую роль оптических инструментов в задаче локализации ГВ источников. а именно уменьшение области локализации (в случае успешного обнаружения источника) с 31 кв. град (1 σ) до ~1 кв. сек, что в 10⁸ раз меньше, чем конечная область локализации LVC с учетом гамма-детектора Fermi-GBM [15].

Широкопольные телескопы глобальной сети МАСТЕР [17, 18] – оптические приборы для наблюдения за подобными явлениями. Во время первой серии наблюдений два гравитационноволновых события были посланы через систему оповещения GCN [19]: GW150914 [1] и GW151226 [3], связанные со слияниями черных дыр. Еще об одном событии было сообщено в октябре 2016 г. (GW151012 [19]). B 2017 r. Advanced Observatory LIGO провела второй набор наблюдений (O2). В августе 2017 г. обсерватория VIRGO присоединилась к наблюдениям О2 [21]. В течение периода наблюдений О2 было подтверждено восемь гравитационно-волновых всплесков, и два из них были в первый раз опубликованы коллаборацией LVC в статье [22]. Из них семь событий связаны со слияниями черных дыр, а одно – GW170817 – со слиянием нейтронных звезд [15, 23]. В ходе О2 также было 9 алертов, которые не были подтверждены [21]. Была проведена большая кампания по поддержке эксперимента LVC в электромагнитном диапазоне во время серий О1, О2 ([7, 8, 15, 24–37] и др.). Кампания ОЗ началась в апреле 2019 г. и закончилась в апреле 2020 г. За это время телескопами МАСТЕР было получено 56 алертов.

Стоит также заметить несколько технических изменений по сравнению с О1 и О2. Во-первых, это быстрые оповешения и сравнительно быстрый корректирующий анализ произошелших событий, что позволило поисковым инструментам быстрее вовлекаться в осмотр областей ошибок и меньше отвлекаться на "пустые" области. Вовторых, на порядок увеличившееся расстояние обнаружения сливающихся нейтронных звезд (НЗ) и черных дыр (ЧД). Данное улучшение примерно в пять (56 в год за ОЗ и 16 в год за О2, не учитывая, что в обоих периодах наблюдений были технические перерывы) раз увеличило количество поступающих ГВ алертов за единицу времени. Ожидалось, что все эти улучшения сыграют положительную роль в исслеловании источников ГВ событий. В частности, ожидалась новая регистрация килоновой и первое наблюдение слияния черной дыры с нейтронной звездой в ЭМ канале. Но, к сожалению, кампания ОЗ не принесла ожидаемых результатов.

Доминирование черных дыр в событиях, наблюдаемых детекторами гравитационных волн типа LIGO, предсказывалось [38] и было теоретически продемонстрировано в 1997 г. с помощью метода популяционного синтеза с использованием компьютерного кода Машины Сценариев [4– 6]. Последний результат был получен методом Монте-Карло и был основан на эволюционных сценариях для двойных звезд. Изучены скорости слияния релятивистских двойных систем (H3 + H3, H3 + ЧД, ЧД + ЧД) при самых широких предположениях о формировании ЧД в двойных системах. Эти результаты были полностью подтверждены ГВ наблюдениями.

76 ГВ событий из периодов наблюдения O1, O2, O3 LIGO/Virgo наблюдались телескопами MACTEP во время всех серий наблюдений. Из них 54 были подтверждены в качестве гравитационно-волновых транзиентов. Также есть 30 событий, которые были упомянуты в статьях [39, 40], но они не распространялись через сеть GCN, и их поля ошибок на момент написания данной работы не были известны. Поскольку данные 30 событий все еще находятся в обработке, в данную работу они включены не будут. Роботизированные телескопы сети MACTEP провели большой обзор неба внутри 3σ полей ошибок общей площадью более 220000 квадратных градусов.

2. ГЛОБАЛЬНАЯ СЕТЬ ТЕЛЕСКОПОВ РОБОТОВ МАСТЕР

Сеть MACTEP была разработана для решения ключевых задач современной астрофизики: обна-

¹ O1, O2, O3 – сокращенное обозначение трех периодов включения LIGO/Virgo от англоязычного термина Observations – наблюдения.

Рис. 1. Расположение телескопов (Россия, Испания, ЮАР и Аргентина).

ружения и исследования оптических источников гамма-всплесков [41—48], источников гравитационных волн [8, 9, 15, 23, 49—52], источников нейтрино сверхвысоких энергий [53, 54], источников быстрых радиовсплесков [55—57] и других объектов исследования астрофизики высоких энергий. Отметим, что во время периодов наблюдения LVC O1, O2, O3 MACTEP не прерывал других работ алертных и инспекционных наблюдений одновременно в рамках всех вышеперечисленных задач.

Глобальная сеть телескопов роботов МАСТЕР включает в себя восемь одинаково оборудованных обсерваторий: МАСТЕР-Амур, МАСТЕР-Тунка, МАСТЕР-Кисловодск, МАСТЕР-Таврида (Российская Федерация), MASTER-SAAO (Южная Африка), MASTER-IAC (Испания, Канарские острова), MASTER-OAFA (Аргентина) и MASTER-OAGH (Мексика, введена в строй в 2021 г. и не принимала участие в наблюдении за 01, 02, 03) [17, 18] (рис. 1). Каждая обсерватория МАСТЕР оснащена идентичным оборудованием с полностью роботизированными быстрыми широкоугольными двойными телескопами (две трубы MACTEP-II с полем 2×4 кв. град.), снабженными светофильтрами BVRI и поляроидами, а также двумя камерами очень широкого поля (MASTER-VWFC с общим полем зрения в режиме разведенных труб (без перекрывающихся полей зрения) ~800 кв. град. [17, 18]), с основным ключевым фактором - собственным программным обеспечением, которое работает в режиме реального времени для полного сокращения времени для обнаружения новых оптических источников (за время меньшее, чем следующая экспозиция (10 с - 3 мин)).

МАСТЕР-II имеет фотометры, снабженные 4096 × 4096 ПЗС матрицей с масштабом 1.85"/пиксель, двумя наборами фильтров BVRI и ортогональными поляризационными фильтрами (подробности см. в [18, 47, 58, 59]). Двойные камеры MASTER VWF имеют поле зрения 2 × (18° × 24°), и экспозицию до 150 мс, что позволяет в случае наблюдений в белом свете достичь оптического предела звездной величины 15^m для сложенных изображений (11^m-13^m на кадр). Каждая обсерватория MACTEP может обеспечивать скорость наблюдения 136 квадратных градусов в час с пределами до 19–20.5 в белом свете в темные безлунные ночи (экспозиции 180 с).

2.1. Основные принципы работы центрального планировщика МАСТЕР

Основными критериями любой съемки неба являются ее полнота (охват) и скорость. В связи с этим телескопы должны быть в состоянии покрыть небо как можно более близкими площадками для съемки. Поэтому необходимо разделить небо на поля заданного размера, немного меньшие, чем поле зрения телескопа, чтобы иметь перекрытия. В случае сети МАСТЕР небо подразделяется на ~10000 полей.

Для выбора наиболее благоприятной площадки для съемки в данный момент времени используется следующая идея. Учитывая изменяющиеся условия программы, каждому полю присваивается свой вес, который постоянно пересчитывается в режиме реального времени. Когда любой обсерватории из сети МАСТЕР требуется снять новое поле, процесс, выполняемый непосредственно на обсерватории и отвечающий за выбор цели, запрашивает следующее поле у планировщика.

Каждая площадка имеет набор параметров, которые могут либо быть постоянными (например, его координаты $[\alpha, \delta]$), либо изменяться во времени (например, азимут и высота). В первом приближении каждый і-й параметр имеет свою передаточную функцию, $f_i(x)$, норму N_i и вес ψ_i . Передаточная функция характеризует распределение приоритета изображения в зависимости от параметра. Максимум функции f_i нормируется на 1. Вес используется для указания важности конкретного параметра. Для каждого параметра вводится диапазон допустимых значений таким образом, чтобы статус площадки изменялся на запрещенный, если параметр выходит за его пределы. Все эти параметры можно разделить на несколько категорий.

К первой категории относятся все астрономические параметры, определяемые положением площадки на небе. К ним относятся прямое восхожление, склонение, высота и азимут текушей плошалки в момент первого и последнего прохождения (в зависимости от режима работы – см. ниже), угловое расстояние от плоскости Млечного Пути, плоскости эклиптики, Луны и Солнца. Обратите внимание, что для успешной постобработки важно иметь два и более прохода одной и той же площадки за ночь. Поэтому необходимо вычислять высоту и азимут как для настоящего времени, так и для времени в будущем (от 10 мин до 1.5 ч), определяемого режимом работы. Отметим, что наблюдения ниже определенной высоты запрещены. Наблюдения вблизи Луны и Солнца сильно непрактичны, поскольку сильное освешение препятствует нормальной обработке: появляется много бликов и артефактов, а значит, параметры должны быть настроены таким образом, чтобы отводить телескоп от этих объектов. С одной стороны, в пределах 10 градусов от плоскости Млечного Пути на порядок больше звезд, чем за ее пределами, что облегчает обнаружение различных галактических вспышек, однако плотность звезд в центральных областях высока, что значительно замедляет обработку таких изображений в режиме реального времени. Поэтому в режиме обзора телескоп пропускает окрестности Млечного Пути, но это исключение (как и многие другие) не применяется, когда телескоп работает в других режимах.

Ко второй категории относятся параметры, связанные с частотой и временем последнего наблюдения того или иного поля как конкретным телескопом, так и сетью в целом. Эти параметры имеют ключевое значение для работы нескольких

роботизированных телескопов в режиме сети. Ланные обо всех снятых площадках на небе содержатся в базе данных сети МАСТЕР, из которой центральный планировщик постоянно их получает. Эти данные используются для вычисления того, как давно конкретное поле было снято сетью, конкретным телескопом, были ли попытки снять это поле во время текущей ночи наблюдения и есть ли какие-либо до сих пор необработанные кадры этого поля. В зависимости от режима работы (для разных режимов устанавливаются разные приоритеты и лимиты) принимается решение о том, следует ли повторно снимать это поле. Параметры настроены таким образом, чтобы каждая площадка посещалась не реже одного раза в две недели одним из телескопов сети. В эту категорию также входят параметры, которые содержат общее количество успешных кадров данной площадки, взятых в данной обсерватории и со всей сети. В отличие от предыдущей категории, где большинство параметров статичны или медленно изменяются, параметры второй категории постоянно меняются и поддерживаются в актуальном состоянии благодаря быстрой работе и синхронизации базы данных МАСТЕР.

Третья категория включает параметры, которые отвечают за оповещения. Это могут быть сообщения о гамма-всплесках в сети GCN, событиях нейтрино и опасных астероидах. Особый интерес для данной статьи представляют сообщения о гравитационно-волновых всплесках.

Каждая обсерватория МАСТЕР имеет камеры с очень широким полем зрения. Основной целью этих камер является синхронная запись гаммавсплесков до, во время и после события без временных промежутков. Поэтому, чтобы увеличить вероятность успешной регистрации, имеет смысл, по возможности, исследовать область ошибок, предоставляемую гамма-телескопом. Определенные параметры влияют на перемещение съемки в район, из которого ожидается регистрация гамма-всплесков различными космическими аппаратами.

Последняя группа параметров задает количество важных астрономических объектов в поле. Прежде всего это количество ярких галактик. Очевидно, что вероятность обнаружения сверхновой значительно возрастает в полях, где много галактик. Поэтому целесообразнее наблюдать поля с многочисленными галактиками, чем поля без галактик. Также на конечный вес площадки для некоторых задач могут влиять расстояние от последнего снятого кадра и количество находящихся в нем сверхновых типа Іа в ярком состоянии (в течение месяца после начала).

2.2. Режимы наблюдения МАСТЕР

Несмотря на описанную выше гибкую систему выбора параметров, составить единый универсальный набор таких параметров не представляется возможным. Это связано с тем, что при решении разных задач должны быть установлены разные приоритеты. Передающие функции и весовые коэффициенты меняются в зависимости от режима работы. При расчете статуса используются различные строгие ограничения, времена экспозиции, разное количество посещений, а также неодинаково производится контроль качества полученных снимков.

Основным режимом работы является регулярная съемка неба. Другие режимы задаются для площадки, если она соответствует определенному условию. Таким образом, если условия для определенного режима работы выполнены для площадки, то для нее будет установлен этот режим. Если площадка одновременно соответствует условиям для нескольких режимов работы, будет выбран режим работы с наивысшим приоритетом.

Режимы работы центрального планировщика сети МАСТЕР, следующие в порядке приоритета от самого низкого к высшему:

1. Регулярный обзор является режимом по умолчанию. Этот режим должен обеспечить эффективный поиск оптических транзиентов. Поэтому получение качественных глубоких изображений различных площадок на небе находится в приоритете. Типичное время жизни основных целей сети МАСТЕР (в этом режиме они включают сверхновые, катаклизмические переменные и новые) составляет около одного месяца, и поэтому телескоп должен возвращаться в ранее посещенное поле не реже одного раза в месяц. Учитывая, что в данном режиме нет конкретного сектора интереса, наблюдения производятся на большой высоте, преимущественно вблизи меридиана, минуя центральные районы Млечного Пути (для упрощения сокращения). Также важно поддерживать баланс между скоростью и глубиной. При этом опыт доказал, что глубина имеет несколько больший вес, поскольку вероятность обнаружить новый тусклый объект выше, чем яркий. Однако МАСТЕР является светосильной системой, и поэтому проблема фона неба становится крайне критической. В связи с этим экспозиция зависит от положения Луны на небе. Если Луна (с фазой больше 1/5) находится над горизонтом, длительность экспозиции снижается до 60 с. Если Луны нет, то экспозиция составляет 180 с, а количество посещений увеличивается (в случае необходимости или плохого предела относительно других кадров). Стоит обратить внимание, что для обнаружения любых транзиентов, кроме астероидов, достаточно иметь 2 кадра за ночь и архивный кадр

(для астероидов нужно не менее 3 изображений, разделенных во времени). Выбор стратегии работы в режиме съемки определяется текущими задачами и время от времени меняется. В настоящее время телескопы МАСТЕР используют двухпроходную стратегию при работе в режиме обзора с большим интервалом между наблюдениями (около 40 мин). Контроль качества в режиме регулярного обзора очень строгий. Любой кадр с плохим пределом изображения (в зависимости от среднего предела для данной даты и телескопа) должен быть повторно снят несколько раз, вплоть до получения приемлемого предела, и только тогда поле помечается как пройденное.

2. Режим первой съемки. Этот режим был введен специально для новых обсерваторий MACTEP. Для обеспечения нормальной обработки изображений требуются архивные (опорные) кадры. Условием активации этого режима является нулевое количество кадров конкретного поля, полученных на данной обсерватории.

3. Инспекционный обзор. Из действующих в настояшее время орбитальных обсерваторий только Swift (1-2 алерта в неделю), FERMI-LAT и MAXI (несколько раз в месяц), Konus-Wind и Integral (несколько алертов в год) способны обеспечить координаты с точностью, лучшей, чем поле зрения телескопов сети МАСТЕР (4 кв. градуса). Большинство других событий имеют очень широкие поля ошибок с размерами десятки (Fermi-GBM (несколько оповещений в день)), сотни и тысячи (LIGO/Virgo в ОЗ (около 1-го в неделю)) квадратных градусов. Помимо космических гамма-обсерваторий, существуют наземные детекторы нейтрино сверхвысоких энергий (IceCube, Antares и, в последнее время, BAKSAN), которые также позволяют локализовать события в полях ошибок с размерами в несколько квадратных градусов [53]. Для наблюдения за такими областями неба сеть МАСТЕР имеет режим инспекционного обзора. Все площадки в пределах 1-и 2-о из области локализации подобных событий переключаются в этот режим. Соответственно, приоритетом для этих наблюдений является обнаружение собственного излучения, оптического послесвечения гамма-всплеска [43, 44] или источника нейтрино сверхвысоких энергий. Поэтому, чтобы наблюдения были успешными, они должны начинаться немедленно и завершаться как можно быстрее. Области локализации имеют в этих наблюдениях первостепенное значение. В этом режиме параметры настроены таким образом. чтобы всю или большую часть локализации можно было просмотреть как можно быстрее по спирали от центра поля ошибки. Система автоматического обнаружения МАСТЕР требует 2 кадра, которые в данном случае разделены временным интервалом в несколько минут. Алгоритмы контроля качества и экспозиции оптимизированы для

увеличения скорости этого исследования. Кроме того, многие ограничения по параметрам из режима съемки в этом режиме значительно смягчаются или снимаются. Таким образом, наблюдения могут проводиться практически до самого горизонта, в Млечном Пути нет зоны избегания, а наблюдения разрешены для площадок, более близких к Луне. В настоящее время автоматически обследуются области ошибок из следующих экспериментов и миссий: FERMI (GBM и LAT), MAXI, Lomonosov (до 2017 г.), ANTARES, Ice-Cube и BAKSAN. В заключение отметим, что в этом режиме обзор также следует сетке с заранее определенными узлами, поскольку вся область локализации не может быть покрыта одним кадром. Если для наблюдений доступно несколько различных областей локализации, приоритет отдается последней.

4. Специальный инспекционный обзор. Для случаев, когда поля ошибок меньше размера кадра МАСТЕР (2×2 град²), нет смысла использовать стандартную схему с разделением неба на квадраты. Важнее направить телескоп как раз к центру области локализации и найти новые источники на полученном кадре. В этом режиме снимаются гамма-всплески с хорошей локализацией (от Swift, Integral, FERMI LAT), оповещения от которых пришли в неудачное для съемки время (день на телескопе, плохая погода, съемка более приоритетных алертов), нейтринные события [53], а также повторная съемка спустя долгое время после события.

5. Гравитационно-волновой инспекционный обзор. Все области ошибок, рассмотренные ранее, имеют простые геометрические фигуры в небе (в основном круги). Такие области легко определяются всего несколькими числами и очень легко параметризуются. Области локализации гравитационно-волновых событий имеют карту вероятностей, которая не равна нулю нигде на небе, но тем не менее, область локализации 3σ имеет размер в несколько тысяч квадратных градусов при наблюдении двумя детекторами (LIGO) и несколько сотен квадратных градусов при наблюдении тремя детекторами (LIGO/Virgo). Принципы обследования в этом режиме, как правило, аналогичны принципам инспекционного режима, о котором говорилось выше, однако существует ряд существенных различий. Здесь мы вводим понятие кумулятивной вероятности $P_{\rm c}$ как суммы вероятностей всех полей из отсортированного списка, от имеющего наибольшую вероятность обнаружения источника события к заданному. Поля с кумулятивной вероятностью $P_{\rm c} < 10$ относятся к 10-й, наиболее вероятной категории; поля с $10 \le P_{\rm c} \le 20$ к 9-й категории и так далее к 1-й категории с $90 \le P_c \le 99.7$. Для обеспечения приоритетного наблюдения за наиболее вероятными местами площадки будут наблюдаться в категориях с 10-й по первую. Во-вторых, килоновая может вспыхнуть не сразу. Именно поэтому одно и то же место нужно посетить не один раз, а несколько раз. В-третьих, в отличие от гамма-всплесков, которые могут быть очень яркими (до 6 звездной величины), ожидаемые килоновые очень слабые (17-я величина и слабее) и именно поэтому обзор должен быть глубоким (с точки зрения предельной величины). Экспозиция в этом случае не может быть менее 180 с. Аналогичным образом, но с пониженным приоритетом, наблюдаются гаммавсплески, локализованные сетью IPN, и быстрые радиовсплески (они также имеют области ошибок неправильной формы).

6. Алертный режим наблюдения. Этот вид наблюдения имеет наибольший приоритет. Наблюдения областей локализации гамма-всплесков, алертов нейтрино сверхвысоких энергий (от Ісе-Cube, ANTARES, Baksan), полей ошибок ГВ событий, имеющих время уведомления, близкое ко времени регистрации (триггера), наблюдаются непосредственно системой управления телескопа без привлечения центрального планировщика, что дает нам возможность самых ранних наблюдений [43, 44, 47, 53, 57]. В этом случае центральный планировщик только гарантирует, что изображение с местоположения алерта было получено по крайней мере одним телескопом сети. Этот режим также будет активен в случае гравитационно-волнового алерта в течение первых пяти минут после уведомления. В этом случае телескопы будут смотреть на область максимальной вероятности этого события. Отметим также, что несмотря на более высокий приоритет этого режима по сравнению с другими режимами, алертный режим может быть частично или полностью подавлен в случае активного гравитационно-волнового инспекционного обзора.

2.3. Оптические транзиенты сети МАСТЕР

Главной уникальной особенностью глобальной сети МАСТЕР является собственное программное обеспечение, которое разрабатывалось более 10 лет, и которое позволяло обнаруживать новые оптические транзиенты (ОТ) в широкоугольных изображениях МАСТЕР за 1-2 минуты после считывания с ПЗС. Эта информация включает в себя полную классификацию всех источников на изображении, данные из ранее архивированных изображений МАСТЕР для каждого источника, полную информацию из базы данных VIZIER и из всех открытых источников данных (например, Центр малых планет), вывод орбитальных элементов для движущихся объектов и т.д. В задачах поискового типа изображения реальных астрофизических источников вряд ли состоят только из одного, двух или четырех пикселей — такие источники, скорее всего, искусственны и устраняются поисковой программой. Реальные изображения транзиентов должны охватывать несколько пикселей, распределенных в соответствии с определенным профилем. Программное обеспечение сети MACTEP обнаруживает ОТ не по разнице между предыдущими и текущими изображениями, а по полной идентификации каждого источника в каждом изображении.

Если поблизости есть галактика, программное обеспечение автоматически классифицирует ОТ как PSN (и мы вручную проверяем его положение, чтобы обнаружить любой слабый объект Млечного Пути (тусклее оптической предельной величины) вдоль луча зрения, найденной в архивных изображениях MACTEP или POSS/SDSS/PanSTARRs. При анализе изображений М31 с помощью МА-СТЕРа стоит учитывать обнаружение возможной новой в M31. Если источники VIZIER не найдены внутри 5" от предполагаемых координат, а кривая блеска (КБ) представлена как минимум в течение одной-двух ночей, это может быть катаклизмической переменной (в большинстве случаев U Geminorum). Если на КБ наблюдается подъем, а затем источник снова исчезает в течение нескольких десятков минут, и в VIZIER обнаруживается красный или инфракрасный объект, мы можем говорить о вспышке звезды типа UV Cet. Полное описание обработки изображений см. в [16, 17].

Объекты, обнаруживаемые сетью МАСТЕР, делятся на следующие категории:

1. Известные объекты – можно идентифицировать в каталогах, сравнив их координаты и величины.

2. Вспышка/антивспышка — объект найден в тех же координатах, что и объект в каталоге, но разница величин значительная (либо отрицательная, либо положительная [171, 172].)

3. Новый (неизвестный) объект, пропущенный в каталогах. Это может быть сверхновая, оптический аналог гамма-всплеска, ГВ (Килоновая), всплеск сирота, в зависимости от амплитуды и времени жизни (доступные для наблюдателя) также могут быть: вспышка карликовой новой, вспышка типа UV Сеti или новые астероиды, кометы в случае движущихся объектов.

4. Другие (частицы, артефакты и т. д.).

Программное обеспечение сети МАСТЕР обнаружило более 2000 оптических транзиентов десяти различных типов: оптические аналоги гамма-всплесков, оптический аналог ГВ (килоновая), сверхновые (включая ультраяркие), новые, оптические вспышки активных ядер галактик, короткие транзиенты (возможно, несвязанные GRB), карликовые новые, антиновые (ε-Aur), звезды типа RCrB, типа UV Сеti и другие катаклизмические звезды, потенциально опасные астероиды и кометы в течение нескольких лет. Процесс обнаружения полностью автоматический и занимает 1–2 мин после считывания с ПЗС. После автоматического обнаружения ОТ и его первоначальной классификации программным обеспечением, каждый кандидат тщательно анализируется вручную для дальнейшего изучения его природы. Если у нас есть несколько изображений с ОТ, мы анализируем его кривую блеска и архивные изображения MACTEP. Затем мы вручную анализируем общедоступные базы данных (такие как VIZIER, AAVSO) по объектам из этой области.

3. ОБЗОР ОБЛАСТЕЙ ЛОКАЛИЗАЦИИ ГРАВИТАЦИОННЫХ ВОЛНОВЫХ СОБЫТИЙ ТЕЛЕСКОПАМИ СЕТИ МАСТЕР

Мы опубликовали подробные результаты наблюдений первого события слияния черных дыр GW150914 и первой локализации слияния нейтронных звезд, вызвавших гравитационно-волновое событие GW170817 в работах [7-9]. Здесь мы даем подробный отчет о наблюдении за событиями, зафиксированными коллаборацией LIGO/Virgo в рамках кампаний O1, O2, O3. Сюда мы включаем наиболее интересные алерты (слияние двойных нейтронных звезд, слияние нейтронных звезд и черных дыр, граничные события, особые события слияния двойной черной дыры). Другие алерты и их карты покрытия находятся в Приложении А. Полная статистическая информация обо всей поддержке телескопами МАСТЕР алертов ГВ приведена в табл. 1. Полный список найденных транзиентов находится в Приложении Б. Эти ОТ не являются аналогами событий ГВ. но они являются результатом инспекции МА-СТЕР и демонстрируют наши возможности. Ниже представлены транзиенты, которые были опубликованы на сайтах GCN^2 , The Astonomer's telegramm³, Transient Name Server⁴. Причем только те транзиенты, что по тем или иным причинам могли бы являться источниками гравитационноволновых событий на момент их открытия, позднее данные факты были уточнены и исключены из рассмотрения.

3.1. События слияния двойных нейтронных звезд

Подробные результаты первой локализации слияния нейтронных звезд (гравитационно-волновое событие GW170817) приведены в работах [9, 16]. За первые два сета наблюдений было зарегистрировано только одно подобное событие. В отличие от O1 и O2, в серии наблюдений O3 было

² gcn.gsfc.nasa.gov

³ astronomerstelegram.org

⁴ www.wis-tns.org

Таблица 1. Все наблюдения сети МАСТЕР за ГВ событиями. Название — известное название события на данный момент. Статус — это классификация ГВ события (ВВН — слияние двойной черной дыры, BNS — слияние двойной нейтронной звезды, NSBH — слияние нейтронной звезды и черной дыры, 3–5M_☉ — событие с участием объектов граничной массы, Unmoduled — странное немодулированное событие, статус "Без дальнейшего интереса" (NFI) и "Retracted" такой же, как в работе [15]; все статусы помеченные "?" составлены исходя из наибольшей вероятности в уведомлении полученном через сеть GCN, и до момента написания данной статьи не уточнены [34, 35]). Время уведомления — это время, когда серверы МАСТЕР впервые получают уведомление об алерте. Поле обсерватории МАСТЕР показывает, какие из них наблюдали данное событие. Покрытие в градусах показывает всю площадь, покрытую сетью МАСТЕР внутри области ошибки 3σ. Покрытие в % показывает полноту покрытия области ошибок

	Царрания	Стотио	Время	Время	Время	Обсерватории	Покрытие		
	пазвание	Craryc	триггера	уведомления	первого кадра	MACTEP	град ²	%	
01	GW150914 /	BBH	2015-09-14	2015-09-16	2015-09-15	Kislovodsk, Tunka,	5200	59.0	[7]
	G184098		09:50:45	05:39:43.6	03:24:22	SAAO, IAC			
	GW151012 /	BBH	2015-10-12	2016-04-25	2015-10-12	Kislovodsk, Tunka,	2199	38.8	—
	G197392		09:54:43	15:42:45	18:40:29	Amur, SAAO, IAC			
	G194575	NFI	2015-10-22	2015-10-22	2015-10-22		21 514	46.1	[112]
			13:33:19	13:35:44	13:34:56				
	GW151226 /	BBH	2015-12-26	2015-12-26	2015-12-26		2915	82.4	[113]
	G211117		03:38:53	03:40:00.	04:38:50				
O2	GW170104 /	BBH	2017-01-04	2017-01-06	2017-01-04	Kislovodsk, Tunka,	3421	79.8	[114]
	G268556		10:11:59	21:21:05.05	15:46:07	Amur, SAAO, IAC,			. ,
	G270580	Rejected	2017-01-20	2017-02-20	2017-01-20	OAFA	6292	72.7	[115]
		,	12:30:59	15:50:19.19	12:31:12				. ,
	G274296	NFI	2017-02-17	2017-02-17	2017-02-17	Tunka, IAC, SAAO,	4260	74.7	[116]
			06:05:53	23:05:40.40	08:07:14	OAFA			
	G275404	NFI	2017-02-25	2017-03-08	2017-02-25	Tunka, Amur, SAAO,	15640	58.3	[117]
			18:30:21	22:01:02.02	18:31:28	IAC, OAFA			
	G275697	NFI	2017-02-27	2017-03-07	2017-02-27	Tunka, SAAO, OAFA	4626	65.4	[118]
			18:57:31	23:00:38.38	19:00:02	, , ,			
	G277583	NFI	2017-03-13	2017-03-14	2017-03-13	Tunka, Amur, Tav-	12832	54.5	_
			22:40:09	00:17:33.33	23:13:0	rida, SAAO, IAC			
	G284239	NFI	2017-05-02	2017-05-03	2017-05-02	Kislovodsk. Tunka.	4630	55.2	[119]
			22:26:07	14:43:20.20	22:31:17	Amur. SAAO, IAC,			
						OAFA			
	GW170608 /	BBH	2017-06-08	2017-06-08	2017-06-08	Kislovodsk, Tavrida,	1142	35.4	_
	G288732		02:01:16	17:29:10.10	18:05:35	OAFA, IAC, SAAO			
	GW170729	BBH	2017-07-29	2019-03-14	2017-07-30	OAFA, IAC, Kislo-	668	21.0	_
			18:56:29	10:00:57.57	00:23:01	vodsk			
	GW170809 /	BBH	2017-08-09	2017-08-09	2017-08-09	Kislovodsk, SAAO,	1781	75.2	[120]
	G296853		08:28:21	09:17:33	10:00:02	IAC, OAFA			
	GW170814 /	BBH	2017-08-14	2017-08-16	2017-08-14	Kislovodsk, Tunka,	642	77.5	[121]
	G297595		10:30:43	13:55:32	22:10:06	Amur, Tavrida,			
						SAAO, IAC, OAFA			
	GW170817 /	BNS	2017-08-17	2017-08-30	2017-08-17	Kislovodsk, Tunka,	89	58.1	[8]
	G298048		12:41:04	12:21:09	17:06:47	Amur, SAAO, IAC,			
						OAFA			
	GW170818	BBH	2017-08-18	2019-03-14	2017-08-18	Kislovodsk, SAAO,	668	41.0	_
			02:25:09	10:04:56	05:42:31	IAC, OAFA			
	G298389	NFI	2017-08-19	2017-08-19	2017-08-20	OAFA, SAAO	63	1.7	_
			15:50:46	19:06:40	10:16:10				
	GW170823 /	BBH	2017-08-23	2017-08-29	2017-08-23	Kislovodsk, Tunka,	1910	59.4	_
	G298936		13:13:58	17:21:36	16:03:27	Amur, Tavrida,			
	G299232	NFI	2017-08-25	2017-08-29	2017-08-25	SAAO, IAC, OAFA	4124	82.2	[122]
			13:13:37	16:08:46	17:25:32				· ·

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

1082

Таблица 1. Продолжение

	II	Crosses	Время	Время	Время	Обсерватории	Покрытие		
	название	Статус	триггера	уведомления	первого кадра	MACTEP	град ²	%	
O3	S190408an	BBH	2019-04-08	2019-04-08	2019-04-08	Kislovodsk, Tunka,	1283.7	81.9	[123]
			18:18:02	22:06:44	18:21:24	Amur, Tavrida,			
	S190412m	BBH	2019-04-12	2019-04-12	2019-04-12	SAAO, IAC, OAFA	506.6	85.3	[124]
			05:30:44	06:40:50	06:34:43				
	S190421ar	BBH	2019-04-21	2019-04-22	2019-04-21		2557.1	55.1	[124]
			21:38:56	17:06:12	21:40:22				
	S190425z	BNS	2019-04-25	2019-04-25	2019-04-25		6662.9	52.0	[60]
			08:18:05	09:06:43	09:10:18				
	S190426c	$3-5 M_{\odot}$	2019-04-26	2019-04-26	2019-04-26		1780.4	71.0	[69]
		•	15:21:55	16:03:29	16:14:33				
	S190503bf	BBH	2019-05-03	2019-05-04	2019-05-03		634.7	64.5	[125]
			18:54:04	10:03:07	18:54:49				
	S190510g	Retracted	2019-05-10	2019-05-10	2019-05-10		5481.7	87.3	[126]
			02:59:39	05:04:00	03:06:00				
	S190512at	BBH	2019-05-12	2019-05-12	2019-05-12		847.5	95.3	[127]
			18:07:14	19:05:29	18:09:38				
	S190513bm	BBH	2019-05-13	2019-05-13	2019-05-13		1299.9	67.2	[128]
			20:54:28	21:28:46	20:55:53				
	S190517h	BBH	2019-05-17	2019-05-17	2019-05-17		1072.0	52.0	[129]
			05:51:01	07:07:47	06:07:26				
	S190519bj	BBH	2019-05-19	2019-05-19	2019-05-19	Kislovodsk, Tunka,	954.2	79.5	[130]
			15:35:44	17:05:40	15:51:06	Amur, Tavrida,			
	S190521g	BBH	2019-05-21	2019-05-21	2019-05-21	SAAO, IAC, OAFA	592.9	65.4	[79]
			03:02:29	03:11:37	03:07:04				
	S190521r	BBH	2019-05-21	2019-05-21	2019-05-21		687.3	82.4	[131]
			07:43:59	07:52:58	08:02:45				
	S190602aq	BBH	2019-06-02	2019-06-02	2019-06-02		364.5	20.8	[132]
			17:59:27	18:10:01	18:15:28				
	S190630ag	BBH	2019-06-30	2019-06-30	2019-06-30		3359.7	37.6	[133]
			18:52:05	18:57:13	18:58:32				
	S190701ah	BBH	2019-07-01	2019-07-01	2019-07-01		188.5	96.9	[134]
			20:33:06	20:45:10	20:53:01				
	S190706ai	BBH	2019-07-06	2019-07-06	2019-07-06		1099.7	69.7	[135]
			22:26:41	22:54:24	22:45:16				
	S190707q	BBH	2019-07-07	2019-07-07	2019-07-07		1601.0	66.7	[136]
			09:33:26	10:13:54	16:36:51				
	S190718y	Terr?	2019-07-18	2019-07-18	2019-07-18		4003.5	74.7	[137]
			14:35:12	15:41:44	15:06:02				
	S190720a	BBH	2019-07-20	2019-07-20	2019-07-20		1667.6	67.3	[138]
			00:08:36	00:12:12	00:10:24				
	S190727h	BBH	2019-07-27	2019-07-27	2019-07-27		736.8	94.7	[139]
			06:03:33	06:12:52	06:13:01				
	S190728q	BBH	2019-07-28	2019-07-28	2019-07-28		810.0	96.4	[140]
			06:45:10	07:00:14	07:00:29				
	S190814bv	$3-5~{\rm M}_{\odot}$	2019-08-14	2019-08-14	2019-08-14		175.7	97.7	[141]
			21:10:39	21:33:14	21:32:46				
	S190828j	BBH	2019-08-28	2019-08-28	2019-08-28		630.7	58.6	—
			06:34:05	06:51:03	06:36:40				
	S1908281	BBH	2019-08-28	2019-08-28	2019-08-28		632.5	40.7	[142]
			06:55:09	07:18:45	07:23:02				

Таблица 1. Продолжение

	Царраниа	Стотно	Время	Время	Время	Обсерватории	Покрытие		
	пазвание	Claryc	триггера	уведомления	первого кадра	MACTEP	град ²	%	
O3	S190901ap	BNS?	2019-09-01	2019-09-01	2019-09-01		4075.6	40.2	[143]
	G1000101	MODIA	23:31:01	23:37:55	23:31:01		1051.0	•••	
	S190910d	NSBH?	2019-09-10	2019-09-10	2019-09-10		1051.2	33.0	[144]
	C1000101	DMC9	01:26:19	01:33:30	01:28:56		5402.4	1()	[145]
	\$190910h	BIN2;	2019-09-10	2019-09-10	2019-09-10		5493.4	16.2	[145]
	S100015ak	DDU	2010 00 15	2010 00 16	2010 00 15		637 1	875	[1/6]
	319091Jak	DDII	2019-09-13	2019-09-10	2019-09-13		037.1	87.5	[140]
	\$190923v	NSBH?	2019-09-23	2019-09-23	2019-09-23		2016 7	69 9	[147]
	5170725y	TISDII.	12:55:59	13:03:03	13.09.17		2010.7	07.7	[177]
	S190924h	BBH	2019-09-24	2019-09-24	2019-09-24		515.8	81.7	[148]
	219092111	2211	02:18:46	02:26:29	02:23:45		01010	0117	[1:0]
	S190930s	BBH	2019-09-30	2019-09-30	2019-09-30		1775.4	55.2	[149]
			13:35:41	13:43:50	13:36:35				
	S190930t	NSBH?	2019-09-30	2019-09-30	2019-09-30		9249.9	35.5	[150]
			14:34:07	14:41:35	14:36:33				
	S191105e	BBH	2019-11-05	2019-11-06	2019-11-05		1716.8	65.2	[151]
			14:35:21	18:03:18	14:36:16				
	S191109d	BBH	2019-11-09	2019-11-09	2019-11-09	Kislovodsk, Tunka,	1564.3	39.5	[152]
			01:07:17	01:17:30	01:31:52	Amur, Tavrida,			
	S191129u	BBH	2019-11-29	2019-11-29	2019-11-29	SAAO, IAC, OAFA	1560.0	66.3	[153]
			13:40:29	14:23:56	14:12:54				
	S191204r	BBH	2019-12-04	2019-12-04	2019-12-04		741.7	97.4	[154]
	0101005 1	NCDU9	17:15:26	17:59:33	18:05:14		5000 ((0 ([177]
	S191205ah	NSBH?	2019-12-05	2019-12-05	2019-12-05		5008.6	68.6	[155]
	S101212	DNC9	21:52:08	21:30:20	21:50:10		770.2	<i>A</i> 1 <i>C</i>	[156]
	5191215g	DING:	2019-12-13	2019-12-13	2019-12-13		119.5	41.0	[130]
	\$191215w	RRH	2019_12_15	2019_12_15	2019_12_15		941 9	834	[157]
	5171215W	DDII	2012-12-13	2017-12-15	2017-12-15)11.)	0.5.т	[137]
	S191216ap	BBH	2019-12-16	2019-12-16	2019-12-16		931.3	92.2	[158]
	5191 2 100p	2211	21:33:38	21:51:37	22:02:01		,0110	/=	[100]
	S191222n	BBH	2019-12-22	2019-12-22	2019-12-22		2318.3	75.1	[159]
			03:35:37	03:40:36	03:41:03				. ,
	S200105ae	NSBH	2020-01-05	2020-01-06	2020-01-05	Kislovodsk, Tunka,	3930.3	57.4	[65]
			16:24:26	19:40:27	17:34:13	Amur, Tavrida,			
	S200112r	BBH	2020-01-12	2020-01-12	2020-01-12	SAAO, IAC, OAFA	2946.8	41.6	[160]
			15:58:38	16:02:46	16:02:21				
	S200114f	Unmo-	2020-01-14	2020-01-14	2020-01-14		918.7	89.7	[161]
	~~~~~	duled	02:08:18	02:14:44	02:14:38				
	S200115j	NSBH	2020-01-15	2020-01-15	2020-01-15		1680.2	80.6	[67]
	62001204	DDU	04:23:09	04:30:30	04:30:27		2127 4	72.5	[1(2]
	S200128d	ввн	2020-01-28	2020-01-28	2020-01-28		2137.4	12.5	[162]
	\$200120m	ррц	02:20:11	02:24:57	02:20:17	Kielovodek Tunko	101 4	74.0	[162]
	3200129M	DDH	2020-01-29	07.03.24	2020-01-29	Amur Tavrida IAC	191.4	/4.0	[103]
	\$200208a	RRH	2020_02_08	2020_02_08	2020-02-08	Kislovodsk Tunka	1409 3	96 7	[164]
	5200200 <b>q</b>	1100	13:01.17	13:07.10	13:06:36	Amur. Tavrida	1707.5	20.1	[107]
				10.07.10	10100100	SAAO, IAC, OAFA			

Таблица 1. Окончание

	Цозрание	Стотус	Время	Время	Время	Обсерватории	Покрытие		
	Пазванис	Claryc	триггера	уведомления	первого кадра	MACTEP	град ²	%	
O3	S200213t	BNS?	2020-02-13	2020-02-13	2020-02-13		2928.4	86.9	[165]
			04:10:40	04:15:24	04:13:42				
	S200219ac	BBH	2020-02-19	2020-02-19	2020-02-19		1464.9	74.7	[166]
			09:44:15	12:23:51	12:23:52				
	S200224ca	BBH	2020-02-24	2020-02-24	2020-02-24		362.6	95.4	[167]
			22:22:34	22:28:10	22:27:51				
	S200225q	BBH	2020-02-25	2020-02-25	2020-02-25		979.8	97.5	[168]
			06:04:21	06:09:05	10:26:20				
	S200302c	BBH	2020-03-02	2020-03-02	2020-03-02		4242.5	55.8	[169]
			01:58:11	02:01:38	02:01:39				
	S200311bg	BBH	2020-03-11	2020-03-11	2020-03-11	Kislovodsk, Tunka,	4.2	1.9	_
			11:58:53	12:02:49	13:49:09	IAC			
	S200316bj	BBH	2020-03-16	2020-03-16	2020-03-16	Kislovodsk, Tunka,	1793.4	95.4	[170]
			21:57:56	22:03:52	22:05:48	Amur, Tavrida,			
						SAAO, IAC, OAFA			

зарегистрировано несколько событий, источником которых, вероятно, было слияние двух нейтронных звезд. К сожалению, только одно событие GW190425_081805 было достоверно подтверждено позднее. Тем не менее телескопы MACTEP тщательно изучили эти поля ошибок, см. Приложение А и Б (алерты S190901ар, S190910h, S191213g, S200213t).

# 3.1.1. GW190425_081805 (S190425z)

25 апреля 2019 г. в 03:38:53 UTC сигнал S190425z был обнаружен ГВ детекторами и интерпретирован как результат слияния двух нейтронных звезд. Время уведомления об этом событии было 2019-04-25 09:06:43UT, а первый кадр внутри области ошибок был сделан телескопом MASTER-OAFA в 2019-04-25 09:10:18UT [60]. Сеть телескопов MACTEP произвела обзор области локализации GW190425_081805 в течение 1 мес с момента триггера. Данный обзор охватил 6663 квадратных градуса, что составляет 52.0% от 30 области локализации (см. рис. 2).

Сравним данное событие и событие GW170817. Расстояние до GW190425_081805 (160  $\pm$  40 Мпк) [39] гораздо больше по сравнению с GW170817 (40 Мпк) [22]. Если учесть, что в момент обнаружения звездная величина килоновой имела в максимуме ~17^m, то на 150 Мпк она будет иметь  $20^{m}$ , что уже находится на рабочих пределах современных поисковых инструментов. Учитывая, что ее блеск упал на 1 звездную величину примерно за 2 дня, то можно узнать эффективную площадь работы телескопов MACTEP для GW190425_081805: 1494 кв. град. (для предела 19^m), что составляет только 23% от области локализации данного события. Также в вышеописанных рассуждениях не учитывается вероятность другой ориентации двойной системы, что также может как уменьшить, так и увеличить вероятность обнаружения. Это частично подтверждается тем фактом, что гамма-аппараты, такие как Fermi, вспышек подобных GRB170817 не наблюдали [61]. Таким образом обнаружение килоновой на расстояниях >150 Мпк маловероятно и требует как улучшения современных поисковых инструментов, так и точности локализации подобных ГВ событий.

# MASTER OT J155829.22+271714.60

Система автообнаружения MASTER-IAC обнаружила источник ОТ (RA, Dec) = 15h 58m 29.22s +27d 17m 14.60s 2019-04-25 23:42:39UT в белом свете  $m_{OT} = 18.4^{m}$  ( $m_{lim} = 19.7$ ) [62]. Наиболее вероятно, что данный ОТ является вспышкой активного ядра галактики Сейферта на расстоянии z = 0.09 (~380 Mpc). Поскольку расстояние до этой галактики больше, чем предполагаемое расстояние до ГВ события, даже если наше предположение ошибочно, этот ОТ не может быть связан с этим событием.

#### AT2019egj / MASTER OT J142815.00+304306.00

Система автообнаружения МАСТЕР-Таврида обнаружила новый оптический источник с координатами (RA, Dec) = 14h 28m 15s +30d 43m 06s в 2019-04-28 22:34:48 по UT с  $m_{OT} = 19.0^{m}$  ( $m_{lim} = 19.2$ ) [63]. В базе данных МАСТЕР есть раннее изображение в белом свете, на котором данный транзиент отсутствует, сделанное 2017-08-

Наблюдения сети МАСТЕР за LVC S190425z



**Рис. 2.** Карта покрытия сетью телескопов роботов MACTEP события GW190425_081805 (S190425z) за период 25 апреля–25 мая 2019 г. Каждое поле (отмечено зелеными "квадратами") покрывает 4 град² неба, вплоть до предельной звездной величины 19–20. Цветовая палитра показывает распределение вероятностей LVC GW190425_081805 на небе. Синими звездами отмечены найденные транзиенты за указанный период внутри области ошибок 3σ за период (25 апреля–25 мая), 2019 г. Каждое поле (отмечено зелеными квадратами) покрывает 4 град² неба до предельной звездной величины 19–20. Цветовая палитра показывает распределение вероятностей LVC GW190425_081805 на небе.

29.79872UT, с предельной звездной величиной 19.7^m. Возможно, что данный ОТ является сверхновой, поскольку он находится рядом с галактикой PGC1914971 (~59 Мпк). Данная галактика находится ближе, чем расстояние до источника гравитационных волн и, как следствие, данный транзиент не может быть связан с GW190425. Так же стоит отметить, что данный ОТ входит в область ошибок и подходит по временным рамкам для описываемого ниже события GW190412. Поскольку предполагаемое расстояние до события GW190412 дальше, чем GW190425, то очевидно, что и с этим событием он не связан.

#### AT2019exw / MASTER OT J060606.43-353229.80

Система автообнаружения MASTER-SAAO обнаружила оптический источник с координатами (RA, Dec) = 06h 06m 06.43s -35d 32m 29.80s в 2019-05-10 18:44:36 по UT с  $m_{OT} = 19.8^{m}$  ( $m_{lim} =$ = 19.7) [64]. Предыдущее изображение в белом свете без ОТ было сделано 2019-02-05.87113UT и имело предельную звездную величину 20.3^m. Тот факт, что данный объект обнаружен внутри галактики WISEA J060606.25-353233.7 (~337 Мрс), говорит либо о потенциальной сверхновой, либо об активности ядра данной галактики. Поскольку расстояние до этой галактики больше, чем предполагаемое расстояние до ГВ события, то этот ОТ с ним не связан.

## 3.2. События слияния нейтронной звезды и черной дыры

Основным отличием периодов наблюдений O1 и O2 от O3 является обнаружение нового типа событий: слияния нейтронной звезды и черной дыры. Ниже представлены только два подтвержденных события. Карты обзора обоих событий представлены на рис. 3. Также в ходе O3 было передано 4 алерта (S190910d, S190923y, S190930t, S191205ah), которые имели большую вероятность отождествления с событием слияния нейтронной звезды с черный дырой. Однако данные события до сих пор не были подтверждены. Тем не менее телескопы MACTEP тщательно изучили эти области локализации, см. Приложение А.



**Рис. 3.** Карты покрытия сетью телескопов роботов MACTEP событий GW200105 (S200105ae) (a) и GW200115 (S200115j) (б) за 14 дней с момента времени триггера. Каждое поле (отмечено зелеными "квадратами") покрывает 4 град² неба, вплоть до предельной звездной величины 19–20. Цветовая палитра показывает распределение вероятностей LVC для каждого события на небе. Синими звездами отмечены найденные транзиенты за указанный период внутри области ошибок 3σ.

## 3.2.1. GW200105 (S200105ae)

5 января 2020 г. 16:24:26 UTC сигнал S200105ae был обнаружен ГВ детекторами. На момент получения этого оповещения была высока вероятность его отождествления с событием земной природы. Тем не менее позднее в статье [39] коллаборацией LVC было показано, что данное событие является событием слияния нейтронной звезды и черной дыры. Время уведомления об этом событии было 2020-01-06 19:40:27 UT, а первый кадр внутри области локализации был сделан на телескопе MASTER-SAAO в 2020-01-05 19:38:52 UT [65]. Сеть телескопов роботов МАСТЕР изучила GW200105 в оптическом диапазоне, обзор данного алерта охватил 4220 квадратных градусов (54.2% от размера области локализации на уровне  $3\sigma$ , см. карту покрытия на рис. 3a).

# AT2020akh / MASTER OT J023226.17-485117.1

Система автообнаружения MASTER-SAAO обнаружила источник ОТ (RA, Dec) = 02h 32m 26.17s, -48d 51m 17.1s 2020-01-16 20:23:22UT в белом свете  $m_{OT} = 18.25^{m}$  ( $m_{lim} = 20.1$ ) [68]. Раннее изображение в белом свете без ОТ, сделанное 2017-08-15.10072UT, с предельной звездной величиной 20.5^m. Вероятно данный объект является катаклизмической переменной, поскольку в базе данных VISIER есть снимки данного объекта, сделанные Dark Energy Survey со звездной величиной в фильтрах gmag = 22.6^m, rmag = 22.8^m.

#### 3.2.2. GW200115 (S200115j)

15 января 2020 г. 04:23:09 UTC сигнал S200115j был обнаружен ГВ детекторами. В оповещении коллаборацией LVC была дана высокая вероятность слияния двойной с итоговой массой 3-5 масс солнца. Позднее, в работе [39] коллаборацией LVC было показано, что данное событие является событием слияния нейтронной звезды и черной дыры малой массы. Время уведомления об этом событии было 2020-01-15 04:30:30 UT, а кадр внутри ошибки был сделан первый MASTER-IAC в 2020-01-15 04:30:27 UT [67]. Сеть телескопов роботов МАСТЕР осмотрела область локализации S200115j в оптическом диапазоне. Данный обзор охватил 1757 квадратных градусов (66.1% от размера области локализации на уровне  $3\sigma$ , см. карту покрытия на рис.  $3\delta$ ).

# MASTER OT J022753.99+004441.0

Система автообнаружения MASTER-IAC обнаружила источник ОТ (RA, Dec) = 02h 27m 53.99s, +00d 44m 41.0s 2020-01-15 20:59:19UT в белом свете  $m_{OT} = 18.5^{m}$  ( $m_{lim} = 19.8$ ) [68]. Раннее изображение в белом свете без ОТ, сделанное 2018-11-04.11958UT, с предельной звездной величиной 20.2^m. Вероятно данный объект является переменной типа U Gem, поскольку в каталоге USNO есть объект со звездной величиной в фильтре B2 = 20.57^m.



**Рис. 4.** Карты покрытия сетью телескопов роботов МАСТЕР событий GW190426 (S190426с) (a) и GW190814 (S190814bv) (б) за 14 дней с момента времени триггера. Каждое поле (отмечено зелеными "квадратами") покрывает 4 град² неба, вплоть до предельной звездной величины 19–20. Цветовая палитра показывает распределение вероятностей LVC для каждого события на небе. Синими звездами отмечены найденные транзиенты за указанный период внутри области ошибок 3*σ*.

#### 3.3. События слияния объектов граничной массы

В данном разделе рассматриваются события, в которых участвуют объекты с массами, близкими к пределу Оппенгеймера-Волкова и принадлежность которых к той или иной группе неясна. На рис. 4 представлены все подтвержденные события с объектами граничной массы.

#### 3.3.1. GW190426

26 апреля 2019 г. 15:21:55 UTC сигнал S190426с был обнаружен детекторами GW. На момент получения этого алерта вероятность его отождествления с событием слияния всех трех типов (НЗНЗ, НЗЧД, ЧДЧД) была примерно равновероятна. Позднее в каталоге GWTC-2 [39] данный факт не был прояснен. Время уведомления об этом событии было 2019-04-26 16:03:29 UT, а первый кадр внутри области ошибок был сделан МАСТЕР-Амур в 2019-04-26 16:15:47 UT [70]. Всего за время исследования GW190426 телескопами сети МАСТЕР было пройдено 1780 квадратных градусов внутри области локализации события на уровне 3σ (или 71.0%, см. карту покрытия на рис. 4а).

# 3.3.2. GW190814 (S190814bv)

14 августа 2019 г. 21:10:39 UTC сигнал S190814bv был обнаружен детекторами GW. На момент получения этого алерта вероятность его отождествления с событием слияния черных дыр двух нейтронных звезд была высокой. Тем не менее позднее в статье [39] коллаборацией LVC было показано, что массы данного объекта находятся близко к пределу Оппенгеймера—Волкова. Время уведомления об этом событии было 2019-08-14 21:10:39 UT, а первый кадр внутри блока ошибок был сделан MACTEP-Тунка в 2019-08-14 21:32:46UT [70]. Сеть телескопов роботов MACTEP изучила GW190814 в оптическом диапазоне, обзор данного алерта охватил 175.7 квадратных градусов (97.7% от размера области локализации на уровне 3σ, см. карту покрытия на рис. 4б).

#### MASTER OT J003814.71-245902.0

Система автообнаружения MASTER-IAC обнаружила источник ОТ (RA, Dec) = 00h 38m 14.71s, -24d 59m 02.0s 2019-08-15 04:49:07UT в белом свете  $m_{OT} = 15.3^m (m_{lim} = 18.6)$  [71]. Наиболее вероятно данный ОТ является следствием активности QSO [HB89] 0035-252.

#### 3.4. События слияния двойных черных дыр

Большая часть зарегистрированных гравитационно-волновых событий является слияниями двойных черных дыр. Все события слияния двойных черных дыр представлены в Приложении А. Ниже приведены примеры наблюдений за этими событиями в течение всех 3 сетов. В статье представлены события, обработанные только после публикации работы [20]. А также в качестве примеров алертного обзора подобных событий представлены особо выделенные в работах [72, 73].

# 3.4.1. GW151012 (G197392)

Событие GW151012 было зафиксировано детекторами LIGO, об этом событии сообщалось [74] только 25 апреля 2016 г. Инспекционный обзор области ошибок GW151012 не проводился, поскольку не было получено оповещение о данном событии за время, близкое к времени триггера (<2 дней для О1). Тем не менее регулярный обзор глобальной сети МАСТЕР охватил 2199 квадратных градусов внутри области ошибок, что составило 38.8% от площади 3σ. Первый кадр внутри поля ошибок был сделан в 2015-10-12 18:40:29UT в обсерватории МАСТЕР-Тунка через 31546 с после времени триггера. Оптические транзиенты, которые были найдены системой автоматического обнаружения сети МАСТЕР внутри этой области локализации в течение одного месяца, представлены в Приложении Б, а также отмечены на рис. 5а.

#### MASTER OT J234149.80-465633.6

На обсерватории MASTER-SAAO был обнаружен источник ОТ (RA, Dec) = 23h 41m 49.80s, – 46d 56m 33.6s 2015-10-20 19:32:16UT в белом свете  $m_{OT} = 18.9^{m}$  ( $m_{lim} = 20.4$ ). На MASTER-IAC, MASTER-SAAO есть 4 изображения с этим ОТ. На опорных изображениях отсутствуют источники как после 2015-10-11 19:40:33, так и ранее 2015-10-10 20:40:28UT. В базе MASTER-SAAO всего 1458 кадров этого района без ОТ с предельными звездными величинами до 21.2^m в белом свете, начиная с 2014-12-27 19:53:19UT, например, кадр снятый 2015-08-17.98584UT с  $m_{lim} = 20.6^{m}$ . В базе данных VIZIER не удалось найти источники в пределах 5" с пределом POSS 22.0^m [75].

# 3.4.2. GW170729

Гравитационно-волновой сигнал GW170729 был обнаружен 29 июля 2017 г., но сообщений в системе GCN не было. Команда МАСТЕР узнала об этом обнаружении только после публикации статьи [21]. После публикации подробной карты на сайте GraceDB⁵ стала возможной постобработка данного события. Регулярный обзор, проводимый сетью МАСТЕР, охватил 668.1 квадратных градусов в области локализации этого события, что составило 21% от области локализации Зσ (рис. 56).

#### 3.4.3. GW170818

18 августа 2017 г. сигнал GW170818 был зарегистрирован, но не был передан через систему GCN. Команде MACTEP стало известно об этой регистрации только после публикации статьи [21].

Соответственно, специальная проверка области локализации GW170818 не была выполнена, поскольку не было получено предупреждающее сообщение. Кроме того, этот всплеск произошел на следующий день после первого зарегистрированного слияния двух нейтронных звезд, и большинство телескопов MACTEP были заняты его наблюдением. Тем не менее регулярный обзор сети MACTEP охватил 289.1 кв. градусов, что составило 41% от 30 площади (рис. 5в).

#### SN2017ggw / MASTER OT J023026.89-430055.2

Система автообнаружения MASTER-OAFA обнаружила источник ОТ (RA, Dec) = 02h 30m 26.89s –43d 00m 55.00s 2017-08-19.31471 UT в белом свете  $m_{OT} = 16.7^{m}$  ( $m_{lim} = 18.9$ ). ОТ был виден на 6 изображениях. На более ранних изображениях, к примеру 2016-12-24.10095UT с пределом звездной величины 20.5^m в белом свете данный объект отсутствует. Этот PSN был расположен в 11.1"Е., 41.6"N. от центра галактики ESO246-021, также был обнаружен BOSS [76] и классифицирован программой еPESSTO как SN II на z = 0.017 [77].

#### 3.4.4. GW190412 (S190412m)

12 апреля 2020 г. в 05:30:44 по UTC сигнал S190412m был обнаружен детекторами GW. Это событие представляет собой слияние двух черных дыр с большой разницей в массах (Abbot et al. 2020). Время уведомления об этом событии 2019-04-12 06:40:50 UT, а первый кадр внутри области ошибок был сделан телескопом MACTEP-Тунка в 2019-04-12 06:34:44 UT [78]. Сеть телескопов роботов MACTEP осмотрела область локализации S200115j в оптическом диапазоне. Данный обзор охватил 506.6 квадратных градусов (85.3% от размера области локализации на уровне 3σ, см. карту покрытия на рис. 5г).

#### 3.4.5. GW190521 (S190521g)

21 мая 2019 г. 03:02:29 UTC сигнал S190521g был обнаружен детекторами GW. На момент получения этого оповещения высока вероятность его отождествления с событием слияния двух нейтронных звезд. Время уведомления об этом событии было 2019-05-21 03:11:37 UT, а первый кадр внутри ошибки был сделан MACTEP-Тунка в 2019-05-21 03:07:04 UT [79]. Сеть MACTEP

⁵ gracedb.ligo.org







 $0.0 \times 10^{0}$ 2.0×10-5 4.0×10-5 6.0×10⁻⁵  $8.0 \times 10^{-5}$  $1.0 \times 10^{-4}$ 1.2×10-4 0.0×10° 1.0×10-5 2.0×10-5 3.0×10-5 4.0×10-5 5.0×10-5 6.0×10-5 7.0×10-5 8.0×10-5 9.0×10-5 Рис. 5. Карты покрытия сетью телескопов роботов МАСТЕР событий GW151012 (G197392) (a), GW170729 (б), GW170818 (в), GW190412 (S190412m) (г), GW190521 (S190521g) (д). Каждое поле (отмечено зелеными "квадратами") покрывает 4 град² неба, вплоть до предельной звездной величины 19–20. Цветовая палитра показывает распределение вероятностей LVC для каждого события на небе. Синими звездами отмечены найденные транзиенты за указанный период внутри области ошибок 3σ.

Транзиенты

Покрытие МАСТЕР

24

24

Транзиенты *

Покрытие МАСТЕР

осмотрела 620.5 квадратных градусов внутри области локализации GW190521 (63.8% от размера области локализации на уровне  $3\sigma$ , см. карту покрытия на рис. 5е).

# 4. СОВЕРШЕНСТВОВАНИЕ СТРАТЕГИИ ПОИСКА

В течение первых двух сетов наблюдения для поиска источников гравитационных волн на телескопах МАСТЕР использовалась стратегия, описанная в разделе 2.2. В целом эта стратегия убедительно доказала свою эффективность, поскольку телескопами МАСТЕР была найдена килоновая во время обзора события GW170817. Однако другие 5 обсерваторий [10–14], независимо обнаруживших этот объект одновременно с телескопом MASTER-Argentina [9], работали по другому алгоритму. Алгоритм, использовавшийся сетью МАСТЕР, исследовал блоки ошибок по зонам с приоритетом, назначаемым только в зависимости от распределения поля вероятностей, полученного с обсерваторий LIGO/VIRGO. Другие группы также приняли этот факт во внимание, но в отличие от стратегии, используемой в системе сети МАСТЕР, они основывали свой обзор на списке галактик [10–13], которые располагаются внутри области ошибок [80]. Также стоит учитывать тот факт, что каждое событие LVC имеет третью координату – расстояние. Таким образом, распределение галактик может быть отображено в трехмерном слое, определяемом только границами области локализации ГВ. Тогда использованная телескопами МАСТЕР стратегия может быть оптимизирована.

Учитывая, что каждая галактика имеет свои структурные особенности и специфику расположения, вероятность возникновения источника ГВ также будет отличаться от одной галактики к другой. В частности, для события GW 170817 был составлен список галактик из области локализации [80]. Более того, данный список был отсортирован по звездной массе галактики. Стоит заметить, что в данном списке искомая галактика NGC4993 оказалась на 4-м месте, что в случае узкопольного обзора является достаточным для быстрого открытия килоновой. Однако масса не единственный параметр, характеризующий эволюцию звезд в галактике.

Другим, не менее важным параметром, влияющим на темпы слияния звезд, является темп звездообразования (SFR), как показано Липуновым и др. [81]. Авторы вышеуказанной статьи также вывели такие характеристики галактики, как темпы слияния для различных комбинаций релятивистских объектов (H3+H3, H3+ЧД). На данный момент слияния двойных нейтронных звезд являются единственным подтвержденным источником оптического излучения среди всех изучаемых

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

LIGO/Virgo ГВ событий. Таким образом, имеет смысл ориентироваться на темпы слияния именно двойных нейтронных звезд. Аппроксимируем зависимость темпа слияния Н3+Н3, рассчитанную и представленную на рис. 1 статьи [81] и получим зависимость скорости слияния двойных нейтронных звезд от возраста галактики для некоторой модельной эллиптической галактики с массой  $10^{11} M_{\odot}$  и SFR = 0. Отметим, что звездная масса. и скорость звездообразования любой галактики изменяются в ходе ее эволюции. Кроме того, все галактики имеют разный возраст. Все вышеперечисленные функции практически невозможно получить без тщательного анализа спектров, фотометрии и движения отдельных галактик. Таким образом, точно измеренные параметры эволюции доступны на данный момент для крайне ограниченного числа галактик. По этой причине вслед за Липуновым и др. [81] примем следующие допущения: одинаковое время формирования для всех галактик (10¹⁰ лет назад) и игнорируем эволюцию SFR. В результате можно вывести следующую зависимость скорости слияния нейтронных звезд от массы и темпа звездообразования галактики:

$$M_{\rm rate} = 10^{-4} M_{11} t_{10}^{-1} + 10^{-4} SFR, \tag{1}$$

где  $M_{11} = M/10^{11}$ ; M – звездная масса галактики в  $M_{\odot}$ ;  $t_{10} = t/10^{10}$ , а t – возраст галактики. Полагаем последний параметр равным 10¹⁰ лет и, следовательно,  $t_{10} = 1$  год. Таким образом, можно оценить скорость слияния нейтронных звезд в галактике, используя массу и SFR. Звездную массу можно используя данные из каталога получить, ALLWISE [82]. Фильтр WISE 3.4 мкм позволяет определять массу галактики с помощью соотношения масса-светимость [83]. Чтобы найти SFR, необходимо использовать дальний ультрафиолет (наиболее удобен GALEX FUV) [84] и ИК-данные (фотометрия 22 мкм из каталога ALLWISE [82]), как описано E.J. Murphy et al. [85]. Вслед за Cook et al. [80] используем каталог GLADE v2.3 [34] в качестве опорного каталога галактик.

Таким образом, галактики могут быть отсортированы в порядке уменьшения темпов слияния двойных нейтронных звезд, что должно позволить быстро находить подобные события.

Однако необходимо учитывать тот факт, что событие слияния происходит в области локализации гравитационно-волновых детекторов LIGO/VIRGO. Поскольку карты LVC рассчитываются непосредственно на основе наблюдений гравитационно-волновых интерферометров, а карты скоростей слияния получаются из наблюдений за возможными галактиками-хозяевами этих событий, эти две вероятности можно считать независимыми. Тем не менее относительная важность двух вероятностей в случае ГВ события остается открытым вопросом. Поскольку карты LVC вычисляются непосредственно на основе входящего сигнала, то все параметры, полученные в результате их измерений, можно считать прямыми экспериментальными данными. По сравнению с ними значения SFR и массы являются модельно-зависимыми и, как следствие, Таким образом, вероятность, косвенными. предоставляемая LIGO/Virgo, должна иметь приоритет. Именно поэтому в процессе "оптимизании" стратегии обзора широкопольных инструментов не следует изменять основной принцип обзора областей локализации ГВ событий. Добавим к нему еще один параметр, который учитывает обшую скорость слияния двойных нейтронных звезд для всех галактик, расположенных внутри конкретной площадки на небе. В планировщике МАСТЕР данному параметру присваивается самый низкий приоритет, что означает, что сначала область ошибок ГВ события делится на девять подобластей, как описано в пункте 2.2, а только затем вычисляются общие показатели слияния каждой площадки и сортируются в порядке приоритета внутри каждой из девяти подобластей по отдельности. Некоторые намеки на подобную стратегию можно найти в статье [86].

# 5. ТЕМП СЛИЯНИЯ НЕЙТРОННЫХ ЗВЕЗД В МЕСТНОЙ ВСЕЛЕННОЙ

Первая попытка оценить темп слияния нейтронных звезд в нашей Галактике, исходя из общих представлений об эволюции двойных систем вплоть до образования в них релятивистских звезд, была предпринята в конце 1970-х гг. [112]. Оценка оказалась довольно приблизительной:  $10^{-4}-10^{-6}$  слияний в год, поскольку частота слияний (Merging Rate) есть произведение большого числа трудно оцениваемых вероятностных коэффициентов. А именно:

Rate = 
$$f * \alpha * \beta * \delta * \gamma$$
, (2)

где f — начальная функция масс в галактике (функция Солпитера);  $\alpha$  — часть двойных звезд, которые могут образовать релятивистскую звезду (функция распределения по отношению масс компонентов);  $\beta$  — часть звезд, уцелевшая после первого взрыва Сверхновой (сильно зависит от анизотропии коллапса или, так называемой, скорости отдачи);  $\gamma$  — часть нейтронных звезд после второго взрыва и  $\delta$  — часть двойных релятивистских звезд, которые могут слиться за  $1.3 \times 10^{10}$  лет.

Если функция Солпитера более-менее (с фактором 2) установлена  $f(M) \approx 1(M/M_{\odot})^{-2.35}$  yr⁻¹, то

остальные коэффициенты оцениваются очень приблизительно.

Поэтому в начале 80-х годов был предложен и реализован популяционный синтез двойных звезд методом Монте-Карло (Машина Сценариев [88, 89]). Главная идея Машины Сценариев была не только в том, чтобы, используя различные сценарии эволюции двойных звезд, предсказать числа и вероятности ненаблюдаемых процессов, но прежде попытаться добиться подбора таких параметров эволюции, которые самым оптимальным образом объясняют наблюдаемые стадии эволюции двойных систем. Среди таких параметров можно выделить  $V_{\rm kick}$  – скорость отдачи при взрыве сверхновой,  $\alpha_{\rm CE}$  – параметр эффективности общей оболочки [90] и  $\alpha_q$  – параметр функции распределения двойных систем по отношению масс q = M2/M1 < 1:

$$\varphi(q) \sim q^{\alpha_q}. \tag{3}$$

Первый расчет методом Монте-Карло частоты таких явлений методом популяционного синтеза (Машина Сценариев) впервые был проведен в 1987 г. [91]. Оказалось, что слияния нейтронных звезд в галактике типа нашей (с массой 10¹¹ масс Солнца и звездообразованием одна звезда типа Солнца в год по функции Солпитера) происходят один раз в год в объеме радиусом 20 Мрс ([91]; см. подпись к рис. 1, случай "е").

Схожую оценку аналитическими методами позже получили Hills [92]; Тутуков и Юнгельсон [38]. А последнюю попытку получить скорость слияния простыми аналитическими оценками приняли Bethe & Brown [93]. Надо заметить, что попытки получить частоту слияний прямо на основе наблюдений радиопульсаров приводили к предсказанию скорости слияний на 2 порядка ниже ~10⁻⁶ yr⁻¹ [94, 95].

Между тем повторные расчеты Машины Сценариев, проведенные в 90-е годы [4–6, 96], подтвердили первую оценку частоты этого процесса. С другой стороны, так называемые наблюдательные оценки, полученные по наблюдениям двойных радиопульсаров, постепенно подрастали и приближались к результату популяционного синтеза кодом Машины Сценариев [97–100] (рис. 6).

В то же время несколько групп периодически публиковали различные оценки, которые тянули в сторону уменьшения частоты слияний в объеме чувствительности строящихся гравитационноволновых антенн [106, 107].

Возникает вопрос, почему из года в год вопреки прогрессу в нашем понимании эволюции двойных звезд Машина Сценариев дает один и тот же ответ на вопрос "как часто сливаются ней-



**Рис. 6.** Эволюция теоретической оценки скорости слияния нейтронных звезд [4–6, 81, 87, 91, 92, 94, 95, 38, 101, 96, 81, 4–6, 97–100, 102–104]. Стоит также отметить, что оценка темпов слияния [105] была сделана на основе наблюдений ГВ событий на детекторах LIGO/Virgo.

тронные звезды?" В одной из работ [108] оценивается, что темп слияний в расчете на одну галактику типа нашей не может быть меньше, чем  $10^{-4.5}$  yr⁻¹.

Дело в том, что если темп слияния будет меньше этой величины, то с неба должны исчезнуть "нераскрученные"⁶ двойные нейтронные звезды – non recycled radiopulsar. Неоднократно подчеркивалось (как, например, в работе [16]), что одной из самых надежных наблюдаемых величин в этой истории является безразмерное относительное число наблюдаемых двойных нераскрученных радиопульсаров с нейтронными звездами, нормированное на полное наблюдаемое число радиопульсаров (одиночных и двойных). Так как 1) эти системы являются прямыми предками сливающихся нейтронных звезд; 2) это наблюдаемое число не подвержено эффектам селекции, так как такие плохо известные параметры пульсаров, как средняя диаграмма направленности, закон замедления, линия смерти и характеристики спектра не зависят от того, является ли пульсар изолированным, или он находится в двойной системе.

Конечно, имеются в виду нераскрученные миллисекундные пульсары, имеющие другую историю жизни и судьбу.

В работе [6] показано, как относительное число нейтронных звезд в двойных системах с радиопульсарами зависит от скорости отдачи (kick velocity) во время вспышки сверхновой (рис. 7).

Особенно резкой является эта зависимость для двойных нейтронных звезд с радиопульсарами потенциальных предков событий на гравитационно-волновых антеннах. Это связано с тем, что такие системы сумели выжить в двух вспышках сверхновых звезд, т.е. импульс отдачи действовал дважды. В то же время в этой работе была рассчитана скорость слияний в зависимости от скорости отдачи. В работе [16] соединили эти два графика (рис. 7).

Отметим, что в работе [16] ошибочно обобщен ожидаемый темп слияния на средние космологические масштабы, без учета локального — внутри 50 Мпк — повышения плотности, где средняя плотность намного выше. Другими словами правая вертикальная ось графика в работе [16] это просто скорость слияния в местном объеме Вселенной. В результате дана завышенная оценка при обобщении на космологические масштабы.

⁶ "Нераскрученные пульсары" — это нейтронные звезды, которые не проходили стадию аккреции в маломассивных двойных системах, как миллисекундные (раскрученные) радиопульсары [16].



**Рис.** 7. Зависимость частоты слияния нейтронных звезд в галактике с постоянным темпом звездообразования  $1 M_{\odot}$ /год (Млечный Путь) от отношения числа двойных радиопульсаров с нейтронными звездами к полному числу радиопульсаров в двух гипотезах о распределении скорости отдачи (kick velocity): максвелловском и более плоском распределении – Лайна-Лоримера [109]. Вертикальная линия построена по статистике каталога пульсаров [110], причем учитываются только те двойные пульсары, которые не проходили стадию раскрутки [111].

На самом деле, пересчет на большие масштабы Вселенной, где она практически однородна, должен проводиться по формуле (5) из работы [6], в которой фигурирует средняя барионная плотность Вселенной. Здесь мы исправляем это недоразумение и снимаем противоречие с наблюдательными данными третьего включения интерферометров LIGO/Virgo O3 [105]. Ось Y слева представлена в полном соответствии с многолетними расчетами Машины Сценариев. Сказанное относится и как к рис. 6, так и к рис. 7.

Вертикальная линия соответствует современной статистике радиопульсаров по постоянно обновляемому каталогу ATNF⁷ [110]. Причем из всех двойных пульсаров были отброшены миллисекундные пульсары – так называемые раскрученные пульсары (recycled pulsars) – которые имеют существенно другую историю эволюции периода и магнитного поля, чем одиночные пульсары. Таких пульсаров на данный момент оказалось 3, так что относительное число нормальных пульсаров с нейтронными звездами к одиночным (PSR+NS/количество PSR) – равно 0.12%. Из условия, что это нижняя оценка доли двойных пульсаров с нормальной эволюцией, следует, что скорость слияний не может быть существенно ниже  $10^{-4}$  yr⁻¹.

# 6. ОБСУЖДЕНИЕ И ВЫВОДЫ

В ходе первых двух кампаний по поиску ЭМ-аналогов гравитационно-волновых всплесков телескопами МАСТЕР был накоплен большой опыт наблюдения за подобными событиями. Стратегия поиска объектов внутри полей ошибок LIGO/Virgo, описанная в пункте 2.2, оказалась эффективной на практике. Несмотря на то что оптический аналог сигнала GW от слияния черных дыр в областях ошибок не был найден, явление Килоновой было обнаружено и подтверждено различными наблюдениями в широком ЭМ диапазоне 17 августа 2017 г. [22, 23]. Телескопы МАСТЕР были одними из первых инструментов, обнаруживших это событие. Это был первый случай, когда источник гравитационных волн был точно локализован.

Тем не менее стратегия, используемая телескопами МАСТЕР, нуждалась в доработке. Новая стратегия поиска оптических аналогов событий ГВ включает в себя старую с дополнением в виде

⁷ http://www.atnf.csiro.au/research/pulsar/psrcat/

сортированного списка галактик по темпам слияния двойных нейтронных звезд. Однако относительная важность темпов слияния лвойных нейтронных звезд и вероятности обнаружения, получаемой с гравитационно-волновых экспериментов, все еще остается открытым вопросом. Представляется возможным увеличение точности моделей вычисления SFR, звездных масс и параметров эволюции для большего количества галактик. чем известно на данный момент. На данный момент для успешного обнаружения источника гравитационных волн данные параметры должны быть уточнены для большей части галактик примерно ло 160 Мпк (что соответствует 20^m звезлной величине в случае килоновой и является рабочим пределом МАСТЕРа и многих других поисковых инструментов на данный момент). Несмотря на улучшения, произведенные после О1, О2 в ходе ОЗ, не было обнаружено ни одного подтвержденного ЭМ аналога гравитационных волн. В связи с этим рано говорить об успешности реализации новой стратегии.

Наблюдения сети МАСТЕР охватили большие части от областей всех ГВ алертов, причем телескопы МАСТЕР наблюдали ГВ события даже тогда, когда не было никаких уведомлений об этих событиях. В ходе проверки событий LVC было обнаружено большое количество оптических транзиентов (см. Приложение Б.) как потенциально являющихся кандидатами в килоновые, так и не являющихся ими. Тем самым сеть MACTEP оказала поддержку другим телескопам для дальнейшего анализа ГВ событий.

# ПРИЛОЖЕНИЕ А

# КАРТЫ ПОКРЫТИЯ ТЕЛЕСКОПАМИ МАСТЕР ОБЛАСТЕЙ ОШИБОК LIGO/VIRGO В ХОДЕ КАМПАНИЙ 01, 02, 03

В данном разделе представлены все карты наблюдений МАСТЕР в течение кампаний O1, O2, O3. На всех рисунках оранжевым градиентом обозначено пространственное распределение вероятности обнаружить гравитационно-волновое событие, получаемое из уведомлений LIGO/Virgo и через сеть GraceDB. Зелеными "квадратами" обозначены кадры, сделанные МАСТЕР в ходе обзора каждого события за указанные промежутки времени. Синими звездами обозначены транзиенты, найденные телескопами МАСТЕР в ходе данного обзора внутри области ошибок 3σ (см. Приложение Б).



**Рис. А1.** Карта покрытия сетью телескопов роботов MACTEP события G184098 за период 14 сентября–14 октября 2015 г. На данном графике оставлены все найденные транзиенты по карте, переданной LIGO, для демонстрации ненулевой вероятности на всем небе.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



 $0.0 \times 10^{0} \ 2.0 \times 10^{-6} \ 4.0 \times 10^{6} \ 6.0 \times 10^{-6} \ 8.0 \times 10^{-6} \ 1.0 \times 10^{-5} \ 1.2 \times 10^{-5} \ 1.4 \times 10^{-5} \ 1.6 \times 10^{-5} \ 1.8 \times 10^{-5} \ 2.0 \times 10^{-5} \ 1.0 \times 10^{-5}$ 

Рис. А2. Карта покрытия сетью телескопов роботов МАСТЕР *события G197392 за период 12 октября-12 ноября 2015 г.



Рис. АЗ. Карта покрытия сетью телескопов роботов МАСТЕР события G194575 за период 22 октября-22 ноября 2015 г.



**Рис. А4.** Карта покрытия сетью телескопов роботов МАСТЕР события G211117 за период 26 декабря 2015–26 января 2016 г.



**Рис. А5.** Карта покрытия сетью телескопов роботов МАСТЕР события G268556 за период 4 января—4 февраля 2017 г.



Рис. Аб. Карта покрытия сетью телескопов роботов МАСТЕР события G270580 за период 20 января-20 февраля 2017 г.



Рис. А7. Карта покрытия сетью телескопов роботов МАСТЕР события G274296 за период 17 февраля-17 марта 2017 г.



Рис. А8. Карта покрытия сетью телескопов роботов МАСТЕР события G275404 за период 25 февраля-25 марта 2017 г.



 $0.0 \times 10^{0} \quad 5.0 \times 10^{-6} \quad 1.0 \times 10^{-5} \quad 1.5 \times 10^{-5} \quad 2.0 \times 10^{-5} \quad 2.5 \times 10^{-5} \quad 3.0 \times 10^{-5} \quad 3.5 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 4.5 \times 10^{-5} \quad 5.0 \times 10^{-5}$ 

Рис. А9. Карта покрытия сетью телескопов роботов МАСТЕР события G275697 за период 27 февраля—27 марта 2017 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

1099



Рис. А10. Карта покрытия сетью телескопов роботов МАСТЕР события G277583 за период 13 марта-13 апреля 2017 г.



Рис. А11. Карта покрытия сетью телескопов роботов МАСТЕР события G284239 за период 2 мая-2 июня 2017 г.



Рис. А12. Карта покрытия сетью телескопов роботов МАСТЕР события G288732 за период 8 июня-8 июля 2017 г.



 $0.0 \times 10^{-6} \ 5.0 \times 10^{-6} \ 1.0 \times 10^{-5} \ 1.5 \times 10^{-5} \ 2.0 \times 10^{-5} \ 2.5 \times 10^{-5} \ 3.0 \times 10^{-5} \ 3.5 \times 10^{-5} \ 4.0 \times 10^{-5} \ 4.5 \times 10^{-5} \ 5.0 \times 10^{-5$ 

Рис. А13. Карта покрытия сетью телескопов роботов МАСТЕР события GW170729 за период 29 июля—29 августа 2017 г.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



Рис. А14. Карта покрытия сетью телескопов роботов МАСТЕР события G296853 за период 9 августа-9 сентября 2017 г.



Рис. А15. Карта покрытия сетью телескопов роботов МАСТЕР события G297595 за период 14 августа-14 сентября 2017 г.



Рис. А16. Карта покрытия сетью телескопов роботов МАСТЕР события G298048 за период 17 августа-17 сентября 2017 г.



**Рис. А17.** Карта покрытия сетью телескопов роботов МАСТЕР события GW170818 за период 18 августа–18 сентября 2017 г.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



Рис. А18. Карта покрытия сетью телескопов роботов МАСТЕР события G298389 за период 19 августа-19 сентября 2017 г.



Рис. А19. Карта покрытия сетью телескопов роботов МАСТЕР события G298936 за период 23 августа-23 сентября 2017 г.



Рис. А20. Карта покрытия сетью телескопов роботов МАСТЕР события G299232 за период 25 августа-25 сентября 2017 г.





1105



Рис. А22. Карта покрытия сетью телескопов роботов МАСТЕР события S190412m за период 12 апреля-12 мая 2019 г.



 $0.0 \times 10^{0} \quad 1.0 \times 10^{-5} \quad 2.0 \times 10^{-5} \quad 3.0 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 5.0 \times 10^{-5} \quad 6.0 \times 10^{-5} \quad 7.0 \times 10^{-5} \quad 8.0 \times 10^{-5} \quad 9.0 \times 10^{-5} \quad 1.0 \times 10^{-4} \times 10^{-5} \quad 1.0 \times 10^{-5} \quad 1.0$ 

Рис. А23. Карта покрытия сетью телескопов роботов МАСТЕР события S190421ar за период 21 апреля-6 мая 2019 г.



Рис. А24. Карта покрытия сетью телескопов роботов МАСТЕР события \$190425z за период 25 апреля-25 мая 2019 г.



Рис. А25. Карта покрытия сетью телескопов роботов МАСТЕР события S190426с за период 26 апреля–26 мая 2019 г.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



Рис. A26. Карта покрытия сетью телескопов роботов MACTEP события S190503bf за период 3-18 мая 2019 г.



 $0.0 \times 10^{0} \quad 1.0 \times 10^{-5} \quad 2.0 \times 10^{-5} \quad 3.0 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 5.0 \times 10^{-5} \quad 6.0 \times 10^{-5} \quad 7.0 \times 10^{-5} \quad 8.0 \times 10^{-5} \quad 9.0 \times 10^{-5} \quad 1.0 \times 10^{-4} \quad 1.0 \times 10^{-5} \quad 1.0 \times 10^{-5}$ 

Рис. А27. Карта покрытия сетью телескопов роботов МАСТЕР события \$190510g за период 10 мая-9 июня 2019 г.


Рис. А28. Карта покрытия сетью телескопов роботов МАСТЕР события \$190512at за период 12 мая-11 июня 2019 г.



**Рис. А29.** Карта покрытия сетью телескопов роботов МАСТЕР события S190513bm за период 13-28 мая 2019 г.



Рис. АЗО. Карта покрытия сетью телескопов роботов МАСТЕР события S190517h за период 17 мая-1 июня 2019 г.



Рис. АЗ1. Карта покрытия сетью телескопов роботов МАСТЕР события S190519bj за период 19 мая-3 июня 2019 г.



Рис. АЗ2. Карта покрытия сетью телескопов роботов МАСТЕР события \$190521g за период 21 мая-5 июня 2019 г.



**Рис. А33.** Карта покрытия сетью телескопов роботов МАСТЕР события S190521r за период 21 мая-5 июня 2019 г.



Рис. АЗ4. Карта покрытия сетью телескопов роботов МАСТЕР события S190602aq за период 2–17 июня 2019 г.



 $0.0 \times 10^{0} \quad 5.0 \times 10^{-6} \quad 1.0 \times 10^{-5} \quad 1.5 \times 10^{-5} \quad 2.0 \times 10^{-5} \quad 2.5 \times 10^{-5} \quad 3.0 \times 10^{-5} \quad 3.5 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 4.5 \times 10^{-5} \quad 5.0 \times 10^{-5}$ 

Рис. АЗ5. Карта покрытия сетью телескопов роботов МАСТЕР события \$190630ag за период 30 июня-15 июля 2019 г.



Рис. АЗ6. Карта покрытия сетью телескопов роботов MACTEP события S190701ah за период 1-16 июля 2019 г.



Рис. А37. Карта покрытия сетью телескопов роботов МАСТЕР события S190706ai за период 6–21 июля 2019 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



Рис. АЗ8. Карта покрытия сетью телескопов роботов МАСТЕР события \$190707q за период 7-22 июля 2019 г.



Рис. АЗ9. Карта покрытия сетью телескопов роботов МАСТЕР события S190718у за период 18 июля-2 августа 2019 г.



Рис. А40. Карта покрытия сетью телескопов роботов МАСТЕР события \$190720a за период 20 июля-4 августа 2019 г.



Рис. А41. Карта покрытия сетью телескопов роботов MACTEP события S190727h за 27 июля 2019 г.



Рис. А42. Карта покрытия сетью телескопов роботов МАСТЕР события \$190728q за период 28 июля-28 августа 2019 г.



 $0.0 \times 10^{0} \quad 1.0 \times 10^{-5} \quad 2.0 \times 10^{-5} \quad 3.0 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 5.0 \times 10^{-5} \quad 6.0 \times 10^{-5} \quad 7.0 \times 10^{-5} \quad 8.0 \times 10^{-5} \quad 9.0 \times 10^{-5} \quad 1.0 \times 10^{-5}$ 

Рис. А43. Карта покрытия сетью телескопов роботов МАСТЕР события S190814bv за период 14-29 августа 2019 г.



Рис. А44. Карта покрытия сетью телескопов роботов МАСТЕР события S190828ј за период 28 августа-12 сентября 2019 г.



Рис. А45. Карта покрытия сетью телескопов роботов МАСТЕР события S1908281 за период 28 августа—12 сентября 2019 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

Наблюдения сети МАСТЕР за LVC S190901ap

начиная с 2019-09-01 23:31:01 по 2019-09-16 23:31:01 90 60 30 0 -30 -60 -90<u>∟</u>0 2 8 10 12 14 16 18 20 22 24 4 6 Покрытие МАСТЕР Транзиенты *  $0.0 \times 10^{0}$  $1.0 \times 10^{-5}$  $2.0 \times 10^{-5}$  $3.0 \times 10^{-5}$  $4.0 \times 10^{-5}$  $7.0 \times 10^{-5}$  $5.0 \times 10^{-5}$  $6.0 \times 10^{-5}$ 

Рис. А46. Карта покрытия сетью телескопов роботов МАСТЕР события \$190901ар за период 1-16 сентября 2019 г.



Рис. А47. Карта покрытия сетью телескопов роботов МАСТЕР события S190910d за период 10-25 сентября 2019 г.



Рис. А48. Карта покрытия сетью телескопов роботов МАСТЕР события S190910h за период 10-25 сентября 2019 г.



Рис. А49. Карта покрытия сетью телескопов роботов МАСТЕР события \$190915ak за период 15-30 сентября 2019 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



 $0.0 \times 10^{0} \ 1.0 \times 10^{-5} \ 2.0 \times 10^{-5} \ 3.0 \times 10^{-5} \ 4.0 \times 10^{-5} \ 5.0 \times 10^{-5} \ 6.0 \times 10^{-5} \ 7.0 \times 10^{-5} \ 8.0 \times 10^{-5} \ 9.0 \times 10^{-5} \ 1.0 \times 10^{-4} \ 10^{-4} \ 10^{-5} \ 1.0 \times 10^$ 

Рис. А50. Карта покрытия сетью телескопов роботов МАСТЕР события \$190923у за период 23 сентября-8 октября 2019 г.



Рис. А51. Карта покрытия сетью телескопов роботов МАСТЕР события S190924h за период 24 сентября-9 октября 2019 г.



**Рис. А52.** Карта покрытия сетью телескопов роботов МАСТЕР события \$190930s за период 30 сентября—15 октября 2019 г.



**Рис. А53.** Карта покрытия сетью телескопов роботов МАСТЕР события S190930t за период 30 сентября—15 октября 2019 г.



Рис. А54. Карта покрытия сетью телескопов роботов МАСТЕР события \$191105е за период 5-20 ноября 2019 г.



 $0.0 \times 10^{0} \quad 1.0 \times 10^{-5} \quad 2.0 \times 10^{-5} \quad 3.0 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 5.0 \times 10^{-5} \quad 6.0 \times 10^{-5} \quad 7.0 \times 10^{-5} \quad 8.0 \times 10^{-5} \quad 9.0 \times 10^{-5} \quad 1.0 \times 10^{-4} \quad 10^{-5} \quad 1.0 \times 10^{-5} \quad 1.0$ 

Рис. А55. Карта покрытия сетью телескопов роботов МАСТЕР события S191109d за период 9-24 ноября 2019 г.

1122



Рис. А56. Карта покрытия сетью телескопов роботов МАСТЕР события S191129и за период 29 ноября-14 декабря 2019 г.







Рис. А58. Карта покрытия сетью телескопов роботов МАСТЕР события S191205ah за период 5-20 декабря 2019 г.



Рис. А59. Карта покрытия сетью телескопов роботов МАСТЕР события S191213g за период 13-28 декабря 2019 г.

том 99



Рис. Або. Карта покрытия сетью телескопов роботов МАСТЕР события S191215w за период 15-30 декабря 2019 г.



Рис. А61. Карта покрытия сетью телескопов роботов МАСТЕР события S191216ар за период 16-31 декабря 2019 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



**Рис. Аб2.** Карта покрытия сетью телескопов роботов MACTEP события S191222n за период 22 декабря 2019-6 января 2020 г.



Рис. Аб3. Карта покрытия сетью телескопов роботов МАСТЕР события S200105ae за период 5-20 января 2020 г.



Рис. Аб4. Карта покрытия сетью телескопов роботов МАСТЕР события S200112r за период 12-27 января 2020 г.



Рис. А65. Карта покрытия сетью телескопов роботов МАСТЕР события S200114f за период 14–29 января 2020 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



 $0.0 \times 10^{0} \quad 5.0 \times 10^{-6} \quad 1.0 \times 10^{-5} \quad 1.5 \times 10^{-5} \quad 2.0 \times 10^{-5} \quad 2.5 \times 10^{-5} \quad 3.0 \times 10^{-5} \quad 3.5 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 4.5 \times 10^{-5} \quad 5.0 \times 10^{-5}$ 

Рис. Абб. Карта покрытия сетью телескопов роботов МАСТЕР события S200316bj за период 16-31 марта 2020 г.



Рис. Аб7. Карта покрытия сетью телескопов роботов МАСТЕР события S200115j за период 15-30 января 2020 г.



 $0.0 \times 10^{0} \ 1.0 \times 10^{-4} \ 2.0 \times 10^{-4} \ 3.0 \times 10^{-4} \ 4.0 \times 10^{-4} \ 5.0 \times 10^{-4} \ 6.0 \times 10^{-4} \ 7.0 \times 10^{-4} \ 8.0 \times 10^{-4} \ 9.0 \times 10^{-4} \ 1.0 \times 10^{-3} \ 1.0 \times 10^{-3} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-3} \ 1.0 \times 10^{-3} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-3} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-3} \ 1.0 \times 10^{-4} \ 1.0 \times 10^{-4}$ 

Рис. А68. Карта покрытия сетью телескопов роботов МАСТЕР события \$200128d за период 28 января-12 февраля 2020 г.



Рис. А69. Карта покрытия сетью телескопов роботов МАСТЕР события S200129m за период 29 января—13 февраля 2020 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

1129



 $0.0 \times 10^{0} \quad 2.0 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 6.0 \times 10^{-5} \quad 8.0 \times 10^{-5} \quad 1.0 \times 10^{-4} \quad 1.2 \times 10^{-4} \quad 1.4 \times 10^{-4} \quad 1.6 \times 10^{-4} \quad 1.8 \times 10^{-4}$ 

Рис. А70. Карта покрытия сетью телескопов роботов МАСТЕР события \$200208q за период 8-23 февраля 2020 г.



Рис. А71. Карта покрытия сетью телескопов роботов МАСТЕР события S200213t за период 13-28 февраля 2020 г.



Рис. А72. Карта покрытия сетью телескопов роботов МАСТЕР события S200219ac за период 19 февраля-5 марта 2020 г.



Рис. А73. Карта покрытия сетью телескопов роботов МАСТЕР события S200224са за период 24 февраля—10 марта 2020 г. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



Рис. А74. Карта покрытия сетью телескопов роботов МАСТЕР события \$200225q за период 25 февраля-11 марта 2020 г.



Рис. А75. Карта покрытия сетью телескопов роботов МАСТЕР события S200302с за период 2–17 марта 2020 г.



Рис. А76. Карта покрытия сетью телескопов роботов МАСТЕР события S200311bg за период 11-26 марта 2020 г.

#### ПРИЛОЖЕНИЕ Б

Транзиенты, найденные телескопами МА-СТЕР в областях ошибок LIGO/Virgo в ходе кампаний O1, O2, O3.

В ходе обзора областей ошибок гравитационно-волновых событий телескопами МАСТЕР было найдено множество транзиентов. В данном разделе представлены таблицы по каждому событию, в ходе обзора которого были найдены оптические транзиенты. В каждой таблице представлены: имя транзиента по номенклатуре базы данных МАСТЕР, прямое восхождение и склонение (даны в градусах), время первого снимка данного ОТ в базе МАСТЕР (в случае переменных объектов это время снимка, на основе которого данный транзиент был открыт), звездная величина (mag), это светимость объекта на упомянутом снимке, обсерватория МАСТЕР, первая открывшая данный транзиент (некоторые транзиенты переоткрывались на нескольких обсерваториях), ссылка на опубликованный объект, но большинство публикуются впервые. Также стоит отметить, что некоторые транзиенты входят в списки для нескольких ГВ событий. Это связано с тем, что области ошибок на небе и периоды наблюдения (1 мес) за этими событиями пересекаются.

Анализ следующих ГВ событий уже был опубликован и здесь обсуждаться не будет: GW150914(G184098) [175], GW170104(G268556) [176], GW170817(G298048) [177], GW200219_094415 (S200219ac) [178], GW200224_222234 (S200224ca) [179], GW200302_015811 (S200302c) [180].

#### ФИНАНСИРОВАНИЕ

Глобальная сеть телескопов-роботов МАСТЕР поддержана Программой развития МГУ имени М.В. Ломоносова. А.Ч. поддержан грантом РФФИ 19-29-11011. Д.Б. поддержан Национальным исследовательским фондом Южной Африки. Наблюдения с Южноафриканского большого телескопа (SALT) поддержаны грантом 2015-2-MLT-001. Работа проведена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В. Ломоносова [173, 174] и с использованием оборудования "Астрофизического комплекса МГУ-ИГУ" (Соглашение EB-075-15-2021-675). НБ поддержан грантом Минобрнауки FZZE-2020-0024.

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J014225.33-221558.6	25.60554	-22.2663	2015-11-01 23:26:15	13.5	IAC	_
MASTER OT J193207.08-622629.7	293.0295	-62.4416	2015-11-03 20:08:55	16	SAAO	—
MASTER OT J184224.02-501402.6	280.6001	-50.2341	2015-10-25 19:11:48	16.3	SAAO	—
MASTER OT J190847.32-583107.1	287.1972	-58.5186	2015-11-02 20:13:57	16.4	SAAO	_
MASTER OT J020836.79-104018.8	32.15329	-10.6719	2015-10-23 01:46:38	16.9	IAC	[181]
MASTER OT J194142.37-563816.5	295.4265	-56.6379	2015-10-26 18:38:50	17	SAAO	[181]
MASTER OT J001858.94-402211.9	4.745583	-40.37	2015-10-13 20:55:08	17	SAAO	[182]
MASTER OT J184709.24-495633.9	281.7885	-49.9428	2015-10-25 19:11:48	17.2	SAAO	[181]
MASTER OT J000337.31-343324.3	0.905458	-34.5568	2015-10-13 23:31:27	17.3	SAAO	[183]
MASTER OT J191535.00-620318.7	288.8958	-62.0552	2015-11-03 20:08:55	17.4	SAAO	[184]
MASTER OT J011845.69-210122.4	19.69038	-21.0229	2015-10-20 21:13:21	18.1	SAAO	—
MASTER OT J234149.80-465633.6	355.4575	-46.9427	2015-10-11 19:32:16	18.9	SAAO	[185]
MASTER OT J002343.38-373814.6	5.93075	-37.6374	2015-10-13 21:20:12	19.1	SAAO	_
MASTER OT J020610.55-093640.2	31.54396	-9.61117	2015-10-21 02:19:57	20.1	IAC	_

Таблица Б1. Переменные источники,	, найденные глобальной	сетью телескопов-роботов	з МАСТЕР в ходе обзора
GW151012 (G197392)			

Таблица Б2. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора G194575

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J060553.93+283325.6	91.47471	28.55711	2015-10-25 18:01:08	15.5	Tunka	[186]
MASTER OT J020836.79-104018.8	32.15329	-10.6719	2015-10-23 01:46:38	16.9	IAC	[181]
MASTER OT J194142.37-563816.5	295.4265	-56.6379	2015-10-26 18:38:50	17	SAAO	[181]
MASTER OT J001127.62-062538.0	2.86508	6.42722	2015-10-09 02:10:24	17	IAC	[186]
MASTER OT J184709.24-495633.9	281.7885	-49.9428	2015-10-25 19:11:48	17.2	SAAO	[181]

1135

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J035116.11+330206.2	57.81713	33.03506	2016-01-02 20:31:44	8.5	Tunka	_
MASTER OT J032910.40+312158.4	52.29333	31.36622	2016-01-06 11:57:09	12.4	Tunka	_
MASTER OT J150113.71-734333.8	225.30713	-73.72606	2015-12-25 00:23:02	14.5	SAAO	[187]
MASTER OT J142741.38-330531.7	216.92242	-33.09214	2015-12-26 01:43:39	14.9	SAAO	[187]
MASTER OT J120759.99+194428.4	181.99996	19.74122	2016-01-04 05:00:41	16.4	IAC	_
MASTER OT J165420.8-615258.0	253.58667	-61.88278	2016-01-06 01:56:51	16.9	SAAO	[188]
MASTER OT J042104.99+433759.91	65.27079	43.63331	2016-01-02 22:45:19	17	IAC	_
MASTER OT J030714.0+333425.1	46.80833	33.57364	2016-01-11 19:28:49	17	SAAO	_
MASTER OT J164950.4-655405.0	252.46	-65.90139	2016-01-05 02:17:35	17.2	SAAO	[189]
MASTER OT J153542.5-542022.8	233.92708	-54.33967	2016-01-03 01:57:49	17.2	SAAO	_
MASTER OT J024813.82+293829.1	42.05758	29.64142	2016-01-24 22:48:47	17.3	IAC	_
MASTER OT J044914.02+464511.9	72.30842	46.75331	2016-01-06 18:36:49	17.4	Tunka	[189]
MASTER OT J013826.55+025633.8	24.61063	2.94272	2016-01-06 14:43:38	17.5	Tunka	_
MASTER OT J021125.1+042957.5	32.85458	4.49931	2015-12-28 20:48:13	17.7	SAAO	-
MASTER OT J013851.4-000040.8	24.71417	-0.01133	2016-01-09 19:06:45	17.8	SAAO	-
MASTER OT J060558.15+581552.4	91.49229	58.26456	2015-12-29 22:38:38	17.9	Kislovodsk	-
MASTER OT J201539.32-693614.7	303.91383	-69.60408	2016-01-01 19:03:35	17.9	SAAO	[187]
MASTER OT J153145.1-572410.5	232.93792	-57.40292	2016-01-06 01:28:33	18.1	SAAO	_
MASTER OT J020906.2+013800.1	32.27583	1.63336	2015-12-27 20:34:10	18.2	SAAO	[190]
MASTER OT J124204.36+075100.3	190.51817	7.85008	2016-01-09 21:33:29	18.6	Tunka	[191]
MASTER OT J025737.78+333750.6	44.40742	33.63072	2016-01-12 18:03:29	18.8	Tunka	_

Таблица Б3. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW151226 (G211117)

# Таблица БЗ. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J132010.29-084911.4	200.04288	-8.81986	2015-12-31 06:53:16	18.8	IAC	_
MASTER OT J012330.03-092527.2	20.87513	-9.42422	2015-12-29 20:21:35	18.8	IAC	—
MASTER OT J021102.6+094646.1	32.76083	9.77947	2016-01-12 19:58:19	18.8	SAAO	—
MASTER OT J124246.31+111448.6	190.69296	11.24683	2015-12-28 06:47:06	18.9	IAC	[192]
MASTER OT J034313.67+320044.9	55.80696	32.01247	2015-12-29 22:35:53	19.0	IAC	[187]
MASTER OT J004331.29-205140.7	10.88038	-20.8613	2016-01-02 20:10:50	19.1	IAC	_
MASTER OT J015826.6+071238.3	29.61083	7.21064	2016-01-05 20:22:27	19.1	SAAO	_
MASTER OT J024321.03+261207.5	40.83763	26.20208	2015-12-30 00:18:20	19.4	IAC	_
MASTER OT J023408.51+143510.4	38.53546	14.58621	2015-12-30 21:37:32	19.4	IAC	_
MASTER OT J025756.02+285337.6	44.48342	28.89378	2015-12-31 23:19:27	19.5	IAC	[187]
MASTER OT J012034.47-042003.61	20.14363	-4.33434	2016-01-01 20:45:09	19.8	IAC	_
MASTER OT J031750.95+352438.6	49.46229	35.41071	2016-01-02 21:46:58	20	IAC	—

**Таблица Б4.** Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора **G274296** 

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J173532.70+103810.5	263.88625	10.63625	2017-02-25 19:22:22	15.4	Tunka	[193]
MASTER OT J105519.53+365834.1	163.83138	36.97614	2017-02-18 18:18:18	15.7	Tunka	[194]
MASTER OT J042250.16-820415.4	65.709	-82.0709	2017-02-19 02:53:08	15.9	OAFA	[195]
MASTER OT J184722.28-834543.4	281.84283	-83.76205	2017-02-24 03:21:27	17.6	OAFA	—
MASTER OT J144935.82+343749.9	222.39925	34.63053	2017-02-21 18:34:41	18	Tunka	_
MASTER OT J111410.86+383448.2	168.54525	38.58006	2017-02-18 18:40:26	18.6	Tunka	_
MASTER OT J072511.84-881702.0	111.29933	-88.28389	2017-02-22 19:37:03	19	SAAO	_

1136

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J192402.43+421720.0	291.01013	42.28889	2017-02-25 18:30:51	16.6	IAC	[196]
MASTER OT J105958.00-115756.5	164.99167	-11.96569	2017-02-25 23:02:51	17.1	SAAO	[196]
MASTER OT J195004.70+523856.2	297.51667	52.64894	2017-02-26 06:28:26	19.0	IAC	[197]

Таблица Б5. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора G275404

Таблица Б6. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора G275697

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J225444.37+755500.2	343.6849	75.91672	2017-02-26 22:24:24	16.9	IAC	[198]
MASTER OT J104304.78+020550.2	160.7699	2.09727	2017-02-27 19:19:19	18.5	SAAO	[198]

Таблица Б7. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора G277583

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J184906.73-273334.9	282.278	-27.55969	2017-03-18 03:24:33	16.3	SAAO	_
MASTER OT J184546.55-352847.6	281.444	-35.47989	2017-03-28 01:35:41	17	SAAO	_
MASTER OT J062452.36+094142.0	96.21833	9.695	2017-03-19 14:55:17	17.3	Tunka	_
MASTER OT J190143.06-213851.3	285.4294	-21.64758	2017-03-28 03:26:57	18	SAAO	_
MASTER OT J150027.57-035815.1	225.1149	-3.97086	2017-03-27 03:44:23	18.4	IAC	—

Таблица Б8. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора G284239

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J181906.23-142744.9	274.776	-14.46247	2017-05-07 21:29:51	16.2	SAAO	_
MASTER OT J205302.98-395748.9	313.2624	-39.96358	2017-05-07 09:09:20	16.7	OAFA	_
MASTER OT J200043.51-343626.5	300.1813	-34.60736	2017-05-07 07:52:15	16.9	OAFA	_
MASTER OT J160656.46+154046.1	241.7353	15.67947	2017-05-29 23:22:45	18.4	IAC	_

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J004621.36+481439.9	11.589	48.24442	2017-07-07 02:58:40	7	IAC	_
MASTER OT J011454.15+673934.3	18.72563	67.65953	2017-06-15 04:17:09	13.2	IAC	_
MASTER OT J003848.08+605100.7	9.700333	60.85019	2017-06-11 02:16:40	14	IAC	_
MASTER OT J003334.82+654240.3	8.395083	65.71119	2017-06-11 02:12:59	12.1	IAC	_
MASTER OT J004201.14+612004.5	10.50475	61.33458	2017-06-11 01:46:22	12.3	IAC	_
MASTER OT J005325.43+650153.0	13.35596	65.03139	2017-06-11 01:38:49	12.2	IAC	_
MASTER OT J005314.68+664828.3	13.31117	66.80786	2017-06-11 00:56:06	12.4	IAC	_
MASTER OT J010123.10+680333.8	15.34625	68.05939	2017-06-11 00:56:06	12.6	IAC	_
MASTER OT J010442.17+625254.2	16.17571	62.88172	2017-06-10 04:48:21	13.4	IAC	_
MASTER OT J012224.11+611349.4	20.60046	61.23039	2017-06-10 04:48:21	12.1	IAC	_
MASTER OT J015259.39+605632.5	28.24746	60.94236	2017-06-10 03:05:26	15.1	IAC	_
MASTER OT J015848.21+624331.9	29.70088	62.72553	2017-06-10 03:05:26	12	IAC	_
MASTER OT J013303.86+600155.5	23.26608	60.03208	2017-06-10 01:42:54	12.5	IAC	_
MASTER OT J012641.19+604643.4	21.67163	60.77872	2017-06-10 01:42:54	12.6	IAC	—
MASTER OT J080846.24+313106.3	122.1927	31.51842	2017-06-09 21:51:52	14.3	IAC	_

Таблица Б9. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW170608 (G288732)

Таблица Б10. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW170729

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J200952.53-683009.4	302.4689	-68.5026	2017-08-06 04:40:34	16.8	OAFA	_
MASTER OT J123813.58-033933.8	189.5566	-3.65939	2017-08-20 00:25:09	17	OAFA	_

1138

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	19.94963	-24.27336	2017-08-18	16.2	Kislovodsk	-
J011947.91-241624.1			23:40:05			
MASTER OT	29.70792	-23.14842	2017-08-19	17	Kislovodsk	_
J015849.49-230854.3			00:14:39			
MASTER OT	26.1155	-23.03119	2017-08-18	17.3	Kislovodsk	_
J014427.72-230152.3			23:27:56			
MASTER OT	11.58592	-27.1469	2017-08-18	18.2	SAAO	_
J004620.62-270848.9			02:08:03			
MASTER OT	44.02471	-31.1442	2017-08-16	19.7	OAFA	_
J025605.93-310839.1			09:22:58			
MASTER OT	24.19367	-14.05653	2017-08-16	17.1	SAAO	[199]
J013646.48-140323.5			07:32:29			

Таблица Б11. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW170809(G296853)

Таблица Б12. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW170809(G296853)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	29.70625	-23.1483	2017-08-15	16.7	OAFA	[200]
J015849.50-230853.7			06:30:29			
MASTER OT	45.42483	-23.0105	2017-08-16	17.5	OAFA	[200]
J030141.96-230037.8			07:17:07			

**Таблица Б13.** Переменные источники, найденные глобальной сетью телескопов-роботов MACTEP в ходе обзора GW170818. "*" обозначены транзиенты, опубликованные другими группами, но снятые телескопами MACTEP раньше

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
SN2017ggw / MASTER OT J023026.89-430055.2	37.61204	-43.01533	2017-08-19 07:33:11	16.7	OAFA	[201]*

Таблица Б14. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW170823(G298936)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	39.31471	-2.8865	2017-09-21	7.7	IAC	_
J023715.53-025311.4			02:32:26			
MASTER OT	32.77929	3.84367	2017-09-13	15.9	OAFA	_
J021107.03+035037.2			23:03:27			
MASTER OT	253.1845	-43.9892	2017-09-09	16.2	SAAO	_
J165244.27-435921.0			22:08:44			
MASTER OT	102.9056	70.43314	2017-09-17	16.4	Kislovodsk	[202]
J065137.35+702559.3			21:36:21			
MASTER OT	32.11692	6.388	2017-09-05	17	IAC	_
J020828.06+062316.8			01:04:23			
MASTER OT	311.727	-50.8289	2017-09-14	18	OAFA	_
J204654.47-504944.0			04:13:31			
MASTER OT	326.9372	-52.3119	2017-09-20	18	SAAO	[203]
J214744.93-521842.8			22:27:14			
MASTER OT	307.462	-52.2295	2017-09-19	20	SAAO	[203]
J202950.87-521346.1			20:09:55			

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J033744.97+723159.0	54.43738	72.53306	2017-08-27 00:23:44	17	Kislovodsk	[204]
SwiftJ014008.55+343403.6	25.03563	34.56767	2017-08-27 12:02:34	18.6	Kislovodsk	[205]

Таблица Б15. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора G299232

Таблица Б16. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190408_181802 (S190408an)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J231818.71+485732.6	349.578	48.95906	2019-05-06 05:24:19	9.28	IAC	_
MASTER OT J123706.81-173130.4	189.2784	-17.5251	2019-05-06 05:24:20	9.34	IAC	_
MASTER OT J141724.03-374241.3	214.3501	-37.71147	2019-05-06 05:24:21	10.46	OAFA	—
MASTER OT J150232.19-445007.6	225.6341	-44.83544	2019-05-06 05:24:22	11.04	OAFA	_
MASTER OT J155424.09-422125.0	238.6004	-42.35694	2019-05-06 05:24:23	12.81	OAFA	_
MASTER OT J231929.76+585148.0	349.874	58.86333	2019-05-06 05:24:24	14.69	IAC	_
MASTER OT J161412.28-445850.5	243.5512	-44.98069	2019-05-06 05:24:25	14.75	OAFA	_
MASTER OT J233858.49+584604.9	354.7437	58.76803	2019-05-06 05:24:26	14.76	IAC	_
MASTER OT J231043.6+470956.4	347.6817	47.16567	2019-05-06 05:24:27	14.93	Tavrida	[206]
MASTER OT J140203.69-365251.0	210.5154	-36.8808	2019-05-06 05:24:28	15.5	OAFA	_
MASTER OT J232958.27+590914.9	352.4928	59.15414	2019-05-06 05:24:29	15.55	IAC	_
MASTER OT J232912.25+591526.3	352.301	59.25731	2019-05-06 05:24:30	15.66	IAC	_
MASTER OT J221502.52+371757.2	333.7605	37.29922	2019-05-05 03:36:50	16.05	IAC	_
MASTER OT J000412.23+683248.2	1.05096	68.54672	2019-05-06 05:24:31	16.67	Kislovodsk	_
MASTER OT J124938.29-113135.9	192.4095	-11.5266	2019-04-08 23:10:00	16.84	SAAO	—
MASTER OT J151701.09-414633.2	229.2545	-41.7759	2019-05-06 05:24:32	16.95	OAFA	—

## Таблица Б16. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J232230.85+453630.2	350.6285	45.60839	2019-05-05 03:24:29	16.97	IAC	_
MASTER OT J154209.55-431742.2	235.5398	-43.2951	2019-05-06 05:24:33	17.03	OAFA	[206]
MASTER OT J225410.48+484334.6	343.5437	48.72628	2019-05-06 05:24:34	17.17	Kislovodsk	—
MASTER OT J223830.90+352001.0	339.6288	35.33361	2019-05-06 05:24:35	17.24	IAC	_
MASTER OT J140518.22-395309.9	211.3259	-39.8861	2019-05-06 05:24:36	17.4	OAFA	[207]
MASTER OT J224844.23+273440.5	342.1843	27.57792	2019-05-06 05:24:37	17.71	Kislovodsk	_
MASTER OT J235912.41+672138.4	359.8017	67.36067	2019-05-06 05:24:38	17.77	Kislovodsk	_
MASTER OT J125537.95-164501.9	193.9081	-16.7505	2019-04-29 20:50:01	17.96	SAAO	_
MASTER OT J225815.92+404730.8	344.5663	40.79189	2019-05-06 05:24:39	18.15	IAC	_
MASTER OT J131539.26-225034.5	198.9136	-22.8429	2019-05-06 05:24:40	19.03	IAC	—

Таблица Б17. Переменные источни	ики, найденные глобальной сетью т	гелескопов-роботов МАСТЕР в ходе обзора
GW190412 (S190412m)		

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J123225.81+142041.3	188.1075	14.34481	2019-05-03 23:48:58	15.69	IAC	_
MASTER OT J131242.08+181636.4	198.1753	18.27678	2019-04-12 19:32:31	16.55	Kislovodsk	—
MASTER OT J145921.10+351640.5	224.8379	35.27792	2019-04-12 08:35:48	16.94	OAFA	_
MASTER OT J124346.05+160504.4	190.9419	16.08456	2019-04-12 17:19:25	17.03	Kislovodsk	_
MASTER OT J144651.17+374724.4	221.7132	37.79011	2019-04-12 21:43:01	18.12	Kislovodsk	_
MASTER OT J153121.0+355902.8	232.8375	35.98411	2019-04-27 19:35:33	18.14	Tavrida	_
MASTER OT J140808.10+332613.3	212.0338	33.43703	2019-04-27 18:51:11	18.89	Kislovodsk	_
MASTER OT J142815.0+304306.0	217.0625	30.71833	2019-04-28 22:34:48	19.01	Tavrida	—

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	182 9239	-67 1802	2019-04-24	10.14	SAAO	_
J121141.73-671048.60	102.9259	07.1002	22:57:47	10.11	5/110	
MASTER OT	200.0113	-63.3746	2019-04-24	11.7	SAAO	_
J132002.71-632228.50			22:23:19			
MASTER OT	224.5288	-54.1137	2019-05-18	11.88	SAAO	_
J145806.91-540649.40			04:07:01			
MASTER OT	216.1472	-53.8494	2019-05-12	12.06	SAAO	_
J142435.33-535057.70			00:11:40			
MASTER OT	199.2126	-63.7291	2019-04-24	12.21	SAAO	_
J131651.03-634344.60			22:23:19			
MASTER OT	174.7988	-63.0923	2019-04-24	12.33	SAAO	_
J113911.71-630532.10			23:20:13			
MASTER OT	201.186	-63.3734	2019-04-24	12.55	SAAO	_
J132444.64-632224.40			22:33:21			
MASTER OT	198.7649	-63.2279	2019-04-24	12.9	SAAO	_
J131503.57-631340.50			22:23:19			
MASTER OT	194.235	-65.038	2019-04-23	13.13	OAFA	_
J125656.40-650216.90			02:16:17			
MASTER OT	182.1698	-67.0869	2019-04-24	13.19	SAAO	—
J120840.74-670512.80			22:57:47			
MASTER OT	200.3948	-56.793	2019-05-11	13.26	SAAO	—
J132134.75-564734.70			00:25:55			
MASTER OT	195.2338	-59.9933	2019-04-24	13.68	OAFA	—
J130056.11-595935.90			01:12:17			
MASTER OT	198.2584	-62.7515	2019-04-24	13.69	SAAO	_
J131302.01-624505.50			21:05:24			
MASTER OT	199.6027	-64.2178	2019-04-24	13.74	SAAO	—
J131824.65-641304.20			22:23:19			
MASTER OT	198.4046	-64.0983	2019-04-24	13.81	SAAO	—
J131337.10-640553.80			22:23:19			
MASTER OT	204.3021	-57.2669	2019-04-23	14.07	OAFA	—
J133712.51-571600.70			06:46:23			
MASTER OT	220.6486	-51.8583	2019-05-17	14.1	OAFA	—
J144235.67-515130.00			23:08:08			
MASTER OT	223.6617	-50.7078	2019-05-17	14.28	OAFA	_
J145438.81-504228.20	105.05(4	(1.0052	07:53:13	14.2	04.54	
MASTER OT	195.0564	-64.8053	2019-04-23	14.3	OAFA	_
J130013.54-644819.10	100 7005	(1 2002	02:16:17	14 47	SAAO	
MASIER UI	199./995	-64.2083	2019-04-24	14.47	SAAO	_
J131911.87-041229.90	200 0226	17 9255	22:23:19	14 56	5440	
MASTER OT 11359/3 83 /75007 90	209.9320	-47.8333	2019-03-07	14.50	SAAO	_
MASTED OT	206 2282	26 5020	21.44.14	14 67	IAC	
MASIEK OI 1134518 78 363014 00	200.3283	-30.3039	2019-04-25	14.07	IAC	_
MASTED OT	183 7581	62 6871	2010 04 23	15.02	ΟΛΕΛ	
1121501 94-624113 60	105.7501	-02.0071	02.32.51	15.02	UAIA	_
MASTED OT	175 2020	(4.1012	2010 04 24	15 10	SAAO	
MASTER UI 1114124 27 641128 80	1/5.3928	-64.1913	2019-04-24	15.12	SAAO	_
J114134.27-041128.80	102 5024	64 7172	25.20.15	15 41	SAAO	
INIASIEK UI 1125422 41 644202 00	193.3934	-04./1/2	2019-04-24	13.41	SAAU	_
J123422.41-044302.00 MASTER OT	182 0582	60 0367	21.02.03	15 49	\$440	
1121149 96_600212 20	102.7382	-00.0307	2019-04-24	13.40	SAAU	_
MASTER OT	200 783	-62 5717	20.30.40	15 49	ΟΔΕΔ	_
I132307 91-623418 10	200.705	02.3717	06.19.14	15.77		
0102007.91 020 110.10	I	I	00,17,17	I		

Таблица Б18. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190421_213856 (S190421ar)

### Таблица Б18. Продолжение

Название ОТ	ra	dec	Время	mag	Обсерватория	
Пазвание ОТ	Ia	ucc	открытия	mag	Обсерватория	
MASTER OT	198.1455	-63.9578	2019-04-24	15.57	SAAO	
J131234.92-635728.20			22:23:19			
MASTER OT	202.4985	-57.9076	2019-04-24	15.59	OAFA	_
J132959.65-575427.50			06:41:38			
MASTER OT	213.3598	-58.779	2019-04-23	15.64	OAFA	—
J141326.35-584644.50			07:46:49			
MASTER OT J123225.81+142041.30	188.1075	14.34481	2019-05-03 23:48:58	15.69	IAC	—
SN2019fcc / MASTER OT J135130.87-525534.40	207.8786	-52.9262	2019-05-12 06:58:17	15.71	OAFA	[208]
MASTER OT 1125338 16-261731 00	193.409	-26.2919	2019-04-23	15.77	Kislovodsk	_
MASTER OT	186 1374	-55 8522	2019-04-24	15 84	SAAO	_
J122432.97-555107.80	100.1571	55.0522	21:25:03	15.01	5/110	
MASTER OT J121142,52-680454.30	182.9272	-68.0818	2019-04-24 22:57:47	16.01	SAAO	—
MASTER OT	172,9279	-65.0904	2019-04-24	16.55	SAAO	_
J113142.69-650525.30			22:46:21	10000	51110	
MASTER OT	208.5808	-38.8586	2019-05-19	16.72	SAAO	_
J135419.39-385131.10			23:42:44			
MASTER OT	169.4511	13.72825	2019-05-07	16.82	IAC	_
J111748.26+134341.70			21:59:35			
MASTER OT	196.173	-63.7671	2019-04-23	16.83	OAFA	—
J130441.52-634601.50			04:02:44			
MASTER OT	203.9017	-49.1078	2019-05-12	16.92	OAFA	_
J133536.40-490628.10			06:35:38			
MASTER OT J034539.84-564600.30	56.416	-56.7668	2019-04-26 19:55:32	17.1	SAAO	—
MASTER OT J114200.82-110923.70	175.5034	-11.1566	2019-05-02 21:23:45	17.15	Tavrida	—
MASTER OT J111505.12-681439.80	168.7713	-68.2444	2019-04-24 03:19:05	17.17	OAFA	[209]
MASTER OT	80.50308	-16.4176	2019-04-30	17.24	SAAO	—
J052200.74-162503.30			17:42:22			
MASTER OT	62.7885	-53.6865	2019-04-26	17.52	SAAO	—
J041109.24-534111.50	10 1 0100	11 (0.10	19:48:15		<b>T</b> 7.1 1.1	
MASTER OT J125603.19-113615.20	194.0133	-11.6042	2019-04-30 19:24:36	17.54	Kislovodsk	_
MASTER OT	197.9066	-29.2654	2019-05-20	17.55	SAAO	—
MASTED OT	200 5170	18 3616	2010 05 11	17.64	\$440	
1132204 30-482141 70	200.3179	-48.3010	2019-03-11	17.04	SAAO	_
MASTER OT	321 9217	-63 2933	2019-04-25	17 97	SAAO	_
J212741.21-631735.70	521.921	00.2900	02:34:10	11.57	51 1 10	
MASTER OT	199.0425	-4.5585	2019-04-30	18.01	Kislovodsk	_
J131610.20-043330.60			17:57:28			
MASTER OT	168.6917	13.52842	2019-04-22	18.09	IAC	_
J111446.00+133142.30			00:51:41			
MASTER OT	208.6987	-12.7013	2019-04-29	18.15	SAAO	—
J135447.68-124204.80			21:01:51			
MASTER OT	55.52438	-54.5588	2019-04-26	18.3	SAAO	—
J034205.85-543331.60			19:40:04	10 - 1		
MASTER OT	193.9085	-16.75	2019-05-11	18.26	IAC	-
J125538.03-164459.90			23:10:13			1

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J190746.19+035705.50	286.9425	3.951528	2019-05-09 00:04:35	10.28	Kislovodsk	—
MASTER OT 1184534 01-320743 90	281.3917	-32.1289	2019-05-15 19:53:23	10.92	SAAO	-
MASTER OT	280.9508	-31.802	2019-05-16	10.99	SAAO	_
MASTER OT	261.6908	-14.5904	2019-05-25	11.04	IAC	_
MASTER OT	280.6558	-32.2353	2019-05-15	11.39	SAAO	-
MASTER OT	285.5505	-26.4144	2019-05-08	11.4	IAC	_
MASTER OT	279.2916	-27.7027	2019-05-15 02:43:34	11.52	SAAO	_
MASTER OT	301.2534	34.75292	2019-04-27	11.6	IAC	_
MASTER OT	282.65	-28.4365	2019-05-16	11.61	SAAO	_
MASTER OT	282.65	-28.4365	2019-05-16	11.61	SAAO	_
MASTER OT	276.3458	-32.6811	2019-05-14	11.73	SAAO	_
MASTER OT	264.6546	-12.7834	2019-05-25	11.75	IAC	_
MASTER OT	290.9239	26.33944	2019-05-21	11.84	IAC	_
MASTER OT	264.6147	4.662361	22.43.37 2019-05-25	11.84	IAC	_
MASTER OT	278.9327	-27.6792	2019-05-15	11.86	SAAO	_
MASTER OT	289.5568	26.71681	2019-05-21	11.92	IAC	_
MASTER OT	281.5987	-31.9154	2019-05-16	12.11	SAAO	_
MASTER OT	276.1284	-32.6278	2019-05-14	12.3	SAAO	_
MASTER OT	288.5615	26.31683	2019-05-18	12.43	OAFA	_
MASTER OT	281.7976	-28.7068	2019-05-15	12.46	SAAO	_
MASTER OT	275.996	-31.8356	2019-05-14 04:17:44	12.55	SAAO	_
MASTER OT	283.0547	-28.1884	2019-05-16	12.56	SAAO	_
MASTER OT	286.7134	-21.9867	2019-05-07	12.68	Kislovodsk	_
MASTER OT J185232.68+172005.70	283.1362	17.33492	2019-05-21 22:39:03	12.92	SAAO	_

Таблица Б19. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190425 (S190425z)
#### Таблица Б19. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J182608.59-312839.30	276.5358	-31.4776	2019-05-14 04:10:24	13.14	SAAO	_
MASTER OT J184325.07-321109.00	280.8545	-32.1858	2019-05-15 19:53:23	13.18	SAAO	_
MASTER OT J185441.61-200744.90	283.6734	-20.1291	2019-05-08 00:30:16	13.22	Kislovodsk	_
MASTER OT J180352.95-333140.40	270.9706	-33.5279	2019-05-14 07:54:53	13.23	OAFA	_
MASTER OT J185202.53+172341.30	283.0105	17.39481	2019-05-21 22:39:03	13.29	SAAO	—
MASTER OT J182424.45-313007.10	276.1019	-31.502	2019-05-14 04:10:24	13.33	SAAO	—
MASTER OT J191623.82-171408.40	289.0993	-17.2357	2019-05-09 22:26:52	13.48	Tavrida	_
MASTER OT J185556.12-275904.10	283.9838	-27.9845	2019-05-16 21:16:03	13.53	SAAO	_
MASTER OT J191004.17+255918.80	287.5174	25.98856	2019-05-21 22:21:18	13.61	IAC	_
MASTER OT J184308.02-320230.30	280.7834	-32.0418	2019-05-13 22:00:17	13.65	SAAO	—
MASTER OT J061757.60+181303.90	94.49	18.21775	2019-05-02 21:53:23	14	IAC	—
MASTER OT J135329.05+401632.00	208.371	40.27556	2019-05-24 03:44:05	14.28	OAFA	_
MASTER OT J183545.16-275712.30	278.9382	-27.9534	2019-05-14 00:55:33	14.35	SAAO	_
MASTER OT J172933.71-281557.60	262.3905	-28.266	2019-05-13 03:05:19	14.42	OAFA	—
MASTER OT J133613.03+382116.90	204.0543	38.35469	2019-05-21 21:06:53	14.46	IAC	—
MASTER OT J184512.60-281458.30	281.3025	-28.2495	2019-05-15 02:58:11	14.531	SAAO	_
MASTER OT J195954.66+294836.80	299.9778	29.81022	2019-04-26 23:40:31	14.57	Kislovodsk	_
MASTER OT J165234.92-315647.30	253.1455	-31.9465	2019-05-14 03:30:15	14.99	SAAO	—
MASTER OT J184530.80-283937.40	281.3783	-28.6604	2019-05-15 02:58:11	15.069	SAAO	—
MASTER OT J183255.42-065143.20	278.2309	-6.862	2019-05-25 01:40:56	15.41	SAAO	—
MASTER OT J034529.48-533936.30	56.37283	-53.6601	2019-04-26 19:40:04	15.44	SAAO	_
MASTER OT J175930.05-041048.60	269.8752	-4.18017	2019-05-24 05:01:24	15.46	IAC	—
MASTER OT J231738.85-591543.50	349.4119	-59.2621	2019-05-17 23:53:32	15.63	SAAO	_
MASTER OT J172815.89-290131.20	262.0662	-29.0253	2019-05-13 03:05:19	15.81	OAFA	_

### Таблица Б19. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J145415.61+044734.80	223.565	4.793	2019-05-12 22:55:33	15.92	IAC	_
MASTER OT J182221.11-360109.20	275.588	-36.0192	2019-05-13 01:16:40	16.05	IAC	_
MASTER OT J183008.37-372142.10	277.5349	-37.3617	2019-05-13 01:20:40	16.15	IAC	[210]
MASTER OT J172225.20-285606.60	260.605	-28.9352	2019-05-13 03:05:19	16.22	OAFA	_
MASTER OT J121151.59+240810.90	182.965	24.13636	2019-05-22 22:01:51	16.24	IAC	-
MASTER OT J191054.59-345821.10	287.7275	-34.9725	2019-05-14 02:59:17	16.26	IAC	_
MASTER OT J174749.02+184113.60	266.9543	18.68711	2019-05-17 21:15:20	16.27	Kislovodsk	_
MASTER OT J170021.39-290048.70	255.0891	-29.0135	2019-04-26 03:43:40	16.28	SAAO	-
MASTER OT J191721.64-344421.70	289.3402	-34.7394	2019-05-14 02:59:17	16.29	IAC	_
MASTER OT J234338.09-585246.30	355.9087	-58.8795	2019-05-18 07:51:04	16.41	OAFA	_
MASTER OT J182806.17-121831.00	277.0257	-12.3086	2019-05-25 01:33:45	16.56	SAAO	_
MASTER OT J182902.25-105753.60	277.2594	-10.9649	2019-05-25 01:33:45	16.64	SAAO	_
MASTER OT 1064825 26-574441 60	102.1053	-57.7449	2019-05-06 03:23:06	16.67	OAFA	_
MASTER OT J190939.00-350257.90	287.4125	-35.0494	2019-05-15 08:53:08	16.89	OAFA	[211]
MASTER OT J171745.61+194040.70	259.44	19.67797	2019-04-26 05:38:34	16.94	IAC	_
MASTER OT J185953.19-350335.70	284.9716	-35.0599	2019-05-14 02:31:55	17.03	IAC	_
MASTER OT J034539.84-564600.30	56.416	-56.7668	2019-04-26 19:55:32	17.1	SAAO	_
MASTER OT J134533.18+445260.00	206.3883	44.88333	2019-04-28 23:12:25	17.11	Kislovodsk	_
MASTER OT J184220.55-312850.40	280.5856	-31.4807	2019-05-13 22:00:17	17.11	SAAO	_
MASTER OT J052200.74-162503.30	80.50308	-16.4176	2019-04-30 17:42:22	17.2	SAAO	_
MASTER OT J182323.10-031351.10	275.8463	-3.23086	2019-05-25 01:58:45	17.35	SAAO	_
MASTER OT J132549.97+342944.00	201.4582	34.49556	2019-04-24 23:04:20	17.35	Tavrida	_
MASTER OT J192152.31-211427.50	290.468	-21.241	2019-05-08 04:21:31	17.42	OAFA	_
MASTER OT J041109.24-534111.50	62.7885	-53.6865	2019-04-26 19:48:15	17.5	SAAO	—

#### Таблица Б19. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J142812.05-013615.20	217.0502	-1.60422	2019-05-11 00:55:01	17.64	IAC	_
MASTER OT J180251.15-040943.50	270.7131	-4.16208	2019-05-24 05:01:24	17.76	IAC	—
MASTER OT J174749.94+164616.00	266.9581	16.77111	2019-05-24 03:30:52	17.77	IAC	_
MASTER OT J192024.05-350606.00	290.1002	-35.1017	2019-05-15 00:51:48	17.87	SAAO	_
MASTER OT J183937.38+404734.30	279.9058	40.79286	2019-04-27 04:46:36	17.88	IAC	[212]
MASTER OT J182507.86-030608.80	276.2828	-3.10244	2019-05-25 01:58:45	17.96	SAAO	_
MASTER OT J121732.81+262354.90	184.3867	26.39858	2019-05-08 20:31:07	17.99	SAAO	_
MASTER OT J212741.21-631735.70	321.9217	-63.2933	2019-04-25 02:34:10	18	SAAO	_
MASTER OT J153121.03+355902.80	232.8376	35.98411	2019-04-27 19:35:33	18.1	Tavrida	_
MASTER OT J144651.17+374724.10	221.7132	37.79003	2019-04-28 00:05:00	18.1	IAC	_
MASTER OT J153204.93-211905.60	233.0205	-21.3182	2019-05-09 19:02:32	18.3	SAAO	_
MASTER OT J034205.85-543331.60	55.52438	-54.5588	2019-04-26 19:40:04	18.3	SAAO	_
MASTER OT J155829.22+271714.60	239.6218	27.28739	2019-04-25 23:42:39	18.4	IAC	[213]
MASTER OT J192019.12-351306.10	290.0797	-35.2184	2019-05-15 00:51:48	18.43	SAAO	_
MASTER OT J060004.65-263343.60	90.01938	-26.5621	2019-04-27 21:05:03	18.44	IAC	_
MASTER OT J162037.80+170223.40	245.1575	17.03983	2019-04-28 02:48:37	18.64	IAC	_
MASTER OT J164414.88-221539.30	251.062	-22.2609	2019-05-13 03:30:52	18.8	SAAO	[214]
MASTER OT J165301.16+251246.20	253.2548	25.21283	2019-04-30 04:21:02	18.89	IAC	_
MASTER OT J172630.44+052156.20	261.6268	5.365611	2019-05-09 02:51:47	18.89	SAAO	—
MASTER OT J192039.13-284552.60	290.163	-28.7646	2019-05-14 03:22:54	18.96	IAC	_
MASTER OT J141517.28+352811.90	213.822	35.46997	2019-04-27 23:41:33	19	IAC	_
MASTER OT J142815.00+304306.00	217.0625	30.71833	2019-04-28 22:34:48	19	Tavrida	_
MASTER OT J060606.97-381624.80	91.52904	-38.2736	2019-05-10 18:30:09	19.27	SAAO	_
MASTER OT J124619.61+514856.20	191.5817	51.81561	2019-04-30 00:25:29	19.33	IAC	_

		1	Время		05	
название ОТ	ra	dec	открытия	mag	Оосерватория	
MASTER OT	322.9605	47.5925	2019-05-05	9.9	Kislovodsk	_
J213150.52+473533.00			19:02:27			
MASTER OT	286.9425	3.951528	2019-05-09	10.28	Kislovodsk	—
J190746.19+035705.50	004 4475	16 7456	00:04:35	11.25	04.54	
MASTER OT J153747.39-464444.30	234.44/5	-46.7456	09:35:22	11.35	OAFA	_
MASTER OT	237.8377	-46.5532	2019-05-17	11.35	OAFA	_
J155121.04-463311.40			09:57:47			
MASTER OT J154125.30-464727.30	235.3554	-46.7909	2019-05-17 09:35:22	11.44	OAFA	—
MASTER OT	290.9239	26.33944	2019-05-21	11.84	IAC	_
J192341.74+262022.00			22:43:37			
MASTER OT	289.5568	26.71681	2019-05-21	11.92	IAC	—
J191813.63+264300.50			22:39:58	10.10	0.1.5.1	
MASTER OT	288.5615	26.31683	2019-05-18	12.43	OAFA	_
MASTED OT	312 0808	33 00028	2010 05 23	13 58	IAC	
J204821.55+335433.40	512.0090	55.90928	02:03:37	15.56	IAC	_
MASTER OT	287.5174	25.98856	2019-05-21	13.61	IAC	_
J191004.17+255918.80			22:21:18			
MASTER OT	299.9778	29.81022	2019-04-26	14.57	Kislovodsk	_
J195954.66+294836.80			23:40:31			
MASTER OT	231.8503	-48.3799	2019-05-17	15.54	OAFA	[215]
J152/24.06-482247.80	102 4000	2( 2021	08:08:18	16.14		
MASTER OT 1125338 14-261731 50	193.4089	-26.2921	2019-05-20 17:54:24	16.14	SAAO	—
MASTER OT	208 5803	-38 8589	2019-05-20	16 99	SAAO	_
J135419.26-385131.90	200.5005	50.0507	23:55:43	10.77	5/ 1/10	
MASTER OT	195.8382	-21.6454	2019-04-30	17.14	OAFA	_
J130321.16-213843.40			23:37:05			
MASTER OT	197.9066	-29.2654	2019-05-20	17.55	SAAO	—
J131137.58-291555.40	202.4024		18:31:39	10.1	TH C	
MASTER OT 1201246-25   270710-50	303.1931	27.12208	2019-04-27	18.1	IAC	—
J201240.33+2/0/19.30	252 0228	84 01056	01:40:08	10.52	Vislovadsk	
I233208 11+840110 40	333.0338	84.01930	2019-04-20	18.33	KISIOVOUSK	_
MASTER OT	270 7131	-4 16208	2019-05-24	17 76	IAC	_
J180251.15-040943.50	2/0//101		05:01:24	11110		

Таблица Б20. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190426_152155 (S190426c)

Таблица Б21. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190503_185404 (S190503bf)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J075627.89-585827.40	119.1162	-58.9743	2019-05-10 04:05:20	10.93	OAFA	
MASTER OT J083041.44-505041.50	127.6727	-50.8449	2019-05-05 05:14:31	11.16	OAFA	—
MASTER OT J084507.76-534324.90	131.2823	-53.7236	2019-05-05 04:44:14	12.27	OAFA	—
MASTER OT J074821.74-453434.20	117.0906	-45.5762	2019-05-25 20:57:40	12.88	SAAO	—
MASTER OT J064825.26-574441.60	102.1053	-57.7449	2019-05-06 03:23:06	16.67	OAFA	—
MASTER OT J060606.97-381624.80	91.52904	-38.2736	2019-05-10 18:30:09	19.27	SAAO	—
AT2019exw / MASTER OT J060606.43-353229.80	91.52679	-35.5416	2019-05-10 18:44:36	19.75	SAAO	[216]

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT 1222536 82+302823 90	336.4034	30.47331	2019-05-19 04:08:19	10.3	IAC	_
MASTER OT J220559.60+353003.80	331.4983	35.50106	2019-05-19 02:45:40	11.23	IAC	_
MASTER OT J223557.60+311855.90	338.99	31.31553	2019-05-21 02:28:11	11.58	SAAO	_
MASTER OT J142435.33-535057.70	216.1472	-53.8494	2019-05-12 00:11:40	12.06	SAAO	_
MASTER OT J132134.75-564734.70	200.3948	-56.793	2019-05-11 00:25:55	13.26	SAAO	_
MASTER OT J022137.81-261950.00	35.40754	-26.3306	2019-05-25 09:22:27	14.59	OAFA	_
MASTER OT J135943.84-475007.70	209.9327	-47.8355	2019-06-06 21:46:14	14.82	SAAO	_
MASTER OT J235723.14+305928.00	359.3464	30.99111	2019-05-11 23:39:56	14.93	Kislovodsk	_
MASTER OT J135130.87-525534.40	207.8786	-52.9262	2019-05-12 06:58:17	15.71	OAFA	[217]
MASTER OT J145415.61+044734.80	223.565	4.793	2019-05-12 22:55:33	15.92	IAC	_
MASTER OT J011543.21+333722.60	18.93004	33.62294	2019-06-04 04:57:05	15.96	IAC	_
MASTER OT J125338.14-261731.50	193.4089	-26.2921	2019-05-20 17:54:24	16.14	SAAO	_
MASTER OT J174749.02+184113.60	266.9543	18.68711	2019-05-17 21:15:20	16.27	Kislovodsk	_
MASTER OT J004320.58+412542.30	10.83575	41.42842	2019-05-31 04:36:18	16.41	IAC	_
MASTER OT J223437.59+001031.70	338.6566	0.175472	2019-06-07 01:15:16	16.53	SAAO	_
MASTER OT J003554.51+315223.00	8.977125	31.87306	2019-06-01 00:19:58	16.66	Kislovodsk	_
MASTER OT J133553.38-452735.50	203.9724	-45.4599	2019-06-01 03:10:01	16.67	OAFA	_
MASTER OT J135419.39-385131.10	208.5808	-38.8586	2019-05-19 23:42:44	16.72	SAAO	[215]
MASTER OT J133536.40-490628.10	203.9017	-49.1078	2019-05-12 06:35:38	16.92	OAFA	_
MASTER OT J233031.90+403605.20	352.6329	40.60144	2019-05-20 04:14:09	17.04	IAC	_
MASTER OT J140837.59-120146.60	212.1566	-12.0296	2019-05-10 19:56:26	17.14	Kislovodsk	_
AT2019hlq / MASTER OT J130356.32-433229.60	195.9847	-43.5416	2019-06-01 19:09:41	17.18	SAAO	[218]
MASTER OT J231738.87-591544.20	349.412	-59.2623	2019-05-17 23:53:32	17.21	SAAO	—

Таблица Б22. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S190510g

#### Таблица Б22. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J211000.94-140441.40	317.5039	-14.0782	2019-05-10 03:50:58	17.24	IAC	_
MASTER OT J140133.93-110805.80	210.3914	-11.1349	2019-05-10 19:56:26	17.53	Kislovodsk	[219]
MASTER OT J131137.58-291555.40	197.9066	-29.2654	2019-05-20 18:31:39	17.55	SAAO	_
MASTER OT J004014.95+430550.20	10.06229	43.09728	2019-06-04 05:00:57	17.58	IAC	_
MASTER OT J142812.05-013615.20	217.0502	-1.60422	2019-05-11 00:55:01	17.64	IAC	_
MASTER OT J132204.30-482141.70	200.5179	-48.3616	2019-05-11 22:41:44	17.64	SAAO	_
MASTER OT J094503.25+641539.30	146.2635	64.26092	2019-06-02 00:36:34	17.65	Tavrida	_
MASTER OT J001531.10+485220.50	3.879583	48.87236	2019-05-12 03:36:40	17.78	IAC	_
MASTER OT J153715.43+165355.40	234.3143	16.89872	2019-06-07 22:39:47	17.79	IAC	_
MASTER OT J151611.28-114227.70	229.047	-11.7077	2019-05-12 21:58:39	17.97	Tavrida	_
MASTER OT J135130.45-525536.30	207.8769	-52.9268	2019-06-01 02:36:02	18.02	OAFA	_
MASTER OT J130122.73-163136.90	195.3447	-16.5269	2019-05-11 23:10:13	18.04	IAC	_
AT2019gwz / MASTER OT J140503.89-534127.30	211.2662	-53.6909	2019-06-01 02:54:56	18.18	OAFA	[220]
MASTER OT J125538.03-164459.90	193.9085	-16.75	2019-05-11 23:10:13	18.26	IAC	_
MASTER OT J153204.93-204054.40	233.0205	-20.6818	2019-05-09 19:02:32	18.3	SAAO	—
MASTER OT J135447.60-124205.40	208.6983	-12.7015	2019-05-10 23:00:07	18.3	IAC	—
MASTER OT J143918.51-231122.10	219.8271	-23.1895	2019-05-10 02:56:27	18.62	IAC	_
MASTER OT J135914.15-153454.10	209.809	-15.5817	2019-05-10 23:23:07	19.05	IAC	_
MASTER OT J060606.97-381624.80	91.52904	-38.2736	2019-05-10 18:30:09	19.27	SAAO	_
MASTER OT J142213.51-144200.80	215.5563	-14.7002	2019-05-09 19:08:04	19.37	SAAO	—
MASTER OT J144405.26+125111.90	221.0219	12.85331	2019-05-09 21:48:37	19.64	SAAO	_
MASTER OT J150039.08+201646.10	225.1628	20.27947	2019-05-29 02:13:30	19.65	IAC	_
AT2019exw / MASTER OT J060606.43-353229.80	91.52679	-35.5416	2019-05-10 18:44:36	19.75	SAAO	[216]

1150

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

1151

Название ОТ	ra	dec	Время	mag	Обсерватория	
			открытия			
MASTER OT	281.3917	-32.1289	2019-05-15	10.92	SAAO	—
J184534.01-320743.90			19:53:23			
MASTER OT	280.6558	-32.2353	2019-05-15	11.39	SAAO	—
J184237.39-321407.00			19:53:23			
MASTER OT	281.5987	-31.9154	2019-05-16	12.11	SAAO	—
J184623.69-315455.60			19:57:22			
MASTER OT	276.1284	-32.6278	2019-05-14	12.3	SAAO	—
J182430.82-323739.90			04:10:24			
MASTER OT	280.8545	-32.1858	2019-05-15	13.18	SAAO	—
J184325.07-321109.00			19:53:23			
MASTER OT	270.9706	-33.5279	2019-05-14	13.23	OAFA	—
J180352.95-333140.40			07:54:53			
MASTER OT	280.7834	-32.0418	2019-05-13	13.65	SAAO	—
J184308.02-320230.30			22:00:17			
MASTER OT	262.3905	-28.266	2019-05-13	14.42	OAFA	—
J172933.71-281557.60			03:05:19			
MASTER OT	253.1455	-31.9465	2019-05-14	14.99	SAAO	_
J165234.92-315647.30			03:30:15			
MASTER OT	272.5686	-36.4798	2019-05-13	15.14	OAFA	_
J181016.46-362847.10			04:01:51			
MASTER OT	254.3055	-30.2792	2019-05-14	15.5	IAC	_
J165713.32-301645.20			03:19:4			
MASTER OT	262.5452	-33.3388	2019-05-27	15.5	OAFA	_
J173010.84-332019.80			08:40:35			
MASTER OT	254.6654	-33.0614	2019-05-14	15.64	OAFA	_
J165839.70-330341.00			07:17:17			
MASTER OT	289.3405	-34.7391	2019-05-13	15.72	SAAO	_
J191721.72-344420.60			22:43:23			
MASTER OT	262.0662	-29.0253	2019-05-13	15.81	OAFA	_
J172815.89-290131.20			03:05:19			
MASTER OT	223.565	4.793	2019-05-12	15.92	IAC	_
J145415.61+044734.80			22:55:33			
MASTER OT	275.588	-36.0192	2019-05-13	16.05	IAC	_
J182221.11-360109.20			01:16:40			
MASTER OT	279.751	-40.9078	2019-06-08	16.2	SAAO	_
J183900.25-405427.90			20:45:15			
MASTER OT	260.605	-28.9352	2019-05-13	16.22	OAFA	_
J172225.20-285606.60			03:05:19			
MASTER OT	277.5349	-37.3617	2019-05-13	16.25	IAC	_
J183008.37-372142.10			01:20:40			
MASTER OT	287.7275	-34.9725	2019-05-14	16.26	IAC	_
J191054.59-345821.10			02:59:17			
MASTER OT	289.3402	-34.7394	2019-05-14	16.29	IAC	_
J191721.64-344421.70			02:59:17			
MASTER OT	277.5349	-37.3621	2019-05-13	16.52	IAC	_
J183008.38-372143.40			01:20:40			
AT2019gac / MASTER OT	262.6915	-34.7485	2019-05-27	16.54	OAFA	[221]
J173045.95-344454.70			08:36:51			r -1
MASTER OT	287.4125	-35.0494	2019-05-15	16.89	OAFA	[211]
J190939.00-350257.90			08:53:8			

Таблица Б23. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190512_180714 (S190512at)

#### Таблица Б23. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	0.241333	44.74636	2019-05-28	16.96	Tavrida	_
J000057.92+444446.90			21:59:6			
AT2019fsj / MASTER OT	297.9298	-34.8183	2019-05-15	17.02	OAFA	[222]
J195143.14-344906.00			09:23:28			
MASTER OT	277.535	-37.3614	2019-05-14	17.02	IAC	_
J183008.39-372141.00			03:30:56			
MASTER OT	284.9716	-35.0599	2019-05-14	17.03	IAC	—
J185953.19-350335.70			02:31:55			
MASTER OT	285.5988	-34.0084	2019-05-14	17.49	IAC	—
J190223.70-340030.20			02:31:55			
MASTER OT	3.879583	48.87236	2019-05-12	17.78	IAC	_
J001531.10+485220.50			03:36:40			
MASTER OT	358.895	47.74331	2019-06-01	17.8	Kislovodsk	—
J235534.81+474435.90			00:17:57			
MASTER OT	262.0749	-34.5903	2019-05-27	17.87	OAFA	—
J172817.98-343524.90			08:40:35			
MASTER OT	290.1002	-35.1017	2019-05-15	17.87	SAAO	_
J192024.05-350606.00			00:51:48			
MASTER OT	262.1483	-34.0231	2019-05-27	18.03	OAFA	[223]
J172835.59-340123.20			08:40:35			
MASTER OT	300.168	-34.7955	2019-05-15	18.1	OAFA	_
J200040.32-344743.80			09:46:20			
MASTER OT	290.0797	-35.2184	2019-05-15	18.43	SAAO	_
J192019.12-351306.10			00:51:48			
MASTER OT	251.062	-22.2609	2019-05-13	18.8	SAAO	[214]
J164414.88-221539.30			03:30:52			

Таблица Б24. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190513_205428 (S190513bm)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	281.3917	-32.1289	2019-05-15	10.92	SAAO	_
J184534.01-320743.90			19:53:23			
MASTER OT	280.6558	-32.2353	2019-05-15	11.39	SAAO	_
J184237.39-321407.00			19:53:23			
MASTER OT	281.5987	-31.9154	2019-05-16	12.11	SAAO	—
J184623.69-315455.60			19:57:22			
MASTER OT	44.82533	51.83947	2019-14-05	10.15	IAC	—
J025918.08+515022.10			04:49:02			
MASTER OT	281.3917	-32.12886	2019-15-05	10.92	SAAO	—
J184534.01-320743.90			19:53:23			
MASTER OT	280.9508	-31.802	2019-16-05	10.99	SAAO	_
J184348.18-314807.20			19:57:22			
MASTER OT	280.6558	-32.23528	2019-15-05	11.39	SAAO	_
J184237.39-321407.00			19:53:23			
MASTER OT	282.65	-28.4365	2019-16-05	11.61	SAAO	_
J185036.00-282611.40			03:20:19			
MASTER OT	287.4554	-26.4486	2019-13-05	12.08	SAAO	—
J190949.30-262655.10			23:33:39			

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

#### Таблица Б24. Окончание

Название ОТ	ra	dec	Время	mag	Обсерватория	
			открытия			
MASTER OT	281.5987	-31.9154	2019-16-05	12.11	SAAO	_
J184623.69-315455.60			19:57:22			
MASTER OT	281.7976	-28.7068	2019-15-05	12.46	SAAO	—
J184711.42-284224.50			02:58:11			
MASTER OT	283.0547	-28.1884	2019-16-05	12.56	SAAO	—
J185213.13-281118.20			03:20:19			
MASTER OT	47.57838	52.28756	2019-14-05	12.61	IAC	—
J031018.81+521715.20			05:00:48		~	
MASTER OT	272.6031	-10.5715	2019-27-05	12.97	SAAO	—
J181024.74-103417.30			00:49:38		~	
MASTER OT	280.8545	-32.1858	2019-15-05	13.18	SAAO	—
J184325.07-321109.00		<b>27</b> 00 4 5	19:53:23	10.50	<u></u>	
MASTER OT	283.9838	-27.9845	2019-16-05	13.53	SAAO	—
J185556.12-275904.10	200 5024	22 0 410	21:16:03	12.65	6440	
MASTER OT	280.7834	-32.0418	2019-13-05	13.65	SAAO	—
J184308.02-320230.30		0.00500	22:00:17	15.15	L.C.	
MASTER OT	267.4657	-8.28533	2019-28-05	15.15	IAC	_
J1/4951./6-081/0/.20	220 (000	10 2252	00:07:40	16 88	0.1.5.1	
MASTER OT	320.6099	-40.3373	2019-17-05	15.77	OAFA	—
J212226.37-402014.30	071 5705	15 1005	05:18:30	15.05	6440	[222]
MASTER OT	2/1.5/35	-17.1385	2019-26-05	15.97	SAAO	[223]
J18061/.64-1/0818.60	(1107(7	70 50156	00:50:47	1( 10	77:1 11	
MASTER UT	64.10/6/	/0.50156	2019-28-05	16.19	Kislovodsk	_
J041625.84+703005.60	207 7275	24.0725	20:10:41	16.26		
MASTER OT	287.7275	-34.9725	2019-14-05	16.26	IAC	_
J191054.59-345821.10	200 2402	24 7204	02:59:17	1( 20		[214]
MASTER OT	289.3402	-34./394	2019-14-05	16.29	IAC	[214]
J191/21.04-344421.70			02:39:17			
MASTER OT	101.9565	74.49644	2019-28-05	16.84	Kislovodsk	—
J064/49.55+/4294/.20			19:19:55	16.00	0.1.5.1	
MASTER OT	287.4125	-35.0494	2019-15-05	16.89	OAFA	[211]
J190939.00-350257.90	207.0200	24.0102	08:53:08	17.00		[222]
AT 2019fsj / MASTER OT	297.9298	-34.8183	2019-15-05	17.02	OAFA	[222]
J195143.14-344906.00	204.0716	25.0500	09:23:28	15.00	L.C.	
MASTER OT	284.9/16	-35.0599	2019-14-05	17.03	IAC	_
J185953.19-350335.70	200 5056	21 4007	02:31:55	17 11	5440	
MASTER OT	280.5856	-31.4807	2019-13-05	17.11	SAAO	_
J184220.55-312850.40	295 5099	24.0004	22:00:17	17 40		
MASTER UT	285.5988	-34.0084	2019-14-05	17.49	IAC	_
J190223.70-340030.20	201 2702	28 6604	02:51:55	17 56	5440	
MASTER OT 1194520 80 282027 40	201.3/03	-28.0004	2019-13-03	17.30	SAAO	_
MASTED OT	200 1002	35 1017	2010 15 05	17.87	\$440	
1192024 05 350606 00	290.1002	-33.1017	2019-13-03	17.07	SAAO	_
MASTER OT	281 3025	28 2405	2010 15 05	17.80	\$440	
1184512 60 281458 30	281.3023	-28.2493	02.58.11	17.09	SAAO	_
MASTER OT	300 168	_34 7955	2019_15_05	18 1	ΟΔΕΔ	_
I200040 32-344743 80	500.100	57.1733	09.46.20	10.1	UNIA	
MASTER OT	290 0797	-35 2184	2019-15-05	18 43	SAAO	_
J192019.12-351306.10		20.2101	00:51:48	10115	5. 2 10	
					1	

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J154136.66-464627.50	235.4028	-46.7743	2019-05-17 09:35:22	11.07	OAFA	_
MASTER OT J155121.04-463311.40	237.8377	-46.5532	2019-05-17 09:57:47	11.35	OAFA	_
MASTER OT J153747.39-464444.30	234.4475	-46.7456	2019-05-17 09:35:22	11.35	OAFA	_
MASTER OT J154125.30-464727.30	235.3554	-46.7909	2019-05-17 09:35:22	11.44	OAFA	_
MASTER OT J192341.74+262022.00	290.9239	26.33944	2019-05-21 22:43:37	11.84	IAC	_
MASTER OT J145806.91-540649.40	224.5288	-54.1137	2019-05-18 04:07:01	11.88	SAAO	_
MASTER OT J191813.63+264300.50	289.5568	26.71681	2019-05-21 22:39:58	11.92	IAC	_
MASTER OT J155437.05-500714.70	238.6544	-50.1208	2019-05-17 09:08:51	12.28	OAFA	—
MASTER OT J191414.77+261900.60	288.5615	26.31683	2019-05-18 09:46:36	12.43	OAFA	—
MASTER OT J191004.17+255918.80	287.5174	25.98856	2019-05-21 22:21:18	13.61	IAC	—
MASTER OT J153816.47-523526.30	234.5686	-52.5906	2019-05-17 23:23:52	13.78	OAFA	_
MASTER OT J144235.67-515130.00	220.6486	-51.8583	2019-05-17 23:08:08	14.1	OAFA	_
MASTER OT J145438.81-504228.20	223.6617	-50.7078	2019-05-17 07:53:13	14.28	OAFA	_
MASTER OT J021748.99+014450.10	34.45413	1.74725	2019-06-16 04:28:14	14.83	SAAO	_
MASTER OT J152724.06-482247.80	231.8503	-48.3799	2019-05-17 08:08:18	15.54	OAFA	[215]
MASTER OT J231738.85-591543.50	349.4119	-59.2621	2019-05-17 23:53:32	15.63	SAAO	_
MASTER OT J174749.02+184113.60	266.9543	18.68711	2019-05-17 21:15:20	16.27	OAFA	_
MASTER OT J153352.33-531718.50	233.468	-53.2885	2019-05-18 07:05:15	16.7	IAC	—
AT2019fpo / MASTER OT J204859.34-712538.90	312.2473	-71.4275	2019-05-18 18:40:11	17.03	SAAO	[224]
MASTER OT J231738.87-591544.20	349.412	-59.2623	2019-05-17 23:53:32	17.21	SAAO	—
MASTER OT J174749.94+164616.00	266.9581	16.77111	2019-05-24 03:30:52	17.77	IAC	—
MASTER OT J213102.98-502909.80	322.7624	-50.4861	2019-05-30 02:18:11	17.88	SAAO	—
MASTER OT J215411.42-651801.30	328.5476	-65.3004	2019-06-02 23:22:13	18.02	SAAO	_
MASTER OT J151317.48-345843.70	228.3228	-34.9788	2019-05-31 02:21:51	18.4	OAFA	_

Таблица Б25. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190517_055101 (S190517h)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J222536.82+302823.90	336.4034	30.47331	2019-05-19 04:08:19	10.3	IAC	_
MASTER OT J223557.60+311855.90	338.99	31.31553	2019-05-21 02:28:11	11.58	SAAO	_
MASTER OT J125338.14-261731.50	193.4089	-26.2921	2019-05-20 17:54:24	16.14	SAAO	—
MASTER OT J223437.59+001031.70	338.6566	0.175472	2019-06-07 01:15:16	16.53	SAAO	—
MASTER OT J135419.39-385131.10	208.5808	-38.8586	2019-05-19 23:42:44	16.72	SAAO	[215]
MASTER OT J000057.92+444446.90	0.241333	44.74636	2019-05-28 21:59:06	16.96	Tavrida	—
MASTER OT J233031.90+403605.20	352.6329	40.60144	2019-05-20 04:14:09	17.04	IAC	—
AT2019hlp / MASTER OT J133646.72-454952.30	204.1947	-45.8312	2019-06-12 18:34:44	17.28	SAAO	[225]
MASTER OT J131137.58-291555.40	197.9066	-29.2654	2019-05-20 18:31:39	17.55	SAAO	—
MASTER OT J235534.81+474435.90	358.895	47.74331	2019-06-01 00:17:57	17.8	Kislovodsk	—

Таблица Б26. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190519_153544 (S190519bj)

Таблица Б27. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190521 (S190521g)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J135329.05+401632.00	208.371	40.27556	2019-05-24 03:44:05	14.28	OAFA	_
MASTER OT J133613.03+382116.90	204.0543	38.35469	2019-05-21 21:06:53	14.46	IAC	_
MASTER OT J163054.03+463516.90	247.7251	46.58803	2019-06-14 00:33:51	15.9	IAC	_
MASTER OT J121151.59+240810.90	182.965	24.13636	2019-05-22 22:01:51	16.24	IAC	_
MASTER OT J160106.70+490031.70	240.2779	49.00881	2019-06-04 02:07:08	16.76	IAC	_
MASTER OT J140144.39+375017.00	210.435	37.83806	2019-05-23 04:54:18	17.11	OAFA	_

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	338.99	31.31553	2019-05-21	11.58	SAAO	_
J223557.60+311855.90			02:28:11			
MASTER OT	290.9239	26.33944	2019-05-21	11.84	IAC	_
J192341.74+262022.00			22:43:37			
MASTER OT	264.6147	4.662361	2019-05-25	11.84	IAC	_
J173827.52+043944.50			05:08:57			
MASTER OT	289.5568	26.71681	2019-05-21	11.92	IAC	_
J191813.63+264300.50			22:39:58			
MASTER OT	268.9215	3.031972	2019-05-26	12.53	IAC	_
J175541.17+030155.10			23:47:50			
MASTER OT	323.315	35.69947	2019-05-24	12.56	IAC	_
J213315.59+354158.10			00:38:17			
MASTER OT	319.6452	33.74136	2019-05-22	12.56	IAC	_
J211834.84+334428.90			00:07:56			
MASTER OT	283.1362	17.33492	2019-05-21	12.92	SAAO	_
J185232.68+172005.70			22:39:03			
MASTER OT	297.701	22.38719	2019-06-19	13.14	IAC	_
J195048.23+222313.90			23:57:37			
MASTER OT	283.0105	17.39481	2019-05-21	13.29	SAAO	—
J185202.53+172341.30			22:39:03			
MASTER OT	312.0898	33.90928	2019-05-23	13.58	IAC	—
J204821.55+335433.40			02:03:37			
MASTER OT	287.5174	25.98856	2019-05-21	13.61	IAC	_
J191004.17+255918.80			22:21:18			
MASTER OT	292.9818	21.76936	2019-06-20	15.71	IAC	_
J193155.63+214609.70			01:46:38			
MASTER OT	291.8321	21.20933	2019-06-20	15.82	IAC	_
J192719.70+211233.60			01:46:38			
MASTER OT	292.2764	21.11081	2019-06-20	16.21	IAC	_
J192906.34+210638.90			01:46:38			
MASTER OT	292.5893	21.51633	2019-06-20	16.63	IAC	—
J193021.44+213058.80			01:46:38			
AT2019hwf/MASTER OT	282.6948	22.07572	2019-06-19	16.9	IAC	[226]
J185046.76+220432.60			23:36:57			
MASTER OT	278.5353	18.27928	2019-05-21	18.12	SAAO	—
J183408.48+181645.40			22:06:55			

Таблица Б28. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190521_074359 (S190521r)

# Таблица Б29. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190602_175927 (S190602aq)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	170.3731	-56.9177	2019-06-05	13.66	OAFA	_
J112129.54-565503.60			04:03:16			
MASTER OT	170.4352	-58.848	2019-06-05	13.72	OAFA	_
J112144.44-585052.80			04:48:35			
MASTER OT	182.9575	-60.0367	2019-06-03	16.34	SAAO	_
J121149.80-600212.20			23:13:20			
AT2019gtv / MASTER OT	180.8158	-52.9572	2019-06-03	16.84	SAAO	[227]
J120315.78-525725.90			16:39:45			

Таблица Б30. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190630_185205 (S190630ag)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J222219.26-605215.40	335.5803	-60.8709	2019-07-27 00:33:17	8.28	OAFA	_
MASTER OT J193742.39-503917.00	294.4266	-50.6547	2019-07-04 22:37:49	11.39	SAAO	_
MASTER OT 1032242.85+364541.80	50.67854	36.76161	2019-07-05 23:16:59	12.1	Tavrida	_
MASTER OT 1195809.72+341452.60	299.5405	34.24794	2019-07-19 03:35:18	12.35	IAC	_
MASTER OT J224939.95-270653.60	342.4165	-27.1149	2019-07-13 01:37:17	12.36	IAC	_
MASTER OT J163147.98-614637.90	247.9499	-61.7772	2019-07-02 22:32:51	12.44	SAAO	_
MASTER OT J172704.25-610437.00	261.7677	-61.0769	2019-07-04 20:35:08	12.56	SAAO	_
MASTER OT J192035.27+324340.30	290.147	32.72786	2019-07-25 03:03:58	12.72	IAC	_
MASTER OT J203209.51+275552.50	308.0396	27.93125	2019-07-20 23:01:17	12.76	Tavrida	_
MASTER OT J104450.11+232431.70	161.2088	23.40881	2019-07-01 19:47:06	13.66	Tavrida	_
MASTER OT J201205.95+285555.40	303.0248	28.93206	2019-07-21 03:27:57	13.85	IAC	_
MASTER OT J221009.17+252309.60	332.5382	25.386	2019-07-29 21:48:26	13.94	Kislovodsk	_
MASTER OT J194330.74+283925.90	295.8781	28.65719	2019-07-25 02:36:20	14.01	IAC	_
MASTER OT J185346.06+014717.10	283.4419	1.788083	2019-07-04 22:56:30	14.08	Kislovodsk	—
MASTER OT J220822.14-194932.50	332.0923	-19.8257	2019-07-04 00:22:14	14.11	SAAO	_
AT2019krj / MASTER OT J191713.45-554840.40	289.306	-55.8112	2019-07-06 04:55:56	14.39	OAFA	[228]
MASTER OT J202838.51-521845.30	307.1605	-52.3126	2019-06-30 01:35:42	14.55	SAAO	_
MASTER OT J194425.96+134658.10	296.1082	13.78281	2019-07-08 01:49:02	14.61	SAAO	_
MASTER OT J201606.44+314533.70	304.0268	31.75936	2019-07-19 02:45:45	14.73	OAFA	_
MASTER OT J202623.56+320109.50	306.5982	32.01931	2019-07-18 20:22:28	15.16	Kislovodsk	_
MASTER OT J204627.94+242217.80	311.6164	24.37161	2019-07-19 00:11:29	15.38	IAC	_
MASTER OT J221846.00-364805.00	334.6917	-36.8014	2019-07-02 01:28:45	15.39	IAC	_
MASTER OT J145102.54-560129.80	222.7606	-56.0249	2019-07-04 01:10:13	15.44	SAAO	_

#### Таблица Б30. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J190838.53+042235.90	287.1605	4.376639	2019-07-04 05:54:35	15.51	OAFA	_
MASTER OT J220319.75-163735.70	330.8323	-16.6266	2019-07-02 21:45:19	15.77	Kislovodsk	_
MASTER OT J191908.85-494542.00	289.7869	-49.7617	2019-07-04 22:23:33	15.82	SAAO	_
MASTER OT J200326.53+344117.30	300.8605	34.68814	2019-07-28 00:16:46	15.82	IAC	_
MASTER OT J185506.16+041853.50	283.7757	4.314861	2019-07-04 22:47:25	15.85	Kislovodsk	_
MASTER OT J191234.89+050604.50	288.1454	5.10125	2019-07-04 05:49:53	15.89	OAFA	_
MASTER OT J143636.80-571718.80	219.1533	-57.2886	2019-07-02 02:18:09	16	OAFA	_
MASTER OT J165024.29-664835.50	252.6012	-66.8099	2019-07-04 06:37:41	16.03	OAFA	[229]
MASTER OT J190336.35+034511.30	285.9015	3.753139	2019-07-05 03:15:21	16.16	OAFA	_
MASTER OT J190235.59+032013.90	285.6483	3.337194	2019-07-05 03:13:33	16.2	OAFA	[229]
MASTER OT J214534.88+204127.00	326.3953	20.69083	2019-07-28 19:01:10	16.28	Kislovodsk	_
MASTER OT J170605.63-574235.00	256.5235	-57.7097	2019-07-14 01:09:38	16.32	OAFA	_
MASTER OT J193953.85+260756.70	294.9744	26.13242	2019-07-25 00:20:28	16.35	IAC	_
MASTER OT J192111.57+032059.00	290.2982	3.349722	2019-07-04 06:18:49	16.36	OAFA	_
MASTER OT J190353.93+015144.50	285.9747	1.862361	2019-07-05 01:20:02	16.38	OAFA	[229]
MASTER OT J190540.41+064155.80	286.4184	6.698833	2019-07-03 20:30:36	16.43	Kislovodsk	_
MASTER OT J223417.93-564107.80	338.5747	-56.6855	2019-07-16 22:12:06	16.44	SAAO	_
MASTER OT J141514.31-521855.60	213.8096	-52.3154	2019-07-08 22:45:44	16.55	SAAO	—
AT2019kwx / MASTER OT J195321.61+181050.30	298.34	18.18064	2019-07-07 20:10:57	16.62	Kislovodsk	[230]
MASTER OT J182853.19-514850.60	277.2216	-51.8141	2019-06-30 02:26:18	16.8	OAFA	_
MASTER OT J190020.45+051751.80	285.0852	5.297722	2019-07-03 20:27:06	16.81	Kislovodsk	—
MASTER OT J201614.66+341116.10	304.0611	34.18781	2019-07-18 20:51:23	16.91	Kislovodsk	—
MASTER OT J190812.61+045727.20	287.0525	4.957556	2019-07-04 01:07:17	17.17	IAC	_

#### Таблица Б30. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J212108.93+303413.30	320.2872	30.57036	2019-07-19 04:35:36	17.28	IAC	_
MASTER OT J192201.31-481430.50	290.5055	-48.2418	2019-07-27 02:59:59	17.46	OAFA	_
MASTER OT J193121.21-464050.20	292.8384	-46.6806	2019-07-28 22:16:32	17.57	SAAO	_
MASTER OT J031219.24+352239.00	48.08017	35.3775	2019-07-05 23:23:39	17.72	Tavrida	_
MASTER OT J220303.18-134506.40	330.7633	-13.7518	2019-06-30 04:55:53	18.02	IAC	_
MASTER OT J215753.96-570144.50	329.4748	-57.029	2019-07-12 18:01:42	18.17	SAAO	_
MASTER OT J211354.63+112125.10	318.4776	11.35697	2019-07-28 23:45:25	18.25	IAC	_
MASTER OT J220105.39-144232.20	330.2725	-14.7089	2019-06-30 03:50:55	18.26	IAC	—
MASTER OT J222909.45-335730.70	337.2894	-33.9585	2019-07-12 23:01:55	18.34	SAAO	_
MASTER OT J203233.42+224327.00	308.1393	22.72417	2019-07-19 00:28:43	18.39	IAC	_
MASTER OT J215918.53-065937.40	329.8272	-6.99372	2019-06-30 03:53:03	19.14	IAC	_
AT2019klp / MASTER OT J221114.39-193127.60	332.81	-19.5243	2019-07-04 00:22:14	19.73	SAAO	[231]

Таблица Б31. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190701_203306 (S190701ah)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J023443.06-073425.90	38.67942	-7.57386	2019-07-05 04:41:27	18.13	IAC	—

# Таблица Б32. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190706_222641 (S190706ai)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J215151.83-384020.70	327.966	-38.6724	2019-08-02 23:49:32	15.96	SAAO	_
MASTER OT J210732.88-095700.40	316.887	-9.95011	2019-08-04 23:45:25	16.58	IAC	_
MASTER OT J115941.81+585200.30	179.9242	58.86675	2019-07-08 21:53:35	16.82	Kislovodsk	—

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J224059.79+694614.70	340.2491	69.77075	2019-07-13 23:38:42	8.98	Tavrida	_
MASTER OT J234022.84+702630.10	355.0952	70.44169	2019-07-14 23:59:51	9.08	IAC	_
MASTER OT J210417.06+375108.40	316.0711	37.85233	2019-07-21 00:00:08	10.1	IAC	_
MASTER OT J203209.51+275552.50	308.0396	27.93125	2019-07-20 23:01:17	12.76	Tavrida	_
MASTER OT J201205.95+285555.40	303.0248	28.93206	2019-07-21 03:27:57	13.85	IAC	_
MASTER OT J194425.96+134658.10	296.1082	13.78281	2019-07-08 01:49:02	14.61	SAAO	_
AT2019lls / MASTER OT J203053.79+384020.10	307.7241	38.67225	2019-07-18 22:14:40	14.86	IAC	[232]
MASTER OT J202623.56+320109.50	306.5982	32.01931	2019-07-18 20:22:28	15.16	Kislovodsk	—
MASTER OT J103550.24-341622.20	158.9593	-34.2728	2019-08-03 16:59:29	15.34	SAAO	—
MASTER OT J204627.94+242217.80	311.6164	24.37161	2019-07-19 00:11:29	15.38	IAC	—
MASTER OT J155725.27-443626.60	239.3553	-44.6074	2019-08-04 17:05:16	15.43	SAAO	—
MASTER OT J204626.02+370305.00	311.6084	37.05139	2019-07-18 22:14:40	15.5	IAC	_
MASTER OT J141514.31-521855.60	213.8096	-52.3154	2019-07-08 22:45:44	16.55	SAAO	_
AT2019kwx / MASTER OT J195321.61+181050.30	298.34	18.18064	2019-07-07 20:10:57	16.62	Kislovodsk	[230]
MASTER OT J130305.02-543855.60	195.7709	-54.6488	2019-07-08 22:38:26	16.84	SAAO	[229]
MASTER OT J201614.66+341116.10	304.0611	34.18781	2019-07-18 20:51:23	16.91	Kislovodsk	—
MASTER OT J203107.25+382955.70	307.7802	38.49881	2019-07-28 00:03:47	17.02	IAC	_
MASTER OT J210510.83+384844.00	316.2951	38.81222	2019-07-21 00:17:56	17.1	IAC	_
MASTER OT J155909.83-440653.70	239.791	-44.1149	2019-08-04 17:06:53	17.75	SAAO	_
MASTER OT J113043.63-464844.00	172.6818	-46.8122	2019-07-10 19:39:08	18.15	SAAO	[229]
MASTER OT J202713.23+370336.80	306.8051	37.06022	2019-07-28 00:03:47	18.17	IAC	—
MASTER OT J203233.42+224327.00	308.1393	22.72417	2019-07-19 00:28:43	18.39	IAC	_
MASTER OT J203653.42+211106.80	309.2226	21.18522	2019-08-04 22:48:51	18.52	IAC	_
MASTER OT J202740.34+373329.70	306.9181	37.55825	2019-07-28 00:03:47	19.01	IAC	—

Таблица Б33. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190707_093326 (S190707q)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J222219.26-605215.4	335.5803	-60.87094	2019-07-27 00:33:17	8.28	OAFA	_
MASTER OT J035456.96+483559.9	58.73733	48.59997	2019-08-05 01:15:13	9.57	IAC	_
MASTER OT J210417.06+375108.4	316.0711	37.85233	2019-07-21 00:00:08	10.1	IAC	_
MASTER OT J182529.53+313305.3	276.373	31.55147	2019-07-24 02:57:27	11.27	IAC	_
MASTER OT J174102.63-632552.3	265.261	-63.43119	2019-08-04 19:45:45	11.27	SAAO	_
MASTER OT J215403.72-553224.1	328.5155	-55.54003	2019-08-14 06:17:28	12.14	OAFA	_
MASTER OT J195809.72+341452.6	299.5405	34.24794	2019-07-19 03:35:18	12.35	IAC	_
MASTER OT J192035.27+324340.3	290.147	32.72786	2019-07-25 03:03:58	12.72	IAC	_
MASTER OT J203209.5+275552.5	308.0396	27.93125	2019-07-20 23:01:17	12.76	Tavrida	_
MASTER OT J011955.07+163241.7	19.97946	16.54492	2019-08-14 23:13:16	12.86	IAC	_
MASTER OT J054444.86-825629.4	86.18692	-82.9415	2019-08-16 02:06:11	13.45	SAAO	_
MASTER OT J132220.01-390014.0	200.5834	-39.0039	2019-07-18 00:40:33	13.58	OAFA	_
MASTER OT J201205.95+285555.4	303.0248	28.93206	2019-07-21 03:27:57	13.85	IAC	_
MASTER OT J221009.17+252309.6	332.5382	25.386	2019-07-29 21:48:26	13.94	Kislovodsk	_
MASTER OT J194330.74+283925.9	295.8781	28.65719	2019-07-25 02:36:20	14.01	IAC	_
MASTER OT J195812.5+422259.8	299.5521	42.38328	2019-08-12 01:18:28	14.66	Tavrida	_
MASTER OT J201606.44+314533.7	304.0268	31.75936	2019-07-19 02:45:45	14.73	OAFA	_
MASTER OT J203053.79+384020.1	307.7241	38.67225	2019-07-18 22:14:40	14.86	IAC	[233]
MASTER OT J120222.5+512113.9	180.5938	51.35386	2019-08-12 19:17:05	15.15	Tavrida	_
MASTER OT J202623.56+320109.5	306.5982	32.01931	2019-07-18 20:22:28	15.16	Kislovodsk	_
MASTER OT J204627.94+242217.8	311.6164	24.37161	2019-07-19 00:11:29	15.38	IAC	_

Таблица Б34. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S190718у

#### Таблица Б34. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J204626.02+370305.0	311.6084	37.05139	2019-07-18 22:14:40	15.5	IAC	_
MASTER OT J183446.32+244801.9	278.693	24.80053	2019-07-24 01:27:47	15.51	IAC	—
MASTER OT J201634.09+413505.8	304.142	41.58494	2019-07-19 01:49:25	15.7	IAC	_
MASTER OT J191713.32-554841.0	289.3055	-55.8114	2019-07-17 22:15:00	15.73	SAAO	—
MASTER OT J100622.5+580525.5	151.5938	58.09042	2019-08-05 20:59:57	15.78	Tavrida	_
MASTER OT J200326.53+344117.3	300.8605	34.68814	2019-07-28 00:16:46	15.82	IAC	_
MASTER OT J215151.83-384020.7	327.966	-38.6724	2019-08-02 23:49:32	15.96	SAAO	_
MASTER OT J080549.62+684821.0	121.4568	68.80583	2019-08-12 22:05:46	15.97	Kislovodsk	_
MASTER OT J202222.31-582211.2	305.593	-58.3698	2019-08-14 22:14:27	16.05	SAAO	_
MASTER OT J175344.57-625243.9	268.4357	-62.8789	2019-08-16 21:41:47	16.08	SAAO	—
AT2019mqx / MASTER OT J043517.41+434103.3	68.82254	43.68425	2019-08-05 03:04:60	16.16	IAC	[234]
MASTER OT J211407.08-465805.5	318.5295	-46.9682	2019-07-27 05:04:18	16.17	OAFA	—
MASTER OT J185720.61+362239.5	284.3359	36.37764	2019-07-25 02:50:04	16.19	IAC	_
MASTER OT J235158.04-473241.9	357.9918	-47.545	2019-07-20 03:17:49	16.19	OAFA	—
MASTER OT J214534.88+204127.0	326.3953	20.69083	2019-07-28 19:01:10	16.28	Kislovodsk	_
MASTER OT J182607.60+301406.6	276.5317	30.23517	2019-07-25 01:31:31	16.32	IAC	_
MASTER OT J193953.85+260756.7	294.9744	26.13242	2019-07-25 00:20:28	16.35	IAC	_
MASTER OT J213500.25+183922.6	323.751	18.65628	2019-07-31 05:35:17	16.39	IAC	_
MASTER OT J223417.98-564107.8	338.5749	-56.6855	2019-07-26 21:32:50	16.49	SAAO	_
AT2019lwp / MASTER OT J183425.28+254920.9	278.6053	25.82247	2019-07-24 01:02:37	16.51	IAC	[235]
MASTER OT J193302.49+385423.6	293.2604	38.90656	2019-08-11 05:20:06	16.55	IAC	[236]

#### Таблица Б34. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J201544.38-063112.5	303.9349	-6.52014	2019-08-07 23:33:40	16.57	IAC	[237]
MASTER OT J234618.16-474159.2	356.5757	-47.6998	2019-07-20 03:17:49	16.69	OAFA	—
MASTER OT J233129.05-475330.7	352.871	-47.8919	2019-07-20 03:10:20	16.76	OAFA	—
MASTER OT J234705.45-480356.8	356.7727	-48.0658	2019-07-20 03:17:49	16.82	OAFA	_
MASTER OT J171305.95-603047.9	258.2748	-60.5133	2019-08-16 21:23:01	16.82	SAAO	—
MASTER OT J233935.30-484643.2	354.8971	-48.7787	2019-07-20 03:10:20	16.83	OAFA	—
MASTER OT J174352.36-610222.3	265.9682	-61.0395	2019-08-16 21:41:47	16.9	SAAO	_
MASTER OT J201614.66+341116.1	304.0611	34.18781	2019-07-18 20:51:23	16.91	Kislovodsk	—
MASTER OT J234608.51-490812.7	356.5355	-49.1369	2019-07-20 03:17:49	16.92	OAFA	—
MASTER OT J201740.51+353930.8	304.4188	35.65856	2019-07-28 04:52:38	16.92	OAFA	—
MASTER OT J234338.77-474304.5	355.9115	-47.7179	2019-07-20 03:17:49	16.93	OAFA	—
MASTER OT J203107.25+382955.7	307.7802	38.49881	2019-07-28 00:03:47	17.02	IAC	—
MASTER OT J035355.43+430237.6	58.48096	43.04378	2019-08-05 03:02:42	17.04	IAC	_
MASTER OT J210510.83+384844.0	316.2951	38.81222	2019-07-21 00:17:56	17.1	IAC	—
AT2019lyd/ MASTER OT J192114.14+405316.6	290.3089	40.88794	2019-07-28 00:55:54	17.17	IAC	[238]
MASTER OT J004013.1+401414.7	10.05458	40.23742	2019-08-06 00:32:27	17.21	Tavrida	_
MASTER OT J124819.42+072049.8	192.0809	7.34717	2019-07-20 21:51:33	17.24	IAC	—
MASTER OT J175133.16+545818.1	267.8882	54.97169	2019-07-18 01:00:35	17.25	IAC	—
MASTER OT J212108.93+303413.3	320.2872	30.57036	2019-07-19 04:35:36	17.28	IAC	—
MASTER OT J203813.00-244813.7	309.5542	-24.8038	2019-08-06 20:03:09	17.29	SAAO	_
MASTER OT J003651.05+414424.0	9.21271	41.74	2019-07-26 04:50:20	17.3	IAC	_

#### Таблица Б34. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J202214.98+353613.6	305.5624	35.60378	2019-07-28 04:52:38	17.34	OAFA	
MASTER OT J201735.7+304320.1	304.3988	30.72225	2019-07-20 21:39:43	17.37	Tavrida	_
MASTER OT J084721.4+725827.7	131.8392	72.97436	2019-08-02 21:32:55	17.37	Tavrida	—
MASTER OT J112844.6+583532.0	172.1858	58.59222	2019-08-08 21:35:06	17.41	Tavrida	—
MASTER OT J004508.73+412926.0	11.28638	41.49056	2019-07-26 04:50:20	17.46	IAC	—
MASTER OT J192201.31-481430.5	290.5055	-48.2418	2019-07-27 02:59:59	17.46	OAFA	—
MASTER OT J192400.95+421659.2	291.004	42.28311	2019-07-25 03:53:42	17.5	IAC	_
MASTER OT J175914.47+455245.7	269.8103	45.87936	2019-07-20 05:12:02	17.73	IAC	_
MASTER OT J155909.83-440653.7	239.791	-44.1149	2019-08-04 17:06:53	17.75	SAAO	—
MASTER OT J220302.21-151025.0	330.7592	-15.1736	2019-08-06 00:25:11	17.86	IAC	_
MASTER OT J073411.00+584202.3	113.5458	58.70064	2019-08-12 22:46:35	17.98	Kislovodsk	—
MASTER OT J211354.7+112124.7	318.4779	11.35686	2019-07-28 21:13:14	17.99	Tavrida	—
AT2019mfd / MASTER OT J203740.33-003718.1	309.418	-0.62169	2019-08-01 02:22:28	18.07	IAC	[239]
MASTER OT J202713.23+370336.8	306.8051	37.06022	2019-07-28 00:03:47	18.17	IAC	_
MASTER OT J003243.3-015008.5	8.18042	-1.83569	2019-08-08 00:47:38	18.27	Tavrida	_
MASTER OT J202213.4+353609.3	305.5558	35.60258	2019-07-26 18:47:09	18.28	Tavrida	_
MASTER OT J010209.8-041530.4	15.54083	-4.25844	2019-08-08 00:50:47	18.28	Tavrida	_
MASTER OT J010522.3-042512.2	16.34292	-4.42006	2019-08-08 00:50:47	18.38	Tavrida	_
MASTER OT J203233.42+224327.0	308.1393	22.72417	2019-07-19 00:28:43	18.39	IAC	[240]
MASTER OT J034718.5+400122.8	56.82708	40.023	2019-08-06 00:51:15	18.43	Tavrida	_
MASTER OT J075449.5+630046.7	118.7063	63.01297	2019-08-04 23:23:51	18.44	Tavrida	_

#### Таблица Б34. Окончание

	r	-	r	-		
Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J230038.1+351940.2	345.1588	35.32783	2019-07-29 00:07:30	18.46	Tavrida	_
MASTER OT J203653.42+211106.8	309.2226	21.18522	2019-08-04 22:48:51	18.52	IAC	—
MASTER OT J015922.01-821007.9	29.84171	-82.1689	2019-08-01 03:50:32	18.62	SAAO	_
MASTER OT J184225.79+343411.8	280.6075	34.56994	2019-07-24 01:41:34	18.63	IAC	_
MASTER OT J205806.1+205155.1	314.5254	20.86531	2019-07-28 23:44:44	18.67	Tavrida	—
MASTER OT J195553.65-515907.0	298.9735	-51.9853	2019-08-02 22:19:25	18.75	SAAO	_
MASTER OT J001815.35+064729.3	4.56396	6.79147	2019-08-13 01:56:28	18.78	IAC	_
MASTER OT J202843.66+343100.5	307.1819	34.51681	2019-07-28 03:02:27	18.9	IAC	_
MASTER OT J202740.34+373329.7	306.9181	37.55825	2019-07-28 00:03:47	19.01	IAC	_
MASTER OT J025729.85-822417.0	44.37438	-82.4047	2019-08-01 04:03:46	19.06	SAAO	—
MASTER OT J235651.1+135319.7	359.2129	13.88881	2019-08-05 22:07:18	19.1	Tavrida	—
MASTER OT J003900.81+402744.0	9.75338	40.46222	2019-08-06 04:02:17	19.15	IAC	_
MASTER OT J221028.38-185944.2	332.6183	-18.9956	2019-08-06 01:58:25	19.3	IAC	_
MASTER OT J002025.83+054743.4	5.10763	5.79539	2019-08-02 03:26:42	19.34	IAC	_
MASTER OT J003420.16+101308.9	8.584	10.21914	2019-08-02 04:30:37	19.37	IAC	_
MASTER OT J014517.36+122647.9	26.32233	12.44664	2019-08-07 05:04:35	19.39	IAC	_
MASTER OT J014901.49+113149.5	27.25621	11.53042	2019-08-07 05:04:35	19.53	IAC	_
MASTER OT J215038.85-202057.4	327.6619	-20.3493	2019-08-06 01:45:36	19.53	IAC	_
MASTER OT J212336.65+173434.6	320.9027	17.57628	2019-07-31 04:43:11	19.83	IAC	_
MASTER OT J220521.88-084925.9	331.3412	-8.82386	2019-08-04 00:58:17	19.83	IAC	—
MASTER OT J232453.67+044725.5	351.2236	4.79042	2019-08-05 03:31:14	19.99	IAC	_

Название ОТ	ra	dec	Время	mag	Обсерватория	
	Id	dee	открытия	inag	обсерватория	
MASTER OT J195809.72+341452.6	299.5405	34.24794	2019-07-19 03:35:18	12.35	IAC	_
MASTER OT J203209.5+275552.5	308.0396	27.93125	2019-07-20 23:01:17	12.76	Tavrida	_
MASTER OT J201205.95+285555.4	303.0248	28.93206	2019-07-21 03:27:57	13.85	IAC	-
MASTER OT 1201606 44+314533 7	304.0268	31.75936	2019-07-19 02:45:45	14.73	OAFA	_
MASTER OT 1135403 72+372502 1	208.5155	37.41725	2019-08-13 22:07:53	14.91	IAC	_
MASTER OT J142230.37+322310.1	215.6265	32.38614	2019-07-22 22:06:24	15.08	IAC	_
MASTER OT J162615.29+475621.6	246.5637	47.93933	2019-08-13 22:17:00	15.18	IAC	_
MASTER OT J202623.57+320109.3	306.5982	32.01925	2019-07-20 04:23:33	15.27	IAC	_
MASTER OT J204627.94+242217.8	311.6164	24.37161	2019-07-19 00:11:29	15.38	IAC	-
MASTER OT J200326.53+344117.3	300.8605	34.68814	2019-07-28 00:16:46	15.82	IAC	_
MASTER OT J235158.04-473241.9	357.9918	-47.545	2019-07-20 03:17:49	16.19	OAFA	_
MASTER OT J174944.1+482735.6	267.4338	48.45989	2019-07-21 00:41:51	16.35	Tavrida	_
MASTER OT J213500.25+183922.6	323.751	18.65628	2019-07-31 05:35:17	16.39	IAC	_
MASTER OT J193302.49+385423.6	293.2604	38.90656	2019-08-11 05:20:06	16.55	IAC	_
MASTER OT J234618.16-474159.2	356.5757	-47.6998	2019-07-20 03:17:49	16.69	OAFA	_
MASTER OT J233129.05-475330.7	352.871	-47.8919	2019-07-20 03:10:20	16.76	OAFA	—
MASTER OT J234705.45-480356.8	356.7727	-48.0658	2019-07-20 03:17:49	16.82	OAFA	—
MASTER OT J233935.30-484643.2	354.8971	-48.7787	2019-07-20 03:10:20	16.83	OAFA	_
MASTER OT J234608.51-490812.7	356.5355	-49.1369	2019-07-20 03:17:49	16.92	OAFA	—
MASTER OT J201740.51+353930.8	304.4188	35.65856	2019-07-28 04:52:38	16.92	OAFA	—
MASTER OT J234338.77-474304.5	355.9115	-47.7179	2019-07-20 03:17:49	16.93	OAFA	—
MASTER OT J174659.1+444112.8	266.7463	44.68689	2019-07-21 23:25:23	17.09	Tavrida	—
AT2019lyd / MASTER OT J192114.14+405316.6	290.3089	40.88794	2019-07-28 00:55:54	17.17	IAC	[238]
MASTER OT J124819.42+072049.8	192.0809	7.34717	2019-07-20 21:51:33	17.24	IAC	_
MASTER OT J202214.98+353613.6	305.5624	35.60378	2019-07-28 04:52:38	17.34	OAFA	_
MASTER OT J201735.7+304320.1	304.3988	30.72225	2019-07-20 21:39:43	17.37	Tavrida	_
MASTER OT J192400.95+421659.2	291.004	42.28311	2019-07-25 03:53:42	17.5	IAC	_
MASTER OT J160205.90+522639.4	240.5246	52.44428	2019-08-09 23:21:39	17.57	Kislovodsk	—

Таблица Б35. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190720_000836 (S190720a)

#### Таблица Б35. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	269.8103	45.87936	2019-07-20	17.73	IAC	_
J175914.47+455245.7			05:12:02			
MASTER OT	306.8051	37.06022	2019-07-28	18.17	IAC	_
J202713.23+370336.8			00:03:47			
MASTER OT	305.5558	35.60258	2019-07-26	18.28	Tavrida	_
J202213.4+353609.3			18:47:09			
AT2019ltv / MASTER OT	204.7317	23.88486	2019-07-20	18.43	IAC	[241]
J133855.61+235305.5			23:08:28			
MASTER OT	314.5254	20.86531	2019-07-28	18.67	Tavrida	_
J205806.1+205155.1			23:44:44			
MASTER OT	307.1819	34.51681	2019-07-28	18.9	IAC	_
J202843.66+343100.5			03:02:27			
MASTER OT	320.9027	17.57628	2019-07-31	19.83	IAC	_
J212336.65+173434.6			04:43:11			
MASTER OT	331.3412	-8.82386	2019-08-04	19.83	IAC	—
J220521.88-084925.9			00:58:17			

# Таблица Б36. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190727_060333 (S190727h)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	151.4613	-67.35925	2019-07-27	13.1	IAC	_
J100550.71-672133.3			18:41:40			
MASTER OT	142.9514	-69.7387	2019-08-06	13.85	SAAO	_
J093148.33-694419.3			19:38:11			
MASTER OT	299.5521	42.38328	2019-08-12	14.66	Tavrida	—
J195812.5+422259.8			01:18:28			
MASTER OT	304.142	41.58497	2019-07-28	15.7	IAC	—
J201634.09+413505.9			01:53:12			
MASTER OT	300.8605	34.68814	2019-07-28	15.82	IAC	—
J200326.53+344117.3			00:16:46			
MASTER OT	307.7237	38.67217	2019-07-26	16.49	IAC	—
J203053.69+384019.8			23:22:31			
MASTER OT	293.2604	38.90656	2019-08-11	16.55	IAC	—
J193302.49+385423.6			05:20:06			
MASTER OT	304.4188	35.65856	2019-07-28	16.92	OAFA	_
J201740.51+353930.8			04:52:38			
MASTER OT	307.7802	38.49881	2019-07-28	17.02	IAC	_
J203107.25+382955.7			00:03:47			
MASTER OT	290.3089	40.88794	2019-07-28	17.17	IAC	_
J192114.14+405316.6			00:55:54			
MASTER OT	291.0038	42.28319	2019-08-03	17.41	IAC	_
J192400.92+421659.5			22:45:46			
MASTER OT	306.8051	37.06022	2019-07-28	18.17	IAC	_
J202713.23+370336.8			00:03:47			
MASTER OT	305.5558	35.60258	2019-07-26	18.28	Tavrida	—
J202213.4+353609.3			18:47:09			
MASTER OT	307.1819	34.51681	2019-07-28	18.9	IAC	_
J202843.66+343100.5			03:02:27			
MASTER OT	306.9181	37.55825	2019-07-28	19.01	IAC	—
J202740.34+373329.7			00:03:47			

#### ЛИПУНОВ и др.

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J214534.88+204127.0	326.3953	20.69083	2019-07-28 19:01:10	16.28	Kislovodsk	_
MASTER OT J213500.25+183922.6	323.751	18.65628	2019-07-31 05:35:17	16.39	IAC	-
AT2019mwv / MASTER OT J201544.38-063112.5	303.9349	-6.52014	2019-08-07 23:33:40	16.57	IAC	[242]
MASTER OT J004013.1+401414.7	10.05458	40.23742	2019-08-06 00:32:27	17.21	Tavrida	-
MASTER OT J211354.7+112124.7	318.4779	11.35686	2019-07-28 21:13:14	17.99	Tavrida	_
AT2019mfd / MASTER OT J203740.33-003718.1	309.418	-0.62169	2019-08-01 02:22:28	18.07	IAC	[239]
MASTER OT J230038.1+351940.2	345.1588	35.32783	2019-07-29 00:07:30	18.46	Tavrida	-
MASTER OT J205806.1+205155.1	314.5254	20.86531	2019-07-28 23:44:44	18.67	Tavrida	_
MASTER OT J003900.81+402744.0	9.75338	40.46222	2019-08-06 04:02:17	19.15	IAC	_
MASTER OT J212336.65+173434.6	320.9027	17.57628	2019-07-31 04:43:11	19.83	IAC	-

Таблица Б37. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190728_064510 (S190728q)

Таблица Б38. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190814 (S190814bv)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J011955.07+163241.7	19.97946	16.54492	2019-08-14 23:13:16	12.86	IAC	—
MASTER OT J004928.08-232510.8	12.367	-23.4197	2019-08-26 06:34:09	14.63	OAFA	_
MASTER OT J003702.65-235439.9	9.26104	-23.91108	2019-08-20 00:01:39	17.91	SAAO	[242]
MASTER OT J005332.32-234958.5	13.38467	-23.83292	2019-08-23 02:58:41	20.1	SAAO	_

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	325.6466	38.36783	2019-08-30	15.46	IAC	-
J214235.18+382204.2			03:06:00			
MASTER OT	170.2574	-47.9096	2019-08-29	15.52	SAAO	_
J112101.77-475434.4			18:54:39			
MASTER OT	170.5815	-48.61886	2019-09-02	15.77	SAAO	_
J112219.57-483707.9			18:22:60			
MASTER OT	164.2775	-48.66528	2019-08-29	15.88	SAAO	_
J105706.59-483955.0			18:18:33			
MASTER OT	171.4965	-48.50183	2019-08-31	15.95	OAFA	_
J112559.17-483006.6			23:26:28			
MASTER OT	170.836	-49.98581	2019-08-29	15.99	SAAO	—
J112320.65-495908.9			17:39:32			
MASTER OT	329.7938	41.04453	2019-08-31	16.03	OAFA	—
J215910.51+410240.3			02:59:09			
MASTER OT	171.6493	-48.6087	2019-09-02	16.05	SAAO	—
J112635.82-483631.2			18:22:60			
MASTER OT	171.6194	-48.6004	2019-09-02	16.1	SAAO	—
J112628.66-483601.3			18:22:60			
MASTER OT	324.3727	38.56933	2019-09-01	16.3	SAAO	_
J213729.44+383409.6			23:54:04			
MASTER OT	325.9966	43.71647	2019-08-31	16.47	IAC	_
J214359.19+434259.3			22:03:11			
MASTER OT	322.6624	31.946	2019-08-30	16.5	OAFA	_
J213038.98+315645.6			04:07:54			
MASTER OT	171.7066	-47.595	2019-09-02	16.71	SAAO	_
J112649.58-473541.9			18:22:60			
MASTER OT	322.1244	38.38564	2019-08-30	16.79	OAFA	—
J212829.85+382308.3			03:28:24			
MASTER OT	174.7338	-46.8584	2019-09-01	16.82	OAFA	—
J113856.11-465130.4			23:52:23			
MASTER OT	334.2032	41.49444	2019-08-31	16.85	OAFA	—
J221648.77+412940.0			05:55:55			
MASTER OT	321.8077	30.71314	2019-09-18	17.39	Kislovodsk	—
J212713.84+304247.3			21:29:60			
MASTER OT	128.2825	-4.65975	2019-09-07	17.79	SAAO	—
J083307.81-043935.1			03:50:20			
MASTER OT	129.4733	-4.38069	2019-09-23	18.38	IAC	—
J083753.60-042250.5			05:39:05			

Таблица Б39. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190828_063405 (S190828j)

Таблица Б40. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190828_065509 (S190828)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	342.1864	27.57206	2019-09-01	17.45	IAC	—
J224844.73+273419.4			03:10:11			
MASTER OT	345.8328	27.79311	2019-09-01	17.69	IAC	—
J230319.87+274735.2			03:10:11			
MASTER OT	339.9927	23.31022	2019-09-01	18.47	IAC	_
J223958.24+231836.8			03:14:27			

#### ЛИПУНОВ и др.

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT 1222218 98-605213 80	335.5791	-60.87050	2019-09-18 07·24·8	8.26	OAFA	—
MASTER OT J164121.78-455731.80	250.3408	-45.9588	2019-09-26 03:44:31	12.94	OAFA	_
MASTER OT J201835.30-540036.80	304.6471	-54.01022	2019-09-17 22:13:2	13.434	SAAO	_
MASTER OT J051037.66-611605.60	77.65692	-61.26822	2019-09-08 06:55:3	13.47	OAFA	_
MASTER OT J010047.92-725101.70	15.19967	-72.85047	2019-09-01 08:56:22	13.57	OAFA	-
MASTER OT J170044.25-442206.60	255.1844	-44.36850	2019-09-27 19:28:11	13.74	SAAO	-
MASTER OT J010645.52-731622.90	16.68967	-73.27303	2019-09-01 08:59:60	13.79	OAFA	-
MASTER OT J004831.31-731560.00	12.13046	-73.2667	2019-09-18 08:55:16	13.9	OAFA	-
MASTER OT J004952.91-731440.00	12.47046	-73.2444	2019-09-01 08:56:22	14.03	OAFA	-
MASTER OT J052832.11-054158.60	82.13379	-5.69961	2019-09-24 01:10:25	14.185	Kislovodsk	_
MASTER OT J005318.24-730654.80	13.326	-73.1152	2019-09-01 08:56:22	14.35	OAFA	_
MASTER OT J005458.04-730355.90	13.74183	-73.0655	2019-09-01 08:56:22	14.77	OAFA	_
MASTER OT J005235.71-725921.00	13.14879	-72.9892	2019-09-01 08:56:22	14.8	OAFA	-
MASTER OT J220848.64-464951.60	332.2027	-46.831	2019-09-18 01:56:13	15.03	OAFA	-
MASTER OT J052700.57-061028.60	81.75238	-6.17461	2019-09-24 01:10:25	15.07	Kislovodsk	-
MASTER OT J190813.09+042153.10	287.0545	4.36475	2019-09-07 16:20:17	15.07	Tunka	-
MASTER OT J052539.49-034650.90	81.41454	-3.78081	2019-09-24 00:00:58	15.08	Kislovodsk	_
MASTER OT J005202.49-731339.40	13.01038	-73.2276	2019-09-01 08:56:22	15.08	OAFA	_
MASTER OT J142230.44+322309.80	215.6268	32.38606	2019-09-25 14:01:8	15.2	Tunka	_
MASTER OT J051101.70-115355.80	77.75708	-11.8988	2019-09-24 01:29:24	15.26	Kislovodsk	_
MASTER OT J072342.35-293905.90	110.9265	-29.6516	2019-09-21 01:05:41	15.47	SAAO	-
MASTER OT J033250.37-481655.60	53.20988	-48.2821	2019-09-08 05:43:17	15.47	OAFA	_
MASTER OT J034619.99-580038.20	56.58329	-58.0106	2019-09-08 04:43:8	15.48	OAFA	_

Таблица Б41. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S190901ар

#### Таблица Б41. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J172038.67+183801.00	260.1611	18.63361	2019-09-03 00:14:1	15.72	IAC	
MASTER OT J043347.75-662836.60	68.44896	-66.4768	2019-09-04 00:27:2	15.971	SAAO	_
MASTER OT J054530.07-083053.80	86.37529	-8.51494	2019-09-24 00:19:19	16.14	Kislovodsk	_
MASTER OT J064720.88-261455.90	101.837	-26.2489	2019-09-21 04:19:40	16.19	IAC	_
AT2019pub / MASTER OT J174536.96-113805.20	266.404	-11.6348	2019-09-06 18:57:29	16.26	Tavrida	[244]
AT2019pgw / MASTER OT J043622.49-102233.20	69.09371	-10.3759	2019-09-02 00:43:52	16.4	Kislovodsk	[245]
MASTER OT J152857.82+034911.70	232.2409	3.81992	2019-09-07 23:47:54	16.72	OAFA	_
MASTER OT J030137.53-081550.30	45.40638	-8.26397	2019-09-07 03:10:56	16.8	SAAO	_
MASTER OT J165948.12+505521.20	254.9505	50.92256	2019-09-13 21:22:22	17.11	IAC	_
MASTER OT J025158.43-335116.30	42.99346	-33.8545	2019-09-04 07:16:1	17.21	OAFA	_
MASTER OT J023537.96-295114.10	38.90817	-29.8539	2019-09-02 03:53:9	17.32	OAFA	_
MASTER OT J154046.02+385041.40	235.1918	38.84483	2019-09-02 21:09:2	17.44	IAC	_
MASTER OT J132436.03+630521.80	201.1501	63.08939	2019-09-21 23:00:14	17.48	IAC	_
MASTER OT J031130.85-315250.70	47.87854	-31.8808	2019-09-02 04:19:16	17.53	OAFA	_
MASTER OT J054609.32+001332.90	86.53883	0.22581	2019-09-23 23:27:40	17.55	Kislovodsk	_
MASTER OT J053439.13-040209.00	83.66304	-4.03583	2019-09-23 23:57:16	17.81	Kislovodsk	_
MASTER OT J032850.20-134801.90	52.20917	-13.8005	2019-09-06 03:28:37	17.9	IAC	_
MASTER OT J144842.91+230104.30	222.1788	23.01786	2019-09-25 13:44:52	18.02	Tunka	_
MASTER OT J042523.35-342834.00	66.34729	-34.4761	2019-09-10 04:41:35	18.15	IAC	_
MASTER OT J031523.08-180505.40	48.84617	-18.0848	2019-09-03 22:19:3	18.34	SAAO	_
AT2019pnu / MASTER OT J040032.12-143518.90	60.13383	-14.5886	2019-09-06 02:22:46	18.37	IAC	[246]
MASTER OT J223958.24+231836.80	339.9927	23.31022	2019-09-01 03:14:27	18.47	IAC	—
MASTER OT J011110.77-055928.30	17.79488	-5.99119	2019-09-24 00:38:37	18.48	IAC	—

#### Таблица Б41. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
SN2019pjv / MASTER OT J171434.95+280725.60	258.6456	28.12378	2019-09-03 23:29:37	18.9	IAC	[247]
MASTER OT J025408.76-310100.50	43.5365	-31.0168	2019-09-02 01:17:24	18.94	SAAO	_
MASTER OT J091646.80+434244.90	139.195	43.71247	2019-10-01 22:25:12	19.08	Kislovodsk	_
MASTER OT J030037.63-094655.30	45.15679	-9.78203	2019-09-04 03:01:34	19.32	IAC	_
AT2019phl / MASTER OT J025259.62-321124.80	43.24842	-32.1902	2019-09-02 01:17:24	19.43	SAAO	[248]

Таблица Б42. Переменные ист	очники, найденные глобальной сетью тело	ескопов-роботов МАСТЕР в ходе обзора
S190910d		

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J113804.49-772134.9	174.5187	-77.35969	2019-09-16 23:30:46	13.04	SAAO	_
MASTER OT J025433.55-100141.5	43.63979	-10.0282	2019-09-11 05:55:33	13.41	IAC	—
MASTER OT J030855.84+011318.5	47.23267	1.22181	2019-09-15 08:09:52	13.67	OAFA	_
MASTER OT J030120.80+044824.8	45.33667	4.80689	2019-09-15 06:45:50	14.24	OAFA	_
MASTER OT J030900.04+012018.6	47.25017	1.33850	2019-09-15 08:09:52	14.59	OAFA	_
MASTER OT J032708.51-003050.3	51.78546	-0.51397	2019-09-16 03:45:25	15.56	OAFA	—
MASTER OT J030153.25+064625.0	45.47188	6.77361	2019-09-15 06:53:22	16.48	OAFA	_
MASTER OT J031649.07-393803.9	49.20446	-39.6344	2019-10-04 21:35:49	16.83	SAAO	—
MASTER OT J025434.56-100154.6	43.644	-10.0318	2019-09-12 02:36:28	17.13	IAC	—
MASTER OT J032553.69-001426.4	51.47371	-0.24067	2019-09-16 03:45:25	17.14	OAFA	—
MASTER OT J042523.35-342834.0	66.34729	-34.4761	2019-09-10 04:41:35	17.18	IAC	—
MASTER OT J030051.27+032434.6	45.21363	3.40961	2019-09-14 07:54:38	17.78	OAFA	—
MASTER OT J031742.48-393104.6	49.427	-39.5179	2019-10-04 23:33:57	18.7	SAAO	—

#### АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

Таблица Б43. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S190910h. "*" обозначены транзиенты опубликованные другими группами, но снятые телескопами МАСТЕР раньше

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J222218.98-605213.8	335.5791	-60.87050	2019-09-18 07:24:08	8.26	OAFA	
MASTER OT J212826.90-021117.2	322.1121	-2.18811	2019-10-01 02:20:57	9.35	IAC	_
MASTER OT J195321.79-283040.1	298.3408	-28.51114	2019-10-02 23:48:39	9.93	IAC	_
MASTER OT J041939.5+350432.5	64.91458	35.07569	2019-10-08 22:24:07	10.49	Tavrida	_
MASTER OT J212650.87-370349.6	321.712	-37.06378	2019-10-05 00:32:36	10.53	IAC	_
MASTER OT J211300.89+185601.4	318.2537	18.93372	2019-10-01 02:46:51	11.38	IAC	—
MASTER OT J024208.1+622507.7	40.53375	62.41881	2019-10-09 00:11:10	11.52	Tavrida	_
MASTER OT J023833.1+604259.4	39.63792	60.7165	2019-10-08 21:15:02	12.03	Tavrida	—
MASTER OT J170052.03-495752.6	255.2168	-49.9646	2019-09-28 04:13:54	12.26	OAFA	—
MASTER OT J024030.8+603440.4	40.12833	60.57789	2019-10-08 21:15:02	12.49	Tavrida	—
MASTER OT J021908.35+133444.4	34.78479	13.579	2019-10-08 02:01:08	12.62	IAC	—
MASTER OT J113804.49-772134.9	174.5187	-77.3597	2019-09-16 23:30:46	13.04	SAAO	—
MASTER OT J025433.55-100141.5	43.63979	-10.0282	2019-09-11 05:55:33	13.41	IAC	—
MASTER OT J030855.84+011318.5	47.23267	1.22181	2019-09-15 08:09:52	13.67	OAFA	—
MASTER OT J163307.20-494304.5	248.28	-49.7179	2019-09-28 00:20:44	13.71	OAFA	—
MASTER OT J004831.31-731600.0	12.13046	-73.2667	2019-09-18 08:55:16	13.9	OAFA	—
MASTER OT J163455.43-454104.6	248.731	-45.6846	2019-09-27 23:58:11	14.13	OAFA	—
MASTER OT J030120.80+044824.8	45.33667	4.80689	2019-09-15 06:45:50	14.24	OAFA	_
MASTER OT J163642.13-502843.5	249.1755	-50.4788	2019-09-27 00:38:24	14.32	OAFA	_
MASTER OT J030900.04+012018.6	47.25017	1.3385	2019-09-15 08:09:52	14.59	OAFA	—
MASTER OT J005202.52-731339.3	13.0105	-73.2276	2019-09-25 08:55:43	14.78	OAFA	_
MASTER OT J162139.72-470500.6	245.4155	-47.0835	2019-09-24 02:46:13	14.92	OAFA	_
MASTER OT J042735.06-563251.1	66.89608	-56.5475	2019-09-09 23:52:09	14.97	SAAO	—

## Таблица Б43. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J162722.92-484009.2	246.8455	-48.6692	2019-09-28 00:20:44	15.13	OAFA	-
MASTER OT J014709.68+171519.3	26.79033	17.25536	2019-09-12 00:34:45	15.19	IAC	_
MASTER OT J181537.67+563847.2	273.907	56.64644	2019-09-14 00:22:10	15.55	IAC	—
MASTER OT J032708.51-003050.3	51.78546	-0.51397	2019-09-16 03:45:25	15.56	OAFA	—
MASTER OT J043828.02-602845.8	69.61675	-60.4794	2019-09-10 00:28:59	15.62	SAAO	—
MASTER OT J163821.79-502756.8	249.5908	-50.4658	2019-09-25 23:58:24	15.63	OAFA	—
MASTER OT J162343.25-463346.4	245.9302	-46.5629	2019-09-24 02:46:13	15.81	OAFA	_
MASTER OT J082929.01+104624.0	127.3709	10.77333	2019-10-01 00:11:05	15.82	Kislovodsk	—
MASTER OT J024205.83+422540.1	40.52429	42.42781	2019-10-09 21:36:37	15.92	IAC	_
MASTER OT J142839.33+311710.5	217.1639	31.28625	2019-09-24 13:50:37	15.95	Tunka	—
MASTER OT J014919.64-430023.0	27.33183	-43.0064	2019-10-09 22:52:18	16.01	SAAO	—
MASTER OT J165244.15-435917.4	253.184	-43.9882	2019-09-24 01:49:14	16.18	OAFA	—
MASTER OT J170735.49-454106.2	256.8979	-45.6851	2019-09-26 03:55:43	16.23	OAFA	—
MASTER OT J210024.8+125315.4	315.1033	12.88761	2019-10-02 18:43:29	16.31	Tavrida	_
MASTER OT J030153.25+064625.0	45.47188	6.77361	2019-09-15 06:53:22	16.48	OAFA	—
MASTER OT J051242.88+503053.1	78.17867	50.51475	2019-10-09 04:26:17	16.51	IAC	_
MASTER OT J205306.94-474629.1	313.2789	-47.7748	2019-09-17 19:56:41	16.51	SAAO	_
MASTER OT J163937.36-485805.7	249.9057	-48.9683	2019-09-24 02:53:47	16.62	OAFA	—
MASTER OT J204730.56-444143.1	311.8773	-44.6953	2019-09-19 23:50:17	16.76	OAFA	_
MASTER OT J163926.86-474259.8	249.8619	-47.7166	2019-09-27 01:23:34	16.79	OAFA	—
MASTER OT J205155.32-233641.9	312.9805	-23.6116	2019-10-01 23:42:59	16.84	IAC	—
MASTER OT J003910.69-110530.1	9.79454	-11.0917	2019-09-23 22:56:39	16.84	IAC	—
MASTER OT J212624.13+253826.4	321.6005	25.64067	2019-10-01 03:12:39	16.91	IAC	—
MASTER OT J174537.00-113805.5	266.4042	-11.6349	2019-09-09 21:16:42	16.93	IAC	_

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

#### Таблица Б43. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	249.9038	-48.9675	2019-09-25	16.96	OAFA	_
J163936.91-485803.0			23:54:33			
MASTER OT	245.71	-48.3806	2019-09-26	17.03	SAAO	_
J102230.41-482230.3	7 751	5 15217	2010 00 20	17.00	IAC	
J003100.24+050911.4	7.751	5.15317	03:12:37	17.09	IAC	_
MASTER OT	43.644	-10.0318	2019-09-12	17.13	IAC	_
J025434.56-100154.6			02:36:28			
MASTER OT	249.6975	-44.3392	2019-09-24	17.13	OAFA	_
J163847.39-442021.2			02:42:27			
MASTER OT	51.47371	-0.24067	2019-09-16	17.14	OAFA	—
J032553.69-001426.4			03:45:25			
MASTER OT	66.34729	-34.4761	2019-09-10	17.18	IAC	—
J042523.35-342834.0			04:41:35			
MASTER OT	255.9133	-53.7085	2019-09-26	17.19	SAAO	_
J1/0339.19-534230./	26 (1720)	4.4.0.4017	18:28:09	17.0		
MASTER OI $1022628 15 \pm 445057.0$	36.61/29	44.8491/	2019-09-29	17.2	IAC	_
J022028.13+443037.0	210 6045	44 2410	2010 00 20	17 27	04 54	
1204246 67-442030 9	510.0945	-44.3419	03.55.03	17.27	UAFA	_
MASTER OT	43 71083	33 96911	2019-09-13	17 35	Tavrida	_
J025450.6+335808.8	15.71005	55.90911	00:13:40	17.55	Tuvildu	
MASTER OT	321.8077	30.71314	2019-09-18	17.39	Kislovodsk	_
J212713.84+304247.3			21:29:60			
MASTER OT	257.4527	-51.8797	2019-09-23	17.44	SAAO	_
J170948.64-515247.0			18:09:55			
MASTER OT	44.36592	44.68661	2019-09-29	17.46	IAC	_
J025727.82+444111.8			03:25:32			
MASTER OT	23.91258	43.58231	2019-09-10	17.55	IAC	—
J013539.02+433456.3			20:41:57			
AT2019qtk / MASTER OT	18.99104	5.16806	2019-09-23	17.57	IAC	[249]
J011557.85+051005.0	45 22(22	0.2722(	05:47:45	17.50	SAAO	
J030120.72-092220.5	45.33633	-9.3/236	03:23:22	17.59	SAAU	_
MASTER OT	104.6017	22.84019	2019-09-25	17.59	Tavrida	_
J065824.4+225024.7			22:38:48			
MASTER OT	311.7215	-44.2142	2019-09-20	17.61	IAC	_
J204653.16-441251.0			00:02:07			
AT2019rds / MASTER OT	255.6432	-55.72	2019-09-24	17.61	SAAO	[250]
J170234.36-554312.1			19:28:41			
MASTER OT	323.809	-62.084	2019-09-22	17.63	SAAO	—
J213514.17-620502.5		10 0001	20:03:08		0.1.5.1	
MASTER OT	310.2858	-42.9221	2019-09-20	17.67	OAFA	_
J204108.60-425519.4			03:51:23			
MASTER OT	318.2293	-16.6353	2019-10-01	17.69	IAC	-
J211255.04-103807.0	212 5(00	12 53393	23:55:49	17 7		
MASTER UT 1205416 76+133125 8	313.3098	13.32383	2019-10-01 20:28:15	1/./	IAC	_
3203 110.70 - 133123.0			20.20.13	1	1	1

## Таблица Б43. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J165821.66-443134.6	254.5903	-44.5263	2019-09-25 18:50:48	17.72	SAAO	_
MASTER OT J030051.27+032434.6	45.21363	3.40961	2019-09-14 07:54:38	17.78	OAFA	_
MASTER OT J205833.14+123105.0	314.6381	12.51806	2019-10-01 20:20:03	17.8	SAAO	_
MASTER OT J162346.57-453305.1	245.944	-45.5514	2019-09-23 21:32:04	17.81	SAAO	_
MASTER OT J001042.13-031414.5	2.67554	-3.23736	2019-09-23 04:25:26	17.85	IAC	_
MASTER OT J102817.15-464829.3	157.0715	-46.8081	2019-10-10 08:21:48	17.87	OAFA	_
MASTER OT J205719.90+121109.2	314.3329	12.18589	2019-10-01 20:24:26	17.9	IAC	_
MASTER OT J213056.83-542949.7	322.7368	-54.4971	2019-09-23 07:13:32	18	OAFA	_
MASTER OT J014225.9+725138.6	25.60792	72.86072	2019-10-09 17:25:37	18	Tavrida	_
MASTER OT 1205818 86+113453 1	314.5786	11.58142	2019-10-02 22:00:17	18.02	Kislovodsk	_
MASTER OT	222.1788	23.01786	2019-09-25	18.02	Tunka	_
MASTER OT 1083307 76-043936 1	128.2823	-4.66003	2019-09-23	18.03	IAC	_
MASTER OT 1205329 99+224421 2	313.375	22.73922	2019-09-30	18.1	IAC	_
MASTER OT 1022559 35+425813 6	36.49729	42.97044	2019-09-29 03:04:01	18.23	IAC	_
MASTER OT J162938.37+501010.5	247.4099	50.16958	2019-10-07 21:01:49	18.23	IAC	_
MASTER OT 1204236 01-430530 1	310.65	-43.0917	2019-09-20 03:07:19	18.26	OAFA	_
AT2019qtj / MASTER OT J083753.60-042250.5	129.4733	-4.38069	2019-09-23 05:39:05	18.38	IAC	[251]
MASTER OT J131026.47+384855.1	197.6103	38.81531	2019-09-22 20:25:42	18.43	IAC	_
MASTER OT J001439.39+072830.0	3.66413	7.475	2019-09-29 03:21:14	18.43	IAC	_
MASTER OT J011628.17+413626.9	19.11738	41.60747	2019-09-29 00:42:00	18.44	IAC	_
MASTER OT J160632.54+153553.4	241.6356	15.59817	2019-10-07 20:00:31	18.45	IAC	_
MASTER OT J024459.1+305137.7	41.24625	30.86047	2019-09-13 01:41:28	18.47	Tavrida	_
MASTER OT J011110.77-055928.3	17.79488	-5.99119	2019-09-24 00:38:37	18.48	IAC	_
MASTER OT J130929.98+385151.1	197.3749	38.86419	2019-09-22 20:25:42	18.49	IAC	_

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

#### Таблица Б43. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J025947.01+151748.9	44.94588	15.29692	2019-10-08 03:18:04	18.49	IAC	
MASTER OT J205917.97+113310.3	314.8249	11.55286	2019-10-01 20:28:15	18.5	IAC	_
AT2019qjc / MASTER OT J211506.32-432636.1	318.7762	43.44392	2019-09-17 18:54:35	18.56	SAAO	[252]*
MASTER OT J000638.22+071106.3	1.65925	7.18508	2019-09-29 03:21:14	18.6	IAC	_
MASTER OT J020953.61+360533.8	32.47338	36.09272	2019-09-29 20:49:38	18.62	Kislovodsk	_
MASTER OT J022143.33+275328.2	35.43054	27.89117	2019-10-09 05:42:05	18.64	IAC	_
MASTER OT J031742.48-393104.6	49.427	-39.5179	2019-10-04 23:33:57	18.7	SAAO	_
MASTER OT J205529.78+220725.5	313.8741	22.12375	2019-09-30 21:38:47	18.79	IAC	_
MASTER OT J215651.46-321239.9	329.2144	-32.2111	2019-10-02 00:48:32	18.84	SAAO	_
MASTER OT J093737.38+205052.0	144.4058	20.84778	2019-10-03 05:48:26	19.07	IAC	_
MASTER OT J235110.84-041122.8	357.7952	-4.18967	2019-09-26 23:52:28	19.2	IAC	_
MASTER OT J021746.49+324756.7	34.44371	32.79908	2019-09-29 20:53:23	19.23	Kislovodsk	—
MASTER OT J084616.90+225125.9	131.5704	22.85719	2019-10-04 23:13:17	19.37	Kislovodsk	_
MASTER OT J215150.13-421048.0	327.9589	-42.18	2019-09-30 19:31:58	19.43	SAAO	_
MASTER OT J030257.59+151021.1	45.73996	15.17253	2019-10-08 03:22:27	19.57	IAC	_
MASTER OT J031649.13-393804.1	49.20471	-39.6345	2019-10-04 23:12:44	19.57	SAAO	_
MASTER OT J021557.05+334018.6	33.98771	33.67183	2019-09-29 20:53:23	19.66	Kislovodsk	—
MASTER OT J002401.74-015418.1	6.00725	-1.90503	2019-09-22 23:14:51	20.12	SAAO	_

Таблица Б44. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190915_235702 (S190915ak)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J131026.47+384855.1	197.6103	38.81531	2019-09-22 20:25:42	18.43	IAC	
MASTER OT J130929.98+385151.1	197.3749	38.86419	2019-09-22 20:25:42	18.49	IAC	_
MASTER OT J132436.03+630521.8	201.1501	63.08939	2019-09-21 23:00:14	17.48	IAC	—

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J162035.54-590116.7	245.1481	-59.02131	2019-10-18 00:21:59	10.38	OAFA	_
MASTER OT J160128.29-370008.4	240.3679	-37.0023	2019-10-12 18:51:41	11.68	SAAO	_
MASTER OT J170052.03-495752.6	255.2168	-49.96461	2019-09-28 04:13:54	12.26	OAFA	_
MASTER OT J163307.20-494304.5	248.28	-49.71792	2019-09-28 00:20:44	13.71	OAFA	_
MASTER OT J062151.43-035041.3	95.46429	-3.84481	2019-10-17 05:25:11	13.96	OAFA	_
MASTER OT J163455.43-454104.6	248.731	-45.68461	2019-09-27 23:58:11	14.13	OAFA	_
MASTER OT J055510.22-041053.0	88.79258	-4.18139	2019-10-17 05:00:08	14.27	OAFA	_
MASTER OT J163642.13-502843.5	249.1755	-50.4788	2019-09-27 00:38:24	14.32	OAFA	_
MASTER OT J005202.52-731339.3	13.0105	-73.2276	2019-09-25 08:55:43	14.78	OAFA	_
MASTER OT J162139.72-470500.6	245.4155	-47.0835	2019-09-24 02:46:13	14.92	OAFA	_
MASTER OT J165522.78-663753.7	253.8449	-66.6316	2019-10-17 02:00:20	15.05	OAFA	—
MASTER OT J162722.92-484009.2	246.8455	-48.6692	2019-09-28 00:20:44	15.13	OAFA	_
MASTER OT J051425.63-124811.9	78.60679	-12.8033	2019-09-24 05:14:44	15.34	IAC	_
MASTER OT J163821.79-502756.8	249.5908	-50.4658	2019-09-25 23:58:24	15.63	OAFA	_
MASTER OT J162343.25-463346.4	245.9302	-46.5629	2019-09-24 02:46:13	15.81	OAFA	_
MASTER OT J171758.07-614145.9	259.492	-61.6961	2019-10-10 19:10:54	15.98	SAAO	_
AT2019rfb / MASTER OT J065034.11+220430.7	102.6421	22.07519	2019-09-26 18:31:39	16.11	Amur	[253]
MASTER OT J054530.07-083053.8	86.37529	-8.51494	2019-09-24 00:19:19	16.14	Kislovodsk	_
MASTER OT J015431.16-660416.2	28.62983	-66.0712	2019-10-17 03:40:31	16.15	OAFA	_
MASTER OT J165244.15-435917.4	253.184	-43.9882	2019-09-24 01:49:14	16.18	OAFA	_
MASTER OT J170735.49-454106.2	256.8979	-45.6851	2019-09-26 03:55:43	16.23	OAFA	_
MASTER OT J163937.36-485805.7	249.9057	-48.9683	2019-09-24 02:53:47	16.62	OAFA	_
MASTER OT J163926.86-474259.8	249.8619	-47.7166	2019-09-27 01:23:34	16.79	OAFA	_

Таблица Б45. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S190923y

#### Таблица Б45. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J163936.91-485803.0	249.9038	-48.9675	2019-09-25 23:54:33	16.96	OAFA	_
AT2019rfj / MASTER OT J162250.41-482250.3	245.71	-48.3806	2019-09-26 19:33:10	17.03	SAAO	[254]
MASTER OT J163847.39-442021.2	249.6975	-44.3392	2019-09-24 02:42:27	17.13	OAFA	_
MASTER OT J170339.19-534230.7	255.9133	-53.7085	2019-09-26 18:28:09	17.19	SAAO	-
MASTER OT J170948.64-515247.0	257.4527	-51.8797	2019-09-23 18:09:55	17.44	SAAO	-
MASTER OT J065824.4+225024.7	104.6017	22.84019	2019-09-25 22:38:48	17.59	Tavrida	_
AT2019rds / MASTER OT J170234.36-554312.1	255.6432	-55.72	2019-09-24 19:28:41	17.61	SAAO	[250]
MASTER OT J180012.18-624323.5	270.0508	-62.7232	2019-10-20 20:54:09	17.69	SAAO	_
MASTER OT J165821.66-443134.6	254.5903	-44.5263	2019-09-25 18:50:48	17.72	SAAO	_
MASTER OT J162346.57-453305.1	245.944	-45.5514	2019-09-23 21:32:04	17.81	SAAO	_
MASTER OT J144842.91+230104.3	222.1788	23.01786	2019-09-25 13:44:52	18.02	Tunka	_
MASTER OT J090155.97+441725.7	135.4832	44.29047	2019-10-01 21:58:24	18.07	Kislovodsk	_
MASTER OT J111002.3+522307.0	167.5096	52.38528	2019-09-23 00:29:00	18.31	Tavrida	_
MASTER OT J131026.47+384855.1	197.6103	38.81531	2019-09-22 20:25:42	18.43	IAC	-
MASTER OT J130929.98+385151.1	197.3749	38.86419	2019-09-22 20:25:42	18.49	IAC	_

Таблица Б46. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190924_021846 (S190924h)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	127.3709	10.77333	2019-10-01	15.82	Kislovodsk	_
J082929.01+104624.0			00:11:05			
MASTER OT	121.6781	14.98122	2019-09-27	15.96	IAC	—
J080642.74+145852.4			04:53:24			
MASTER OT	129.5554	19.92967	2019-10-18	16.64	Tavrida	_
J083813.3+195546.8			01:42:24			
MASTER OT	125.4795	20.73356	2019-09-28	18.61	IAC	—
J082155.07+204400.8			04:43:55			
MASTER OT	131.5704	22.85719	2019-10-04	19.37	Kislovodsk	_
J084616.90+225125.9			23:13:17			

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J024839.56+465344.2	42.16483	46.89561	2019-10-15 02:20:36	8.98	IAC	—
MASTER OT J212826.90-021117.2	322.1121	-2.18811	2019-10-01 02:20:57	9.35	IAC	_
MASTER OT J211300.89+185601.4	318.2537	18.93372	2019-10-01 02:46:51	11.38	IAC	—
MASTER OT J024208.1+622507.7	40.53375	62.41881	2019-10-09 00:11:10	11.52	Tavrida	_
MASTER OT J023833.1+604259.4	39.63792	60.71650	2019-10-08 21:15:02	12.03	Tavrida	—
MASTER OT J014437.56+604951.5	26.1565	60.83097	2019-10-10 20:03:18	12.35	IAC	_
MASTER OT J024030.8+603440.4	40.12833	60.57789	2019-10-08 21:15:02	12.49	Tavrida	_
MASTER OT J202522.89+154556.0	306.3454	15.76556	2019-10-02 20:56:13	14.89	IAC	—
MASTER OT J202336.27+470402.4	305.9011	47.06733	2019-10-27 17:10:52	15.07	Kislovodsk	—
AT2019shk / MASTER OT J200717.30+440510.0	301.8221	44.08611	2019-10-08 11:11:03	15.73	Amur	[255]
MASTER OT J202257.6+415105.2	305.74	41.85144	2019-10-27 23:09:12	15.97	Tavrida	_
MASTER OT J210024.8+125315.4	315.1033	12.88761	2019-10-02 18:43:29	16.31	Tavrida	—
MASTER OT J212624.13+253826.4	321.6005	25.64067	2019-10-01 03:12:39	16.91	IAC	—
MASTER OT J011721.70-160405.5	19.34042	-16.0682	2019-10-24 02:26:04	17.19	IAC	_
MASTER OT J202709.3+405724.5	306.7888	40.95681	2019-10-26 22:59:33	17.22	Tavrida	_
MASTER OT J221503.61-123233.9	333.765	-12.5428	2019-10-16 20:57:22	17.31	IAC	—
MASTER OT J230339.22-080222.1	345.9134	-8.03947	2019-10-15 00:27:25	17.41	IAC	_
MASTER OT J201637.86+420614.9	304.1578	42.10414	2019-10-28 17:12:52	17.47	Kislovodsk	_
MASTER OT J205416.76+133125.8	313.5698	13.52383	2019-10-01 20:28:15	17.7	IAC	_
MASTER OT J205833.14+123105.0	314.6381	12.51806	2019-10-01 20:20:03	17.8	SAAO	_
MASTER OT J205719.90+121109.2	314.3329	12.18589	2019-10-01 20:24:26	17.9	IAC	_
MASTER OT J205818.86+113453.1	314.5786	11.58142	2019-10-02 22:00:17	18.02	Kislovodsk	_
MASTER OT J205329.99+224421.2	313.375	22.73922	2019-09-30 21:38:47	18.1	IAC	_
MASTER OT J223910.68-172008.5	339.7945	-17.3357	2019-10-19 18:36:39	18.14	Kislovodsk	_
MASTER OT J205917.97+113310.3	314.8249	11.55286	2019-10-01 20:28:15	18.5	IAC	_
MASTER OT J205529.78+220725.5	313.8741	22.12375	2019-09-30 21:38:47	18.79	IAC	[256]
MASTER OT J200505.34+234009.3	301.2723	23.66925	2019-10-29 16:16:55	18.99	Kislovodsk	_

Таблица Б47. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW190930_133541 (S190930s)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022
1181

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J162004.25+210756.6	245.0177	21.13239	2019-10-17 16:43:33	7.9	Kislovodsk	_
MASTER OT J212826.90-021117.2	322.1121	-2.18811	2019-10-01 02:20:57	9.35	IAC	_
MASTER OT J195321.79-283040.1	298.3408	-28.51114	2019-10-02 23:48:39	9.93	IAC	_
MASTER OT J184542.89-182809.4	281.4287	-18.46928	2019-10-22 16:03:03	10.34	Kislovodsk	_
MASTER OT J162035.54-590116.7	245.1481	-59.02131	2019-10-18 00:21:59	10.38	OAFA	_
MASTER OT J041939.5+350432.5	64.91458	35.07569	2019-10-08 22:24:07	10.49	Tavrida	_
MASTER OT J212650.87-370349.6	321.712	-37.06378	2019-10-05 00:32:36	10.53	IAC	_
MASTER OT J192332.19-204928.7	290.8841	-20.8246	2019-10-22 16:42:47	11.02	Kislovodsk	_
MASTER OT J170315.45-804245.5	255.8144	-80.7126	2019-10-14 20:39:56	11.18	SAAO	_
MASTER OT J184134.60-240649.7	280.3942	-24.1138	2019-10-23 00:13:39	11.3	OAFA	_
MASTER OT J211300.89+185601.4	318.2537	18.93372	2019-10-01 02:46:51	11.38	IAC	_
MASTER OT J185411.91-325325.8	283.5496	-32.8905	2019-10-22 21:14:22	11.45	SAAO	_
MASTER OT J024208.1+622507.7	40.53375	62.41881	2019-10-09 00:11:10	11.52	Tavrida	_
MASTER OT J160128.29-370008.4	240.3679	-37.0023	2019-10-12 18:51:41	11.68	SAAO	_
MASTER OT J185536.53-185722.8	283.9022	-18.9563	2019-10-22 15:38:22	11.73	Kislovodsk	_
MASTER OT J023833.1+604259.4	39.63792	60.7165	2019-10-08 21:15:02	12.03	Tavrida	_
MASTER OT J035423.53+160103.9	58.59804	16.01775	2019-10-13 04:50:43	12.06	IAC	_
MASTER OT J185218.32-262757.2	283.0763	-26.4659	2019-10-23 00:51:15	12.09	OAFA	_
MASTER OT J170701.98-192553.7	256.7583	-19.4316	2019-10-16 18:03:11	12.29	SAAO	_
MASTER OT J014437.56+604951.5	26.1565	60.83097	2019-10-10 20:03:18	12.35	IAC	_
MASTER OT J024030.8+603440.4	40.12833	60.57789	2019-10-08 21:15:02	12.49	Tavrida	_
MASTER OT J024531.45+630221.9	41.38104	63.03942	2019-10-10 23:59:02	12.68	IAC	_

Таблица Б48. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S190930t

# Таблица Б48. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J183137.05-283217.8	277.9044	-28.5383	2019-10-23 02:40:09	13.4	OAFA	_
MASTER OT J183152.70-260037.5	277.9696	-26.0104	2019-10-23 00:20:47	13.46	OAFA	_
MASTER OT J062151.43-035041.3	95.46429	-3.84481	2019-10-17 05:25:11	13.96	OAFA	_
MASTER OT J183631.30-205915.7	279.1304	-20.9877	2019-10-22 15:30:06	14.26	Kislovodsk	_
MASTER OT J055510.22-041053.0	88.79258	-4.18139	2019-10-17 05:00:08	14.27	OAFA	_
MASTER OT J182409.34-170340.6	276.0389	-17.0613	2019-10-22 16:23:31	14.78	Kislovodsk	_
MASTER OT J202522.89+154556.0	306.3454	15.76556	2019-10-02 20:56:13	14.89	IAC	—
MASTER OT J165522.78-663753.7	253.8449	-66.6316	2019-10-17 02:00:20	15.05	OAFA	_
MASTER OT J004146.80-670233.9	10.445	-67.0428	2019-10-24 07:16:26	15.13	OAFA	_
MASTER OT J105051.9+230016.5	162.7163	23.00458	2019-10-21 02:22:48	15.18	Tavrida	_
MASTER OT J145206.68+713949.6	223.0278	71.66378	2019-10-30 00:03:54	15.48	Kislovodsk	—
MASTER OT J235950.91-073511.4	359.9621	-7.5865	2019-10-23 04:14:10	15.61	OAFA	_
MASTER OT J211336.81-521504.8	318.4034	-52.2513	2019-10-13 19:47:37	15.66	SAAO	_
MASTER OT J082929.01+104624.0	127.3709	10.77333	2019-10-01 00:11:05	15.82	Kislovodsk	_
MASTER OT J122555.2+333056.1	186.48	33.51558	2019-10-28 01:17:43	15.84	Tavrida	_
MASTER OT J171758.07-614145.9	259.492	-61.6961	2019-10-10 19:10:54	15.98	SAAO	—
AT2019rqr / MASTER OT J210253.07-210317.4	315.7211	-21.0548	2019-09-30 19:53:59	16.01	IAC	[257]
MASTER OT J014919.64-430023.0	27.33183	-43.0064	2019-10-09 22:52:18	16.01	SAAO	_
MASTER OT J014443.24-543140.5	26.18017	-54.5279	2019-10-11 00:08:36	16.08	SAAO	_
MASTER OT J015431.16-660416.2	28.62983	-66.0712	2019-10-17 03:40:31	16.15	OAFA	—
MASTER OT J014505.12-534310.0	26.27133	-53.7194	2019-10-11 00:08:36	16.22	SAAO	_
MASTER OT J210024.8+125315.4	315.1033	12.88761	2019-10-02 18:43:29	16.31	Tavrida	—
MASTER OT J121537.95+362222.8	183.9081	36.373	2019-10-28 06:20:25	16.5	IAC	_

## Таблица Б48. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J051242.88+503053.1	78.17867	50.51475	2019-10-09 04:26:17	16.51	IAC	_
MASTER OT J062833.5+560432.0	97.13958	56.07556	2019-10-25 02:08:23	16.55	Tavrida	—
MASTER OT J083813.3+195546.8	129.5554	19.92967	2019-10-18 01:42:24	16.64	Tavrida	_
MASTER OT J153032.03+822656.8	232.6335	82.44911	2019-10-30 05:59:16	16.73	IAC	_
MASTER OT J031649.07-393803.9	49.20446	-39.6344	2019-10-04 21:35:49	16.83	SAAO	[258]
AT2019rqs / MASTER OT J205155.32-233641.9	312.9805	-23.6116	2019-10-01 23:42:59	16.84	IAC	[259]
MASTER OT J192154.67-290458.2	290.4778	-29.0828	2019-10-23 02:25:45	16.87	OAFA	_
MASTER OT J212624.13+253826.4	321.6005	25.64067	2019-10-01 03:12:39	16.91	IAC	_
MASTER OT J003431.09-673407.1	8.62954	-67.5686	2019-10-24 04:59:05	17	OAFA	_
MASTER OT J123600.06+305649.2	189.0003	30.947	2019-10-28 06:01:07	17.03	IAC	_
MASTER OT J074927.97+190451.2	117.3665	19.08089	2019-10-15 03:49:20	17.06	IAC	_
AT2019sob / MASTER OT J163434.40-770810.6	248.6433	-77.1363	2019-10-14 20:14:09	17.06	SAAO	[260]
AT2019rqq / MASTER OT J204747.14-165251.5	311.9464	-16.881	2019-09-30 19:58:18	17.1	IAC	[261]
MASTER OT J011721.70-160405.5	19.34042	-16.0682	2019-10-24 02:26:04	17.19	IAC	_
MASTER OT J202709.3+405724.5	306.7888	40.95681	2019-10-26 22:59:33	17.22	Tavrida	_
MASTER OT J004326.7+411335.7	10.86125	41.22658	2019-10-21 23:41:55	17.26	Tavrida	_
MASTER OT J221503.61-123233.9	333.765	-12.5428	2019-10-16 20:57:22	17.31	IAC	_
MASTER OT J003636.67-654726.0	9.15279	-65.7906	2019-10-24 04:59:05	17.32	OAFA	_
MASTER OT J013730.55-585139.2	24.37729	-58.8609	2019-10-13 23:42:34	17.38	SAAO	—
MASTER OT J230339.22-080222.1	345.9134	-8.03947	2019-10-15 00:27:25	17.41	IAC	—
MASTER OT J030055.35-281601.1	45.23063	-28.267	2019-10-11 05:55:29	17.42	IAC	_
MASTER OT J014544.40-373002.2	26.435	-37.5006	2019-10-30 06:04:48	17.48	OAFA	_
MASTER OT J144429.8+335910.3	221.1242	33.98619	2019-10-13 16:36:25	17.49	Tavrida	_

# Таблица Б48. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J111515.29-273911.7	168.8137	-27.6533	2019-10-23 02:44:34	17.52	SAAO	_
MASTER OT J025906.03-272808.1	44.77513	-27.4689	2019-10-11 04:50:11	17.59	IAC	_
MASTER OT J211255.04-163807.0	318.2293	-16.6353	2019-10-01 23:55:49	17.69	IAC	—
MASTER OT J180012.18-624323.5	270.0508	-62.7232	2019-10-20 20:54:09	17.69	SAAO	_
MASTER OT J205416.76+133125.8	313.5698	13.52383	2019-10-01 20:28:15	17.7	IAC	_
MASTER OT J013730.86-585139.9	24.37858	-58.8611	2019-10-18 05:10:01	17.79	OAFA	_
MASTER OT J205833.14+123105.0	314.6381	12.51806	2019-10-01 20:20:03	17.8	SAAO	_
MASTER OT J025823.02-275724.6	44.59592	-27.9568	2019-10-11 05:38:50	17.81	IAC	_
MASTER OT J102817.15-464829.3	157.0715	-46.8081	2019-10-10 08:21:48	17.87	OAFA	_
MASTER OT J205719.90+121109.2	314.3329	12.18589	2019-10-01 20:24:26	17.9	IAC	_
MASTER OT J004439.23-662733.4	11.16346	-66.4593	2019-10-24 04:59:05	17.95	OAFA	_
MASTER OT J014225.9+725138.6	25.60792	72.86072	2019-10-09 17:25:37	18	Tavrida	_
MASTER OT J083307.86-043934.7	128.2828	-4.65964	2019-10-08 02:46:52	18.01	SAAO	_
MASTER OT J205818.86+113453.1	314.5786	11.58142	2019-10-02 22:00:17	18.02	Kislovodsk	_
MASTER OT J090155.97+441725.7	135.4832	44.29047	2019-10-01 21:58:24	18.07	Kislovodsk	_
MASTER OT J205329.99+224421.2	313.375	22.73922	2019-09-30 21:38:47	18.1	IAC	_
MASTER OT J223910.68-172008.5	339.7945	-17.3357	2019-10-19 18:36:39	18.14	Kislovodsk	_
MASTER OT J160632.54+153553.4	241.6356	15.59817	2019-10-07 20:00:31	18.45	IAC	_
MASTER OT J013523.46-530338.0	23.84775	-53.0606	2019-10-11 00:08:36	18.46	SAAO	_
MASTER OT J205917.97+113310.3	314.8249	11.55286	2019-10-01 20:28:15	18.5	IAC	_
MASTER OT J221102.23-502704.1	332.7593	-50.4511	2019-10-06 23:52:48	18.6	SAAO	_
MASTER OT J031742.48-393104.6	49.427	-39.5179	2019-10-04 23:33:57	18.7	SAAO	_
MASTER OT J222210.55-391548.9	335.544	-39.2636	2019-10-04 00:09:40	18.77	SAAO	[262]

## Таблица Б48. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J205529.78+220725.5	313.8741	22.12375	2019-09-30 21:38:47	18.79	IAC	[256]
MASTER OT J011031.00-593638.8	17.62917	-59.6108	2019-10-18 22:29:40	18.8	SAAO	_
MASTER OT J215651.46-321239.9	329.2144	-32.2111	2019-10-02 00:48:32	18.84	SAAO	_
MASTER OT J200505.34+234009.3	301.2723	23.66925	2019-10-29 16:16:55	18.99	Kislovodsk	_
MASTER OT J005547.23-751019.2	13.94679	-75.172	2019-10-24 02:56:51	19.04	OAFA	_
MASTER OT J093737.38+205052.0	144.4058	20.84778	2019-10-03 05:48:26	19.07	IAC	_
MASTER OT J002453.17-525402.2	6.22154	-52.9006	2019-10-10 22:25:56	19.3	SAAO	_
MASTER OT J084616.90+225125.9	131.5704	22.85719	2019-10-04 23:13:17	19.37	Kislovodsk	_
MASTER OT J215150.13-421048.0	327.9589	-42.18	2019-09-30 19:31:58	19.43	SAAO	_

Таблица Б49. Переменные источни	ки, найденные глобальной сеть	ю телескопов-роботов МАСТЕР в ходе обзора
GW191105_143521 (S191105e)		

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J143452.28+804528.2	218.7178	80.75783	2019-11-07 01:47:18	12.48	IAC	_
MASTER OT J150201.27+830349.7	225.5053	83.06381	2019-11-07 19:12:56	14.73	IAC	_
MASTER OT J010253.50-373738.0	15.72291	-37.62722	2019-11-06 20:11:59	15.94	IAC	_
MASTER OT J153032.01+822655.4	232.6334	82.44872	2019-11-07 19:12:56	16.02	IAC	—
MASTER OT J041319.11-445052.5	63.32963	-44.84792	2019-11-19 22:31:21	16.46	SAAO	—
MASTER OT J213809.27+212824.0	324.5386	21.47333	2019-11-29 14:43:52	16.78	Tunka	—
MASTER OT J120214.48+754840.0	180.5603	75.81111	2019-11-06 21:34:55	17.3	Kislovodsk	—
MASTER OT J085756.26+302018.7	134.4844	30.33853	2019-11-26 01:10:35	18.13	Kislovodsk	—
MASTER OT J090058.37+290139.6	135.2432	29.02767	2019-11-26 01:10:35	19.33	Kislovodsk	_

## ЛИПУНОВ и др.

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J193958.53+260015.5	294.9939	26.00431	2019-11-10 18:50:55	12.98	Kislovodsk	_
MASTER OT J174753.36-134220.9	266.9723	-13.7058	2019-11-10 15:14:58	16.76	Kislovodsk	_
MASTER OT J111013.07-380852.5	167.5545	-38.1479	2019-11-09 06:00:37	17.49	IAC	_

Таблица Б50. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW191109_010717 (S191109d)

Таблица Б51. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW191129_134029 (S191129u)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J104300.27-091234.1	160.7511	-9.20947	2019-12-08 23:18:17	13.12	Kislovodsk	_
MASTER OT J112026.26+033507.9	170.1094	3.58553	2019-12-05 23:41:29	13.84	Kislovodsk	_
MASTER OT J211637.28-164333.4	319.1553	-16.72594	2019-12-27 01:42:44	15.58	OAFA	—
MASTER OT J221056.11-453437.3	332.7338	-45.57703	2019-12-15 19:46:00	16.67	SAAO	_
MASTER OT J221321.16-614040.6	333.3382	-61.67794	2019-12-03 05:49:07	17.02	OAFA	_
MASTER OT J111104.8+064353.6	167.77	6.73156	2019-12-06 01:16:39	17.59	Tavrida	—
MASTER OT J215917.21-450528.9	329.8217	-45.09136	2019-12-15 03:26:21	17.86	OAFA	—
MASTER OT J214806.29-443020.8	327.0262	-44.5058	2019-12-16 20:28:55	18.35	SAAO	—
AT2019wdu / MASTER OT J110937.78-000948.8	167.4074	-0.16356	2019-12-05 22:51:53	18.57	Kislovodsk	[263]
MASTER OT J132234.44+413103.3	200.6435	41.51758	2019-12-05 02:36:04	18.83	Kislovodsk	—

Таблица Б52. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW191204_171526 (S191204r)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
AT2019wcg / MASTER OT J031044.7-020230.3	47.68625	-2.04175	2019-12-04 19:56:30	16.77	Tavrida	[264]
MASTER OT J134940.58+544547.1	207.4191	54.76308	2019-12-04 21:42:13	18.55	Kislovodsk	_
MASTER OT J132234.44+413103.3	200.6435	41.51758	2019-12-05 02:36:04	18.83	Kislovodsk	—

1186

1187

Таблица Б53. Переменные источники,	найденные глобальной сетью	телескопов-роботов МАСТЕР	' в ходе обзора
GW191204_171526 (S191204r)			

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J232136.64+171657.5	350.4027	17.28264	2019-12-09 16:05:15	10.65	Kislovodsk	_
MASTER OT 1193808.65+294053.2	294.536	29.68144	2019-12-12 13:27:02	10.75	Tunka	—
MASTER OT 1140735 08-503923 7	211.8962	-50.65658	2019-12-24	12.57	SAAO	_
MASTER OT J104937.24-604834.4	162.4052	-60.80956	2019-12-13 04:27:56	12.64	OAFA	_
MASTER OT J233511.51-022338.6	353.798	-2.39406	2019-12-06 12:11:18	12.77	Tunka	_
MASTER OT J104300.27-091234.1	160.7511	-9.20947	2019-12-08 23:18:17	13.12	Kislovodsk	_
MASTER OT J210925.43+481052.2	317.356	48.18117	2019-12-20 17:36:29	13.32	Tunka	-
MASTER OT J071440.72-225302.6	108.6697	-22.8841	2019-12-21 02:28:19	13.76	SAAO	_
MASTER OT J112026.26+033507.9	170.1094	3.58553	2019-12-05 23:41:29	13.84	Kislovodsk	_
MASTER OT J134337.16-442642.8	205.9048	-44.4452	2019-12-24 06:48:01	14.21	IAC	_
MASTER OT J094414.86-633913.7	146.0619	-63.6538	2019-12-20 21:33:17	14.74	SAAO	-
MASTER OT J195828.56+620816.3	299.619	62.13786	2019-12-18 23:34:54	14.95	Kislovodsk	_
MASTER OT J101919.24-380928.7	154.8302	-38.158	2019-12-21 21:27:40	14.97	SAAO	_
MASTER OT J114104.7+053433.5	175.2696	5.57597	2019-12-06 02:20:50	15.22	Tavrida	_
MASTER OT J131625.60-151312.9	199.1067	-15.2203	2019-12-12 02:49:37	15.44	Kislovodsk	—
MASTER OT J111133.10-612640.6	167.8879	-61.4446	2019-12-13 05:15:15	15.49	OAFA	_
MASTER OT J211637.28-164333.4	319.1553	-16.7259	2019-12-27 01:42:44	15.58	OAFA	_
MASTER OT J141922.23-501808.3	214.8426	-50.3023	2019-12-23 08:01:55	15.65	OAFA	_
MASTER OT J214934.33-121908.4	327.393	-12.319	2019-12-12 22:12:11	15.87	IAC	_
MASTER OT J090231.79+290624.4	135.6325	29.10678	2019-12-09 23:16:39	16.08	Kislovodsk	_
AT2019wfg / MASTER OT J234401.81+002116.5	356.0075	0.35458	2019-12-06 15:13:04	16.15	Kislovodsk	[265]
MASTER OT J215800.23+241557.5	329.501	24.26597	2019-12-20 23:19:44	16.16	IAC	_
MASTER OT J200214.46+313635.1	300.5603	31.60975	2019-12-12 11:07:59	16.2	Tunka	—

## Таблица Б53. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
AT2019wwg / MASTER OT J064855.37-055545.7	102.2307	-5.92936	2019-12-16 01:48:35	16.27	OAFA	[266]
MASTER OT J133021.93-073032.5	202.5914	-7.50903	2019-12-09 01:29:40	16.28	Kislovodsk	[267]
MASTER OT J210824.07+232828.5	317.1003	23.47458	2019-12-21 20:09:36	16.41	IAC	_
AT2019wjh / MASTER OT J131642.11-422353.5	199.1755	-42.3982	2019-12-10 08:09:51	16.45	OAFA	[268]
MASTER OT J071621.12-031326.8	109.088	-3.22411	2019-12-18 07:27:47	16.46	OAFA	—
MASTER OT J114002.4+061402.8	175.01	6.23411	2019-12-06 02:20:50	16.58	Tavrida	—
MASTER OT J221056.11-453437.3	332.7338	-45.577	2019-12-15 19:46:00	16.67	SAAO	—
MASTER OT J131338.37-085106.6	198.4099	-8.85183	2019-12-09 02:33:39	16.75	Kislovodsk	—
AT2019wgc / MASTER OT J131844.56-044035.6	199.6857	-4.67656	2019-12-08 01:03:09	16.82	Kislovodsk	[269]
MASTER OT J064829.56+021205.9	102.1232	2.20164	2019-12-14 04:06:46	16.94	IAC	[270]
MASTER OT J212806.11+023221.9	322.0255	2.53942	2019-12-17 10:36:50	17.02	Tunka	[271]
MASTER OT J013730.53-585140.1	24.37721	-58.8611	2020-01-04 19:40:30	17.19	SAAO	—
MASTER OT J212705.73+303200.6	321.7739	30.5335	2019-12-17 21:41:28	17.2	IAC	—
MASTER OT J213545.57+352153.2	323.9399	35.36478	2019-12-19 12:01:57	17.36	Tunka	_
MASTER OT J233357.95+145339.8	353.4915	14.89439	2019-12-11 23:49:02	17.38	IAC	_
MASTER OT J111104.8+064353.6	167.77	6.73156	2019-12-06 01:16:39	17.59	Tavrida	—
MASTER OT J234017.9+144048.7	355.0746	14.68019	2019-12-09 16:14:07	17.74	Tavrida	—
MASTER OT J102747.93+025842.3	156.9497	2.97842	2019-12-06 18:37:16	17.76	Tunka	—
MASTER OT J211943.46+050106.1	319.9311	5.01836	2019-12-17 11:17:37	17.76	Tunka	—
MASTER OT J215917.21-450528.9	329.8217	-45.0914	2019-12-15 03:26:21	17.86	OAFA	—
MASTER OT J102522.21+110714.6	156.3425	11.12072	2020-01-04 05:14:48	17.98	IAC	—
MASTER OT J123123.61-043847.2	187.8484	-4.64644	2019-12-07 01:39:20	17.98	Kislovodsk	[272]
AT2019wxe / MASTER OT J210819.26+315453.4	317.0803	31.91483	2019-12-17 18:48:25	18.08	Kislovodsk	[273]

## Таблица Б53. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J194724.6+650029.1	296.8525	65.00808	2019-12-18 02:09:53	18.2	Tavrida	-
MASTER OT J232433.25+050639.5	351.1385	5.11097	2019-12-09 17:02:36	18.22	Kislovodsk	_
MASTER OT J073917.36-415646.7	114.8223	-41.9463	2019-12-20 23:49:14	18.26	SAAO	_
AT2019wzg / MASTER OT J214806.29-443020.8	327.0262	-44.5058	2019-12-16 20:28:55	18.35	SAAO	[274]
AT2019wdu / MASTER OT J110937.78-000948.8	167.4074	-0.16356	2019-12-05 22:51:53	18.57	Kislovodsk	[263]
MASTER OT J103448.73+092300.3	158.703	9.38342	2019-12-06 02:11:38	18.8	Kislovodsk	-
AT2019wxf / MASTER OT J212531.37+312518.9	321.3807	31.42192	2019-12-17 14:49:19	18.9	Tunka	[275]
MASTER OT J014031.24+220223.6	25.13017	22.03989	2019-12-28 21:22:22	19.08	IAC	-
MASTER OT J113501.05+000820.8	173.7544	0.13911	2019-12-06 01:43:01	19.57	Kislovodsk	_
MASTER OT J102103.60+161004.7	155.265	16.16797	2020-01-04 05:40:22	19.86	IAC	_

Таблица Б54. Переменные ист	гочники, найденные глобали	ьной сетью телескопов-ро	оботов МАСТЕР в ходе обзора
S191205ah			

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J033941.23+361606.40	54.92179	36.26844	2019-12-25 23:40:07	10.6	IAC	_
MASTER OT J054308.36+000020.70	85.78483	0.00575	2019-12-16 16:36:05	13.45	Kislovodsk	-
MASTER OT J071440.72-225302.60	108.6697	-22.8841	2019-12-21 02:28:19	13.76	SAAO	_
MASTER OT J023446.83-163203.10	38.69513	-16.5342	2020-01-11 19:40:44	14.111	IAC	_
MASTER OT J054130.48-013800.60	85.377	-1.6335	2019-12-15 23:39:56	14.128	IAC	_
MASTER OT J071902.36-154601.90	109.7598	-15.7672	2020-01-10 01:41:26	14.27	IAC	—
MASTER OT J050040.34-062306.30	75.16808	-6.38508	2020-01-11 02:29:38	14.319	IAC	_
MASTER OT J051135.50-053936.60	77.89792	-5.66017	2020-01-11 02:29:38	14.36	IAC	_
MASTER OT J034021.32-144649.50	55.08883	-14.7804	2020-01-11 00:38:35	14.408	IAC	—
MASTER OT J171051.88+430226.70	257.7162	43.04075	2020-01-11 06:50:27	14.667	IAC	_

## Таблица Б54. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	75.36167	-5.12931	2020-01-10	14.86	IAC	_
J050126.80-050745.50 MASTER OT 1053925 15-060857 70	84.85479	-6.14936	2019-12-16 14:01:03	15.02	Tunka	_
MASTER OT 1083129 76-042552 20	127.874	-4.43117	2020-01-05	15.14	SAAO	_
MASTER OT J211637.28-164333.40	319.1553	-16.7259	2019-12-27 01:42:44	15.58	OAFA	_
MASTER OT J021110.20+171624.90	32.7925	17.27358	2019-12-23 20:52:11	15.58	IAC	_
MASTER OT J045921.47-060151.30	74.83946	-6.03092	2020-01-10 00:15:50	15.77	IAC	_
MASTER OT J214934.33-121908.40	327.393	-12.319	2019-12-12 22:12:11	15.87	IAC	_
MASTER OT J030421.37-160126.50	46.08904	-16.024	2020-01-10 20:29:01	16.04	IAC	_
AT2019wwg / MASTER OT J064855.37-055545.70	102.2307	-5.92936	2019-12-16 01:48:35	16.27	OAFA	[266]
MASTER OT J062315.72-521822.60	95.8155	-52.3063	2019-12-19 01:23:17	16.34	SAAO	_
MASTER OT J062252.67-521530.10	95.71946	-52.2584	2019-12-19 01:23:17	16.41	SAAO	_
MASTER OT J071621.12-031326.80	109.088	-3.22411	2019-12-18 07:27:47	16.46	OAFA	_
MASTER OT J221056.11-453437.30	332.7338	-45.577	2019-12-15 19:46:00	16.67	SAAO	_
MASTER OT J062622.14-525036.90	96.59225	-52.8436	2019-12-19 01:23:17	16.91	SAAO	_
AT2019wnj / MASTER OT J064829.56+021205.90	102.1232	2.201639	2019-12-14 04:06:46	16.94	IAC	[276]
MASTER OT J024359.58+323143.10	40.99825	32.52864	2019-12-22 20:15:01	17.11	Kislovodsk	_
MASTER OT J233357.95+145339.8	353.4915	14.89439	2019-12-11 23:49:02	17.38	IAC	_
AT2019xtu / MASTER OT J020846.79+122010.00	32.19496	12.33611	2019-12-23 22:11:08	17.85	IAC	[277]
MASTER OT J023442.75+232448.30	38.67813	23.41342	2019-12-23 01:25:20	18.15	IAC	_
MASTER OT J214806.29-443020.80	327.0262	-44.5058	2019-12-16 20:28:55	18.35	SAAO	_
MASTER OT J025046.97+333046.20	42.69571	33.51283	2019-12-23 00:38:06	18.39	IAC	_
MASTER OT J025938.82+331518.40	44.91175	33.25511	2019-12-23 00:38:06	18.55	IAC	_
MASTER OT J015541.97+312503.80	28.92488	31.41772	2019-12-18 16:48:09	20.04	Kislovodsk	_

1191

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J071440.72-225302.6	108.6697	-22.8841	2019-12-21 02:28:19	13.76	SAAO	_
AT2019xjl / MASTER OT J094414.86-633913.7	146.0619	-63.6538	2019-12-20 21:33:17	14.74	SAAO	[278]
MASTER OT J215800.23+241557.5	329.501	24.26597	2019-12-20 23:19:44	16.16	IAC	_
MASTER OT J213104.1+054237.4	322.7671	5.710389	2019-12-20 15:50:24	17.17	Tavrida	_
MASTER OT J211943.46+050106.1	319.9311	5.018361	2019-12-17 11:17:37	17.76	Tunka	_
AT2019xjo / MASTER OT J073917.36-415646.7	114.8223	-41.9463	2019-12-20 23:49:14	18.26	SAAO	[279]

Таблица Б55. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW191215_223052 (S191215w)

Таблица Б56. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW191216_213338 (S191216ap)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J185244.00+641003.6	283.1833	64.16767	2019-12-20 05:03:29	9.49	IAC	_
MASTER OT J210037.96+383833.1	315.1582	38.64253	2019-12-20 22:49:47	10.71	IAC	_
MASTER OT J195828.56+620816.3	299.619	62.13786	2019-12-18 23:34:54	14.95	Kislovodsk	_
MASTER OT J211637.28-164333.4	319.1553	-16.72594	2019-12-27 01:42:44	15.58	OAFA	[280]
MASTER OT J210824.07+232828.5	317.1003	23.47458	2019-12-21 20:09:36	16.41	IAC	_
MASTER OT J204640.70+390700.5	311.6696	39.11681	2019-12-22 10:27:20	16.67	Amur	[281]
MASTER OT J212806.11+023221.9	322.0255	2.53942	2019-12-17 10:36:50	17.02	Tunka	[271]
MASTER OT J212705.73+303200.6	321.7739	30.5335	2019-12-17 21:41:28	17.2	IAC	_
MASTER OT J211943.46+050106.1	319.9311	5.01836	2019-12-17 11:17:37	17.76	Tunka	_
AT2019wxe / MASTER OT J210819.26+315453.4	317.0803	31.91483	2019-12-17 18:48:25	18.08	Kislovodsk	[273]
MASTER OT J194724.6+650029.1	296.8525	65.00808	2019-12-18 02:09:53	18.2	Tavrida	_
AT2019wxf / MASTER OT J212531.37+312518.9	321.3807	31.42192	2019-12-17 14:49:19	18.9	Tunka	[275]

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	54.92179	36.26844	2019-12-25	10.6	IAC	_
J033941.23+361606.4			23:40:07			
MASTER OT	211.8962	-50.6566	2019-12-24	12.57	SAAO	_
J140735.08-503923.7			23:26:30			
MASTER OT	101.8567	49.26147	2019-12-24	13.78	IAC	_
J064725.60+491541.3			22:22:40			
MASTER OT	205.9048	-44.44522	2019-12-24	14.21	IAC	_
J134337.16-442642.8			06:48:01			
MASTER OT	306.765	-71.30561	2020-01-02	15.3	SAAO	_
J202703.59-711820.2			19:02:08			
MASTER OT	32.7925	17.27358	2019-12-23	15.58	IAC	_
J021110.20+171624.9			20:52:11			
MASTER OT	218.2861	-44.89339	2019-12-25	15.63	SAAO	_
J143308.67-445336.2			00:07:01			
MASTER OT	214.8426	-50.3023	2019-12-23	15.65	OAFA	_
J141922.23-501808.3			08:01:55			
MASTER OT	215.9887	-45.8725	2019-12-25	15.93	SAAO	_
J142357.28-455220.9			00:07:01			
MASTER OT	64.97079	42.55056	2020-01-20	15.97	Kislovodsk	_
J041952.99+423302.0			15:42:17			
MASTER OT	218.0056	-46.3211	2019-12-30	16.23	OAFA	—
J143201.35-461916.1			07:26:12			
MASTER OT	306.6465	-75.1341	2019-12-23	16.31	SAAO	—
J202635.15-750802.9			19:27:04			
MASTER OT	333.636	-69.3702	2019-12-30	16.43	OAFA	_
J221432.63-692212.7			01:21:21			
MASTER OT	40.99825	32.52864	2019-12-22	17.11	Kislovodsk	—
J024359.58+323143.1			20:15:01			
MASTER OT	42.69604	33.51264	2019-12-22	17.12	Kislovodsk	—
J025047.05+333045.5			20:18:38			
MASTER OT	39.50642	18.78453	2019-12-24	17.3	IAC	—
J023801.54+184704.3			08:31:12			
MASTER OT	305.6128	-72.7883	2019-12-25	17.38	OAFA	—
J202227.07-724717.7			00:49:47			
MASTER OT	216.9015	-52.5064	2019-12-24	17.43	SAAO	—
J142/36.36-523023.2	0.01.0510	<b>20</b> 000 <b>7</b>	01:55:46	17 (	T C	[202]
MASTER OT	201.2513	-29.9807	2019-12-22	17.6	IAC	[282]
J132500.30-295850.5	(0.0.4717	55 25(10	04:42:29	17.70	LL C	
MASTER OT	68.84/1/	55.37619	2020-01-16	17.73	IAC	_
J043523.32+552234.3	22 10 40 (	12 22(11	02:29:32	17.05	LLC.	
MASTER OT 102084(70+122010.0)	32.19496	12.33611	2019-12-23	17.85	IAC	_
JU20840.79+122010.0	107 7209	20.1(90	22:11:08	10.01	IAC	[202]
AT 2019XIV / MASTER OT	197.7208	-30.1089	2019-12-23	18.01	IAC	[285]
J150029.50-501008.9	77 67706	51 50429	2010 12 23	18.02	IAC	
$MASTER OT \\ 1051042 71 \pm 512520 4$	//.0//90	51.59428	2019-12-23	18.05	IAC	_
JUSI042.71 + 5155557.4	20 (7012	22,412,42	23.34.13	10.4	LLC.	[077]
A12019Xtu / MASTER OT	38.0/813	23.41342	2019-12-23	18.4	IAC	[2//]
JU23442./37232448.3	27 7405	10 50600	2010 12 22	10 40	IAC	
WASIEKUI 1021050 64±102510 6	32.7483	10.38028	2019-12-23	10.48	IAC	_
JU21U39.04+1U331U.0			22:13:28			

Таблица Б57. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW191222_033537 (S191222n)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

1192

## Таблица Б57. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	44.91175	33.25511	2019-12-23	18.55	IAC	_
J025938.82+331518.4			00:38:06			
AT2019xts / MASTER OT	311.0083	-73.4847	2019-12-23	18.7	SAAO	[284]
J204402.19-732904.9			19:16:22			
AT2019xjm / MASTER OT	243.6963	-67.7375	2019-12-22	18.7	SAAO	[285]
J161447.11-674415.1			20:17:33			
AT2019xjn / MASTER OT	244.753	-67.7247	2019-12-22	18.7	SAAO	[286]
J161900.72-674328.8			20:17:33			
AT2019xtz / MASTER OT	36.52708	16.52747	2019-12-24	19.3	IAC	[287]
J022606.65+163138.9			19:31:57			

# Таблица Б58. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW200105_162426 (S200105ae)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	9.78971	0.66922	2020-02-03	13.635	IAC	_
J003909.53+004009.2			20:13:44			
MASTER OT	89.88008	-29.9891	2020-01-22	13.76	OAFA	_
J055931.22-295920.6			01:17:56			
MASTER OT	41.53163	-63.59611	2020-01-27	14.14	SAAO	_
J024607.59-633546.0			21:24:10			
MASTER OT	36.23617	-31.14050	2020-01-16	14.82	IAC	_
J022456.68-310825.8			20:57:07			
MASTER OT	77.90792	-46.09331	2020-01-26	14.84	IAC	_
J051137.90-460535.9			20:25:26			
MASTER OT	46.08858	-16.02406	2020-01-08	14.93	Kislovodsk	—
J030421.26-160126.6			18:50:05			
MASTER OT	67.80167	-3.24803	2020-01-11	14.98	IAC	_
J043112.40-031452.9			20:54:42			
MASTER OT	112.777	19.00517	2020-01-14	15.18	Tunka	_
J073106.49+190018.6			16:49:04			
MASTER OT	243.1085	49.74128	2020-01-10	15.24	IAC	—
J161226.03+494428.6			04:17:15			
MASTER OT	263.9958	-29.6534	2020-01-15	15.25	OAFA	—
J173558.98-293912.1			08:24:28			
MASTER OT	263.7299	-30.1278	2020-01-15	15.26	OAFA	—
J173455.17-300739.9			08:24:28			
MASTER OT	263.5243	-29.6932	2020-01-15	15.33	OAFA	—
J173405.84-294135.4			08:24:28			
MASTER OT	30.96858	-42.1902	2020-01-13	15.71	OAFA	_
J020352.46-421124.8			01:42:29			
AT2020yj / MASTER OT	106.839	17.08897	2020-01-14	15.745	Kislovodsk	[288]
J070721.36+170520.3			16:46:21			
MASTER OT	53.26833	-37.1203	2020-01-26	16.07	IAC	_
J033304.40-370712.9			20:08:35			
MASTER OT	75.16808	-6.38508	2020-01-11	16.09	IAC	_
J050040.34-062306.3			02:29:38			
MASTER OT	263.7695	-29.4518	2020-01-15	16.14	OAFA	—
J173504.67-292706.3			08:24:28			

## Таблица Б58. Продолжение

Hannauua OT		daa	Время		Ofeenange	
пазвание ОТ	Ta	dec	открытия	mag	Оосерватория	
AT2020rz / MASTER OT	42.22675	-18.3434	2020-01-08	16.15	IAC	[289]
J024854.42-182036.1			22:45:18			
MASTER OT	13.94983	-51.4309	2020-01-04	16.17	SAAO	_
J005547.96-512551.2			19:38:53			
MASTER OT	80.39183	-49.7463	2020-01-23	16.42	OAFA	_
J052134.04-494446.6			03:46:01			
MASTER OT	263.5211	-30.282	2020-01-15	16.47	OAFA	_
J173405.06-301655.3			08:24:28			
MASTER OT	247.4148	-57.56	2020-01-30	16.56	OAFA	_
J162939.54-573336.0			04:24:11			
MASTER OT	25.20483	-46.2821	2020-01-16	16.57	SAAO	_
J014049.16-461655.6			19:13:23			
MASTER OT	94.55713	-47.5686	2020-01-26	16.65	IAC	_
J061813.71-473407.1	,		23:37:46			
MASTER OT	90.25683	-31.5365	2020-01-23	16.71	OAFA	_
J060101.64-313211.5	,		01:18:54			
MASTER OT	109.6895	19.74411	2020-01-06	16.84	IAC	_
J071845.48+194438.8	10,100,0	1910 1111	01:33:19	10101		
MASTER OT	60.09429	-20.4335	2020-01-12	16.89	OAFA	_
J040022.63-202600.7	00109 .29	2011000	04:41:33	10.09	0.11.1	
MASTER OT	38.69513	-16.5342	2020-01-11	16.93	IAC	_
J023446.83-163203.1			19:40:44			
MASTER OT	91,92725	64.75239	2020-01-16	16.96	IAC	_
J060742.54+644508.6	, ,		04:52:52			
MASTER OT	96.20588	-53.0018	2020-01-26	16.97	SAAO	_
J062449.41-530006.5			23:45:50			
AT2020akg / MASTER OT	226.1678	53.82222	2020-01-16	17.07	Kislovodsk	[290]
J150440.28+534920.0			19:25:47			. ,
MASTER OT	52.91188	-62.7969	2020-01-27	17.16	OAFA	_
J033138.85-624748.9			04:23:05			
MASTER OT	63.43754	-68.9237	2020-01-27	17.16	SAAO	_
J041345.01-685525.3			01:59:09			
MASTER OT	70.25071	-67.6228	2020-01-27	17.3	OAFA	_
J044100.17-673722.1			07:15:56			
MASTER OT	77.05683	-47.638	2020-01-23	17.32	OAFA	_
J050813.64-473816.8			04:32:01			
MASTER OT	104.6515	19.01278	2020-01-14	17.35	Tunka	_
J065836.37+190046.0			14:16:19			
AT2020yk / MASTER OT	111.2749	9.66861	2020-01-14	17.38	Tunka	[291]
J072505.98+094007.0			16:31:02			
MASTER OT	41.96479	-17.6949	2020-01-08	17.4	SAAO	_
J024751.55-174141.8			22:43:56			
MASTER OT	77.89792	-5.66017	2020-01-11	17.46	IAC	_
J051135.50-053936.6			02:29:38			
MASTER OT	62.17463	-67.9386	2020-01-27	17.47	SAAO	—
J040841.91-675618.8			01:59:09			
MASTER OT	76.52483	-47.2286	2020-01-23	17.48	OAFA	—
J050605.96-471343.0			04:32:01			
MASTER OT	101.6256	-54.9539	2020-01-24	17.56	OAFA	—
J064630.14-545713.9			03:50:40			

## Таблица Б58. Окончание

Desser	
Название ОТ га dec тад обсерватория	Ŧ
Открытия	
MASTER OT 257.7162 43.04075 2020-01-11 17.58 IAC	—
J171051.88+430226.7 06:50:27	
MASTER OT 79.31263 15.57556 2020-01-28 17.59 IAC	—
J051715.03+153432.0 00:30:55	
AT2020yv / MASTER OT 51.3055 –32.9003 2020-01-12 17.59 SAAO	[292]
J032513.32-325401.1 20:35:35	
MASTER OT 77.78125 –44.4933 2020-01-23 17.74 OAFA	—
J051107.50-442935.8 03:08:12	
MASTER OT 25.94196 –43.8999 2020-01-17 17.82 OAFA	—
J014346.07-435359.6 01:22:49	
MASTER OT 62.44229 –68.6222 2020-01-27 17.82 SAAO	—
J040946.15-683719.8 01:59:09	
MASTER OT 38.59808 –51.016 2020-01-17 17.82 SAAO	-
J023423.54-510057.5 00:22:50	
MASTER OT 54.44088 34.02836 2020-01-16 18.01 IAC	—
J033745.81+340142.1 03:48:08	
MASTER OT 116.0084 20.82219 2020-01-14 18.08 IAC	[293]
J074402.01+204919.9 06:03:04	
MASTER OT 102.5177 25.88117 2020-01-26 18.08 IAC	_
J065004.24+255252.2 23:29:04	
MASTER OT 65.12146 –33.0035 2020-01-15 18.17 SAAO	_
J042029.15-330012.7 01:12:48	
MASTER OT 67.64504 –13.1281 2020-01-20 18.19 Kislovodsk	_
J043034.81-130741.3 19:09:35	
MASTER OT 52.34 -47.6024 2020-01-16 18.23 SAAO	_
J032921.60-473608.5 22:18:09	
AT2020akh / MASTER OT 38.10904 –48.8548 2020-01-16 18.25 SAAO	[294]
J023226.17-485117.1 20:35:32	
MASTER OT 32.81929 -48.2673 2020-01-12 18.28 SAAO	_
J021116.63-481602.2 19:44:30	
MASTER OT 45.51204 -42.5301 2020-01-14 18.31 SAAO	_
J030202.89-423148.4 19:10:41	
MASTER OT 75.00767 0.33106 2020-01-11 18.4 IAC	_
J050001.84+001951.8 23:07:17	
MASTER OT 59.99829 –62.916 2020-01-27 18.46 SAAO	_
J035959.59-625457.7 01:37:46	
MASTER OT 55.08883 -14.7804 2020-01-11 18.48 IAC	_
J034021.32-144649.5 00:38:35	
MASTER OT 74.83946 -6.03092 2020-01-10 18.64 IAC	_
J045921.47-060151.3 00:15:50	
MASTER OT 67.21296 –62.874 2020-01-26 18.68 SAAO	_
J042851.11-625226.3 19:37:19	
MASTER OT 123.1527 16.32917 2020-01-27 18.93 IAC	_
J081236.65+161945.0 01:09:41	
MASTER OT 42.79825 –18.52 2020-01-07 19.1 SAAO	_
J025111.58-183112.1 19:11:28	
MASTER OT 51.04075 –48.0888 2020-01-12 19.21 SAAO	_
J032409.78-480519.6	
MASTER OT 51.926 -46.703 2020-01-17 19.93 OAFA	_
J032742.24-464210.7 03:57:34	

Название ОТ	ra	dec	Время	mag	Обсерватория	
			открытия			
MASTER OT	102.50733	-45.90925	2020-02-10	11.65	SAAO	—
J065001.76-455433.3			19:02:42			
MASTER OT	41.53163	-63.59611	2020-01-27	14.14	SAAO	—
J024607.59-633546.0			21:24:10			
MASTER OT	295.16767	44.51878	2020-01-27	14.7	Kislovodsk	—
J194040.24+443107.6			15:19:29			
MASTER OT	77.90792	-46.09331	2020-01-26	14.84	IAC	—
J051137.90-460535.9			20:25:26			
AT2020yj / MASTER OT	112.77704	19.00517	2020-01-14	15.18	Tunka	[288]
J073106.49+190018.6			16:49:04			
MASTER OT	125.16558	21.05689	2020-01-28	15.2	IAC	—
J082039.74+210324.8			01:33:37			
MASTER OT	263.72988	-30.12775	2020-01-15	15.26	OAFA	_
J173455.17-300739.9			08:24:28			
MASTER OT	263.52433	-29.69317	2020-01-15	15.33	OAFA	_
J173405.84-294135.4			08:24:28			
MASTER OT	98.11546	-56.64794	2020-02-07	15.9	OAFA	_
J063227.71-563852.6			02:22:27			
MASTER OT	218.27583	55.96314	2020-02-09	15.94	Tavrida	_
J143306.2+555747.3			00:43:21			
MASTER OT	53.26833	-37.12025	2020-01-26	16.07	IAC	_
J033304.40-370712.9			20:08:35			
MASTER OT	94.66808	-57.67053	2020-02-08	16.32	OAFA	_
J061840.34-574013.9			02:55:37			
MASTER OT	94.55713	-47.56864	2020-01-26	16.65	IAC	_
J061813.71-473407.1	,		23:37:46			
MASTER OT	60.09429	-20.43353	2020-01-12	16.89	OAFA	_
J040022.63-202600.7			04:41:33			
MASTER OT	96.20588	-53.00181	2020-01-26	16.97	SAAO	_
J062449.41-530006.5	,0120000	00100101	23:45:50	10197	5.110	
AT2020akg / MASTER OT	226.16783	53.82222	2020-01-16	17.07	Kislovodsk	[290]
J150440.28+534920.0			18:48:53	17107		[=> 0]
MASTER OT	52,91188	-62,79692	2020-01-27	17.16	OAFA	_
1033138 85-624748 9	021)1100	020000	04.23.05	17110	0.11.1	
MASTER OT	104.65154	19.01278	2020-01-14	17.35	Tunka	_
1065836 37+190046 0	10 110010 1	19:012/0	14.16.19	11.00	T unnu	
AT2020vk / MASTER OT	111 27492	9 66861	2020-01-14	17 38	Tunka	[291]
1072505 98+094007 0	111.27 172	2.00001	16:31:02	17.00	T unnu	[=>1]
MASTER OT	65 48296	-27 02164	2020-02-10	17 44	SAAO	_
1042155 91-270117 9	05.10290	27.02101	19.49.20	17.11	5/ 1/0	
MASTER OT	76 52483	-47 22861	2020-01-23	17 48	OAFA	[295]
1050605 96-471343 0	10.52105	17.22001	04.32.01	17.10	0/11/1	[275]
MASTER OT	99 09871	-42 86778	2020-01-24	17 48	SAAO	_
1063623 69-425204 0	JJ.0J071	12.00770	21.18.43	17.10	5/ 1/10	
MASTER OT	101 62558	-54 95386	2020-01-24	17 56	OAFA	[296]
1064630 14-545713 9	101.02330	51.95500	03.20.01 24	17.50		[270]
MASTED OT	82 62202	16 10767	2020 01 27	17 57	Vielovedal	
WIASTEK UT 1052021 00 + 1(2520 (	82.03292	10.42/6/	2020-01-2/	17.57	KISIOVOQSK	_
JUJJUJ1.9U+102339.0	51 20550	22 00021	19:44:59	17.50	5440	[202]
AI 202099 / MASIEK UI	51.50550	-32.90031	2020-01-12	17.39	SAAU	[292]
JU32313.32-323401.1			20:35:35			

Таблица Б59. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW200112_155838 (S200112r)

## Таблица Б59. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	116.00838	20.82219	2020-01-14	18.08	IAC	[293]
J074402.01+204919.9			06:03:04			
MASTER OT	65.12146	-33.00353	2020-01-15	18.17	SAAO	—
J042029.15-330012.7			01:12:48			
AT2020alv / MASTER OT	67.64504	-13.12814	2020-01-20	18.19	Kislovodsk	[297]
J043034.81-130741.3			19:09:35			
AT2020akh / MASTER OT	38.10904	-48.85475	2020-01-16	18.25	SAAO	[294]
J023226.17-485117.1			20:35:32			
MASTER OT	45.51204	-42.53011	2020-01-14	18.31	SAAO	_
J030202.89-423148.4			19:10:41			
MASTER OT	67.21296	-62.87397	2020-01-26	18.68	SAAO	_
J042851.11-625226.3			19:37:19			
MASTER OT	123.15271	16.32917	2020-01-27	18.93	IAC	_
J081236.65+161945.0			01:09:41			
MASTER OT	51.92600	-46.70297	2020-01-17	19.93	OAFA	—
J032742.24-464210.7			03:57:34			

Таблица Б60. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S200114f

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	112.777	19.00517	2020-01-14	15.18	Tunka	_
J073106.49+190018.6			16:49:04			
AT2020yj / MASTER OT	106.839	17.08897	2020-01-14	15.745	Kislovodsk	[288]
J070721.36+170520.3			16:46:21			
MASTER OT	53.26833	-37.12025	2020-01-26	16.07	IAC	_
J033304.40-370712.9			20:08:35			
MASTER OT	104.6515	19.01278	2020-01-14	17.35	Tunka	_
J065836.37+190046.0			14:16:19			
AT2020yk / MASTER OT	111.2749	9.66861	2020-01-14	17.38	Tunka	[291]
J072505.98+094007.0			16:31:02			
MASTER OT	65.48296	-27.02164	2020-02-10	17.44	SAAO	—
J042155.91-270117.9			19:49:20			
MASTER OT	82.63292	16.42767	2020-01-27	17.57	Kislovodsk	—
J053031.90+162539.6			19:44:59			
MASTER OT	79.31263	15.57556	2020-01-28	17.59	IAC	—
J051715.03+153432.0			00:30:55			
MASTER OT	116.0084	20.82219	2020-01-14	18.08	IAC	[293]
J074402.01+204919.9			06:03:04			
MASTER OT	65.12146	-33.0035	2020-01-15	18.17	SAAO	—
J042029.15-330012.7			01:12:48			
AT2020alv / MASTER OT	67.64504	-13.1281	2020-01-20	18.19	Kislovodsk	[297]
J043034.81-130741.3			19:09:35			
MASTER OT	58.69029	-37.2667	2020-02-12	18.24	SAAO	—
J035445.67-371600.2			20:33:27			
MASTER OT	45.51204	-42.5301	2020-01-14	18.31	SAAO	_
J030202.89-423148.4			19:10:41			
MASTER OT	65.31825	-28.4475	2020-02-11	18.4	SAAO	_
J042116.38-282651.1			20:28:25			
MASTER OT	51.926	-46.703	2020-01-17	19.93	OAFA	—
J032742.24-464210.7			03:57:34			

## ЛИПУНОВ и др.

Таблица Б61. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW200115_042309 (S200115j)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J173558.98-293912.1	263.9958	-29.65336	2020-01-15 08:24:28	15.25	OAFA	_
MASTER OT J173455.17-300739.9	263.7299	-30.1278	2020-01-15 08:24:28	15.26	OAFA	_
MASTER OT J173405.84-294135.4	263.5243	-29.69317	2020-01-15 08:24:28	15.33	OAFA	_
MASTER OT J173030.39-300619.0	262.6266	-30.10528	2020-01-15 08:24:28	15.38	OAFA	_
MASTER OT J192513.75-521137.7	291.3073	-52.19381	2020-02-13 00:57:39	15.41	SAAO	_
MASTER OT J035708.78+340937.4	59.28658	34.16039	2020-02-02 02:56:39	15.43	IAC	_
MASTER OT J051119.25+525237.1	77.83021	52.87697	2020-02-01 22:25:41	15.77	IAC	_
MASTER OT J041952.99+423302.0	64.97079	42.55056	2020-01-20 15:42:17	15.97	Kislovodsk	_
MASTER OT J034915.51+385635.3	57.31463	38.94314	2020-01-20 22:27:58	16.18	IAC	-
MASTER OT J035230.20+370054.6	58.12583	37.01517	2020-02-01 21:37:18	16.34	IAC	-
MASTER OT J161030.42+033727.5	242.6268	3.62431	2020-01-20 04:06:13	16.45	IAC	_
AT2020yh / MASTER OT J173238.81-315459.6	263.1617	-31.9166	2020-01-15 08:08:43	16.5	OAFA	[298]
MASTER OT J060742.54+644508.6	91.92725	64.75239	2020-01-16 04:52:52	16.96	IAC	_
MASTER OT J043425.68+420628.1	68.607	42.10781	2020-01-29 13:58:32	16.97	Tunka	_
MASTER OT J173015.14-311009.7	262.5631	-31.1694	2020-01-15 08:08:43	16.99	OAFA	_
MASTER OT J055448.46+631621.8	88.70192	63.27272	2020-01-16 04:52:52	17.03	IAC	_
MASTER OT J041459.50+394451.7	63.74792	39.74769	2020-01-19 19:19:09	17.49	Tavrida	_

1198

## Таблица Б61. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J025547.80+150602.0	43.94917	15.10056	2020-01-30 20:52:41	17.52	IAC	
MASTER OT J053339.56+642308.7	83.41483	64.38575	2020-01-16 04:44:18	17.53	IAC	_
MASTER OT J043523.32+552234.3	68.84717	55.37619	2020-01-16 02:29:32	17.73	IAC	_
MASTER OT J040531.74+345147.1	61.38225	34.86308	2020-01-30 22:33:32	17.94	IAC	_
MASTER OT J033745.81+340142.1	54.44088	34.02836	2020-01-16 03:48:08	18.01	IAC	_
MASTER OT J060637.15+640441.4	91.65479	64.07817	2020-01-16 04:52:52	18.04	IAC	_
MASTER OT J045553.32+462403.0	73.97217	46.40083	2020-01-28 17:01:04	18.2	Kislovodsk	_
MASTER OT J160906.81-020920.6	242.2784	-2.15572	2020-01-18 04:36:20	18.3	IAC	_
MASTER OT J022753.99+004441.0	36.97496	0.74472	2020-01-15 21:12:17	18.48	IAC	[293]
MASTER OT J032500.23+340015.9	51.25096	34.00442	2020-01-19 13:03:38	18.49	Tunka	_
MASTER OT J034416.12+400013.2	56.06717	40.00367	2020-01-19 13:10:41	18.67	Tunka	_
AT2020bor / MASTER OT J070502.94+680221.9	106.2623	68.03917	2020-01-27 18:11:01	18.75	Kislovodsk	[299]
AT2020bmm / MASTER OT J040052.30+340438.0	60.21792	34.07722	2020-01-30 22:33:32	18.86	IAC	[300]
MASTER OT J031422.29+151223.4	48.59288	15.2065	2020-01-16 11:32:07	19.27	Tunka	_
MASTER OT J092626.6+751725.5	141.6108	75.29042	2020-01-25 20:07:42	19.3	Tavrida	—
MASTER OT J094008.14+720344.2	145.0339	72.06228	2020-01-16 01:51:35	19.35	Kislovodsk	—

# ЛИПУНОВ и др.

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J162023.80-621946.3	245.0992	-62.32953	2020-02-04 03:23:47	9.07	OAFA	_
MASTER OT J154848.87-584827.9	237.2036	-58.8078	2020-02-05 04:04:09	9.55	OAFA	_
MASTER OT J163751.22-572119.0	249.4634	-57.35528	2020-02-05 04:47:04	9.68	OAFA	—
MASTER OT J163149.67-590000.5	247.957	-59.00014	2020-02-05 04:39:13	10.07	OAFA	_
MASTER OT J165705.40-570955.1	254.2725	-57.16531	2020-02-25 06:01:42	10.4	OAFA	—
MASTER OT J162328.65-470127.4	245.8694	-47.02428	2020-02-05 05:04:17	10.68	OAFA	—
MASTER OT J161633.47-563304.2	244.1395	-56.55117	2020-02-05 04:18:34	10.71	OAFA	—
MASTER OT J165354.16-573604.0	253.4757	-57.6011	2020-02-25 06:01:42	10.97	OAFA	—
MASTER OT J164056.33-593857.5	250.2347	-59.6493	2020-02-04 03:55:49	11.06	OAFA	—
MASTER OT J153221.69-532811.7	233.0904	-53.4699	2020-02-06 03:35:33	12.68	OAFA	—
MASTER OT J163724.98-522850.0	249.3541	-52.4806	2020-01-30 07:58:07	13.04	OAFA	—
MASTER OT J163624.51-523238.5	249.1021	-52.544	2020-01-30 07:58:07	14.66	OAFA	—
AT2020bre / MASTER OT J150719.46-283114.9	226.8311	-28.5208	2020-02-02 04:08:42	14.76	IAC	[301]
MASTER OT J161204.99-522611.9	243.0208	-52.4366	2020-01-29 06:53:34	15.01	OAFA	—
MASTER OT J162543.14-505543.1	246.4298	-50.9286	2020-02-05 05:01:12	15.33	OAFA	—
MASTER OT J181025.50-611746.0	272.6063	-61.2961	2020-02-17 01:15:07	15.56	SAAO	—
MASTER OT J155226.45-605846.4	238.1102	-60.9796	2020-02-25 03:31:34	15.7	SAAO	_
MASTER OT J051119.25+525237.1	77.83021	52.87697	2020-02-01 22:25:41	15.77	IAC	_
MASTER OT J164641.18-633807.4	251.6716	-63.6354	2020-01-31 08:45:09	15.79	OAFA	_
MASTER OT J172344.94-605023.2	260.9373	-60.8398	2020-02-25 01:55:56	15.9	SAAO	_
MASTER OT J183928.88-581646.0	279.8703	-58.2794	2020-02-25 01:35:38	16.01	SAAO	—
MASTER OT J155813.11-520940.2	239.5546	-52.1612	2020-01-28 07:56:46	16.02	OAFA	_
MASTER OT J063858.61+590351.5	99.74421	59.06431	2020-01-31 20:01:29	16.1	Tunka	—
MASTER OT J175514.51-551917.6	268.8105	-55.3216	2020-02-25 01:58:36	16.17	SAAO	_

# Таблица Б62. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW200128_022011 (S200128d)

## 1200

## Таблица Б62. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	248.4905	-50.9545	2020-02-05	16.22	OAFA	_
J163357.71-505716.1			05:01:12			
MASTER OT	199.076	12.64083	2020-02-03	16.29	IAC	_
J131618.23+123827.0			03:35:48			
MASTER OT	236.1231	-52.0476	2020-02-04	16.33	OAFA	_
J154429.55-520251.2			04:04:34			
MASTER OT	232.093	-37.0396	2020-01-30	16.34	IAC	_
J152822.33-370222.6			06:21:56			
MASTER OT	247.4148	-57.5596	2020-01-30	16.4	OAFA	_
J162939.54-573334.7			04:24:11			
MASTER OT	240.0317	-52.4849	2020-01-28	16.42	OAFA	_
J160007.60-522905.6			07:56:46			
MASTER OT	198.9084	13.16233	2020-02-03	16.43	IAC	_
J131538.01+130944.4			03:43:48			
MASTER OT	245.2967	-46.3856	2020-02-07	16.57	OAFA	_
J162111.20-462308.2			07:29:10			
MASTER OT	251.8537	-50.5219	2020-02-05	16.65	OAFA	_
J164724.89-503119.0			05:26:06			
MASTER OT	226.3286	-31.4551	2020-01-28	16.66	IAC	_
J150518.87-312718.3			05:07:23			
MASTER OT	241.3943	-52.2403	2020-01-28	16.79	OAFA	_
J160534.64-521425.1			07:53:02			
MASTER OT	275.0052	-56.0122	2020-02-25	16.86	SAAO	—
J182001.24-560043.8			01:58:36			
MASTER OT	50.38504	13.59339	2020-02-02	16.88	IAC	—
J032132.41+133536.2			00:02:40			
MASTER OT	65.7605	37.36622	2020-01-31	16.89	Tunka	_
J042302.52+372158.4			17:19:18			
MASTER OT	240.6666	-52.2715	2020-01-28	16.93	OAFA	—
J160239.99-521617.5			07:56:46			
MASTER OT	265.9254	-55.5016	2020-02-25	16.95	SAAO	_
J174342.09-553005.7			01:26:09			
MASTER OT	226.2686	-39.1875	2020-01-28	16.97	OAFA	_
J150504.46-391115.1			07:38:05			
MASTER OT	68.607	42.10781	2020-01-29	16.97	Tunka	_
J043425.68+420628.1			13:58:32			
MASTER OT	240.554	-52.1899	2020-01-28	16.98	OAFA	—
J160212.96-521123.8			07:56:46			
MASTER OT	240.7077	-52.7521	2020-01-28	17.08	OAFA	—
J160249.85-524507.4		<0.0 <b>7</b> 00	07:56:46		0 I E I	
MASTER OT	333.6355	-69.3703	2020-01-30	17.11	OAFA	_
J221432.51-692213.0	2.40, 5221	52 1625	07:16:53	17.10	0.1.5.1	
MASTER OT	240.5221	-53.1635	2020-01-28	17.12	OAFA	_
J160205.30-530948.5			07:56:46			
MASTER OT	240.114	-52.1742	2020-01-28	17.13	OAFA	—
J160027.35-521027.2			07:56:46			
MASTER OT	239.2476	-52.4914	2020-01-28	17.17	OAFA	—
J155659.42-522929.0			07:56:46			

## Таблица Б62. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	262.2713	-54.6828	2020-02-25	17.19	SAAO	_
J172905.12-544058.2			01:32:58			
MASTER OT	252.2384	-64.5644	2020-02-17	17.25	SAAO	_
J164857.22-643351.9			03:10:16			
MASTER OT	228.9721	-35.2617	2020-01-28	17.3	OAFA	_
J151553.30-351542.2			08:53:06			
MASTER OT	233.4194	-41.8029	2020-01-31	17.31	IAC	[302]
J153340.65-414810.4			06:01:05			
MASTER OT	240.2447	-52.7647	2020-01-28	17.31	OAFA	_
J160058.73-524552.8			07:56:46			
MASTER OT	110.0076	52.57189	2020-02-13	17.36	IAC	_
J072001.82+523418.8			03:21:16			
MASTER OT	245.3533	-46.0521	2020-02-07	17.36	OAFA	_
J162124.80-460307.7			07:29:10			
AT2020beo / MASTER OT	224.9138	-40.7238	2020-01-28	17.41	OAFA	[303]
J145939.30-404325.6			07:15:28			
AT2020bep / MASTER OT	225.1436	-39.9799	2020-01-28	17.47	OAFA	[304]
J150034.47-395847.8			07:38:05			
MASTER OT	239.8246	-52.1456	2020-01-28	17.47	OAFA	_
J155917.90-520844.2			07:56:46			
MASTER OT	240.1466	-52.1869	2020-01-28	17.74	OAFA	_
J160035.19-521112.8			07:56:46			
MASTER OT	240.321	-52.521	2020-01-28	18.01	OAFA	_
J160117.04-523115.6			07:56:46			
MASTER OT	239.7464	-52.1717	2020-01-28	18.1	OAFA	_
J155859.13-521018.1			07:56:46			
MASTER OT	73.97217	46.40083	2020-01-28	18.2	Kislovodsk	_
J045553.32+462403.0			17:01:04			
MASTER OT	240.1423	-52.7242	2020-01-28	18.31	OAFA	_
J160034.16-524327.2			07:56:46			
AT2020brt / MASTER OT	200.1358	12.33183	2020-02-03	18.42	SAAO	[305]
J132032.59+121954.6			01:15:41			
MASTER OT	159.7953	49.33408	2020-02-03	18.89	IAC	_
J103910.87+492002.7			02:07:22			
AT2020bmm / MASTER OT	60.21792	34.07722	2020-01-30	19.01	IAC	[300]
J040052.30+340438.0			22:21:28			
MASTER OT	67.00158	38.35989	2020-01-28	19.51	Kislovodsk	—
J042800.38+382135.6			17:25:33			
AT2020brs / MASTER OT	200.4217	12.96353	2020-02-03	19.6	IAC	[306]
J132141.21+125748.7			03:43:48			

Таблица Б63. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW200208_130117 (S200208q)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J085657.61-314141.3	134.24	-31.6948	2020-02-11 00:35:35	16.2	OAFA	—
MASTER OT J184941.00+850224.5	282.4208	85.04014	2020-02-19 05:31:52	17.13	IAC	_

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J165705.40-570955.1	254.2725	-57.16531	2020-02-25 06:01:42	10.4	OAFA	_
MASTER OT J132713.28-584808.2	201.8053	-58.8023	2020-03-03 07:48:07	10.54	OAFA	-
MASTER OT 1162821 39-521444 3	247.0891	-52.24564	2020-03-08	10.94	OAFA	_
MASTER OT 1165354 16-573604 0	253.4757	-57.60111	2020-02-25	10.97	OAFA	_
MASTER OT 1125017 65-543430 8	192.5735	-54.57522	2020-02-19	12.16	SAAO	_
MASTER OT	232.8817	-64.92142	2020-03-08	12.17	OAFA	_
MASTER OT	250.3528	-51.79533	2020-03-02	12.77	SAAO	_
MASTER OT	234.7593	-58.1182	2020-03-08	13.29	OAFA	_
MASTER OT	173.0743	-30.3309	2020-02-25	13.4	OAFA	_
MASTER OT	235.2105	-63.2037	2020-03-03	13.46	OAFA	_
MASTER OT	238.7948	-67.8341	2020-02-25	13.64	OAFA	_
MASTER OT	205.868	-54.1365	2020-03-13	13.67	OAFA	_
J134328.32-540811.5 MASTER OT	231.2015	-61.1066	09:24:40 2020-03-05	14.37	OAFA	_
J152448.35-610623.6 MASTER OT	205.2684	-51.1621	02:58:50 2020-03-14	14.37	OAFA	_
J134104.41-510943.6 MASTER OT	251.1558	-53.8848	01:13:42 2020-03-03	14.38	OAFA	_
J164437.38-535305.4 MASTER OT	80.75017	-69.0935	08:48:17 2020-03-13	14.45	OAFA	_
J052300.04-690536.6 MASTER OT	209.9323	-47.8358	06:00:10 2020-03-02	14.57	SAAO	_
J135943.75-475008.9 MASTER OT	90.94813	-64.7578	00:36:16 2020-03-14	14.68	OAFA	_
J060347.55-644527.9 MASTER OT	324.3633	-78.01	01:48:53 2020-02-14	14.84	SAAO	_
J213727.18-780035.9 MASTER OT	85.27513	-56.0441	00:26:12 2020-02-13	14.88	OAFA	_
J054106.03-560238.7 AT2020enb / MASTER OT	203.4094	-54.7233	06:50:35 2020-03-12	14.93	OAFA	[307]
J133338.26-544323.7 MASTER OT	89.05125	-64.4248	00:43:50 2020-03-14	14.97	OAFA	_
J055612.30-642529.3 MASTER OT	105 7595	-63 3552	01:48:53 2020-03-14	15 023	OAFA	_
J070302.29-632118.8	103.1373	-05.5552	02:48:41	13.023	UAIA	
MASTER OT J063540.44-542259.6	98.9185	-54.3832	2020-03-10 20:27:54	15.18	SAAO	_

Таблица Б64. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора S200213t

## Таблица Б64. Продолжение

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT 1070646.04-613956.8	106.6918	-61.6658	2020-03-13 06:56:41	15.34	OAFA	—
MASTER OT 1125357 02-583320 5	193.4876	-58.5557	2020-03-04 08:14:31	15.51	OAFA	-
MASTER OT 1102435 54-524419 8	156.1481	-52.7388	2020-02-17 05:49:34	15.53	OAFA	-
MASTER OT 1075808 57-572243 5	119.5357	-57.3788	2020-03-10	15.55	OAFA	_
MASTER OT 1120744 83-320049 2	181.9368	-32.0137	2020-02-13 04:14:54	15.55	OAFA	_
AT2020kzl / MASTER OT	272.6063	-61.2961	2020-02-17	15.56	SAAO	[308]
MASTER OT 1101759 69-360513 6	154.4987	-36.0871	2020-02-16	15.62	SAAO	_
MASTER OT	190.8214	-54.5283	2020-02-15	15.66	SAAO	[309]
MASTER OT	238.1102	-60.9796	2020-02-25	15.7	SAAO	_
AT2020duh / MASTER OT	330.587	81.75903	2020-02-19	15.74	IAC	[310]
MASTER OT	99.74646	-60.2737	2020-02-14	15.8	OAFA	_
AT2020drv / MASTER OT	260.9373	-60.8398	04:10:55 2020-02-25	15.9	SAAO	[311]
MASTER OT	162.9222	-50.8083	01:55:56 2020-02-17	15.91	OAFA	_
J105141.33-504830.0 MASTER OT	61.84146	-65.0351	05:53:05 2020-02-14	15.98	OAFA	_
J040721.95-650206.2 MASTER OT	94.74817	-63.6367	03:07:35 2020-03-14	16	OAFA	_
J061859.56-633812.0 MASTER OT	265.9254	-55.5016	02:13:30 2020-02-25	16.95	SAAO	_
J174342.09-553005.7 MASTER OT	226.2686	-39.1875	01:26:09 2020-01-28	16.97	OAFA	_
J150504.46-391115.1 MASTER OT	68.607	42.10781	07:38:05 2020-01-29	16.97	Tunka	_
J043425.68+420628.1 MASTER OT	74.66954	-69.7445	13:58:32 2020-03-08	16.01	SAAO	_
J045840.69-694440.1 MASTER OT	253.0083	-45.6234	23:09:00 2020-03-05	16.04	SAAO	_
J165201.98-453724.1	189 5672	_38 7138	03:20:42	16.11	OAFA	
J123816.12-384249.5	189.3072	-38.7138	08:20:40	10.11	OAFA	_
MASTER OT J133400.46-502955.7	203.5019	-50.4988	2020-02-13 01:23:24	16.31	SAAO	_
MASTER OT J163647.45-530427.4	249.1977	-53.0743	2020-03-08 05:54:17	16.31	OAFA	_
MASTER OT J125242.23-182717.5	193.176	-18.4549	2020-02-16 02:34:56	16.38	IAC	_

## Таблица Б64. Продолжение

Название ОТ	ra	dec	Время	mag	Обсерватория	
			открытия			
MASTER OT	72.51054	82.64822	2020-02-26	16.43	Kislovodsk	_
J045002.53+823853.6			21:46:27			
MASTER OT	179.7974	-22.4771	2020-02-25	16.49	OAFA	—
J115911.37-222837.7			03:30:36			
MASTER OT	237.9527	-55.8769	2020-03-05	16.6	OAFA	—
J155148.64-555237.0			04:09:14			
MASTER OT	85.13396	-56.0911	2020-02-14	16.71	OAFA	—
J054032.15-560527.9			07:06:49			
MASTER OT	94.66779	-57.6704	2020-02-13	16.72	SAAO	—
J061840.27-574013.6			21:16:51			
MASTER OT	4.62342	43.03569	2020-02-14	16.82	Kislovodsk	—
J001829.62+430208.5			17:40:28			
MASTER OT	114.8004	-56.6763	2020-02-27	16.87	SAAO	—
J073912.09-564034.7			00:01:16			
MASTER OT	208.3781	-54.6043	2020-03-12	16.97	OAFA	—
J135330.75-543615.6			09:25:44			
MASTER OT	256.5945	-62.1573	2020-03-07	17.02	OAFA	—
J170622.67-620926.20			09:26:40			
MASTER OT	173.5784	-51.5536	2020-02-19	17.09	SAAO	—
J113418.82-513313.10			03:18:43			
AT2020dqp / MASTER OT	282.4208	85.04014	2020-02-19	17.13	IAC	[312]
J184941.00+850224.50			05:31:52			
AT2020elb / MASTER OT	119.2	30.96792	2020-03-12	17.22	IAC	[313]
J075647.99+305804.50			00:43:38			
MASTER OT	252.2384	-64.5644	2020-02-17	17.25	SAAO	[314]
J164857.22-643351.90			03:10:16			
AT2020cyl / MASTER OT	175.9177	-46.9164	2020-02-18	17.38	OAFA	[315]
J114340.25-465458.90			06:11:21			
MASTER OT	173.0833	-52.8987	2020-02-19	17.4	SAAO	—
J113219.99-525355.20			03:18:43			
AT2020duw / MASTER OT	56.21221	68.63131	2020-03-02	17.42	Kislovodsk	[316]
J034450.93+683752.70		/_ /	17:23:56			
MASTER OT	325.8411	73.68697	2020-02-16	17.51	Kislovodsk	—
J214321.87+734113.10			20:38:54			
MASTER OT	189.6313	-38.7468	2020-02-16	17.6	OAFA	—
J123831.52-384448.30			08:20:40	17 67	<b>—</b> 1	[017]
AT2020dux / MASTER OT	82.07508	67.46686	2020-03-02	17.65	Tunka	[317]
J052818.02+6/2800.70	156 0566	(( 0000	18:06:58	17.67	0.151	[210]
MASTER OT	156.9766	-66.9303	2020-02-15	17.67	OAFA	[318]
J102/54.39-665549.00	240 2225	05 150 4	06:03:01	17.72	6440	
MASTER UI	249.2235	-85.1504	2020-02-13	17.73	SAAO	—
J163633.64-830901.30			19:30:30			
MASTER OT	249.22	-85.1503	2020-02-14	17.82	SAAO	—
J163652.80-850901.00			20:00:52			
MASTER OT	169.2161	-87.8356	2020-02-14	17.93	SAAO	—
J111651.87-875008.00			19:47:07	10.55		
MASTER OT	215.9338	85.16528	2020-02-16	18.23	Kislovodsk	—
J142344.11+850955.00			23:09:17			

## Таблица Б64. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	185.7872	-44.8173	2020-02-13	18.26	SAAO	_
J122308.92-444902.20			23:35:16			
MASTER OT	81.67613	-57.8592	2020-02-12	18.26	SAAO	_
J052642.27-575133.20			19:18:32			
AT2020dru / MASTER OT	174.365	-45.7318	2020-02-27	18.27	SAAO	[319]
J113727.61-454354.40			00:21:16			
MASTER OT	198.9923	-46.0108	2020-03-02	18.28	SAAO	—
J131558.16-460038.90			00:29:37			
MASTER OT	156.6517	-34.8298	2020-02-17	18.41	OAFA	—
J102636.41-344947.20			02:38:52			
MASTER OT	118.2733	-62.0176	2020-02-27	18.48	SAAO	[320]
J075305.60-620103.20			01:19:50			
MASTER OT	175.2439	-11.4492	2020-02-29	18.61	OAFA	—
J114058.54-112657.20			08:48:50			
MASTER OT	178.7988	-39.5028	2020-02-18	18.66	SAAO	—
J115511.70-393010.00			21:53:57			
MASTER OT	171.8812	-45.2997	2020-02-12	18.68	SAAO	—
J112731.48-451759.00			21:23:55			
MASTER OT	174.3358	-52.8002	2020-02-19	18.69	SAAO	[314]
J113720.58-524800.80			03:18:43			
MASTER OT	158.1388	-48.6893	2020-02-17	18.72	OAFA	—
J103233.31-484121.60			05:14:04			
MASTER OT	195.9828	-45.6769	2020-03-01	18.82	OAFA	—
J130355.88-454036.90			07:53:34			
MASTER OT	70.0365	-65.2173	2020-02-14	18.94	SAAO	—
J044008.76-651302.30			22:04:44			
MASTER OT	254.3856	-46.6299	2020-03-05	18.98	SAAO	—
J165732.55-463747.70			03:20:42			
MASTER OT	122.9775	-61.8135	2020-02-27	19.07	SAAO	—
J081154.61-614848.50			01:19:50			
MASTER OT	200.5873	-46.8593	2020-02-19	19.15	SAAO	[314]
J132220.96-465133.40			02:18:36			
AT2020cma / MASTER OT	88.2215	-59.0583	2020-02-13	19.31	SAAO	[321]
J055253.16-590329.80			21:20:11			
MASTER OT	157.3383	-48.2242	2020-02-18	19.45	SAAO	—
J102921.20-481327.20			21:50:37			
MASTER OT	176.3495	-25.5444	2020-02-25	19.7	SAAO	—
J114523.87-253239.90			00:14:35			
MASTER OT	24.03354	-29.2606	2020-02-23	20.08	SAAO	—
J013608.05-291538.00			18:52:35			

Таблица Б65. Переменные источники, найденные глобальной сетью телескопов-роботов МАСТЕР в ходе обзора GW200225_060421 (S200225q)

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J074733.5+854303.3	116.8896	85.71758	2020-03-01 22:57:27	16.11	Tavrida	_
MASTER OT J015845.15+861601.9	29.68813	86.26719	2020-02-28 22:56:11	18.47	Kislovodsk	_

1207

Таблица Б66. Переменные источни	ки, найденные глобальной сетью	телескопов-роботов МАСТЕР в ходе с	обзора
GW200316_215756 (S200316bj)		-	_

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT	232.882	-64.9216	2020-03-19	12.35	OAFA	_
MASTER OT J035721.24+400244.8	59.3385	40.04578	2020-04-02 14:32:38	12.69	Tunka	_
MASTER OT J035433.27+411901.7	58.63863	41.31714	2020-04-09 15:22:46	13.19	Tunka	_
MASTER OT J035348.60+411948.1	58.4525	41.33003	2020-04-09 15:22:46	13.43	Tunka	_
MASTER OT J140907.12-451714.4	212.2797	-45.2873	2020-03-17 01:23:50	13.71	SAAO	_
MASTER OT J035300.35+411118.3	58.25146	41.18842	2020-04-09 15:22:46	14.17	Tunka	_
MASTER OT J032552.38+404456.1	51.46825	40.74892	2020-04-02 13:53:33	14.37	Tunka	_
MASTER OT J135943.76-475008.1	209.9323	-47.8356	2020-03-22 06:59:45	14.69	OAFA	_
MASTER OT J061642.1+435617.9	94.17542	43.93831	2020-03-18 22:26:02	15.13	Tavrida	[322]
MASTER OT J175437.65-770041.8	268.6569	-77.0116	2020-03-21 22:54:39	15.7	SAAO	_
MASTER OT J135129.90-525533.2	207.8746	-52.9259	2020-03-21 20:20:15	15.91	SAAO	_
MASTER OT J154642.72-680111.9	236.678	-68.02	2020-03-31 00:44:40	16.19	SAAO	_
AT2020eon / MASTER OT J173010.69-743822.1	262.5445	-74.6395	2020-03-18 22:09:24	16.61	SAAO	[323]
MASTER OT J141401.49-483305.8	213.5062	-48.5516	2020-03-16 19:27:43	16.76	SAAO	_
MASTER OT J135747.52-395147.9	209.448	-39.8633	2020-03-22 03:44:29	16.95	SAAO	—
MASTER OT J131234.48-330606.4	198.1437	-33.1018	2020-03-19 02:49:28	17.06	SAAO	_
AT2020esy / MASTER OT J160049.34-620321.5	240.2056	-62.056	2020-03-21 21:13:33	17.09	SAAO	[324]
MASTER OT J134422.63-412545.6	206.0943	-41.4293	2020-03-20 08:26:34	17.37	OAFA	_
MASTER OT J132056.76-444946.8	200.2365	-44.8297	2020-03-22 17:53:01	17.41	SAAO	_
MASTER OT J173947.05-765343.5	264.946	-76.8954	2020-03-22 22:16:43	17.42	SAAO	_
AT2020eny / MASTER OT J182841.00-720837.1	277.1708	-72.1436	2020-03-16 23:47:06	17.85	SAAO	[325]
MASTER OT J141259.23-441257.2	213.2468	-44.2159	2020-03-19 01:20:41	17.98	OAFA	_
AT2020enz / MASTER OT J133023.86-461607.8	202.5994	-46.2688	2020-03-17 00:30:30	18.02	SAAO	[326]

#### Таблица Б66. Окончание

Название ОТ	ra	dec	Время открытия	mag	Обсерватория	
MASTER OT J130710.68-281355.5	196.7945	-28.2321	2020-03-17 00:13:51	18.15	SAAO	_
MASTER OT J192526.18-784655.7	291.3591	-78.7821	2020-03-23 00:06:28	18.24	SAAO	_
MASTER OT J185057.07-772607.2	282.7378	-77.4353	2020-03-23 00:06:28	18.29	SAAO	_
AT2020epj / MASTER OT J140743.58-430507.8	211.9316	-43.0855	2020-03-17 08:44:24	18.3	OAFA	[327]
MASTER OT J183516.36-764446.9	278.8182	-76.7464	2020-03-21 23:45:15	18.3	SAAO	_
MASTER OT J125202.26-240150.4	193.0094	-24.0307	2020-03-19 02:06:32	18.66	OAFA	_
MASTER OT J141015.95-530550.1	212.5665	-53.0973	2020-03-21 20:20:15	18.72	SAAO	_
AT2020esz / MASTER OT J154533.98-755746.5	236.3916	-75.9629	2020-03-21 21:03:33	18.91	SAAO	[328]
MASTER OT J131642.19-422353.9	199.1758	-42.3983	2020-03-17 01:47:08	19.1	SAAO	_
MASTER OT J135447.65-374258.6	208.6985	-37.7163	2020-03-19 02:26:10	20.2	SAAO	_

#### СПИСОК ЛИТЕРАТУРЫ

- 1. B. P. Abbott, et al., Phys. Rev. Lett. 116, 061102 (2016).
- 2. B P. Abbott, et al., Phys. Rev. X 6, 041015 (2016).
- 3. B. P. Abbott, et al., Phys. Rev. Lett. 116, 241103 (2016).
- 4. V. M. Lipunov, et al., New Astronomy 2(1), 43 (1997).
- 5. *V. M. Lipunov, et al.*, Monthly Not. Roy. Astron. Soc. **288**, 245 (1997).
- 6. *В. М. Липунов, К. А. Постнов, М. Е. Прохоров*, Письма в Астрон. журн. **23**, 563 (1997).
- V. M. Lipunov, et al., Monthly Not. Roy. Astron. Soc. 465(3), 3656 (2017).
- 8. V. M. Lipunov, et al., New Astronomy 51, 122 (2017).
- 9. V. M. Lipunov, et al., Astrophys. J. Lett. 850(1), L1 (2017).
- M. Soares-Santos, et al., Astrophys. J. Lett. 848(2), L16 (2017).
- 11. D.A. Coulter, et al., Science 358(6370), 1556 (2017).
- 12. I. Arcavi, et al., Astrophys. J. Lett. 848(2), L33 (2017).
- 13. S. Valenti, et al., Astrophys. J. Lett. 848(2), L24 (2017).
- 14. N. R. Tanvir, A. J. Levan, D. Steeghs, GCN Cicular 21576, 1 (2017).
- 15. B. P. Abbott, et al., Astrophys. J. Lett. 848, L12 (2017).
- 16. V. M. Lipunov, et al., New Astronomy 63, 48 (2018).
- 17. *V. M. Lipunov, et al.*, Advances in Astronomy **1**, 349171 (2010).
- 18. V. M. Lipunov, et al., Astronomy Reports 63(4), 293 (2019).

- 19. S. Barthelmy, et al., AIPC 428, 99B (1998).
- 20. LIGO Scientific Collaboration and VIRGO (LVC) 2016a. GCN Circular **20364**, 1 (2016).
- 21. B. P. Abbott, et al., Astrophys. J. 875, 161 (2019).
- 22. B. P. Abbott, et al., Phys. Rev. X 9, 031040 (2019).
- 23. B. P. Abbott, et al., Nature 551, 85 (2017).
- I. A. Steele, C. M. Copperwheat, A. S. Piascik, Publication, New Frontiers in Black Hole Astrophysics, Proceedings of the International Astronomical Union, IAU Symposium 324, 283 (2017).
- 25. J. L. Racusin, et al., Astrophys. J. 835(1), id. 82 (2017).
- 26. *M. Yoshida, et al.*, Publ. Astron. Soc. Japan **69(1)**, id. 9 (2017).
- 27. M. Kasliwal, et al., Astrophys. J. 843(2), L34 (2017).
- 28. A. Albert, et al., Astrophys. J. Lett. 850(2), L35 (2017).
- 29. *A. Zadrozny, et al.*, Proceedings of the SPIE **10445**, id. 104454 (2017).
- 30. A. Goldstein, et al., Astrophys. J. 848(2), L14 (2017).
- 31. S. J. Smartt, et al., GCN cicular 20713, 1 (2015).
- 32. *M. Burgess, et al.*, Monthly Not. Roy. Astron. Soc. **476(2)**, 1427 (2018).
- I. Bartos, et al., Monthly Not. Roy. Astron. Soc. 477(1), 639 (2018).
- 34. *G. Dálya, et al.*, Monthly Not. Roy. Astron. Soc. **479(2)**, 2374 (2018).
- 35. E. Burns, et al., Astrophys. J. 871(1), id. 90 (2019).
- 36. S. Yang, et al., Astrophys. J. 875(1), id. 59 (2019).

- 37. *D. Buckley, et al.*, Monthly Not. Roy. Astron. Soc. **474(1)**, L71 (2018).
- А. В. Тутуков, Л. Р. Юнгельсон, Астрон. журн. 70, 812 (1993).
- 39. R. Abbott et al., Phys. Rev. X 11, 021053 (2020).
- 40. *R. Abbott et al.*, arXiv, 2111.03606 (2021).
- V. M. Lipunov et al., Astron. and Astrophys. 455(1), 712 (2016).
- V. M. Lipunov, S. G. Simakov, E. S. Gorbovskoy, Vlasenko D., Astrophys. J. 845(1), id. 52 (2017).
- 43. E. Troja et al., Nature 547, 425 (2017).
- 44. V. A. Sadovnichy, et al., Astrophys. J. 861(1), id. 48 (2018).
- 45. *Y.-D. Hu et al.*, Astron. and Astrophys. **632**, A100 (2019).
- 46. *N. Jordana-Mitjans et al.*, Astrophys. J. **892(2)**, id. 97, 17 (2020).
- 47. О. А. Ершова и др., Астрон. журн. 97(2), 111 (2020).
- 48. T. Laskar, et al., Astrophys. J. 884(2), 121 (2019).
- 49. B. P. Abbott, et al., Astrophys. J. 826, L13 (2016).
- 50. B. P. Abbott, et al., Astrophys. J. Supp. 225, 8 (2016).
- V. M. Lipunov, V. Kornilov, E. Gorbovskoy, N. Tiurina, P. Balanutsa, A. Kuznetsov., New Astronomy 51, 122 (2017).
- 52. В. М. Липунов, УФН 186, 1011 (2016).
- 53. V. M. Lipunov, et al., Astrophys. J. Lett. 896(2), L19 (2020).
- 54. *M. G. Aartsen et al.*, Astron. and Astrophys. **607**, A115 (2017).
- V. M. Lipunov, I. E. Panchenko, Astron. and Astrophys. 312, 937 (1996).
- 56. E. S. Gorbovskoy, et al., ATel 12338, 1 (2018).
- 57. V. M. Lipunov, et al., ATel 13793, 1 (2020).
- 58. *V. G. Kornilov, et al.*, Experimental Astronomy **33(1)**, 173 (2012).
- 59. *E. S. Gorbovskoy, et al.*, Astronomy Reports **57(4)**, 233 (2013).
- 60. V. M. Lipunov et al., GCN circular 24167, 1 (2019).
- 61. C. Fletcher et al., GCN circular 24185, 1 (2019).
- 62. V. M. Lipunov et al., GCN circular 24338, 1 (2019).
- 63. A. Kuznetsov, et al., TNS Astronomical Transient Report 664, 1 (2019).
- V. M. Lipunov, et al., TNS Astronomical Transient Report 750, 1 (2019).
- 65. V. M. Lipunov et al., GCN circular 26646, 1 (2020).
- 66. V. M. Lipunov et al., TNS Transient Report 208, 1 (2020).
- 67. V. M. Lipunov et al., GCN circular 26755, 1 (2020).
- 68. *V. M. Lipunov et al.*, The Astronomer's Telegram **13414**, 1 (2020).
- 69. V. M. Lipunov et al., GCN circular 24236, 1 (2019).
- 70. V. M. Lipunov et al., GCN circular 25339, 1 (2019).
- 71. V. M. Lipunov et al., GCN circular 25320, 1 (2019).
- 72. R. Abbott et al., Phys. Rev. Lett. 125, 101102, (2021).
  - АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

- 73. R. Abbott et al., Phys. Rev. D 102, 043015 (2020).
- 74. LIGO Scientific Collaboration and VIRGO (LVC) 2016a. GCN Circular **19341**, 1 (2016).
- 75. *O. Gress et al.*, The Astronomer's Telegram **8160**, 1 (2015).
- 76. *S. Parker, et al.*, TNS Astronomical Transient Report **901**, 1 (2017).
- 77. J. Lyman, Hooman, L. Galbany, O. Yaron, TNS Classification Report **931**, 1 (2017).
- 78. V. M. Lipunov et al., GCN circular 24099, 1 (2019).
- 79. V. M. Lipunov et al., GCN circular 24619, 1 (2019).
- 80. D. O. Cook et al., GCN circular 21519, 1 (2017).
- 81. V. M. Lipunov, K. A. Postnov, M. E. Prokhorov, I. E. Panchenko, H. E. Jorgensen, Astrophys. J. 454, 593 (1995).
- 82. E. L. Wright, et al., Astrophys. J. 140(6), 1868 (2010).
- 83. S. S. McGaugh. J. M. Schombert, Astron. and Astrophys. Supp. 148(5), id. 77 (2014).
- 84. L. Bianchi, et al., Astrophys. and Space Sci. 450(4), 3893 (2011).
- 85. E. J. Murphy, et al., Astrophys. J. 737(2), id. 67 (2011).
- M. W. Coughlin, et al., Monthly Not. Roy. Astron. Soc. 489(4), 5775 (2019).
- 87. V. M. Lipunov, et al., TNS Discovery Report 1968, 1 (2019).
- 88. *В. Г. Корнилов, В. М. Липунов*, Астрон. журн. **60**, 284 (1983).
- 89. В. Г. Корнилов, В. М. Липунов, Астрон. журн. **60**, 574 (1983).
- E. P. J. van den Heuvel, J. Heise, Nature Phys. Sci. 239(92), 67 (1972).
- 91. *V. M. Lipunov, K. A. Postnov, M. Prokhorov*, Astron. and Astrophys. **176(1)**, L1 (1987).
- 92. D. Hils, P. L. Bender and R. F. Webbink, Astrophys. J. **360**, 75 (1990).
- 93. H. A. Bethe and G. E. Brown, Astrophys. J. 517, 318 (1999).
- 94. E. S. Phinney, Astrophys. J. Lett. 380, L17 (1991).
- 95. *R. Narayan, B. Paczynski, T. Piran*, Astrophys. J. **395**, L83 (1992).
- V. M. Lipunov, S. N. Nazin, I. E. Panchenko, K. A. Postnov, M. E. Prokhorov, Astron. and Astrophys. 298, 677 (1995).
- S. Curran, D. Lorimer, Monthly Not. Roy. Astron. Soc. 276(1), 347 (1995).
- 98. *E. P. J. van den Heuvel, D. Lorimer*, Monthly Not. Roy. Astron. Soc. **283(2)**, L37 (1996).
- 99. *M. Bailes, Compact stars in binaries* (edited by *J. van Paradijs, E. P. J. van den Heuvel, E. Kuulkers*, Kluwer Academic Publishers, Dordrecht, p. 213, 1996).
- 100. *M. Burgay, et al.*, Nature **426(6966)**, 531 (2003).
- 101. V. M. Lipunov, K. A. Postnov, M. E. Prokhorov, E. Yu. Osminkin, Astrophys. J. Lett. **423**, L121 (1994).
- 102. S. F. Portegies Zwart, H. N. Spreeuw, Astron. and Astrophys. 312, 670 (1996).
- 103. S. F. Portegies Zwart, L.R. Yungelson, Astron. and Astrophys. 332, 173 (1998).

- 104. C. Kim, P. P. B. Perera, M. A. McLaughlin, Monthly Not. Roy. Astron. Soc. 448(1), 928 (2015).
- 105. R. Abbott et al., arxiv preprint: 2111.03634 (2022).
- 106. V. Kalogera, D. Lorimer, Astrophys. J. 530(2), 890 (2000).
- 107. K. Belczynski, V. Kalogera, T. Bulik, Astrophys. J. 572(1), 407 (2002).
- 108. *V. M. Lipunov*, Gravitation and Cosmology **11(1)**, 166 (2005).
- 109. V. M. Lipunov, Memorie della Societa Astronomica Italiana **69**, 1067 (1998).
- 110. R. N. Manchester, G. B. Hobbs, A. Teoh, M. Hobbs, Astrophys. J. **129(4)**, 1993 (2005).
- 111. *F. Özel, P. Freire*, Ann. Rev. Astron. and Astrophys. **54**, 401 (2016).
- 112. V. M. Lipunov, et al., GCN circular 18494, 1 (2015).
- 113. V. M. Lipunov, et al., GCN circular 18729, 1 (2015).
- 114. V. M. Lipunov, et al., RNAAS 4(11), id. 211 (2020).
- 115. V. M. Lipunov, et al., GCN circular 20488, 1 (2017).
- 116. V. M. Lipunov, et al., GCN circular 20696, 1 (2017).
- 117. V. M. Lipunov, et al., GCN circular 20737, 1 (2017).
- 118. V. M. Lipunov, et al., GCN circular 20782, 1 (2017).
- 119. V. M. Lipunov, et al., GCN circular 21010, 1 (2017).
- 120. V. M. Lipunov, et al., GCN circular 21435, 1 (2017).
- 121. V. M. Lipunov, et al., GCN circular 21499, 1 (2017).
- 122. V. M. Lipunov, et al., GCN circular 21719, 1 (2017).
- 123. V. M. Lipunov, et al., GCN circular 24070, 1 (2019).
- 124. V. M. Lipunov, et al., GCN circular 24145, 1 (2019).
- 125. V. M. Lipunov, et al., GCN circular 24396, 1 (2019).
- 126. V. M. Lipunov, et al., GCN circular 24436, 1 (2019).
- 127. V. M. Lipunov, et al., GCN circular 24512, 1 (2019).
- 128. *V. M. Lipunov, et al.*, GCN circular **24525**, 1 (2019).
- 129. *V. M. Lipunov, et al.*, GCN circular **24576**, 1 (2019). 130. *V. M. Lipunov, et al.*, GCN circular **24607**, 1 (2019).
- 131. *V. M. Lipunov, et al.*, GCN circular **24637**, 1 (2019).
- 132. *V. M. Lipunov, et al.*, GCN circular **24721**, 1 (2019).
- 133. *V. M. Lipunov, et al.*, GCN circular **24921**, 1 (2019).
- 134. V. M. Lipunov, et al., GCN circular 24959, 1 (2019).
- 135. V. M. Lipunov, et al., GCN circular **25000**, 1 (2019).
- 136. V. M. Lipunov, et al., GCN circular 25022, 1 (2019).
- 137. V. M. Lipunov, et al., GCN circular 25088, 1 (2019).
- 138. V. M. Lipunov, et al., GCN circular 25114, 1 (2019).
- 139. V. M. Lipunov, et al., GCN circular 25163, 1 (2019).
- 140. V. M. Lipunov, et al., GCN circular 25183, 1 (2019).
- 141. V. M. Lipunov, et al., GCN circular 25322, 1 (2019).
- 142. V. M. Lipunov, et al., GCN circular 25512, 1 (2019).
- 143. V. M. Lipunov, et al., GCN circular 25609, 1 (2019).
- 144. V. M. Lipunov, et al., GCN circular 25694, 1 (2019).
- 145. V. M. Lipunov, et al., GCN circular 25712, 1 (2019).
- 146. V. M. Lipunov, et al., GCN circular 25752, 1 (2019).
- 147. V. M. Lipunov, et al., GCN circular 25812, 1 (2019).
- 148. V. M. Lipunov, et al., GCN circular 25831, 1 (2019).

- 149. V. M. Lipunov, et al., GCN circular 25870, 1 (2019).
- 150. V. M. Lipunov, et al., GCN circular 25875, 1 (2019).
- 151. V. M. Lipunov, et al., GCN circular 26184, 1 (2019).
- 152. V. M. Lipunov, et al., GCN circular 26184, 1 (2019).
- 153. V. M. Lipunov, et al., GCN circular 26304, 1 (2019).
- 154. V. M. Lipunov, et al., GCN circular 26332, 1 (2019).
- 155. V. M. Lipunov, et al., GCN circular 26353, 1 (2019).
- 156. V. M. Lipunov, et al., GCN circular 26400, 1 (2019).
- 157. V. M. Lipunov, et al., GCN circular 26440, 1 (2019).
- 158. V. M. Lipunov, et al., GCN circular 26457, 1 (2019).
- 159. V. M. Lipunov, et al., GCN circular 26541, 1 (2019).
- 160. V. M. Lipunov, et al., GCN circular 26717, 1 (2020).
- 161. V. M. Lipunov, et al., GCN circular 26731, 1 (2020).
- 162. V. M. Lipunov, et al., GCN circular 26903, 1 (2020).
- 163. V. M. Lipunov, et al., GCN circular 26933, 1 (2020).
- 164. V. M. Lipunov, et al., GCN circular 27018, 1 (2020).
- 165. V. M. Lipunov, et al., GCN circular 27041, 1 (2020).
- 166. V. M. Lipunov, et al., RNAAS 4(11), id.194 (2020).
- 167. V. M. Lipunov, et al., RNAAS **4(12)**, id.225 (2020).
- 168. V. M. Lipunov, et al., GCN circular 27200, 1 (2020).
- 169. V. M. Lipunov, et al., RNAAS 4(12), id.230 (2020).
- 170. V. M. Lipunov, et al., GCN circular 27387, 1 (2020).
- 171. *V. M. Lipunov, et al.*, Astron. and Astrophys. **588A**, id. A90 (2016).
- 172. *V. M. Lipunov, et al.*, Monthly Not. Roy. Astron. Soc. **470(2)**, 2339 (2017).
- 173. V. Sadovnichy, et al., "Lomonosov", Supercomputing at Moscow State University. In Contemporary High Performance Computing: From Petascale toward Exascale (Chapman & Hall/CRC Computational Science Boca Raton, USA, CRC Press, 283, 2013).
- 174. *V. Voevodin, et al.*, Supercomputing Frontiers and Innovations **6(2)**, 4 (2019).
- 175. *V. M. Lipunov, et al.*, Monthly Not. Roy. Astron. Soc. **465(3)**, 3656 (2017).
- 176. V. M. Lipunov, et al., RNAAS 4(11), id. 211 (2020).
- 177. V. M. Lipunov, et al., Astrophys. J. Lett. 850(1), L1 (2017).
- 178. V. M. Lipunov, et al., RNAAS 4(11), id. 194 (2020).
- 179. V. M. Lipunov, et al., RNAAS 4(12), id. 225 (2020).
- 180. V. M. Lipunov, et al., RNAAS 4(12), id. 230 (2020).
- 181. *P. Balanutsa, et al.*, The Astronomer's Telegram **8232**, 1 (2015).
- 182. *V. Shumkov, et al.*, The Astronomer's Telegram **8163**, 1 (2015).
- 183. *E. Popova, et al.*, The Astronomer's Telegram **8172**, 1 (2015).
- 184. *P. Balanutsa, et al.*, The Astronomer's Telegram **8276**, 1 (2015).
- 185. *O. Gress, et al.*, The Astronomer's Telegram **8160**, 1 (2015).
- 186. V. M. Lipunov, et al., GCN circular 18494, 1 (2015).
- 187. V. M. Lipunov, et al., GCN circular 18804, 1 (2016).

- 188. V. M. Lipunov, et al., GCN circular 18835, 1 (2016).
- 189. *O. Gress, et al.*, The Astronomer's Telegram **8522**, 1 (2016).
- 190. V. M. Lipunov, et al., GCN circular 18729, 1 (2015).
- 191. O. Gress, et al., The Astronomer's Telegram 8605, 1 (2016).
- 192. V. M. Lipunov, et al., GCN circular 18738, 1 (2015).
- 193. V. M. Lipunov, et al., GCN circular 20740, 1 (2017).
- 194. V. M. Lipunov, et al., GCN circular 20712, 1 (2017).
- 195. V. M. Lipunov, et al., GCN circular 20696, 1 (2017).
- 196. V. M. Lipunov, et al., GCN circular 20771, 1 (2017).
- 197. V. M. Lipunov, et al., GCN circular 20759, 1 (2017).
- 198. V. M. Lipunov, et al., GCN circular 20782, 1 (2017).
- 199. V. M. Lipunov, et al., GCN circular 21445, 1 (2017).
- 200. V. M. Lipunov, et al., GCN circular 21499, 1 (2017).
- 201. S. Parker, TNS Discovery Report 901, 1 (2017).
- 202. O. Gress, et al., The Astronomer's Telegram **10762**, 1 (2017).
- 203. *P. Balanutsa, et al.*, The Astronomer's Telegram **10781**, 1 (2017).
- 204. V. M. Lipunov, et al., GCN circular 21719, 1 (2017).
- 205. S. W. K. Emery, et al., GCN circular 21733, 1 (2017).
- 206. V. M. Lipunov, et al., GCN circular 24084, 1 (2019).
- 207. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12644**, 1 (2019).
- 208. V. M. Lipunov, et al., TNS Discovery Report 760, 1 (2019).
- 209. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12687**, 1 (2019).
- 210. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12750**, 1 (2019).
- 211. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12767**, 1 (2019).
- 212. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12723**, 1 (2019).
- 213. V. M. Lipunov, et al., GCN circular 24338, 1 (2019).
- 214. *O. Gress, et al.*, The Astronomer's Telegram **12758**, 1 (2019).
- 215. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12781**, 1 (2019).
- 216. V. M. Lipunov, et al., TNS Discovery Report 750, 1 (2019).
- 217. V. M. Lipunov, et al., GCN circular 24509, 1 (2019).
- 218. V. M. Lipunov, et al., TNS Discovery Report 999, 1 (2019).
- 219. V. M. Lipunov, et al., GCN circular 24470, 1 (2019).
- 220. V. M. Lipunov, et al., TNS Discovery Report 929, 1 (2019).
- 221. *T. Pogrosheva, et al.*, TNS Discovery Report **865**, 1 (2019).
- 222. V. M. Lipunov, et al., TNS Discovery Report 830, 1 (2019).
- 223. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12814**, 1 (2019).

- 224. V. M. Lipunov, et al., TNS Discovery Report 820, 1 (2019).
- 225. V. M. Lipunov, et al., TNS Discovery Report 998, 1 (2019).
- 226. V. M. Lipunov, et al., TNS Discovery Report 1049, 1 (2019).
- 227. V. M. Lipunov, et al., TNS Discovery Report 918, 1 (2019).
- 228. V. M. Lipunov, et al., TNS Discovery Report 1164, 1 (2019).
- 229. *T. Pogrosheva, et al.*, The Astronomer's Telegram **12933**, 1 (2019).
- 230. V. M. Lipunov, et al., TNS Discovery Report 1262, 1 (2019).
- 231. V. M. Lipunov, et al., TNS Discovery Report 1145, 1 (2019).
- 232. V. M. Lipunov, et al., TNS Discovery Report 1219, 1 (2019).
- 233. V. M. Lipunov, et al., GCN circular 25105, 1 (2019).
- 234. V. M. Lipunov, et al., TNS Discovery Report 1415, 1 (2019).
- 235. V. M. Lipunov, et al., TNS Discovery Report 1349, 1 (2019).
- 236. *O. Gress, et al.*, The Astronomer's Telegram **13015**, 1 (2019).
- 237. *V. Shumkov, et al.*, The Astronomer's Telegram **13003**, 1 (2019).
- 238. V. M. Lipunov, et al., TNS Discovery Report 1366, 1 (2019).
- 239. V. M. Lipunov, et al., TNS Discovery Report 1386, 1 (2019).
- 240. *P. Balanutsa, et al.*, The Astronomer's Telegram **12950**, 1 (2017).
- 241. V. M. Lipunov, et al., TNS Discovery Report 1320, 1 (2019).
- 242. V. Shumkov, et al., TNS Discovery Report 1449, 1 (2019).
- 243. V. M. Lipunov, et al., GCN circular 25320, 1 (2019).
- 244. V. M. Lipunov, et al., TNS Discovery Report 1779, 1 (2019).
- 245. V. M. Lipunov, et al., TNS Discovery Report 1696, 1 (2019).
- 246. *T. Pogrosheva, et al.*, TNS Discovery Report **1761**, 1 (2019).
- 247. *T. Pogrosheva, et al.*, TNS Discovery Report **1729**, 1 (2019).
- 248. V. M. Lipunov, et al., TNS Discovery Report 1696, 1 (2019).
- 249. *T. Pogrosheva, et al.*, TNS Discovery Report **1890**, 1 (2019).
- 250. *T. Pogrosheva, et al.*, TNS Discovery Report **1929**, 1 (2019).
- 251. *T. Pogrosheva, et al.*, TNS Discovery Report **1890**, 1 (2019).
- 252. J. Tonry, et al., TNS Discovery Report 1858, 1 (2019).

- 253. *E. Gorbovskoy, et al.*, TNS Discovery Report **1927**, 1 (2019).
- 254. E. Gorbovskoy, et al., TNS Discovery Report **1928**, 1 (2019).
- 255. *E. Gorbovskoy, et al.*, TNS Discovery Report **2046**, 1 (2019).
- 256. *P. Balanutsa, et al.*, The Astronomer's Telegram **13151**, 1 (2019).
- 257. E. Gorbovskoy, et al., TNS Discovery Report **1967**, 1 (2019).
- 258. V. M. Lipunov, et al., GCN circular 25948, 1 (2019).
- 259. E. Gorbovskoy, et al., TNS Discovery Report **1967**, 1 (2019).
- 260. P. Balanutsa, et al., TNS Discovery Report 2082, 1 (2019).
- 261. V. M. Lipunov, et al., TNS Discovery Report **1968**, 1 (2019).
- 262. *P. Balanutsa, et al.*, The Astronomer's Telegram **13194**, 1 (2019).
- 263. K. Zhirkov, et al., TNS Discovery Report 2548, 1 (2019).
- 264. V. M. Lipunov, et al., TNS Discovery Report 2522, 1 (2019).
- 265. V. M. Lipunov, et al., TNS Discovery Report 2562, 1 (2019).
- 266. V. M. Lipunov, et al., TNS Discovery Report 2616, 1 (2019).
- 267. *E. S. Gorbovskoy, et al.*, The Astronomer's Telegram **13338**, 1 (2019).
- 268. *T. Pogrosheva, et al.*, TNS Discovery Report **2569**, 1 (2019).
- 269. V. M. Lipunov, et al., TNS Discovery Report 2562, 1 (2019).
- 270. *O. Gress, et al.*, The Astronomer's Telegram **13350**, 1 (2019).
- 271. V. M. Lipunov, et al., GCN circular 26474, 1 (2019).
- 272. V. M. Lipunov, et al., GCN circular 26379, 1 (2019).
- 273. V. M. Lipunov, et al., TNS Discovery Report 2624, 1 (2019).
- 274. V. M. Lipunov, et al., TNS Discovery Report 2635, 1 (2019).
- 275. V. M. Lipunov, et al., TNS Discovery Report 2624, 1 (2019).
- 276. O. Gress, et al., TNS Discovery Report 2600, 1 (2019).
- 277. V. M. Lipunov, et al., TNS Discovery Report 2689, 1 (2019).
- 278. E. Gorbovskoy, et al., TNS Discovery Report 2679, 1 (2019).
- 279. E. Gorbovskoy, et al., TNS Discovery Report 2678, 1 (2019).
- 280. V. M. Lipunov, et al., GCN circular 26596, 1 (2019).
- 281. *T. Pogrosheva, et al.*, TNS Discovery Report **2680**, 1 (2019).
- 282. *E. Gorbovskoy, et al.*, The Astronomer's Telegram **13372**, 1 (2019).

- 283. V. M. Lipunov, et al., TNS Discovery Report 2689, 1 (2019).
- 284. V. M. Lipunov, et al., TNS Discovery Report 2689, 1 (2019).
- 285. E. Gorbovskoy, et al., TNS Discovery Report 2678, 1 (2019).
- 286. E. Gorbovskoy, et al., TNS Discovery Report 2678, 1 (2019).
- 287. *T. Pogrosheva, et al.*, TNS Discovery Report **2688**, 1 (2019).
- 288. V. M. Lipunov, et al., TNS Discovery Report 143, 1 (2020).
- 289. V. Shumkov, et al., TNS Discovery Report 100, 1 (2020).
- 290. *P. Balanutsa, et al.*, TNS Discovery Report **207**, 1 (2020).
- 291. V. M. Lipunov, et al., TNS Discovery Report 143, 1 (2020).
- 292. T. Pogrosheva, et al., TNS Discovery Report 144, 1 (2020).
- 293. *V. M. Lipunov, et al.*, The Astronomer's Telegram **13414**, 1 (2020).
- 294. V. M. Lipunov, et al., TNS Transient Report 208, 1 (2020).
- 295. O. Gress, et al., The Astronomer's Telegram **13419**, 1 (2020).
- 296. *I. Boriskin, et al.*, The Astronomer's Telegram **13420**, 1 (2020).
- 297. V. Shumkov, et al., TNS Discovery Report 218, 1 (2020).
- 298. V. M. Lipunov, et al., TNS Discovery Report 143, 1 (2020).
- 299. *T. Pogrosheva, et al.*, TNS Discovery Report **352**, 1 (2020).
- 300. V. M. Lipunov, et al., TNS Discovery Report 338, 1 (2020).
- 301. V. Shumkov, et al., TNS Discovery Report 363, 1 (2020).
- 302. *T. Pogrosheva, et al.*, The Astronomer's Telegram **13438**, 1 (2020).
- 303. *A. Chasovnikov, et al.*, TNS Discovery Report **292**, 1 (2020).
- 304. *A. Chasovnikov, et al.*, TNS Discovery Report **292**, 1 (2020).
- 305. V. M. Lipunov, et al., TNS Discovery Report 372, 1 (2020).
- 306. V. M. Lipunov, et al., TNS Discovery Report 372, 1 (2020).
- 307. *T. Pogrosheva, et al.*, TNS Discovery Report **806**, 1 (2020).
- 308. *T. Pogrosheva, et al.*, The Astronomer's Telegram **13491**, 1 (2020).
- 309. *T. Pogrosheva, et al.*, TNS Discovery Report **1552**, 1 (2020).
- 310. T. Pogrosheva, et al., TNS Discovery Report 683, 1 (2020).

- 311. E. Gorbovskoy, et al., TNS Discovery Report 672, 1 (2020).
- 312. T. Pogrosheva, et al., TNS Discovery Report 662, 1 (2020).
- 313. *T. Pogrosheva, et al.*, TNS Discovery Report **786**, 1 (2020).
- 314. *P. Balanutsa, et al.*, The Astronomer's Telegram **13504**, 1 (2020).
- 315. T. Pogrosheva, et al., TNS Discovery Report 565, 1 (2020).
- 316. V. M. Lipunov, et al., TNS Discovery Report 696, 1 (2020).
- 317. E. Gorbovskoy, et al., TNS Discovery Report 695, 1 (2020).
- 318. *V. Shumkov, et al.*, The Astronomer's Telegram **13490**, 1 (2020).
- 319. E. Gorbovskoy, et al., TNS Discovery Report 671, 1 (2020).

- 320. *E. Gorbovskoy, et al.*, The Astronomer's Telegram **13534**, 1 (2020).
- 321. V. M. Lipunov, et al., TNS Discovery Report 485, 1 (2020).
- 322. *V. Shumkov, et al.*, The Astronomer's Telegram **13567**, 1 (2020).
- 323. *T. Pogrosheva, et al.*, TNS Discovery Report **828**, 1 (2020).
- 324. *T. Pogrosheva, et al.*, TNS Discovery Report **846**, 1 (2020).
- 325. V. Shumkov, et al., TNS Discovery Report 813, 1 (2020).
- 326. V. Shumkov, et al., TNS Discovery Report 813, 1 (2020).
- 327. *T. Pogrosheva, et al.*, TNS Discovery Report **834**, 1 (2020).
- 328. V. M. Lipunov, et al., TNS Discovery Report 847, 1 (2020).

# НЕТЕПЛОВЫЕ ПОТЕРИ АТМОСФЕРЫ ДЛЯ ЭКЗОПЛАНЕТЫ GJ 3470b

© 2022 г. А. А. Автаева¹, В. И. Шематович^{1,*}

¹ Институт астрономии РАН, Москва, Россия *E-mail: shematov@inasan.ru Поступила в редакцию 09.08.2022 г. После доработки 14.09.2022 г. Принята к публикации 30.09.2022 г.

В работе получены численные оценки скорости нетепловой потери атмосферы горячей экзопланеты за счет экзотермических фотохимических процессов. В качестве примера выполнены расчеты для переходной области  $H_2 \rightarrow H$  верхней атмосферы горячего нептуна GJ 3470b в интервале высот  $(1.6-2.05) R_p$ . Из полученного энергетического спектра потока надтепловых атомов водорода, образующихся за счет процессов диссоциации молекул  $H_2$  и убегающих из атмосферы через верхнюю границу переходной области, была выведена оценка числового потока убегания в направлении планета-звезда в условиях умеренного уровня звездной активности, равная  $3.4 \times 10^{13}$  см⁻² с⁻¹. Это расчетное значение числового потока убегания надтепловых атомов водорода близко к величине числового потока тепловых атомов водорода, рассчитанной по формуле Джинса для данных аэрономической модели и равной  $3.3 \times 10^{13}$  см⁻² с⁻¹. Усредненный по освещенной полусфере верхней атмосферы расчетный поток потери массы атмосферы равен  $9.5 \times 10^9$  г/с на верхней границе переходной области. Можно заключить, что нетепловые процессы при массы атмосферы, в особенности, для горячих экзопланет из семейств суб-нептунов и супер-земель.

*Ключевые слова:* экзопланета, атмосферная фотохимия, нетепловые потери атмосферы, надтепловые атомы

DOI: 10.31857/S0004629922110056

#### 1. ВВЕДЕНИЕ

К настоящему моменту обнаружено множество экзопланет со значительной водородно-гелиевой атмосферой, причем орбиты многих из них находятся очень близко к своим родительским звездам [1, 2]. Атмосферы таких планет, часто называемых «горячими экзопланетами», подвергаются экстремальным уровням облучения звездным излучением в диапазонах мягкого рентгена (soft X-rays, 1– 10 нм) и жесткого ультрафиолета (УФ) (extreme ultraviolet (EUV) – КУФ, 10–100 нм), так называемого жесткого (или XUV) излучения звезды в диапазоне длин волн 1–100 нм, что приводит к образованию протяженных планетных оболочек из-за теплового и нетеплового убегания из атмосферы [3]. С помощью транзитной спектроскопии было обнаружено, что в нескольких близких системах происходит убегание вещества из атмосфер как горячих юпитеров, так и суб-нептунов и других планет с меньшей массой [2].

Основные механизмы потери атмосферы – фотоиспарение из-за высокого потока энергии жесткого излучения родительской звезды [4, 5] и потеря атмосферы за счет энергии ядра, выделяющейся во время его остывания: светимость горячего ядра подстилающей планеты подпитывает нагрев оболочки планеты, что приводит к последующей потере атмосферы [6]. Эти механизмы обладают схожей физической основой: при нагревании верхних слоев атмосферы экзопланеты происходит гидродинамический отток вещества, который приводит к потере атмосферы планеты (см., например, [2, 3]). В последнее время интенсивно ведутся работы по моделированию первичных атмосфер горячих экзопланет и расчеты тепловых потерь, в том числе за счет гидродинамического оттока атмосферного газа (например, [7]).

Недавние открытия большого разнообразия планет (типов экзопланет, открытых при помощи космического телескопа Kepler, не представленных в Солнечной системе), в частности, горячих суб-нептунов, которых нет в Солнечной системе, стимулировали большую работу по моделированию атмосфер экзопланет с целью лучше понять процессы образования атмосфер суб-нептунов и их последующую эволюцию [8–10]. Большие (по сравнению с планетами земной группы Солнечной системы) радиусы значительной части экзопланет такого типа могут быть свидетельством существования протяженных водородно-гелиевых (H/He)-оболочек с массой в несколько процентов от общей массы планеты [11]. Это может означать, что суб-нептуны сформировались из вещества первичного газового протопланетного диска. Массы атмосфер, как правило, меньше массы вещества, захваченного планетой из первичного протопланетного газового диска, так как потеря атмосферы — обычное явление после рассеивания газового диска [4—6, 11]. Для подробного изучения эволюционного пути горячих суб-нептунов необходимо более глубоко изучить тепловые и нетепловые процессы потери их атмосферы.

В большей части исследований эволюции атмосфер горячих экзопланет рассматриваются лишь тепловые процессы потери атмосферы [2, 3, 7]. В то же время в наших ранних исследованиях нетепловых потерь атмосфер планет [12, 13], проводимых для горячих юпитеров и нептунов, было показано, что скорости нетепловых потерь атмосфер экзопланет за счет экзотермической фотохимии под действием жесткого излучения родительской звезды, могут быть сопоставимы со скоростями потерь атмосферы за счет тепловых процессов, особенно в случаях высокой звездной активности.

Как известно, потере атмосферы способствуют как тепловые, так и нетепловые процессы, происходящие в атмосферах экзопланет [2, 14]. Частицы с избытком кинетической энергии являются важным источником тепловой энергии в богатой водородом верхней атмосфере экзопланеты. Например, такие надтепловые частицы образуются при фотолизе богатой водородом атмосферы горячей экзопланеты жестким излучением родительской звезды [15]. Изучение вклада надтепловых частиц в современные аэрономические модели планетных атмосфер – сложная вычислительная задача, в которой требуется решение кинетического уравнения Больцмана для надтепловых частиц [16].

В 2012 г. был открыт горячий нептун GJ 3470b [17], обращающийся вокруг красного M карлика GJ 3470 на расстоянии 0.0348 а. е. от него. Планета GJ 3470b имеет радиус  $R_p = 3.88 \pm 0.32$   $R_E$  и массу  $M_p = 12.58 \pm 1.3$   $M_E$  [18], т.е. находится на границе суб-нептунов ( $R_E$  и  $M_E$  радиус и масса Земли). Близость к родительской звезде этого горячего суб-нептуна дает возможность исследовать, как маломассивные экзопланеты на близких орбитах эволюционируют под воздействием излучения родительских звезд. В одном из первых исследований [19] было выполнено аэрономическое и гидродинамическое моделирование убегающих атмосфер 18 горячих газовых планет в окрестностях Солнца с целью поиска идеальных объектов для наблюдений. Было обнаружено, что

горячий суб-нептун GJ 3470b должен характеризоваться одним из самых больших темпов потери атмосферы из-за малой массы, близкой орбиты и относительно высокой активности родительской звезды GJ 3470 –  $M_{\rm st} = 0.54 M_{\rm Sun}$ ,  $R_{\rm st} = 0.55 R_{\rm Sun}$  [18].

Первые наблюдения [20] прохождения по диску родительской звезды экзопланеты GJ 3470b в линии Lyman-α с помощью космического телескопа Хаббла (HST) обнаружили свидетельства поглощения со схожими свойствами, с глубиной поглощения в 35 ± 7% в синем крыле [-94; -41] км/с линии и в  $23 \pm 5\%$  в красном крыле [23; 76] км/с, а также относительно короткую продолжительность транзита ~2 ч без каких-либо отчетливых фаз раннего входа и длительного выхода. Это позволило сделать вывод о наличии протяженной верхней атмосферы из нейтрального водорода вокруг GJ 3470b. В целом подобно горячему нептуну GJ 436b, экзопланета GJ 3470b оказывается следующей горячей экзопланетой с большой водородной оболочкой, простирающейся далеко за пределы полости Роша. Существующие модели верхней атмосферы планеты GJ 3470b предсказывают значительный отток атмосферного вещества [19-22]. В работе [20] представлена 3D модель верхних слоев атмосферы GJ 3470b, предполагая термосферу с солнечным составом Н и Не и температурой 7000 К, и получена оценка величины темпа потери массы нейтрального водорода 1.5 ×  $\times 10^{10}$  г с⁻¹. В работе [22] приводится еще более высокое значение полного темпа потери массы  $1.9 \times 10^{11}$  г с⁻¹, когда учитывалась потеря всех нейтральных, возбужденных и ионизованных компонентов водорода и гелия. Во всех созданных аэрономических моделях для данной планеты не учитывались процессы экзотермической химии, сопровождаемые образованием надтепловой фракции водорода.

В предлагаемой статье оценивается влияние жесткого ультрафиолетового (УФ) звездного излучения на образование надтепловой фракции атомарного водорода в переходной H₂ → H области в верхней атмосфере горячего суб-нептуна GJ 3470b. Также изучается формирование убегающего потока атомов Н, создаваемого в ходе нетепловых процессов, и рассчитываются скорость образования и энергетический спектр атомов водорода с избыточной кинетической энергией изза экзотермической фотохимии. Для этого используется модель из работ [12, 13], при помощи которой рассчитываются функции источника скорость производства и энергетический спектр атомов водорода, образующихся с избытком кинетической энергии в фотохимических процессах, включая диссоциацию H₂. Далее, используя численную стохастическую модель горячей планетарной короны [12], мы исследовали кинетику и перенос надтепловых атомов водорода в верхней атмосфере и рассчитали нетепловой поток атомов водорода, убегающих из атмосферы (см. рис. 3 и 4).

#### 2. О РАСЧЕТЕ ФРАКЦИИ НАДТЕПЛОВЫХ АТОМОВ ВОДОРОДА

В процессах диссоциации и диссоциативной ионизации молекулярного водорода образуются надтепловые атомы водорода, которые в столкновениях с нейтральными компонентами окружаюшего газа теряют свою избыточную энергию. Эффективность переноса энергии от горячих атомов к тепловым частицам, в случае надтепловых энергий, определяется по большей части фазовыми функциями – распределениями углов рассеяния. Эти распределения характеризуются пиками в диапазоне малых углов рассеяния (см. ссылки в [13]), следовательно, эффективность переноса энергии в этом случае имеет сильную зависимость от энергии столкновения. Данные особенности упругого рассеяния надтепловых атомов водорода на тепловых компонентах H₂, He и H в существенной степени определяют параметры фракции надтеплового водорода в верхней атмосфере GJ 3470b и учитывались в используемой численной модели.

Скорости образования надтепловых атомов водорода в процессах экзотермической фотохимии — диссоциации и диссоциативной ионизации  $H_2$  жестким УФ-излучением звезды, — вычислялись при помощи приведенных в работе [13] выражений для фотохимических источников, в которых использовались соответственно сечения поглощения и диссоциации для этих процессов с учетом измеренного в лаборатории распределения продуктов диссоциации по кинетической энергии [23, 24].

Для того, чтобы оценить влияние XUV-излучения родительской звезды и сопутствующего потока фотоэлектронов на образование надтепловых атомов водорода в переходной области H₂ → H верхней атмосферы GJ 3470b используются данные о составе нейтральной атмосферы и ее температуре, полученные при помощи аэрономической модели [21]. В работе [21] представлена 3D модель атмосферы планеты GJ 3470b, в которой учитывается гидродинамическое взаимодействие нейтральной атмосферы экзопланеты и звездного ветра родительской звезды. Для представленных в нашей работе расчетов использованы концентрации основных компонентов нейтральной атмосферы, таких как H, H₂ и He (см. панель (а), рис. 1), а также профиль температуры (панель (б), рис. 1) для нейтральной атмосферы экзопланеты, полученных при помощи аэрономической модели [21].

Для родительской звезды GJ 3470 использовался спектр жесткого излучения из работы [20]. В приведенных ниже расчетах использовалась более детальная спектральная модель потока солнечного излучения в интервале длин волн 1-115 нм для условий умеренной солнечной активности из работы [24], который был перенормирован на спектр GJ 3470 в соответствии с данными из работы [20]. Из обзора [24] также были выбраны относительные выходы возбужденных электронных состояний нейтральных и ионизованных продуктов фотолиза, сечения ионизации и полного поглощения для основных атмосферных компонентов – Н₂, Не и Н. Далее детальный спектр излучения был масштабирован для орбиты с большой полуосью 0.0348 а. е. для экзопланеты GJ 3470b.

#### 3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

В данной работе приведены результаты расчетов, которые проводились в интервале высот (1.6–2.05)  $R_p$  переходной области  $H_2 \rightarrow H$  (переход происходит на высоте ~1.5  $R_{\rm p}$ ) верхней атмосферы экзопланеты GJ 3470b. При этом максимум поглощения жесткого звездного XUV-излучения наблюдается на высоте 1.5Rp, что ниже нижней границы переходной области, но на этих высотах из-за высокой плотности окружающего газа и, соответственно, малой длины свободного пробега (меньше высоты однородной атмосферы по плотности) происходит локальная термализация надтепловых атомов водорода в упругих столкновениях с окружающим атмосферным газом. Другими словами, надтепловые атомы водорода из области глубже нижней границы практически не вносят вклад в образование убегающего из атмосферы потока горячих атомов Н.

Для расчетов использовались концентрации и температура основных компонентов нейтральной атмосферы, взятые из аэрономической модели [21], температура представлена на панели (б) рис. 1 линией черного цвета, а концентрации – на панели (а) рис. 1: Н – линия черного цвета, Не – малиновая линия, Н₂ – синяя линия. Расчетные концентрация, температура и средняя скорость надтепловой фракции атомарного водорода представлены линиями красного цвета на рис. 1 на верхней, средней и нижней панелях соответственно. Как можно увидеть на верхней панели рис. 1, концентрация надтепловой фракции атомарного водорода падает с высотой в расчетной области, что объясняется как резким падением концентрации молекулярного водорода, так и большой массовой скоростью надтепловых Н (нижняя панель рис. 1), которая наоборот растет с высотой, способствуя убеганию частиц из атмосферы. Ближе к верхней границе переходной H₂ → Н области значения длины свободного про-


Рис. 1. На панели (а) показаны концентрации основных нейтральных компонентов: Н – линия черного цвета, H₂ – синего цвета, He – малинового цвета. Панель (б): температура; панель (в): средняя скорость в переходной H₂ → H области верхней атмосферы экзопланеты GJ 3470b. Высотные профили атмосферных концентраций и температуры приведены по данным расчетов аэрономической модели [21]. На верхней панели линией красного цвета показан расчетный профиль концентрации надтепловых атомов водорода с кинетическими энергиями выше 0.4 эВ. Расчетные температура и средняя скорость фракции надтепловых атомов водорода показаны красными линиями на средней и нижней панели соответственно.

бега приближаются к значениям высоты однородной атмосферы по плотности и, соответственно, становится возможным убегание надтепловых атомов водорода с энергиями выше локального значения энергии убегания. Заметим, что гравитационное влияние родительской звезды на траекторию частиц не учитывается, потому как точка Лагранжа L1 расположена на расстоянии ~6  $R_p$ , что значительно выше верхней границы расчетной области.

Результаты расчетов частот образования надтепловых атомов водорода в процессах диссоциации и ионизации представлены на верхней панели рис. 2 соответственно. Пики образования атомов водорода приходятся, в основном, на высоты ниже расчетной области по высотам, но из-за большой концентрации и, следовательно, малой длины свободного пробега здесь надтепловые атомы локально термализуются через множественные столкновения и не могут покинуть ат-

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

мосферу. Полученные расчетные скорости и энергетические спектры образования надтепловых атомов водорода за счет процессов диссоциации  $H_2$  являются входными параметрами в качестве функции источника для кинетического уравнения Больцмана для надтепловых атомов.

Энергетические спектры потока движущихся вверх надтепловых атомов водорода в переходной области верхней атмосферы, представленные на рис. 3 линиями черного цвета, рассчитываются на основе функций распределения надтепловых атомов Н по скоростям. Последние являются решением кинетического уравнения Больцмана при помощи численной кинетической модели Монте-Карло [12], в которой рассматриваются кинетика и перенос надтепловых атомов водорода на молекулярном уровне. Расчеты проводились в направлении планета-звезда для стационарных условий в дневной верхней атмосфере. На рис. 3 представлены расчеты для разных высот: 1.66*R*_р



**Рис. 2.** На панели (а) представлены частоты фотодиссоциации (линия синего цвета) и диссоциативной фотоионизации (пунктирная линия синего цвета) молекулярного водорода жестким излучением родительской звезды. На панели (б): частоты фотоионизации основных компонентов (Н – черная линия, H₂ – синяя линия и Не – малиновая линия) атмосферы экзопланеты. Пунктирной линией повторно показана частота диссоциативной фотоионизации H₂.

(а),  $1.73R_{\rm p}$  (б) и  $1.86R_{\rm p}$  (в). Вертикальными красными линиями показаны энергии убегания атомов водорода на приведенных высотах. Из аэрономической модели [21] следует, что верхняя атмосфера экзопланеты GJ 3470b существенно нагревается, достигая температур ~8000 К. Соответственно скорость потери атмосферы за счет теплового испарения в соответствии с формулой Джинса достигает высоких значений,  $\sim 3 \times 10^{13}$  см⁻² с⁻¹, причем спектры потока движущихся вверх тепловых атомов водорода были рассчитаны с использованием локально равновесной функции распределения Максвелла и показаны синей линией на панелях рис. 3. Так как целью исследования является получение оценки скорости убегания атомов водорода за счет реакций экзотермической фотохимии, то на рис. 3 представлены расчетные потоки лишь в области надтепловых энергий выше 1 эВ, что близко к кинетической энергии убегания.

Используя представленные на рис. 3 расчетные энергетические спектры восходящего потока атомов H, можно оценить концентрацию фракции надтепловых атомов водорода, образующихся за счет процессов экзотермической фотохимии, и сравнить с высотным распределением тепловых компонентов нейтральной атмосферы. Полученный высотный профиль концентрации надтепловых атомов водорода с кинетическими энергиями выше 0.4 эВ представлен на верхней панели рис. 1 линией красного цвета, где также приведены распределения по высоте атмосферного атомного и молекулярного водорода. Из расчетов следует, что температура и средняя скорость фракции надтепловых атомов водорода (линии красного цвета на средней и нижней панелях рис. 1) выше значений, характеризующих тепловую фракцию (черная линия на панелях рис. 1).

Суммируя расчетные энергетические спектры потока атомов водорода, убегающих из атмосферы через верхнюю границу переходной области за счет процесса диссоциации  $H_2$ , получим оценку числового потока убегания в направлении планета-звезда в условиях умеренного уровня звездной активности в рассматриваемом диапазоне УФ излучения, равной величине  $3.4 \times 10^{13}$  см⁻² с⁻¹. Это расчетное значение числового потока убегания надтепловых атомов водорода близко к величине,



**Рис. 3.** Расчетные энергетические спектры восходящего потока надтепловых атомов водорода на высотах  $1.66R_p$  (a),  $1.73R_p$  (б) и  $1.86R_p$  (в). Линиями синего цвета показаны восходящие потоки тепловых атомов H, рассчитанные для локально равновесного распределения атомарного водорода в соответствии с профилями концентрации и температуры из модели [21]. Вертикальными красными линиями показаны энергии убегания атомов водорода на приведенных высотах.

вычисленной по формуле Джинса для числового потока тепловых атомов водорода (линии синего цвета на рис. 3) и равной  $3.3 \times 10^{13}$  см⁻² с⁻¹.

На верхней панели рис. 4 представлены расчетные энергетические спектры потока движущихся вверх надтепловых атомов водорода на высотах  $2.0R_p$  (малиновая линия) и  $1.73R_p$  (красная линия) атмосферы горячего суб-нептуна GJ 3470b. Вертикальные пунктирные линии показывают энергию убегания атомов водорода за счет экзотермической фотохимии на данной высоте  $(1.73R_p -$ красная линия и  $2.0R_p -$ малиновая линия), которые равны 1.05 эВ для  $2.0R_p$  и 1.21 эВ для  $1.73R_p$ . Интегралы по энергии для полученных спектров дают локальный поток убегания надтепловых атомов водорода, на высотах  $1.73R_p$  и  $2.0R_p$  они равны  $2.1 \times 10^{13}$  см² с⁻¹ и  $1.86 \times 10^{12}$  см⁻² с⁻¹ соответственно. На нижней панели сплошной красной линией представлен восходящий поток

надтепловых атомов водорода в зависимости от высоты, пунктирной линией красного цвета представлен поток надтепловых атомов водорода с энергиями выше энергии убегания в зависимости от высоты.

Для сравнения с другими авторами усредним расчетный поток (на верхней границе переходной области,  $3.4 \times 10^{13}$  см⁻² с⁻¹) по освещенной полусфере верхней атмосферы, чтобы получить верхнюю оценку скорости потери атмосферы за счет надтепловых атомов водорода, образующихся за счет процессов диссоциации молекулярного водорода, равную  $9.5 \times 10^9$  г/с. Это значение относительно ниже значений скорости потери массы атмосферы в соответствии с предсказаниями гидродинамического оттока атмосферы для суб-нептуна GJ 3470b в аэрономических моделях ([20] –  $1.5 \times 10^{10}$  г с⁻¹; [22] –  $1.9 \times 10^{11}$  г с⁻¹; [18] –  $3 \times 10^{10}$  г с⁻¹; [21] –  $\sim 10^{10}$  г с⁻¹), т.е. темп нетепловых потерь ат-



**Рис. 4.** На верхней панели представлены расчетные энергетические спектры восходящего потока надтепловых атомов водорода на высотах  $1.73R_p$  (красная линия) и  $2.0R_p$  (малиновая линия), атмосферы горячего нептуна GJ 3470b. Вертикальные пунктирные линии показывают энергию убегания атомов водорода за счет экзотермической фотохимии на данной высоте ( $1.73R_p$  – красная линия и  $2.0R_p$  – малиновая линия). На нижней панели представлены высотные профили полных (т.е. проинтегрированных по кинетической энергии) восходящего (сплошная линия) и убегающего (штриховая линия) потоков надтепловых атомов H, образующихся за счет экзотермической фотохимии.

мосферы изменяется в пределах от нескольких процентов и вплоть до 100% по сравнению с тепловым. Здесь следует отметить, что приведенные выше оценки темпа тепловой потери атмосферы в аэрономических моделях [18-22] получены в режиме гидродинамического оттока атмосферы, когда возможны изменения темпа тепловой потери атмосферы вплоть до порядка величины в зависимости от уровня активности родительской звезды в XUV диапазоне излучения и других допущений моделей (см., например, недавние обзоры [2, 7]). Детальное исследование [25] режима гидродинамического оттока в планетной атмосфере из одноатомного газа показало, что данный режим реализуется лишь в очень ограниченном диапазоне параметра Джинса для данной атмосферы. Следовательно, в современных аэрономических моделях атмосфер горячих экзопланет [2, 7, 26] требуется более детальное рассмотрение условий реализации режима гидродинамического оттока атмосферы, чтобы получить корректные оценки темпа тепловой потери. Более того, использование аппроксимационных формул для

оценки темпа тепловой потери атмосферы горячей экзопланеты также показывает широкий диапазон получаемых оценок. Так, например, используя часто используемую формулу для приближенной оценки темпа потери атмосферы в режиме ограничения по энергии (см., например, формулу (20) в недавней работе [27]) для горячего нептуна GJ 3470b можно получить значения в пределах (0.34–1.7)  $\times 10^9$  г/с для уровня XUV светимости родительской звезды от низкого до высокого соответственно. В результате проведенного в нашей работе сравнения можно заключить, что нетепловые процессы при моделировании атмосфер экзопланет необходимо учитывать для получения темпа потери массы атмосферы.

#### 4. ОБСУЖДЕНИЕ И ВЫВОДЫ

Приведенная оценка скорости нетепловой потери атмосферы экзопланетой GJ 3470b за счет надтепловых атомов водорода была получена впервые. Ее можно рассматривать как среднее

значение, потому как расчеты проводились для случая умеренной звездной активности в УФ излучении. Вклад процессов экзотермической фотохимии, включающих процессы диссоциации Н₂ жестким УФ излучением звезды, в образование потока убегающих из атмосферы атомов водорода станет еще более существенным в условиях высокого уровня звездного УФ излучения, а тем более в условиях звездной вспышки [3].

Полученные относительно высокие значения скорости нетепловой потери атмосферы, равной  $9.5 \times 10^9$  г/с. по сравнению с тепловым потоком vбегания атмосферы в других моделях (от нескольких % вплоть до 100% от значений теплового потока), являются свидетельством того, что нетепловые потери из атмосфер экзопланет необходимо учитывать при разработке моделей убегания атмосферы для экзопланет с малой массой, в особенности для молодых планетных систем. Следует также отметить, что нетепловые потери атмосферы должны учитываться в расчетах эффективности преобразования энергии звездного XUV излучения в энергетический баланс, т.е. в аэрономической модели верхней атмосферы экзопланеты. В данном исследовании результаты аэрономических расчетов были входными параметрами и ставилась задача оценить величину темпа нетепловой потери атмосферы за счет фотохимических источников надтепловых атомов водорода. Соответственно, в последующих исследованиях в аэрономической модели необходимо будет учесть данный дополнительный источник потери тепловой энергии атмосферным газом в переходной  $H_2 \rightarrow H$  области для горячей экзопланеты.

Известно, что перезарядка атомов водорода на протонах звездного ветра является важным нетепловым процессом потери атмосферы в дополнение к рассмотренным в данной статье фотохимическим процессам. Ранее проводились сходные исследования с использованием кинетического метода Монте-Карло для планет Солнечной системы. Например, в недавних исследованиях нетепловой потери атомов кислорода и водорода из атмосферы Марса, вызванных воздействием солнечного ветра, были получены оценки темпа потери атмосферы в зависимости от уровня солнечной активности [28]. Соответственно, в дальнейшем планируется расширить представленную в работе модель и учесть влияние звездного ветра на темп нетепловой потери атмосферы горячими экзопланетами.

#### ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского научного фонда (Проект 22-22-00909).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ

№ 12

том 99

2022

- 25. A. N. Volkov, Monthly Not. Roy. Astron. Soc. 459, 2030 (2016).
- 26. D. E. Ionov, Y. N. Pavlyuchenkov, and V. I. Shematovich, Monthly Not. Roy. Astron. Soc. 476, 5639 (2018).
- 27. T. T. Koskinen, P. Lavvas, C. Huang, G. Bergsten, et al., Astrophys. J. 929, 52 (22pp) (2022).
- 28. V. I. Shematovich, Solar System Research 55, 322 (2021).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. F. Fressin, G. Torres, D. Charbonneau, S. T. Bryson, et al., Astrophys. J. 766, 81 (2013).
- 2. J. E. Owen, Annual Review of Earth and Planetary Sciences 47, 67 (2019).
- 3. D. V. Bisikalo, V. I. Shematovich, P. V. Kavgorodov, and A. G. Zhilkin, Physics Uspiekhy 64, 747 (2021).
- tron. Soc. 425, 2931 (2012).
- 761, 59 (2012).
- J. 825, 29 (2016).
- (2020).

- 13. A. A. Avtaeva and V. I. Shematovich, Solar System Research 55, 150 (2021).
- 14. H. Massol, K. Hamano, F. Tian, M. Ikoma, et al., Space Sci. Rev. 205, 153 (2016).
- 15. V. I. Shematovich, D. V. Bisikalo, and D. E. Ionov, Characterizing Stellar and Exoplanetary Environments (Editors Lammer H. and Khodachenko M.), Astrophysics and Space Science Library 411, 105 (2015).
- 16. V. I. Shematovich and M. Ya. Marov, Physics Uspekhi 61. 217 (2018).
- 17. X. Bonfils, M. Gillon, S. Udry, et al., Astron. and Astrophys. 546, A27 (2012).
- 18. E. Palle, L. Nortmann, N. Casasayas-Barris, M. Lampón, et al., Astron. and Astrophys. 638, A61 (2020).
- 19. M. Salz, S. Czesla, P. C. Schneider, and J. H. M. M. Schmitt, Astron. and Astrophys. 586, A75 (2016).
- 20. V. Bourrier, A. L. Des Etangs, D. Ehrenreich, J. Sanz-Forcada, et al., Astron. and Astrophys. 620, A147 (2018).
- 21. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, et al., Monthly Not. Roy. Astron. Soc. 500, 1404 (2021).
- 22. M. Lampón, M. López-Puertas, J. Sanz-Forcada, A. Sánchez-López, et al., Astron. and Astrophys. 647, 129 (2021).
- 23. J. M. Ajello, D. E. Shemansky, and G. K. James, Astrophys. J. 371, 422 (1991).
- 24. W. F. Huebner, J. J. Keady, and S. P. Lyon, Astrophys. Planet Sci. Suppl. 195, 1 (1992).

1221

- 4. J. E. Owen and A. P. Jackson, Monthly Not. Roy. As-
- 5. E. D. Lopez, J. J. Fortney, and N. Miller, Astrophys. J.
- 6. S. Ginzburg, H. E. Schlichting, and R. Sari, Astrophys.
- 7. J. E. Owen, I. F. Shaikhislamov, H. Lammer, L. Fossati, and M. L. Khodachenko, Space Sci. Rev. 216, 129
- 8. H. E. Schlichting, Astrophys. J. Lett. 795, 1, L15 (2014).
- 9. A. Izidoro, M. Ogihara, S. N. Ravmond, A. Morbidelli, et al., Monthly Not. Roy. Astron. Soc. 470, 2, 1750 (2017).
- 10. A. Wolfgang and E. Lopez, Astrophys. J. 806, 183 (2015).
- 11. M. Ikoma and, Y. Hori, Astrophys. J. 753, 66 (2012).
- 12. V. I. Shematovich, Solar System Research 44, 96 (2010).

# ОСОБЕННОСТЬ ОЦЕНКИ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ИСТОЧНИКОВ РАДИО И РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

© 2022 г. В. С. Артюх*

Физический институт им. П.Н. Лебедева РАН, Москва, Россия *E-mail: art@prao.ru Поступила в редакцию 22.04.2022 г.

После доработки 21.06.2022 г. Принята к публикации 30.08.2022 г.

Рассмотрены особенности оценок энергий магнитного поля и релятивистских электронов синхротронных радиоисточников, рентгеновское излучение которых создается обратным комптоновским рассеянием релятивистских электронов на радиофотонах синхротронного излучения. Оценки этих физических параметров зависят от угловых размеров источников излучения. Влияние угловых размеров на оценки физических параметров иллюстрируются на оценке магнитной индукции горячего пятна А радиогалактики Лебедь А. Показано, почему для оценок физических параметров источников излучения нельзя брать их видимые угловые размеры. Для получения корректных оценок энергий поля и частиц необходимо брать угловой размер сферической модели исследуемого источника, спектр которой совпадает с радиоспектром исследуемого объекта. Принимая такой угловой размер источника, мы получаем одинаковые оценки физических параметров этого объекта, как из радио, так и рентгеновских наблюдений.

*Ключевые слова:* радиогалактики, рентгеновские источники, горячие пятна, магнитные поля **DOI:** 10.31857/S0004629922110032

## 1. ВВЕДЕНИЕ

Общепринятым механизмом радиоизлучения большинства космических радиоисточников является синхротронный механизм. Для понимания природы источников синхротронного излучения необходимо из астрономических наблюдений определить энергии релятивистских электронов и магнитных полей, существующих в этих объектах. Первая методика оценки физических параметров источников радиоизлучения была разработана Бербиджем в 1956 г. [1]. Эта методика основана на модели однородного радиоисточника, находящегося в состоянии с минимальной энергией. В этом случае плотности энергий магнитного поля  $E_H$  и релятивистских электронов  $E_{\rho}$  приблизительно равны. Но в активных астрономических объектах, таких как активные ядра галактик, релятивистские джеты и горячие пятна радиогалактик, состояние с минимальной энергией, скорее всего, еще не достигнуто, и предположение о равнораспределении энергий поля и частиц нуждается в экспериментальной проверке. Такую проверку можно выполнить радиоастрономическими методами с помощью методик [2-4]. Эти методики также основаны на однородной модели источника синхротронного излучения, однако в них не требуется, чтобы система находилась в состоянии с минимальной энергией, достаточно, чтобы в ней выполнялся закон сохранения энергии. В [2] для получения информации используется максимум спектра радиоисточника, а в [3, 4] низкочастотная и высокочастотная асимптотики решения уравнения переноса излучения.

Необходимо отметить, что спектры большинства компактных радиоисточников в АЯГ явно отличны от спектра однородного источника синхротронного излучения. В некоторых случаях это можно объяснить неоднородностью самого радиоисточника. Методика оценки физических параметров радиоисточников, основанная на неоднородной модели источника, разработана в [5, 6]. В этой методике также не требуется, чтобы радиоисточник находился в состоянии с минимальной энергией.

Существует большое количество работ (см., например, [7–12]), в которых физические параметры источников нетеплового рентгеновского излучения определяются по методике [13]. Данная методика основана на предположении, что рентгеновские фотоны возникают в результате обратного комптоновского рассеяния релятивистских электронов на фотонах космического микроволнового фона. Детальное изложение этой методики можно найти в [14]. В работе [15] предложено рассматривать обратное комптоновское рассеяние электронов на радиофотонах синхротронного излучения этого же радиоисточника. Эта методика также не требует равенства энергий поля и частиц.

Во всех перечисленных методиках для оценки физических параметров радиоисточников и рентгеновских источников излучения необходимо знать их угловые размеры. К сожалению, здесь мы сталкиваемся не только с техническими трудностями измерения угловых размеров компактных радиоисточников, но и с пониманием, какой именно угловой размер нужно использовать для оценки физических параметров источника излучения. В настоящей работе рассмотрена эта проблема.

# 2. МЕТОДИКА ОЦЕНКИ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ИСТОЧНИКОВ ИЗЛУЧЕНИЯ

В дальнейшем будем рассматривать синхротронные источники радиоизлучения, рентгеновское излучение которых создается обратным комптоновским рассеянием релятивистских электронов на радиофотонах синхротронного излучения этого же радиоисточника. В источнике существуют только одно магнитное поле и только один ансамбль релятивистских электронов.

Методика оценок энергии магнитного поля и релятивистских электронов, получаемых из радиоастрономических наблюдений, приведена в [3, 4]. Методика оценки этих физических параметров из рентгеновских наблюдений приведена в [13]. Все количественные оценки приведены для оценки магнитной индукции горячего пятна А радиогалактики Лебедь А.

Радиоастрономический метод. Согласно [4], измеряя плотность потока *S* и угловой размер однородного синхротронного радиоисточника  $\theta$  на низких частотах, в области непрозрачности (оптическая толща  $\tau > 1$ ), получаем оценку индукции магнитного поля  $B_{\perp}$  ( $B_{\perp}$  — компонент индукции магнитного поля, перпендикулярный скорости электрона)

$$B_{\perp} = b^2 \left(\gamma\right) \frac{\left(\frac{\mathbf{v}_{\rm lf}}{2C_{\rm l}}\right)^3 \Omega_{\rm lf}^2}{S_{\rm lf}^2} \delta \sim \theta^4. \tag{1}$$

Здесь  $S_{\rm lf}$  – плотность потока радиоисточника на низких частотах;  $\Omega_{\rm lf}$  – его телесный угол на низких частотах,  $\theta_{\rm lf} = \sqrt{\Omega_{\rm lf}}$  – характерный размер радиоисточника;  $\delta$  – доплер-фактор источника  $\delta = \frac{\delta'}{1+z}$ , *z* – красное смещение родительской галактики,  $\delta'$  – доплер-фактор источника относительно родительской галактики [2, 16];  $b(\gamma) =$   $=\frac{c_5(\gamma)}{c_6(\gamma)}$  и  $C_1$  – функции  $\gamma$  и константа, приведенные в [14].

Рентгеновский метод. В работе [13] показано, что если скорости релятивистских электронов ориентированы случайным образом по отношению к среднему магнитному полю, то

$$\frac{\left(\frac{dE}{dt}\right)_{S}}{\left(\frac{dE}{dt}\right)_{C}} = \frac{E_{H}}{E_{R}}.$$
(2)

Здесь  $\left(\frac{dE}{dt}\right)_{S}$  – скорость энергетических потерь

электрона на синхротронное излучение,  $\left(\frac{dE}{dt}\right)_{C}$  – скорость энергетических потерь электрона на обратное комптоновское рассеяние,  $E_{H}$  – плотность энергии магнитного поля  $\left(E_{H} \approx \frac{B^{2}}{8\pi}\right)$ ,  $E_{R}$  – плотность ность энергии излучения  $\left(E_{R} = \frac{L}{V}\right)$ , где L – светимость объекта, V – объем излучающей области.

мость ооъекта, V – ооъем излучающеи ооласти. Отсюда

$$B \sim \theta^{-\frac{3}{2}}.$$
 (3)

Как видно из (1) и (3), оценка индукции магнитного поля источника излучения в разных методиках по-разному зависит от углового размера источника. Поскольку оценки остальных физических параметров зависят от оценки *B*, то в дальнейшем ограничимся рассмотрением влияния угловых размеров только на оценку индукции магнитного поля.

# 3. ОЦЕНКА ИНДУКЦИИ МАГНИТНОГО ПОЛЯ ГОРЯЧЕГО ПЯТНА А РАДИОГАЛАКТИКИ ЛЕБЕДЬ А

В работе [17] получены оценки физических параметров горячего пятна А в радиогалактике Лебедь А из радиоастрономических наблюдений, и проведено сравнение этих результатов с оценками поля, полученными из рентгеновских наблюдений. Показано, что если в качестве углового размера радиоисточника принять  $\theta \approx 4''$  (то, что мы видим на радиокартах Лебедя А), то из радиоастрономических наблюдений получаем магнитную индукцию в интервале 2.8 < *B* < 13.5 Гс с наиболее вероятным значением *B* = 5 Гс.

Столь сильное магнитное поле противоречит оценкам магнитной индукции, полученным из рентгеновских наблюдений по методике [13], в которых были приняты такие же угловые размеры пятна А. Например, в работе [15] для горячего



Рис. 1. Три модели радиоисточников с одинаковыми физическими параметрами, но разными угловыми размерами.

пятна А получено  $B = (1.58 \pm 0.17) \times 10^{-4}$  Гс. В работе [8] получено  $B = 1.5 \times 10^{-4}$  Гс с погрешностью ~10%. В работе [18] получена такая же оценка магнитной индукции  $B = 1.5 \times 10^{-4}$  Гс. В работе [11] получена почти такая же величина  $B = 1.7 \times 10^{-4}$  Гс. Как видно, разные авторы рентгеновских наблюдений дают практически один и тот же результат. В то же время различие в оценках магнитного поля, полученное разными методиками, превосходит четыре порядка величины. Это означает, что по крайней мере одна из методик дает неправильные результаты.

В работе [19] проведен анализ радиоастрономических наблюдений горячего пятна А на основе неоднородной модели радиоисточника. Показано, что большую часть объема горячего пятна А занимает слабое поле  $B \sim 10^{-4}$  Гс, но имеется небольшая область, где индукция поля составляет  $\sim 10^{-2}$  Гс, а среднее (по объему) поле  $\sim 10^{-3}$  Гс. Показано, что радиоспектр горячего пятна А можно получить только, если размер этого радиоисточника составлял d = 600 пк ( $\theta \approx 0.6''$ ). Это некоторый характерный размер радиоисточника, который характеризует его трехмерную структуру. В частности, при таком размере источника его оптическая толща равняется единице на частоте, близкой к частоте максимума спектра радиоисточника. Как показано в [17], принимая этот размер горячего пятна А, мы из радиоастрономических наблюдений получаем интервал, внутри которого лежит индукция магнитного поля 1.5 ×  $\times 10^{-3}$  Гс  $< B < 7.3 \times 10^{-3}$  Гс, и оценку наиболее вероятного значения магнитной индукции пятна  $B \approx 2.7 \times 10^{-3}$  Гс. Чрезвычайно важным является то обстоятельство, что при этом же угловом размере пятна из рентгеновских наблюдений получаем *B* ≈  $2.6 \times 10^{-3}$  Гс. Отметим также, что на карте радиогалактики Лебедь А, полученной на частоте 43 ГГц с высоким разрешением 0.15" [20],

видно, что радиоисточник является явно неоднородным. Он состоит из нескольких компонентов. Самый крупный и самый яркий компонент, который вносит основной вклад в излучение, имеет размер  $\Omega \approx 1.7'' \times 0.3''$  (характерный масштаб  $\theta = \sqrt{\Omega} \sim 0.7''$ ).

Таким образом, принимая в качестве углового размера горячего пятна А  $\theta = 0.6''$ , мы получаем практически одинаковую оценку индукции магнитного поля как из радиоастрономических наблюдений, так и из рентгеновских наблюдений.

#### 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТА

Для понимания результата, полученного в [17], рассмотрим схему излучения шарообразного синхротронного радиоисточника с запутанным магнитным полем и с однородным (по всему шаансамблем релятивистских электронов. py) На рис. 1а схематически представлен такой источник и под ним стрип-распределение яркости по этому объекту  $I(\theta)$ . На рис. 16 представлен этот же радиоисточник, разделенный вдоль луча зрения пополам, и под ним стрип-распределение яркости. На рис. 1в представлены две половины этого же радиоисточника, которые мы поменяли местами и раздвинули еще больше. Отметим, что наименьший угловой размер имеет первая модель (рис. 1а), в которой все излучающее вещество собрано в один объем (без пустот).

Источники излучения, представленные на всех трех рисунках, являются одинаковыми физическими системами с одинаковыми магнитными полями и одинаковыми ансамблями релятивистских электронов. Поэтому все три источника имеют одинаковые спектры излучения. Однако они имеют разные угловые размеры. Следовательно, в формуле (1) у всех источников на одной и той же частоте v_{нч} будут одни и те же плотности



**Рис. 2.** Пример функции, монотонно убывающей от центра: а – монотонно убывающая (от центра) функция, б – та же функция, в которой два фрагмента поменяли местами, нарушив монотонность функции.

потоков  $S_{\rm Hy}$ , но разные угловые размеры  $\theta_{\rm Hy}$ . Соответственно, для каждого углового размера из (1) мы получим разные магнитные индукции, чего не должно быть, т.к. по определению все три физические системы одинаковые. Отсюда следует, что для оценки физических параметров сложных (многокомпонентных) радиоисточников нельзя использовать их видимые угловые размеры. То же самое относится и к оценке поля, получаемой из рентгеновских наблюдений по методике [13].

Вышеописанную процедуру можно расширить. Сферический источник, представленный на рис. 1а, можно разрезать (вдоль луча зрения) на узкие трубки и получить мозаичную структуру сферического радиоисточника. Меняя геометрическое положения отдельных трубок таким образом, чтобы физические условия внутри трубок сохранились, мы можем получить изображение источника, совершенно отличное от кругового, но при этом полностью сохранить физические условия внутри источника.

Очевидно, что все это можно проделать и в обратном порядке. Изображение какого-либо источника сложной формы разбить на очень малые участки, из которых затем сформировать изображения с круговой симметрией без пустот, сохранив при этом спектр исследуемого источника. Действительно, по определению плотность потока радиоисточника на некоторой частоте V равна

$$S \approx \int_{\Omega} I(\overline{\omega}) d\omega \approx \sum I_n \Delta \omega.$$
 (4)

Здесь I – интенсивность излучения,  $\Omega$  – телесный угол радиоисточника,  $\Delta \omega$  – малый телесный угол в направлении  $\varpi$ . Из (4) видно, что, разбивая радиоисточник на малые части (трубки, направленные вдоль луча зрения) и меняя их местами, но не меняя физических условий внутри трубок (т.е. меняя местами слагаемые в (4), не меняя самих слагаемых), мы можем получить практически любую форму радиоисточника, в том числе и с круговой симметрией, сохранив плотность пото-

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

ка этого источника на всех частотах, т.е. сохранив его спектр.

Следует отметить одно важное обстоятельство. Среди всех возможных форм распределения яркости по источнику излучения наименьшую ширину будет иметь монотонно убывающая функция. Поясним сказанное на примере одномерной функции (рис. 2). На этом рисунке приведена монотонно убывающая (от центра) функция I(x).

В самом общем виде ширину функции σ определяют через второй центральный момент

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \overline{x})^{2} I(x) dx.$$
 (5)

Если два фрагмента функции поменять местами так, чтобы нарушить ее монотонность (но не меняя интеграла от функции), как показано на рис. 2, то ширина функции обязательно увеличится на величину

$$\Delta \sigma^2 = (I(x_1) - I(x_2)) \left( x_2^2 - x_1^2 \right) \Delta x.$$
 (6)

Таким образом, ширина монотонно убывающей функции всегда меньше, чем ширина немонотонной функции. Это означает, что среди всех радиоисточников с одинаковой плотностью потока наименьший угловой размер будет иметь тот источник, распределение яркости по которому является монотонно убывающей функцией.

В работах [5, 6] разработана методика оценки физических параметров радиоисточников в АЯГ на основе неоднородной модели источника синхротронного излучения. В работе [5] в качестве модели радиоисточника была принята сферически симметричная модель радиуса R со степенным распределением поля и частиц:

$$B(r) = B(0) \frac{1}{1 + k_H \left(\frac{r}{R}\right)^m}$$
 при  $r < R$   
и  $B(r) = 0$  при  $r > R$ ,

$$N(r, E) = E^{-\gamma} N(0) \frac{1}{1 + k_e \left(\frac{r}{R}\right)^n}$$
 при  $r < R$ ,  
и  $N(r, E) = 0$  при  $r > R$ .

Коэффициенты  $k_H$  и  $k_e$  характеризуют, соответственно, перепад магнитного поля и плотности частиц от центра к краю источника (степень неоднородности источника). В такой модели нет пустот. Распределение яркости такой модели определяется формой магнитного поля и видом функции пространственного распределения электронов. В данном случае обе эти функции являются монотонно убывающими, поэтому и распределение яркости по источнику будет монотонно убывающей функцией с круговой симметрией. Поскольку в данной модели нет пустот, и распределение яркости по этой модели является монотонно убывающей функцией, то, следовательно, она имеет наименьшие размеры, величина которых определяется исключительно распределением поля и частиц в источнике, т.е. физическими условиями в источнике. Любой радиоисточник, имеющий пустоты или немонотонно убывающее распределение яркости, будет иметь угловые размеры больше размеров сферически симметричной модели этого источника, хотя физические условия, определяющие спектр источника, будут одинаковыми и в модели, и в источнике.

Численное моделирование [6] показало, что если в (1) в качестве  $\theta$  брать угловой размер сферической модели (той, которая имеет спектр радиоисточника), то величина В из (1) близка к среднему (по объему) значению магнитной индукции  $B(\vec{r})$ . Поэтому в работе [17] были получены оценки физических параметров горячего пятна А (индукции магнитного поля, энергии магнитного поля и релятивистских электронов), реально близкие к средним значениям. То, что при этом же угловом размере пятна А из рентгеновских наблюдений получено такое же значение магнитной индукции, подтверждает правильность оценок. И радио, и рентгеновское излучение горячего пятна А созданы в одном и том же магнитном поле, поэтому разные методы должны давать один и тот же результат.

Таким образом, если мы наблюдаем радиоисточник сложной структуры, состоящий из нескольких фрагментов, то видимый угловой размер этого источника всегда превышает размер источника, в котором это излучающее вещество распределено сферически симметрично и не имеет пустот. Поскольку в радиоастрономической

методике  $B \sim \theta^4$ , а в рентгеновской  $B \sim \theta^{-2}$ , то, принимая завышенное значение углового размера радиоисточника, мы должны получить зани-

женную оценку магнитной индукции из рентгеновских наблюдений и сильно завышенную — из радиоастрономических наблюдений, что мы и получили для горячего пятна А радиогалактики Лебедь А в [17].

## 5. ЗАКЛЮЧЕНИЕ

Для оценки физических параметров источника излучения со сложной структурой нельзя брать его видимый угловой размер. Только принимая размер сферической модели источника излучения, которая дает радиоспектр этого источника, мы получим корректную оценку среднего магнитного поля этого объекта, как из радио, так и из рентгеновских наблюдений.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. G. R. Burbidge, Astrophys. J. 124, 416 (1956).
- 2. A. P. Marscher, Astrophys. J. 264, 296 (1983).
- 3. *В. С. Артюх*, Труды Физического ин-та им. П.Н. Лебедева **189**, 223 (1988).
- 4. В. С. Артюх, Астрон. журн. 96, 179 (2019).
- 5. В. С. Артюх, П. А. Черников, Астрон. журн. 78, 1 (2001).
- 6. *В. С. Артюх, П. А. Черников*, Астрон. журн. **83**, 224 (2006).
- 7. E. D. Feigelson, S. A. Laurent-Muehleisen, R. J. Kollgaard, and E. B. Fomalont, Astrophys. J. 449, L1491995 (1995).
- A. S. Wilson, A. J. Young, and P. I. Shopbell, Astrophys. J. 544, L27 (2000).
- 9. *M. J. Hardcastle, M. Birkinshaw, and D. M. Worrall,* Monthly Not. Roy. Astron. Soc. **326**, 1499 (2001).
- 10. J. Kataoka and L. Sttawarz, Astrophys. J. 622, 797 (2005).
- 11. L. Stawarz, C. C. Cheung, D. E. Harris, and M. Ostrowski, Astrophys. J. 662, 213 (2007).
- 12. J. Ineson, J. H. Croston, M. J. Hardcastle, and B. Mingo, Monthly Not. Roy. Astron. Soc. 467, 1586 (2017).
- 13. J. E. Felten and P. Morrison, Astrophys. J. 146, 686 (1966).
- 14. А. Пахольчик Радиоастрофизика (М.: Мир, 1973).
- 15. D. E. Harris, C. L. Carilli, and R. A. Perley, Nature 367, 713 (1994).
- 16. *K. R. Lind and R. D. Blandford*, Astrophys. J. **295**, 358 (1985).
- 17. В. С. Артюх, Астрон. журн. 99, № 4, 308 (2022).
- 18. *M. Kino and F. Takahara*, Monthly Not. Roy. Astron. Soc. **349**, 336 (2004).
- 19. В. С. Артюх, С. А. Тюльбашев, П. А. Черников, Астрон. журн. **89**, 754 (2012).
- 20. C. L. Carilli, J. D. Kurk, Paul P. van der Werf, R. A. Perlley, and G. K. Miley, Astron. J. 118, 2581 (1999).

# ЭВОЛЮЦИЯ СИЛЬНЫХ ВСПЫШЕК МАЗЕРНОГО ИЗЛУЧЕНИЯ H₂O В ОБЛАСТИ АКТИВНОГО ЗВЕЗДООБРАЗОВАНИЯ W51

© 2022 г. Н. Т. Ашимбаева¹, Е. Е. Лехт^{1,*}, В. В. Краснов², А. М. Толмачев³

¹ Московский государственный университет им. М.В. Ломоносова,

Государственный астрономический институт им. П.К. Штернберга, Москва, Россия

² Астрокосмический центр Физического института им. П.Н. Лебедева РАН, Москва, Россия ³ Пущинская радиоастрономическая обсерватория,

Астрокосмический центр Физического института им. П.Н. Лебедева РАН, Пущино, Россия

**E-mail: lekht@sai.msu.ru* Поступила в редакцию 01.08.2022 г. После доработки 17.08.2022 г. Принята к публикации 30.09.2022 г.

Представлены результаты исследования сильных вспышек мазерного излучения H₂O в области W51 из наблюдений (мониторинга) в 2009–2022 гг. на 22-м радиотелескопе в Пущинской радиоастрономической обсерватории. Обнаружены три мощные вспышки мазерного излучения на лучевых скоростях 69.7, 61.6 и 59.0 км/с с плотностью потока в максимумах 23.1, 29.4 и 66.1 кЯн соответственно. Первая и третья из них идентифицированы с главным источником (W51 Main). Вероятной причиной их возникновения может быть наложение на луче зрения двух мазерных конденсаций с близкими лучевыми скоростями. Также обнаружено большое число вспышек с плотностью потока выше 10 кЯн, большинство из которых идентифицировано с W51 North. Обсуждается механизм возникновения асимметрии линии самой мощной вспышки на лучевой скорости 59 км/с.

*Ключевые слова:* звездообразование, мазеры H₂O, молекулярные облака и биполярные потоки, индивидуальные объекты (W51 Main и North)

**DOI:** 10.31857/S0004629922110044

# 1. ВВЕДЕНИЕ

Область W51, первоначально обнаруженная Вестерхаутом (1958) [1], представляет собой одно из самых массивных гигантских молекулярных облаков в Галактике, обладающее очень сложной иерархической структурой. Она разделена на две гигантские области Н II: W51 A и W51 B, - которые в свою очередь распадаются на более мелкие источники - компактные (CH II) и сверхкомпактные (UCH II) области ионизованного водорода [2]. Согласно Гауме и др. [3] они обозначаются e1, e2 и т.д. Таким образом, область W51 включает в себя компактные и сверхкомпактные области Н II и большое число ИК-источников. Области СН II и UCH II содержат массивные молодые звездные объекты, находящиеся на различных стадиях эволюции. Лим и др. [4] провели исследования 41 такого объекта на 20 и 37 мкм. Согласно их исследованиям почти половина молодых звездных объектов находятся на очень ранней стадии эволюции и не имеют обнаруживаемого радиоизлучения в континууме на сантиметровых волнах.

Одним из самых ярких в области W51 A является источник W51e. В нем находится объект W51 Main, а немного южнее – W51 South. Поскольку компоненты источника W51 Main и South расположены очень близко друг к другу, нередко в литературе встречается название W51 Main/South и анализ проводится для всей этой области. По этой причине мы будем пользоваться таким обозначением при ссылках на соответствующие работы. По измерениям тригонометрического параллакса на частоте 22 ГГц мазера  $H_2O$  в направлении W51 Main/South было определено расстояние до комплекса, равное 5.4 ± 0.3 кпк [5].

В W51 A имеется биполярный СО поток, связанный с источниками e2E и e2W [6], ориентированный в направлении "северо-восток"—"югозапад".

В W51 Main/South обнаружены мазерные источники  $H_2O$ , OH, NH₃ и метанола в основном состоянии молекул, а мазеры OH — и в возбужденном состоянии. Также сильный водяной мазер обнаружен в северном источнике. Наиболее интенсивное излучение каждого источника наблюдается в диапазоне лучевых скоростей

~35–75 км/с. Необходимо добавить, что в W51 Main/South находятся два центра с высоким и примерно равным уровнем мазерного излучения  $H_2O$  и OH: e2-NW и e8 (W51 South). Наблюдения в основном (1665 и 1667 МГц) и возбужденном (6.035 ГГц) состояниях молекулы OH показали, что плотность вещества в W51 Main выше, чем в W51 South [7]. Мазеры в южной части W51 Main проявляют нитевидную структуру. Предполагается, что мазерные пятна прослеживают магнитное поле.

# 2. АППАРАТУРА И НАБЛЮДЕНИЯ

Наблюдения (мониторинг) в линии 1.35 см в направлении источника W51 Main проводятся нами на 22-м радиотелескопе в ПРАО с 1981 г. Анализ результатов исследований с 1981 по 1998 г. опубликован в работе Самодурова и Логвиненко [8]. Мы проводим наблюдения в направлении каждого из двух основных мазерных компонентов (Main и North):  $\alpha_{(2000)} = 19^{h}23^{m}39.3^{s}$ ,  $\delta_{(2000)} =$  $= +14^{\circ}30'34.3''$  и  $\alpha_{(2000)} = 19^{h}23^{m}35.3^{s}$ ,  $\delta_{(2000)} =$  $= +14^{\circ}31'06.3''$  для Main и North соответственно. Угловое расстояние между ними составляет около 1.2'.

Ширина диаграммы направленности нашего радиотелескопа на волне 1.35 см составляет 2.6'. Таким образом, при наведении на один из источников излучение от другого ослаблено почти в 2 раза. Это позволило нам при наблюдениях в обоих направлениях определить принадлежность каждой спектральной детали к соответствующему источнику – Main или North. Поскольку антенна принимает линейно поляризованное излучение, а мазерное излучение H₂O в W51 M может иметь небольшую линейную поляризацию [9], по возможности мы проводили наблюдения при близких позиционных углах антенны. Шумовая температура системы находилась в пределах 190-300 К в зависимости от условий наблюдений. Чувствительность телескопа составляет 25 Ян/К.

Регистрация сигнала осуществлялась 2048-канальным автокорреляционным приемником с разрешением 0.0822 км/с по лучевой скорости. Высокая стабильность гетеродина позволяет определять лучевую скорость сильных линий по их форме вблизи максимума с точностью 20–25 м/с. Интервалы между сеансами наблюдений составляли около одного месяца. Однако, когда происходили сильные вспышки, в пределах одного сеанса (3– 4 дня) мы проводили несколько наблюдений.

## 3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Основная цель работы – поиск сильных вспышек мазерного излучения. Анализ данных нашего мониторинга мы ведем с 2009 г., когда регулярно проводились наблюдения в направлении каждого из двух компонентов.

Спектры мазерного излучения  $H_2O$  в направлении W51 Main протяженные. Например, согласно Като и др. [5] излучение простирается от лучевой скорости —55 до 175 км/с. В наших наблюдениях при спектральном разрешении 0.0822 км/с мы регистрировали излучение в интервале лучевых скоростей от —20 до почти 150 км/с.

На рис. 1а приведены ближайшие по времени после измерения тригонометрического параллакса [5] спектры нашего мониторинга в направлении главного (жирная линия) и северного (тонкая линия) источников в области W51. Показаны только центральные части спектров. Видно, что самые интенсивные детали в эпоху декабря 2009 г. принадлежат северному источнику. Только излучение на 58.2 и 99.8 км/с главного источника немного сильнее, чем северного. Таким образом, в эту эпоху северный источник был более активным, причем в широком интервале лучевых скоростей. По этой причине невозможно было выделить эмиссионные детали, идентифицированные с деталями главного и южного центров мазерной активности, наблюдаемые в 2009 г. [5]. Кроме того, наши наблюдения, выполненные в 2009 г. только в направлении W51 Main, показали сильную переменность всего спектра, исключая наблюдаемую в течение всего 2009 г. деталь на лучевой скорости 58.2 км/с.

На рис. 2 показана переменность самых сильных эмиссионных деталей, потоки которых в максимумах превышали 3000 Ян. Приведены лучевые скорости деталей. На панели (а) вспышечные детали принадлежат северному компоненту, а на панели (б) — главному компоненту.

Самая сильная вспышка мазера  $H_2O$  в W51 за весь период его наблюдений в нашем мониторинге с 1981 г. началась во второй половине 2021 г. В это время более активным был уже главный источник (рис. 16 и 2).

Мы установили, что самая мощная вспышка происходила в главном источнике с августа 2021 г. по апрель 2022 г. на лучевой скорости 59.0 км/с. Все спектры этого периода нанесены на рис. 3. Весь период был разделен на два интервала. Границей раздела была эпоха, когда произошло небольшое уменьшение излучения (21 октября 2021 г.). Поскольку наблюдения проводились в обоих направлениях, то мы смогли определить принадлежность наиболее сильных спектральных деталей в этот период времени к источникам Main и North. На некоторых лучевых скоростях имеется одинаковый вклад от обоих источников. Для них введено обозначение M = N.

На рис. 4 показано наложение спектров разных эпох для центральной части, т.е. для вспых-



**Рис. 1.** Спектры мазерного излучения  $H_2O$  на волне 1.35 см в направлении W51 Main (жирная линия) и W51 North (тонкая линия) для двух эпох, предшествовавших мощной вспышке на лучевой скорости 59 км/с. Для излучения на 58.2 км/с указана плотность потока в максимуме в направлениях W51 Main и W51 North.

нувшей детали. Напротив максимума каждого спектра указана дата его получения: слева для нарастающего излучения, а справа для уменьшающегося излучения. Плотность потока в максимуме вспышки составила около 66 кЯн. К концу июня излучение этой детали сильно упало – примерно до 400–500 Ян, – что составляет лишь 0.7% относительно максимума. Более точно определить невозможно, поскольку на  $V_{\rm LSR}$  = 59.8 км/с появилось излучение с плотностью потока на эпоху 26 июня 2022 г. 13 100 Ян. Линия немного асимметричная. Ее ширина по уровню 0.5 составила 0.81 км/с. Это излучение идентифицировано нами с северным источником (см. рис. 2а).

Мы провели анализ эволюции переменности плотности потока (рис. 5) и лучевой скорости (рис. 6) основных спектральных деталей, принадлежащих источнику W51 Main. Более крупными символами нанесены данные для главной вспышки на скорости 59.0 км/с. Переменность  $V_{\rm LSR}$  деталей аппроксимирована отрезками прямых линий.

#### 4. ДИСКУССИЯ

#### 4.1. Цикличность мазерной активности

В каждом источнике (W51 Main и W51 North) в пределах временно́го интервала 2009–2022 гг. наблюдается чередование более активных циклов с менее активными. Различие между циклами состоит в том, что в первых (более активных) имеются сильные вспышки, в то время как в более спокойных циклах вспышки относительно "слабые" для области W51. Так, в W51 North в период более высокой мазерной активности наблюдались вспышки сильнее 10⁴ Ян.

В главном источнике вспышки были слабее и, в основном, на уровне  $(5-7) \times 10^4$  Ян. В этом источнике в 2014—2016 гг. был период наиболее низкой мазерной активности, когда излучение лишь



**Рис. 2.** Переменность мазерного излучения H₂O деталей с потоком в максимуме более 2 кЯн в направлении компонентов North (a) и Main (б). Приведены лучевые скорости деталей.

одной детали на скорости 57.2 км/с достигало 3500 Ян, что не так много для такого источника, как W51 Main. Остальные были слабее и подавлялись в спектрах более сильным излучением северного компонента.

Также отметим, что во время трех мощных вспышек мы не обнаружили одновременного значительного увеличения излучения других эмиссионных деталей. Можно лишь отметить незначительный рост потока деталей 48.9 и 63.4 км/с в период мощной вспышки на скорости 61.6 км/с в 2015 г.

# 4.2. Эволюция самой мощной вспышки на 59 км/с

Считается, что самая мощная вспышка мазера  $H_2O$  имела место в источнике Орион KL, достигающая плотности потока в максимуме почти  $10^7$  Ян. Учитывая разницу расстояний до Ориона KL и W51 Main, вспышки в этих источниках сравнимы. Различие состоит только в продолжительности вспышки и в том, что в Орионе KL одновременно наблюдались две сильные эмиссионные детали,

чего не было в W51 Main. Видимо, есть различие и в природе вспышек.

Мощной вспышке в W51 Main/South, которая наблюдалась чуть более полугода, предшествовали последовательно две более слабые вспышки на лучевых скоростях 70.0 и 62.5 км/с с плотностью потока в максимуме 1120 и 6100 Ян соответственно. Больше не было никаких вспышек. Наблюдались детали с более или менее монотонным ростом и спадом излучения, а также со значительными вариациями потока относительно достаточно высокого среднего уровня излучения.

На начальной стадии вспышки наблюдался степенной рост плотности потока до уровня 26 кЯн в течение 2.5 мес. Затем в течение двух дней произошло резкое уменьшение плотности потока до уровня 17 кЯн. Такой резкий спад излучения является реальным, поскольку для подавляющего числа деталей изменения потоков были несущественными. Кроме этого немного менялись ширина и форма (величина асимметрии) линии. После этого возобновился быстрый рост излучения до уровня 66 кЯн в течение трех месяцев.



**Рис. 3.** Наложения спектров  $H_2O$  для двух временны́х интервалов мощной вспышки в W51. Указана принадлежность деталей к компонентам W51 Main (M) и W51 North (N). При равенстве излучения от компонентов введено обозначение M = N.

Спад излучения происходил быстрее, за три месяца излучение упало в 20 раз до ~3.5 кЯн. Проследить дальнейшую эволюцию этой детали не удалось, так как в северном источнике появилось сильное излучение на близкой скорости 59.7 км/с. В процессе эволюции этой вспышки кроме плотности потока также менялись лучевая скорость и ширина линии. Никакой корреляции переменности излучения этой мощной вспышки с переменностью других деталей не прослеживается. Это означает, что вспышка имела локальный характер. Согласно, например, Генцелу и Даунсу [10], в W51 М имеются скопления мазерных конденсаций. В таких скоплениях могут иметь место значительные турбулентные движения вещества и не исключено

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022



**Рис. 4.** Центральные части наложения спектров H₂O в направлении W51 Main. Напротив максимума излучения детали указана дата получения спектра.

наложение по лучу зрения, например, двух мазерных конденсаций, или просто неоднородностей с близкими лучевыми скоростями, что может привести к существенному увеличению оптической толщи инвертированного вещества и, как следствие, к сильному росту мазерного излучения. Можно предположить, что именно благодаря такому механизму произошла мощная вспышка в W51 Main.

#### 4.3. Переменность формы линии

На рис. 7 показана переменность лучевой скорости, ширины и формы линии вспыхнувшей детали на 59 км/с в W51 Main. Под формой линии мы подразумеваем ее асимметрию, которая вычислялась по формуле:

$$A = \frac{\delta V_{\rm L} - \delta V_{\rm R}}{\delta V_{\rm I} + \delta V_{\rm R}} = \frac{\delta V_{\rm L} - \delta V_{\rm R}}{\delta V},\tag{1}$$

где  $\delta V_{\rm L}$  и  $\delta V_{\rm R}$  — ширины левой и правой частей линии по уровню 0.5, отсчитываемые от положения максимума потока,  $\delta V$  — полная ширина линии.

Природа возникновения асимметрии линии рассматривалась во многих работах. Наиболее приемлемой нам представляется модель, предложенная в работе Силантьева и др. [11]. Согласно этой модели мазерная конденсация движется от звезды к наблюдателю в радиальном направлении, нагребая перед собой некоторый слой неинвертированного вещества. Это приводит к увеличению плотности в слое и возникновению градиента лучевой скорости. Причем скорость слоя немного меньше скорости конденсации. При достаточном числе молекул в слое возникает селективное поглощение мазерного излучения — более высокоскоростное крыло линии будет испытывать большее поглощение, чем низкоскоростное. Переменность параметров линии на 59 км/с (см. рис. 7) хорошо вписывается в эту модель.

# 4.4. Другие вспышки

Другая, также мощная, но очень кратковременная вспышка произошла в W51 Main в конце 2013 г. (см. рис. 2б). Мы можем оценить только верхнюю границу продолжительности вспышки, которая составила менее одного месяца. Плотность потока в максимуме достигала 23.4 Ян, а за месяц до и после этого максимума всего лишь 830 и 610 Ян соответственно. Маловероятно, что такие вспышки могут быть связаны с изменениями каких-либо физических параметров в мазерных конденсациях. Аналогичный характер переменности наблюдался, например, в IRAS 182316 для излучения на V_{LSR} = 42.1 км/с [12]. Причиной такой мощной кратковременной вспышки также может быть, например, наложение на луче зрения двух мазерных конденсаций с близкими лучевыми скоростями при их относительном движении в картинной плоскости.

Более мощная вспышка с плотностью потока в максимуме 29.4 кЯн произошла на лучевой скорости 61.6 км/с в 2015 г. в северном источнике. Продолжительность вспышки можно оценить



**Рис. 5.** Переменность плотности потока основных деталей H₂O, идентифицированных с W51 Main в период самой мощной вспышки в области W51. Приведены лучевые скорости деталей.

как ~7 мес по уровню 0.1. Наблюдался дрейф излучения в спектре от 61.46 до 61.90 км/с, что является естественным при вспышке.

Кроме таких мощных вспышек в источниках W51 Main и W51 South наблюдались вспышки в несколько раз слабее и они происходили значительно чаще. Напомним, что в этих источниках наблюдаются также мазеры ОН. Мониторинг в линиях ОН, например, в источнике W75 N, выполненный нами на радиотелескопе в Нансэ (Франция), показал существенные вариации магнитного поля в отдельных мазерных конденсаци-



Рис. 6. Переменность лучевой скорости основных деталей H₂O в W51 Main. Графики аппроксимированы отрезками прямых линий.

ях во время вспышек, даже не очень сильных [13]. Поэтому мониторинг таких сильных вспышек в  $H_2O$  и OH представляет большой научный интерес, тем более, что мазеры OH в южной части W51 Main проявляют нитевидную структуру [7]. Предполагается, что мазерные пятна OH в таких структурах прослеживают магнитное поле.

Результаты таких исследований в линиях ОН в W51 Main/South и в ряде других источников (например, в G43.8-0.1), связанных с областями активного звездообразования, будут опубликованы нами в последующих работах.

# 5. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

За период мониторинга мазерного излучения  $H_2O$  на радиотелескопе PT-22 в период 2009—2022 гг. в направлении источников W51 Main и W51 North обнаружено три мощные вспышки на

лучевых скоростях 69.7, 61.6 и 59.0 км/с с плотностью потока в максимумах 23.1, 29.4 и 66.1 кЯн соответственно. Первая и третья из них идентифицированы с главным источником, а вторая с северным.

Наиболее вероятной причиной возникновения таких вспышек может быть наложение на луче зрения двух мазерных конденсаций с близкими лучевыми скоростями. Обсужден механизм возникновения асимметрии линии самой мощной вспышки на лучевой скорости 59 км/с.

Обнаружено большое число вспышек с плотностью потока выше 10 кЯн. Большинство из них идентифицировано с W51 North.

Для каждого из источников W51 (Main и North) наблюдается чередование более высоких периодов активности мазера H₂O с менее высокими.



Рис. 7. Переменность основных параметров линии самой мощной вспышки H₂O на 59 км/с в W51 Main (см. текст).

#### БЛАГОДАРНОСТИ

Авторы выражают благодарность сотрудникам Пущинской Радиоастрономической обсерватории за большую помощь в проведении наблюдений по программе многолетнего мониторинга.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *G. Westerhout*, Bull. Astron. Inst. Netherland **14**, 215 (1958).
- 2. D. M. Merhinger, Astrophys. J. Suppl. 91, 713 (1994).
- R. A. Gaume, K. L. Johnston, and T. L. Wilson, Astrophys. J. 417, 645 (1993).
- W. Lim and J. M. De Buizer, Astrophys. J. 873, id. 1 (2019).
- 5. *M. Sato, M. J. Reid, A. Brunthaler, and K. M. Menten,* Astrophys. J. **720**, 1055 (2010).

- H. Shi, J.-H. Zhao, and J. L. Han, Astrophys. J. 718, L181 (2010).
- S. Etoka, M. D. Gray, and G. A. Fuller, Monthly Not. Roy. Astron. Soc. 423, 647 (2012).
- 8. *V. A. Samodurov and S. V. Logvinenko*, Astron. Rep. **45**, 339 (2001).
- 9. R. Barvanis and S. Deguchi, Astron. J. 97, 1089 (1979).
- 10. *R. Genzel and D. Downes*, Astron. and Astrophys. **61**, 117 (1979).
- 11. N. A. Silant'ev, E. E. Lekht, J. E. Mendosa-Torres, and A. M. Tolmachev, Astron. Letters 28, 217 (2002).
- 12. Н. Т. Ашимбаева, В. В. Краснов, Е. Е. Лехт, М. И. Пащенко, Г. И. Рудницкий, А. М. Толмачев, Астрон. журн. 97, 18 (2020).
- П. Колом, Н. Т. Ашимбаева, Е. Е. Лехт, М. И. Пащенко, Г. М. Рудницкий, А. М. Толмачев, Астрон. журн. 98, 50 (2021).

# КІС 2142183 — КАНДИДАТ В ЗВЕЗДЫ ТИПА FK Com

© 2022 г. И. С. Саванов^{1, *}, Е. С. Дмитриенко², С. Дзян^{3, 4}, Х. Ванг^{3, 4}, М. Е. Сачков¹, А. С. Шугаров¹, В. Б. Пузин¹

¹ Институт астрономии Российской академии наук, Москва, Россия ² Московский государственный университет им. М.В. Ломоносова, Государственный астрономический институт им. П.К. Штернберга, Москва, Россия ³ Национальная обсерватория Китая, Китайская академия наук, Пекин, Китай ⁴ Университет Китайской академии наук, Пекин, Китай *E-mail: isavanov@inasan.ru Поступила в редакцию 21.09.2022 г. После доработки 20.10.2022 г.

По результатам анализа фотометрических наблюдений с космическим телескопом Кеплер исследована звезда КІС 2142183, которая ранее была отмечена, как быстро вращающийся гигант, обладающий вспышечной активностью. Нами выполнены оценки параметров запятненности S для КІС 2142183 (5–14% от площади всей видимой поверхности звезды) и дифференциального вращения звезды (величина параметра  $\Delta\Omega$  находится в пределах 0.022–0.068 рад/сут). КІС 2142183 обладает высокой вспышечной активностью: в литературе приведены сведения о 100 вспышках с энергией lg *E* в диапазоне от 34.8 до 36.3. Результаты исследования и имеющиеся в литературе данные позволяют считать КІС 2142183 вероятным кандидатом в звезды типа FK Com. Сделан вывод о достаточно хорошем согласии характеристик (вращение, вспышечная и пятенная активность) гигантов КІС 2142183 и ранее изученного кандидата КІС 6428626. Площадь пятен на поверхности обеих звезд-гигантов в абсолютной мере не просто существенно превосходит суммарную площадь пятен на Солнце, а больше площади всей видимой поверхности Солнца. Обе звезды обладают высокой вспышечной активностью.

*Ключевые слова:* звездная активность, поверхностные пятна, KIC 2142183 **DOI:** 10.31857/S0004629922120052

## 1. ВВЕДЕНИЕ

Звезды типа FK Com образуют крайне малочисленную группу одиночных быстровращающихся хромосферно активных звезд спектральных классов G–K. Кроме самого прототипа – звезды FK Com, к их числу в настоящее время относят еще лишь две звезды – ET Dra (BD+70959) и HD 199178. Несмотря на большой интерес к уточнению эволюционного статуса звезд типа FK Com (см., напр., обсуждение в работах [1, 2]) и установлению их возможной связи с переменными типа W UMa, за последние десятилетия достоверно не были выявлены другие звезды этого типа.

Проблемы изучения быстровращающихся одиночных гигантов поздних спектральных классов рассматриваются в работах [3, 4].

В серии наших предыдущих работ (обзор приведен в статье [2]) мы сделали попытку выявления новых кандидатов звезд типа FK Com по изучению их фотометрической переменности на основе данных архива наблюдений на космическом телескопе Кеплер. С этой целью по имеющимся литературным данным были выбраны объекты [2], параметры которых соответствуют звездам типа FK Com по температурному диапазону, ускорению силы тяжести и периоду вращения. Нами были сделаны оценки параметров запятненности и дифференциального вращения этих объектов. Были найдены положения доминирующей активной области (долготы) на поверхности звезд и прослежена их эволюция со временем. Сводку основных сведений об этих и других изученных нами объектах – кандидатах в звезды типа FK Com, и ссылки на оригинальные статьи, опубликованные по этой тематике в последние годы, можно найти в работе [2].

Ранее мы уже рассматривали объекты из выборки звезд-гигантов в списке [5], которые обладают вспышками, быстрым вращением, и для которых не было найдено указаний на их двойственность. Можно предположить, что такие объекты могут быть вероятными кандидатами в звезды типа FK Com. Наше внимание привлекла

малоизученная звезда КІС 2142183. База астрономических данных SIMBAD содержит всего три ссылки на литературные источники. посвяшенные изучению этого объекта. Звезда характеризуется в каталоге 2MASS (J 19060250+3735442) как Rotationally variable Star, имеет яркость  $13.642^m$  в полосе пропускания аппаратуры телескопа Кеплер. Ее эффективная температура равна 4860 К. логарифм ускорения силы тяжести 3.051, период вращения  $P_{\text{rot}} = 3.62^d$  (см. также [6]). Согласно базе данных SIMBAD и данным архива наблюдений космического телескопа Кеплер, КІС 2142183 имеет радиус 4.624 R_☉. По результатам исследования [6] звезда обладает высокой вспышечной активностью: за время наблюдений на телескопе Кеплер было зарегистрировано 143 вспышки с энергией  $\lg E = 34.8 - 36.3$ .

# 2. АНАЛИЗ ФОТОМЕТРИЧЕСКИХ ДАННЫХ ДЛЯ КІС 2142183

Мы провели анализ всех имеющихся для КІС 2142183 данных в архиве космического телескопа Кеплер (17 сетов наблюдений). Их обработка была аналогична примененной в наших предыдущих работах [2]. Первоначально мы проанализировали данные каждого из 17 сетов. Для примера, на рис. 1 и 2 представлены кривые блеска КІС 2142183, соответствующие им спектры мощности и фазовые диаграммы для наблюдений в девяти и восьми сетах соответственно. Хорошо заметны периодическая модуляция блеска, обладающая заметной переменностью амплитуды, а также многочисленные вспышки. На построенных нами по набору для каждого сета спектрах мощности имеются пики, соответствующие величине периода вращения звезды  $P_{\rm rot}$  на широте, на которой в данный интервал наблюдений находилась доминирующая группа пятен. Было найдено, что соответствующие максимальные величины *Р* меняются от 3.544^{*d*} до 3.675^{*d*} (среднее значение 3.614^{*d*}) и находятся в согласии с оценками, имеющимися в литературе: 3.637^d [5] и 3.62^d [6]. Амплитуда переменности блеска лежит в пределах 6-14% от уровня среднего блеска звезды. Данные на рис. 1 и 2 хорошо иллюстрируют высокий уровень активности звезды.

При дальнейшем анализе нами было отобрано в совокупности 64 794 единичных измерений за период наблюдений около 3.9 лет. Для каждого интервала наблюдений соответствующие измерения были нормированы на среднее значение, все данные были объединены в единый массив (рис. 3, вверху). Рассчитанный спектр мощности (рис. 3, средняя и нижняя диаграммы) характеризуется набором пиков, в том числе изолированным пиком с периодом 3.637^{*d*}, совпадающим с найденным в работе [5].

Рассчитанный амплитудный спектр мощности (см. нижнюю панель рис. 1 и 2, содержащую главный пик) свидетельствует о достаточно сложном характере изменений кривых блеска звезды, действительно присушем звездам с врашательной модуляцией блеска. Как мы указывали ранее (например, в работе [7]), происхождение каждого из этих пиков может быть связано с наличием пятен (или групп пятен), расположенных на различных широтах звезды, которая обладает дифференциальным вращением. При этом изменения периодов переменности блеска могут быть обусловлены изменениями и эволюцией (появлением и исчезновением) активных областей, лежащих на различных широтах на поверхности звезды. Значения периодов, относящихся к двум доминирующим пикам на периодограммах, в порядке убывания соответствующих им амплитуд изменений

блеска равны  $P_1 = 3.637^d$  и  $P_2 = 3.500^d$ . Величина погрешности определения периодов лежит в интервале  $0.001-0.005^d$ . Период, относящийся к максимальной амплитуде ( $P_1$ ), интерпретируется нами как период вращения звезды на широте, соответствующей расположению наибольшего холодного пятна (активной области).

Как и в работе [8], мы выполнили оценку параметра  $A_1 = abs(P_2 - P_1)/P_{max}$ ,  $P_{max} = max(P_1, P_2)$ , характеризующего дифференциальное вращение звезды. Аналогично можно определить  $A_2 = abs(P_2 - P_1)/P_{min}$ ,  $P_{min} = min(P_1, P_2)$ .

Величины  $A_1$  и  $A_2$  фактически характеризуют верхнюю и нижнюю границы величины параметра дифференциального вращения звезды  $\Delta\Omega$  и составляют 0.0377 и 0.0391 соответственно. Они превосходят величину A = 0.01, рассматриваемую в [8] как предел обнаружения.

Выполненная нами оценка параметров дифференциального вращения звезды  $\Delta \Omega =$ = 0.068 рад/сут (т.е. различие угловых скоростей вращения на экваторе и на полюсе) позволила сравнить полученные данные с опубликованными в работе [8], содержащими определения параметров дифференциального вращения 12300 звезд. Символы на рис. 4 представляют данные для исследуемой в настоящей работе звезды КІС 2142183, для KIC 5428626 [13], а также для объектов, рассматриваемых ранее нами в качестве других кандидатов в звезды типа FK Com (см. [9, 10]). На рис. 4 приведены эмпирическая зависимость из работы [11] (пунктирная линия) и зависимости согласно теоретическим предсказаниям из статьи [12] (сплошные линии). Для КІС 2142183 полученный результат свидетельствует об очень хорошем согласии с данными нашего предыдущего исследования [9] и с результатами для



**Рис. 1.** Слева – кривые блеска для KIC 2142183, в центре – спектры мощности переменности блеска, справа – фазовые диаграммы переменности блеска (горизонтальные линии характеризуют величину амплитуды переменности блеска). Данные приведены для наблюдений в 1–9 сетах.



Рис. 2. То же, что на рис. 1, для наблюдений в 10-17 сетах.



**Рис. 3.** Верхний ряд: кривая блеска KIC 2142183 (по оси абсцисс – время в сутках), в середине – спектр мощности переменности блеска в интервале периодов 0–6^d, внизу – спектр мощности переменности блеска в интервале периодов 3.4–3.8^d.

КІС 5428626 [13]. Все эти величины  $\Delta\Omega$  выше, чем были получены для объектов, изученных нами ранее [10] (звезды, подобные HD 199178). При этом для всех данных имеется согласие с результатами для 12 300 звезд из [8] и с теоретической зависимостью.

Кроме того, для КІС 2142183 нами было определено так называемое время запаздывания P(LT), когда области на экваторе вновь сравниваются с отстающими или опережающими их активными областями на другой широте. Оценки величин P(LT) были получены из анализа спектров мощности изменений амплитуд переменности кривых блеска звезд. Мы обратили внимание на два пика с величинами P(LT) в 120^d и 280^d. Им соответствуют величины  $\Delta\Omega$ , равные 0.52 и 0.22 рад/сут, соответствующий диапазон изменения параметра на рис. 4 обозначен вертикальной жирной сплошной линей. Следует отметить, что все указанные выше величины приведены как оценки и могут рассматриваться в качестве предельных, поскольку мы не знаем, на какой широте расположены активные области, вызывающие вращательную модуляцию блеска звезд.

Запятненность S поверхности звезды была найдена с помощью методики, широко используемой в наших предыдущих исследованиях [2]. Параметр S определяется как отношение площади всех пятен на поверхности звезды к площади всей ее видимой поверхности. Наша оценка показала, что величина параметра S для KIC 2142183 достаточно велика и находится в пределах от 5 до 14% (точность определения менее 0.1%).



**Рис. 4.** Зависимость параметра дифференциального вращения  $\Delta\Omega$  от эффективной температуры звезды. Крупный кружок – данные для KIC 2142183, маленькие кружки и ромбы – данные из работ [9, 10] соответственно. Квадрат – данные для KIC 5428626 ([13]). Светлые кружки – данные [8] для 12 300 звезд. Эмпирическая зависимость из [11] представлена пунктирной линией, теоретические предсказания из [12] показаны сплошными линиями, вертикальной сплошной линией обозначен диапазон изменений параметра  $\Delta\Omega$ , найденного нами для KIC 2142183 по оценкам диапазона изменений параметра  $\Delta\Omega$ .

Кроме того, согласно обновленным данным архива телескопа Кеплер, принимая оценку радиуса звезды 4.624  $R_{\odot}$ , мы получили величину A площади пятен на поверхности звезды в абсолютной мере (в миллионных долях видимой полусферы Солнца, м.д.п.). Если площадь большой группы пятен на Солнце может составлять 1—2 тысячи м.д.п., то площадь пятен на поверхности КІС 2142183 в различные интервалы наблюдений многократно превосходит ее и находится в пределах от  $7.3 \times 10^5$  до  $2.5 \times 10^6$  м.д.п.

# 3. ВСПЫШЕЧНАЯ АКТИВНОСТЬ

Каталог вспышек [6], зарегистрированных основной миссией Кеплер, включает сведения о 162262 вспышках для 3420 звезд. Тщательный анализ, проведенный авторами каталога, позво-



Рис. 5. Верхний ряд, слева – изменения вспышечной активности объекта (величин lg E) в течение наблюдений на кос-

мическом телескопе Кеплер (по оси абсцисс – время в сутках); справа – фазовая кривая для  $P_{\text{rot}} = 3.637^d$ , построенная по этим данным. Нижний ряд – гистограммы распределения фаз (слева), соответствующих вспышкам, и величин lg *E* (справа).

лил выявить проблемы, связанные с наличием в такого рода каталогах различных ложных сигналов и артефактов. Одним из удивительнейших открытий, сделанных на основе данных космического телескопа Кеплер, является обнаружение звездных супервспышек с энергией от 10³³ до 10³⁸ эрг. В связи с супервспышками, зарегистрированными миссией Кеплер. следует отметить. что механизм, способный обеспечить магнитную энергию, достаточную для появления столь мощных явлений на звездах-гигантах, предложен в работе Кацовой и др. [14]. Несмотря на то что рассмотренные в данной работе сильные вспышки происходят на гигантах, вращающихся медленнее, чем звезды типа FK Com, возможно, высказанные в этой работе идеи смогут прояснить природу активности этих объектов.

Другое привлекающее внимание обстоятельство состоит в выделении в работе [6] группы звезд гигантов, обладающих вспышечной активностью (см. [6], табл. 3). Процессы генерации магнитных полей в оболочках звезд гигантов и происхождение вспышечной активности звезд высокой светимости до конца не ясны и требуют дальнейших всесторонних исследований. Наличие второго, в том числе, активного компонента в двойной системе не всегда может дать объяснение наблюдаемым вспышкам.

В работе [5] из первоначальной выборки 706 звезд гигантов-кандидатов выделили в окончательный список 61 объект, значительную долю которых, возможно, составляют двойные системы. В настоящее время имеется подтверждение двойственности для 11 из них. Авторы цитируемой работы рассматривают аргументы в пользу предположения о едином механизме генерации вспышек для звезд гигантов и карликов. Как было отмечено выше, наше внимание привлекли объекты (включая KIC 2142183), входящие в выборки гигантов в списке [5], для которых не было указаний на их двойственность. Очевидно, что такие объекты могут быть рассмотрены как новые кандидаты в звезды типа FK Com.

Как в каталоге [6], так и в [5] содержатся данные о вспышечной активности КІС 2142183. Всего представлены сведения о 100 вспышках с энергией lg *E* в диапазоне от 34.8 до 36.3. На рис. 5 приведены данные об изменении вспышечной активности объекта в течение периода наблюдений на космическом телескопе Кеплер, и фазовая кривая, построенная по этим данным (верхний ряд, слева и справа соответственно). В первые 400 и последние 300 суток наблюдений звезда проявляла меньшую вспышечную активность. Спектр мощности изменений величин  $\lg E$  со временем характеризуется значительной зашумленностью, на нем не наблюдается ярко выраженных пиков, в частности, отсутствует пик, соответствующий периоду вращения звезды P_{rot}. Однако можно высказать предположение о большем числе вспышек, приходящемся на интервал фаз 0.6-1.0. Об этом же свидетельствует и гистограмма распределения фаз, на которых происходили вспышки (рис. 5, нижний ряд, слева).

Отметим, что можно предположить, что распределение энергии вспышек не носит симметричный вид (рис. 5, нижний ряд, справа). Распределение величин  $\lg E$  имеет продолжение вплоть до величины 36.4, подобный характер имеет большинство гистограмм для объектов, изученных в [5].

#### 4. СОПОСТАВЛЕНИЕ АКТИВНОСТИ ЗВЕЗД КІС 2142183 И КІС 6428626

Ранее в [13] по результатам анализа фотометрических наблюдений на космическом телескопе Кеплер была исследована звезда КІС 6428626, которая ранее, как и КІС 2142183, была отмечена как быстро вращающийся гигант, обладающий вспышечной активностью. Нами были выполнены оценки параметров запятненности S для КІС 6428626 (7-12% от площади всей видимой поверхности звезды) и дифференциального вращения звезды (величина параметра  $\Delta\Omega$  составляет 0.016 рад/сут). Были найдены положения доминирующей активной области (долготы) на поверхности звезды и прослежена их эволюция со временем — возможные циклические изменения положения с характерным временем около 400 сут. Ранее аналогичный вывод о существовании циклических изменений положений активных областей был сделан для звезды FK Com – прототипа исследуемых нами звезд. КІС 6428626 обладает высокой вспышечной активностью: в литературе приведены сведения о 143 вспышках с энергией  $\lg E$  в диапазоне от 34.8 до 37.4. Наш анализ и имеющиеся в литературе данные для КІС 6428626 позволили рассмотреть возможность ее принадлежности к группе звезд типа FK Com.

Обе исследуемые звезды (КІС 6428626 и КІС 2142183) являются быстро вращающимися гигантами с величинами периодов фотометрической переменности блеска 2.5–2.6^{*d*} и 3.5–3.7^{*d*} соответственно.

Площадь пятен на поверхности обеих звездгигантов в абсолютной мере существенно превосходит площадь пятен на Солнце, более того, эта величина сопоставима или даже больше площади всей видимой поверхности Солнца. Для KIC 2142183 величина параметра *A* в различные интервалы наблюдений находится в пределах от  $7.3 \times 10^5$  до  $2.5 \times 10^6$  м.д.п., а для KIC 6428626 составляет (1.0-2.6)  $\times 10^6$  м.д.п.

Обе звезды обладают высокой вспышечной активностью: в литературе приведены сведения о 143 вспышках с энергией  $\lg E$  в диапазоне от 34.8—37.4 для KIC 6428626 и о 100 вспышках с  $\lg E$  в диапазоне от 34.8—36.3 для KIC 2142183.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

Таким образом, можно сделать вывод о достаточно хорошем согласии характеристик (вращение, вспышечная и пятенная активность) гигантов KIC 6428626 и KIC 2142183.

#### 5. ЗАКЛЮЧЕНИЕ

По результатам анализа фотометрических наблюдений на космическом телескопе Кеплер нами была изучена звезда КІС 2142183, которая в [5] рассмотрена как вспыхивающий быстро вращающийся гигант (100 вспышек, период вращения

 $P_{\text{rot}} = 3.6^d$ ). С учетом результатов нашего исследования и имеющихся в литературе данных КІС 2142183 может быть причислена к числу кандидатов для установления принадлежности к группе звезд типа FK Com. Наш анализ подтвердил данные о быстром вращении и высокой вспышечной активности КІС 2142183. Поскольку блеск звезды в полосе *K* составляет 13.642^{*m*}, наземные спектральные наблюдения могут быть проведены только на телескопе с большой апертурой (например, не менее 4 м). Если в результате дальнейших исследований звезда будет отнесена к группе звезд типа FK Com, то она, как и FK Com [15], станет перспективным объектом наблюдений в программе международной космической обсерватории Спектр-УФ [16].

В настоящей работе использовались сведения из астрономической базы данных SIMBAD и архива космического телескопа Кеплер.

#### ФИНАНСИРОВАНИЕ

Исследование выполнено при поддержке гранта РФФИ и ГФЕН в рамках проекта № 21-52-53022, NSFC-RFBR-12111530005.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. D. Costa, B. L. Canto Martins, J. P. Bravo, F. Paz-Chinchón, et al., Astrophys. J. Letters 807, id. L21 (2015).
- 2. S. Savanov, Astrophys. Bull. 74, 288 (2019).
- 3. M. H. Pinsonneault, Y. Elsworth, C. Epstein, S. Hekker, et al., Astrophys. J. Suppl. 215, id. 19 (2014).
- 4. J. Tayar, T. Ceillier, D. A. Garc13053'f a-Hernández, N. W. Troup, et al., Astrophys. J. 807, id. 82 (2015).
- K. Oláh, Z. Kővári, M. N. Günther, K. Vida, P. Gaulme, B. Seli, and A. Pál, Astron. and Astrophys. 647, id. A62 (2021).
- 6. *H. Yang and J. Liu*, Astrophys. J. Suppl. **241**, id. 29 (2019).
- 7. V. B. Puzin, I. S. Savanov, E. S. Dmitrienko, I. I. Romanyuk, E. A. Semenko, I. A. Yakunin, and A. Yu. Burdanov, Astrophys. Bull. 71, 189 (2016).

# 1244

- 8. *T. Reinhold and L. Gizon*, Astron. and Astrophys. **583**, id. A65 (2015).
- 9. V. B. Puzin, I. S. Savanov, and E. S. Dmitrienko, Astron. Rep. 58, 471 (2014).
- 10. V. B. Puzin, I. S. Savanov and E. S. Dmitrienko, Astron. Rep. 61, 693 (2017).
- 11. J. R. Barnes, A. Collier Cameron, J.-F. Donati, D. J. James, S. C. Marsden, and P. Petit, Monthly Not. Roy. Astron. Soc. 357, L1 (2005).
- 12. *M. Küker and G. Rüdiger*, Astron. Nachricht. **332**, 933 (2011).
- 13. *I. S. Savanov and E. S. Dmitrienko*, Astrophys. Bull. **77**, 150 (2022).
- 14. M. M. Katsova, L. L. Kitchatinov, D. Moss, K. Oláh, and D. D. Sokoloff, Astron. Rep. 62, 513 (2018).
- 15. T. R. Ayres, V. Kashyap, S. Saar, D. Huenemoerder, et al., Astrophys. J. Suppl. 223, id. 5 (2016).
- 16. B. Shustov, A. Gomex de Castro, M. Sachkov, J. Vallego, et al., Astrophys. Space Sci. 363, 4 (2018).

# ТВЕРДОТЕЛЬНЫЙ ВОЛОКОННЫЙ ЛАЗЕР ЖЕЛТОГО СПЕКТРАЛЬНОГО ДИАПАЗОНА НА КРАСИТЕЛЕ РОДАМИНЕ 6Ж С ВОЛОКОННЫМ ОПТИЧЕСКИМ УСИЛИТЕЛЕМ ДЛЯ ФОРМИРОВАНИЯ НАТРИЕВЫХ "ЛАЗЕРНЫХ ОПОРНЫХ ЗВЕЗД"

© 2022 г. В. Е. Поляков¹, А. В. Емельянов^{1,*}, В. В. Широбоков¹, А. А. Закутаев¹

¹ Федеральное государственное бюджетное образовательное учреждение высшего образования "Военно-космическая академия им. А.Ф. Можайского" Министерства обороны РФ, Санкт-Петербург, Россия

> **E-mail: slash1@inbox.ru* Поступила в редакцию 19.07.2022 г. После доработки 09.10.2022 г. Принята к публикации 20.10.2022 г.

Предложена активная среда для волоконных лазеров, сердцевина которой содержит эпоксидный олигомер, структурно-активированный молекулами органических красителей, и отвердитель. В качестве отвердителя используется мелкодисперсное стекло с химически активированной реакционно-способными группами поверхностью при следующем соотношении ингредиентов, в массовых частях (масс. ч.): органический краситель 0.0075–0.1; эпоксидный олигомер 8.0–31.5; мелкодисперсное стекло 68.4925–91.9. Технический результат заключается в обеспечении возможности регулирования величины показателя преломления сердцевины активного оптического волокна и, как следствие, подстройки длины волны излучения лазера до значения 589.6 нм для формирования натриевых "лазерных опорных звезд".

*Ключевые слова:* эпоксидный олигомер, органический краситель, мелкодисперсное стекло, показатель преломления, натриевая "лазерная опорная звезда"

DOI: 10.31857/S0004629922120040

# 1. ВВЕДЕНИЕ

В настоящее время на земной орбите находится множество объектов как естественного, так и техногенного происхождения. По различным оценкам их суммарное количество превышает 40 тысяч единиц. В связи с этим задача мониторинга околоземного космического пространства (наблюдение, идентификация и каталогизация малоразмерных малозаметных объектов) приобретает особую актуальность как с позиций защиты особо важных отечественных космических объектов от опасных сближений, так и с позиций экологической безопасности.

При наблюдении удаленных объектов в различных областях околоземного космического пространства наземными телескопами существует ряд технических ограничений, в частности, недостаточные разрешающая и проницающая способность телескопов, в первую очередь из-за влияния турбулентной атмосферы на принимаемый ими оптический сигнал. Этот факт вызвал большой интерес к разработке адаптивных оптических систем для телескопов с целью повышения качества получаемых изображений космических объектов. Одним из способов, позволяющих учесть эти искажения, является создание искусственной "лазерной опорной звезды" в мезосфере – в натриевой оболочке толщиной около 10 км на высоте 90–100 км, окружающей Землю. Атомы естественного натрия могут быть возбуждены посредством воздействия лазерного излучения, настроенного на линию поглощения натрия  $D_2$ (длина волны 589.6 нм), и излучать на той же длине волны в желтом диапазоне спектра. Естественная ширина линии поглощения  $D_2$  определяется тепловым движением атомов натрия в атмосфере и сверхтонкой структурой самой линии  $D_2$ , что составляет частоту около 3 ГГц [1].

Для создания натриевой "лазерной опорной звезды" могут использоваться импульсные и непрерывные лазеры. При этом в область наблюдения направляют мощный луч от лазера и создают опорный источник света [2]. Свет от этого источника, прошедший на обратном пути к Земле через слои атмосферы, содержит информацию об оптических искажениях, имеющих место в данный момент времени. Реконструированные таким образом искажения улавливаются специальным сенсором (датчиком волнового фронта) и компенсируются корректором, в качестве которого часто используется деформируемое зеркало [3].

При этом к лазерному излучению предъявляется ряд повышенных требований по стабильности, мощности и т.д., что в настоящее время невозможно обеспечить в связи со слабым уровнем развития отечественных технологий изготовления лазерных устройств желтого спектрального диапазона. Необходимость разрешения указанного выше противоречия обусловливает новизну и актуальность настоящей работы.

# 2. АНАЛИЗ ПОДХОДОВ К РЕАЛИЗАЦИИ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ АКТИВНЫХ ОПТИЧЕСКИХ ВОЛОКОН ПРИ СОЗДАНИИ ОТЕЧЕСТВЕННЫХ И ЗАРУБЕЖНЫХ НАТРИЕВЫХ ЛАЗЕРОВ

В настоящее время для создания натриевых звезд часто используют натриевые лазеры, которые примерно в 10 раз дороже равных по мощности рэлеевских лазеров, и к тому же недостаточно надежны. Для этих целей ранее использовались жидкостные лазеры на красителях, в которых излучающая среда содержит этанольный раствор органического красителя родамина 6Ж, оптически накачиваемый излучением с меньшей длиной волны от более мощного лазера. Такие лазеры весьма "капризны" и нуждаются в квалифицированном обслуживании [4, 5].

Известен твердотельный лазер желтого спектрального диапазона, включающий в себя неодимовый лазер накачки, удвоитель частоты в видимый диапазон и перестраиваемый лазер на органическом красителе в твердотельной матрице на основе полиметилметакрилата с длиной волны генерации, соответствующей желтому спектральному диапазону [6]. Подстройка дисперсионного элемента резонатора позволяет точно настроить длину волны лазера на резонансное возбуждение атомов натрия при создании адаптивных оптических систем телескопов с коррекцией атмосферных искажений по искусственной "лазерной опорной звезды". В этом лазере органический краситель родамин 6Ж в виде молекулярного раствора внедрен в полиметилметакрилат, который со временем разлагается и подлежит замене. Кроме этого, твердотельная матрица на основе полиметилметакрилата имеет низкую теплопроводность и низкую лучевую прочность и не составляет альтернативу жидкостному лазеру на красителях.

Кроме того, известен твердотельный лазер желтого спектрального диапазона, выполненный на неодимовом лазере накачки и преобразователе частоты излучения на вынужденном комбинационном рассеянии (ВКР) и удвоителе частоты, обеспечивающий излучение в видимом диапазоне длин волн. Комбинация материалов лазера накачки и ВКР-преобразователя подбирается таким образом. чтобы попасть на требуемую частоту. В частности, неодимовый кристалл выполнен на кристалле гадолиний-галлиевого граната с ионами  $Nd^{3+}$ , а BKP-преобразователь — на кристалле вольфрамата бария. Преобразователь на вынужденном комбинационном рассеянии и удвоитель частоты могут быть помещены в резонатор неолимового лазера. Предлагаемый лазер по сравнению с аналогами позволяет получать излучение на длине волны, соответствующей резонансному переходу атомов натрия с точностью до 0.1 см⁻¹, а также обладает меньшими пороговыми характеристиками и более высоким коэффициентом полезного действия (КПД) [7].

Вместе с тем число исследований за рубежом. направленных на разработку лазеров в желтом диапазоне длин волн, в последнее время значительно увеличилось. Так. группа Джемини (США) участвует в финансировании технологической программы по разработке высоконадежных твердотельных натриевых лазеров [8]. Научно-исследовательская лаборатория энергетического управления ВВС США совместно с предприятиями промышленности участвует в проекте по созданию натриевого лазера мошностью 75 Вт и более. В 2016 г. в обсерватории Серро-Параналь в Чили были проведены первые наблюдения с использованием четырех мощных волоконно-оптических лазеров, которые составляют основную часть системы телескопа VLT. Устройство Four Laser Guide Star Facility (4LGSF) выстреливает в небо четырьмя 22-ваттными лазерными лучами. В результате в мезосфере появляются 4 искусственные звезды, с помощью которых система адаптивной оптики способна компенсировать в реальном времени расплывание изображений под воздействием турбулентных потоков воздуха. Волоконно-оптическая рамановская лазерная технология, на которой базируется лазерная система 4LGSF, узлы оптических труб, которые расширяют лазерные пучки и направляют их в нужную точку неба, волоконные усилители большой мощности, пакет управляющих системных программ в совокупности в настоящее время представляют собой самую совершенную систему из действующих систем адаптивной оптики. Такие лазеры приобретены и для обсерватории Кека, их также планируется установить в будущем на телескопах обсерватории Джемини [8]. При всей привлекательности такой системы она не лишена недостатков: высокая стоимость системы и необходимость высококвалифицированного обслуживания уменьшают возможности ее серийного производства.

Более доступным оказался лазер третьего поколения — Toptika Photonics AG, который используется на основных оптических телескопах, содержащий полупроводниковый лазер — мощный диод, согласованный с оптическим волокном и рамановским волоконным усилителем.

### 3. ПРЕДЛОЖЕНИЯ ПО ИСПОЛЬЗОВАНИЮ ВОЛОКОННЫХ ЛАЗЕРОВ СОВМЕСТНО С ВОЛОКОННО-ОПТИЧЕСКИМ УСИЛИТЕЛЕМ НА ОСНОВЕ АКТИВНЫХ ПОЛИМЕРНЫХ ВОЛОКОН

В настоящей работе приведены результаты исследований, направленные на создание альтернативных волоконных твердотельных лазеров с волоконно-оптическим усилителем на основе активных полимерных волокон, сердцевина которых содержит эпоксидный олигомер (реактопласт), структурно-активированный молекулами органических красителей (в частности, родамином 6Ж), и отвердитель – мелкодисперсное стекло, поверхность которого активирована реакционно-способными группами.

Волоконные лазеры обладают множеством преимуществ:

 – значительное отношение площади резонатора к его объему, что обеспечивает качественное охлаждение;

 – высокое оптическое качество излучения, так как генерация происходит прямо в волокне (в сердцевине);

отсутствие необходимости юстировки резонатора;

 высокий КПД оптической накачки при использовании полупроводниковых лазеров и светодиодов;

 низкие массогабаритные характеристики волоконных лазеров по сравнению с твердотельными и газовыми лазерами, что обеспечивает их мобильность.

Использование волоконных лазеров (генераторов) вместе с волоконными усилителями позволяет управлять суммарной мощностью излучения в широком диапазоне. Принцип работы оптических волоконных усилителей основан на явлении вынужденной эмиссии в волокнах усиливающей среды, которая накачивается с помощью полупроводникового диодного лазера, причем почти во всех случаях излучение накачки проходит через сердцевину усилителя вместе с сигналом от волоконного лазера, который будет усилен.

По своей структуре сердцевина активного волокна на основе активированных красителями эпоксидных и циклоалифатических олигомеров и отвержденная мелкодисперсными стеклянными порошками представляет твердотельную статистически пространственную сетку, в которую квазирегулярно включены генерирующие центры (молекулы органических красителей). По своему физическому состоянию сердцевина является аморфным веществом. Использование в качестве отвердителей мелкодисперсных стекол с активированной реакционно-способными группами поверхностью значительно увеличивает теплопроводность, лучевую прочность и позволятт регулировать величину показателя преломления сердцевины активного полимерного волокна.

Ллина активного волокна может лостигать лесятки метров в одном волоконном лазере и в одном волоконном усилителе [9]. Оптический резонатор волоконного лазера содержит брэгговские решетки, а источник накачки – полупроводниковый лазер, что обеспечит высокий суммарный КПД накачки около 0.25-0.35. Оценочные расчеты показали, что мощность излучения в предлагаемом волоконном лазере на основе реактопластов с красителем родамином 6Ж (желтый диапазон длин волн с несущей длиной волны 585 нм и квантовым выходом люминесценции 0.9) совместно с однокаскадным волоконным усилителем может достигать 100 Вт и более (без деструкции красителя). Увеличения мощности излучения можно достичь за счет суммирования излучения нескольких волоконных лазеров, а также за счет использования нескольких (двух, трех и т.д.) каскадов оптических волоконных усилителей. Дисперсионный элемент резонатора волоконного лазера для точной настройки длины излучения лазера на резонансное возбуждение атомов натрия (589.6 нм) может быть выполнен также по технологии брэгговских решеток.

Перечисленные преимущества предлагаемого волоконного лазера и волоконного усилителя на реактопластах с красителями перед лазерами на термопластах [6] достигнуты за счет применения инновационной технологии изготовления сердцевины активного волокна. Основные технологические операции заключаются в следующем: молекулы органических красителей химически подшивают к макромолекуле эпоксидного или циклоалифатического олигомера в вязко-текучем агрегатном состоянии (обеспечивается более сильная химическая связь по сравнению с молекулярными растворами), что препятствует деградации красителей при высоких уровнях накачки.

Активные среды в вязко-текучем состоянии получают путем взаимодействия красителя соответствующего ряда с незамещенными амино- и карбоксильными группами с эпоксидным олигомером при молярном соотношении 1:(1-5) в течение 2—48 ч при температуре  $60-150^{\circ}$ С [10].

Характерной особенностью синтезированных таким образом активных сред является высокая степень концентрации генерирующих центров,

которую определяют расчетным путем, т.к. масса эпоксиолигомера и органического красителя известна. Для приготовления сердцевины активной среды с нужной концентрацией ее предварительно рассчитывали из соотношения

$$C_{laz} = K_{\lambda} M / \sigma_{\lambda} N^{A},$$

где  $C_{laz}$  — необходимая концентрация, в масс. ч.;  $K_{\lambda}$  — коэффициент поглощения органического красителя в эпоксиолигомерной матрице;  $\sigma_{\lambda}$  в единицах [ $M^2$ ] — сечение поглощения органического красителя;  $N^A = 6.02 \times 10^{23}$  моль⁻¹ — число Авогадро; M — молекулярная масса модифицированного красителя. Затем рассчитали навеску концентрата A для приготовления лазерной концентрации, учитывая, что

$$A = HC_{laz}/C,$$

где H [г] — количество композиции, которое необходимо приготовить; C — концентрация концентрата; A — навеска концентрата.

Массу неактивированного олигомера *B* определяли как B = H - A. Активную среду приготовляли путем введения рассчитанной навески концентрата в неактивированный олигомер. Оптимальные концентрации модифицированных красителей в эпоксиолигомерных матрицах составляли величину  $10^{-6} - 10^{-2}$  г см⁻³.

В технологии эпоксидных олигомеров для отверждения могут быть использованы отвердители кислотного и щелочного типов. Отвердители щелочного типа — это основания Льюиса, неорганические основания, первичные и вторичные амины и амиды. Отвердителями кислотного типа являются ангидриды карбоновых кислот, двухосновные органические кислоты, фенолы и кислоты Льюиса. Наиболее распространенными отвердителями для эпоксидных олигомеров являются ангидриды. Процесс этот сложен из-за протекания одновременно многих химических реакций, и до сих пор не существует единого описания механизма отверждения [11].

При использовании в качестве отвердителей аминов, обладающих большей основностью, чем красители, происходит практически полное разрушение "солевой" формы красителя. По мере расходования аминов в процессе отверждения "солевая" форма красителей может частично восстанавливаться.

Использование ангидридов поликарбоновых кислот для отверждения эпоксиолигомеров позволяет сохранять "солевую" форму красителя.

Красители, находящиеся не в "солевой" форме, могут участвовать в других реакциях, приводящих к их разрушению. Например, кумарины могут присоединять по двойной связи ненасыщенные соединения — ангидриды. В этой связи выбор отвердителя в случае полимеризации активированных красителями эпоксиолигомеров является принципиальным вопросом. Исходя из указанных предпосылок был сделан вывод, что структурно-активированные олигомеры, содержащие в своем составе красители не в "солевой" форме, целесообразно полимеризовать отвердителями аминного типа, а олигомеры, содержащие красители в "солевой" форме, — ангидридами поликарбоновых кислот [12].

Оптимизация состава полимерной матрицы в условиях полимеризации позволила получить активные среды на базе эпоксиполимеров, в которых отсутствуют химические преврашения красителей, связанные с разрушением хромофорной группы. Процессы полимеризации для структурно-активированных эпоксиолигомеров осуществлялись путем нагревания композиции, причем количество отвердителя определялось из условий стехиометрии с учетом количества эпоксидных групп. Так, например, при полимеризации активированного красителем родамином 6Ж эпоксиолигомера марки ЭД-24 количество отвердителя рассчитывалось с использованием стехиометрических коэффициентов следующим образом:  $l_{steh} = 23.5 \times 3.86 = 90.71 = n_e \times 3.86$ , где  $n_e - 1000$ число эпоксидных групп, содержащееся в олигомере марки ЭД-24. Отсюда для обеспечения процесса полимеризации необходимо было взять на 100 массовых частей олигомера 72.67 массовых частей отвердителя (гексогидрофталевого ангидрида). Вместе с тем использование такой активной среды в качестве сердцевины волоконных лазеров связано со сложностью управления показателем преломления сердцевины и оболочки.

# 4. ОПТИМИЗАЦИЯ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ АКТИВНЫХ ОПТИЧЕСКИХ ВОЛОКОН С СЕРДЦЕВИНОЙ НА ОСНОВЕ ЭПОКСИДНЫХ И ЦИКЛОАЛИФАТИЧЕСКИХ ПОЛИМЕРОВ, СТРУКТУРНО-АКТИВИРОВАННЫХ РАЗЛИЧНЫМИ ОРГАНИЧЕСКИМИ КРАСИТЕЛЯМИ

В работе приведены результаты исследований, направленные на обеспечение возможности регулирования величины показателя преломления сердцевины активного волокна за счет уменьшения органической части ингредиентов сердцевины и замены ее неорганическими соединениями [13]. Предлагается, в частности, исключить органический отвердитель и использовать в качестве отвердителя мелкодисперсные стеклянные порошки с молекулярно-освоенной реакционноспособными группами поверхностью.

В этом случае отвердитель в виде мелкодисперсных порошков с активированной поверхностью является одновременно и наполнителем синтезируемой сердцевины активного волокна. Для получения наполненных полимеров с высокими физико-механическими и оптическими свойствами оптимальным вариантом является создание химической связи между наполнителем и олигомером.

В качестве стекол с активированной поверхностью целесообразно использовать стеклообразующие системы оксидов следующих составов:  $SiO_2-B_2O_3-BaO-Na_2O-K_2O-As_2O_3$ ;  $SiO_2-Al_2O_3$ или  $SiO_2-Li_2O$ .

Одним из важных требований, предъявляемых к составу стеклообразующих окислов, является обеспечение возможностей управления и выравнивания показателя преломления мелкодисперсного стекла и показателя преломления эпоксидного полимера. Показатель преломления эпоксидного полимера. Показатель преломления стекла регулируется за счет выбора концентрации окислов его ингредиентов. Например, для получений стекла с показателем преломления n = 1.501 необходимо взять (в мол. частях) SiO₂ – 72.6; B₂O₃ – 11.7; BaO – 2.1; Na₂O – 8.1; K₂O – 5.2; As₂O₃ – 0.3 или 40 Mg₂O и 60 P₂O₅; 17.6 Al₂O₃ и 82.4 SiO₂; 20.4 Li₂O и 79.6 SiO₂.

Мелкодисперсный стеклянный порошок получают путем первоначального дробления в ступке, последующего размалывания в шаровой мельнице и просеивания через сито с размером ячейки 10 мкм. Удельная поверхность полученного таким образом стекла составляет величину 50– 100 см²/см³.

Поверхность полученного мелкодисперсного стекла осваивают (активируют) реакционноспособными группами: –СООН, –NH₂, –NH, –ОНТіСl₄, которые обеспечивают полимеризацию эпоксидных олигомеров. Количество мелкодисперсного стекла рассчитывают из условия получения необходимой удельной активности поверхности, обеспечивающей высокую степень полимеризации активированного красителями эпоксиолигомера.

Активацию поверхности мелкодисперсного стекла проводят следующим образом. Порошок мелкодисперсного стекла вакуумируют при температуре 200—450°С в течение 3—6 ч, а затем обрабатывают различными реагентами.

Для создания на поверхности групп  $=N_{-H}^{-H}$  и =N-H стекло обрабатывают газообразным аммиаком при *t* = 450°С в течение 8–10 ч. Для создания на поверхности групп –СООН мелкодисперсное стекло обрабатывают щавелевой кислотой в потоке азота при  $t = 180^{\circ}$ С в течение 6–8 ч. Для создания на поверхности подшитых групп – OHTiCl₄ стекло обрабатывают в потоке азота при  $t = 180^{\circ}$ С в течение 8–10 часов.

Избыток реагентов, физически адсорбированных на поверхности стекла, удаляют дополнительным продувом чистым азотом при температуре  $t = 100-200^{\circ}$ С в течение 2–3 ч.

Активации могут также подвергаться внутренние поверхности пор стеклянных пористых моноблоков [14]. Поверхность пористого стекла, освоенная (активированная) реакционноспособными группами –СООН, – $NH_2$ , ==NH, – $OHTiCl_4$ , обеспечивает полимеризацию эпоксидных олигомеров и выполняет функции отвердителей в составе ингредиентов сердцевины активных волокон на основе эпоксидных и циклоалифатических матриц.

Сердцевину на основе активированного красителями эпоксидного олигомера, отвержденного мелкодисперсным стеклом с активированной поверхностью, получают следующим образом. Предварительно получают структурно-активированный олигомер с большей концентрацией красителя. Полученный "концентрат" разбавляют неокрашенным олигомером до получения нужной концентрации. Затем рассчитывают количество отвердителя по стехиометрическим коэффициентам, исходя из количества эпоксидных групп в выбранном олигомере.

В отвердителе рассчитывают число реакционно-способных групп -СООН, -NH₂, ==NH, -OHTiCl₄ и т.п., ответственных за образование сетчатого полимера. Далее рассчитывают количество мелкодисперсного стеклянного порошка таким образом, чтобы удельная поверхность его позволила подшить необходимое количество реакционно-способных групп. Подшивают к рассчитанному количеству стекла реакционно-способные группы в зависимости от типа и "солевой" формы красителя, которым активирован эпоксидный или циклоалифатический олигомер. Для красителей в "солевой" форме поверхность активируют группами - COOH или - OHTiCL₄. Для красителей в не "солевой" форме аминогруппами – NH₂ или = NH. Стеклянный порошок с молекулярно-освоенной поверхностью смешивают со структурно-активированным олигомером. Полученную смесь ингредиентов интенсивно перемешивают и вакуумируют. После этого помещают в термостат, нагревают до 60-160°C и полимеризуют в течение 2-10 ч.

# 5. ОПИСАНИЕ ИННОВАЦИОННОЙ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ СЕРДЦЕВИНЫ ДЛЯ АКТИВНОГО ПОЛИМЕРНОГО ВОЛОКНА ТВЕРДОТЕЛЬНОГО ВОЛОКОННОГО ЛАЗЕРА И СЕРДЦЕВИНЫ ВОЛОКОННОГО УСИЛИТЕЛЯ НА ОСНОВЕ КРАСИТЕЛЯ РОДАМИНА 6Ж

Технология включает в себя следующие операции. В олигомер марки УП-612 добавляют краситель родамин 6Ж в молярном соотношении 1:(1-5), нагревают его до температуры 60–150°С и выдерживают 2–48 ч. В результате образуется концентрат, в котором родамин 6Ж химически подшит к макромолекуле олигомера следующим образом.

Полученный "концентрат" содержит 3.75 ×  $10^{-2}$  г (красителя)/г(олигомера). Затем путем подбора состава стеклообразующих окислов выбирают стекло с коэффициентом преломления, близким к коэффициенту преломления эпоксидного олигомера УП-612, у которого показатель преломления n = 1.501. Затем добавляют измельченное стекло, содержащее реакционно-способные группы –СООН. Полученную композицию вакуумируют при величине вакуума 0.1 бара в течение 30 мин при температуре 25°C [15].

ПРИМЕР 1. Для изготовления сердцевины активного волокна, содержащей 0.1 г родамина 6Ж и 8.0 г эпоксидного олигомера марки УП-612, берут навеску "концентрата" (концентрация  $C = 3.75 \times 10^{-2}$  г(красителя)/г(олигомера)), равную 2.7 г, и добавляют неокрашенный олигомер УП-612 в количестве 5.4 г. Затем путем подбора состава стеклообразующих окислов выбирают стекло с коэффициентом преломления, близким к коэффициенту преломления эпоксидного олигомера УП-612, у которого показатель преломления n = 1.501. В данном примере взято стекло с содержанием ингредиентов (в процентах)  $SiO_2$  – 72.6;  $B_2O_3 - 11.7$ ;  $Ba_2O - 2.1$ ;  $Na_2O - 8.1$ ;  $K_2O - 5.2$ ; As₂O₃ – 0.3; или 40 Mg₂O и 60 P₂O₅; 17.6 Al₂O₃ и 82.4 SiO₂; 20.4 Li₂O и 79.6 SiO₂. Коэффициент преломления стекла n = 1.502. Мелкодисперсный порошок получают путем первоначального дробления в ступке, последующего размалывания в шаровой мельнице и просеиванием через сито с размером ячейки 10 мкм. Удельная поверхность такого стекла составляет 100-200 см²/см³, что обеспечивает возможность подшивки необходимого количества реакционно-способных групп и высокую степень полимеризации активированного красителем эпоксиолигомера. Далее проводят химическую активацию поверхности стекла группами – СООН. Для этого стекло вакуумируют при давлении 0.1 бар и температуре 200°С в течение 3 ч. Затем через него пропускают ток азота с парами щавелевой кислоты при  $180^{\circ}$ С в течение 6—8 ч. После этого порошок стекла охлаждают до  $160^{\circ}$ С и пропускают через него чистый азот в течение 2—3 ч для удаления физически адсорбированной кислоты [16].

Для отверждения активированного красителем родамином 6Ж эпоксиолигомера марки УП-612 берут 91.9 г полученного стекла, смешивают с олигомером и размещают внутри полой кварцевой трубки (преформы) в вязко-текучем состоянии (трубка используется также как волновод накачки), вакуумируют, нагревают полученную композицию до 160°С и проводят отверждение при этой температуре в течение 5 ч. Таким образом формируют сердцевину волокна, которая представляет собой термореактивное высокомолекулярное эпоксиполимерное соединение, образующее по своей структуре статистически пространственную сетку, в которой квазирегулярно размещены молекулы красителя [16]. Внутренний диаметр трубки преформы (сердцевины) может иметь традиционные для полимерных оптических волокон размеры 50, 62.5, 120 и 980 мкм при внешнем диаметре преформы (волновода накачки) 490 и 1000 мкм. Абсолютный показатель преломления сердцевины можно всегда сделать несколько выше показателя преломления оболочки, изменяя количество и состав ингредиентов мелкодисперсного стекла (отвердителя).

В предлагаемом волоконном лазере резонатор выполнен в виде волоконных брэгговских решеток, которые формируются на поверхности сердцевины с использованием импульсного наносекундного ультрафиолетового лазера посредством освещения волокна через некоторую фазовую маску. Изготовление решеток показателя преломления основано на явлении фоточувствительности, которое заключается в изменении показателя преломления сердцевины волокна под действием УФ-излучения определенных длин волн. Как правило, волоконные брэгговские решетки показателя преломления представляют собой отрезок сердцевины волокна с модуляцией показателя преломления в световедущей части с периодом порядка половины длины волны распространяющегося излучения. Левая входная брэгговская решетка имеет коэффициент отражения на длине волны генерации, близкий к 1, а коэффициент отражения правой существенно ниже и определяется величиной усиления и оптических потерь излучения в активном волокне. Брэгговские решетки могут быть созданы как непосредственно в активном волокне, так и в отрезке фоточувствительного волокна, который склеивается с активным. В качестве источника накачки используется полупроводниковый лазер с оптоволоконным выходом с длиной волны излучения 532 нм (зеленый спектральный диапазон). Излучение накачки осуществляется через волновод накачки из



**Рис. 1.** Структурная схема волоконного твердотельного лазера на красителях (а) и волоконного усилителя (б), у которых сердцевина активного волокна синтезирована на реактопластах, активированных молекулами органических красителей, и полимеризованных мелкодисперсными стеклянными порошками, активированными реакционно-способными группами.

кварцевого стекла, внутри которого расположена сердцевина, а внешняя оболочка выполняется из полиметилметакрилата с наименьшим показателем преломления. Для увеличения мощности излучения в желтом диапазоне длин волн на выходе волоконного лазера установлен волоконный усилитель, у которого сердцевина синтезирована по такой же технологии, как и в волоконном лазере. Для объединения входного оптического сигнала от волоконного лазера и излучения накачки от полупроводникового лазера в усилителе используется мультиплексоры. Необходимыми элементами оптических усилителей являются оптические изоляторы – устройства, пропускающие световые сигналы только в одном направлении [15]. Оптические изоляторы устанавливаются в усилителе на входе и на выходе, что предотвращает попадание в усилитель паразитных искажений и шумов. Усилительной средой в предлагаемом усилителе, как и в волоконном лазере, является полимерное оптоволокно с сердцевиной, активированной красителем родамином 6Ж, и с оптимальной полосой поглошения 532 нм. В качестве источника накачки используется диодный лазер с длиной волны излучения 532 нм, причем могут быть реализованы схемы усилителя с попутной

накачкой, когда сигнал от волоконного лазера и излучение накачки распространяются в одном направлении со встречной накачкой, а также, когда накачка осуществляется сразу в двух направлениях двумя источниками накачки, что повышает суммарные мощность накачки и мощность стимулированного излучения.

Функциональная схема твердотельного волоконного лазера желтого спектрального диапазона, у которого сердцевина выполнена из реактопласта, с красителем родамином 6Ж и полимеризованная мелкодисперсным стеклянным порошком, поверхность которого активирована реакционно-способными группами, совместно с волоконным оптическим усилителем показана на рис. 1а и б.

Примеры, в которых сердцевину для активного волокна, содержащую родамин 6Ж, приготавливают по методике, аналогичной приведенному выше примеру, при разных соотношениях ингредиентов, представлены в табл. 1.

Оценочные генерационные характеристики лазера были измерены с использованием физической модели, представляющей плоскопараллельную пластинку размерами  $3 \times 10 \times 25$  мм с длиной резонатора 75 мм, образованного глухим зеркалом и клиновидной подложкой, с использова-

Пример	Органический краситель		Эпоксидный олигомер		Стекло с химически активной поверхностью		иD
	Тип	Сод-е, масс. ч.	Тип	Сод-е, масс. ч.	Тип активатора	Сод-е, масс. ч.	nD
1	Родамин 6Ж	0.1	VII-612	8.0	-COOH	91.9	
2	Родамин 6Ж	0.05375	VII-612	19.75	-COOH	80.19625	1.510-1.519
3	Родамин 6Ж	0.0075	VII-612	31.5	-COOH	68.4925	

Таблица 1. Активные среды с различным содержанием ингредиентов и коэффициентов преломления отвержденных эпоксиполимеров, равные коэффициентам преломления мелкодисперсного стекла

Примечание. *nD* – коэффициент преломления эпоксиполимера. "Сод-е" – содержание вещества в массовых частях на 100 массовых частей основы.

нием в качестве источника накачки лазера  $AU\Gamma$ :  $Nd^{3+}$  с удвоителем частоты и модулятором добротности. Длина волны излучения источника накачки 532 нм, пороговая мощность накачки 0.15 MBT/cm², частота повторения импульсов накачки 12.5 Гц. Спектр широкополосной генерации составлял 15 нм с максимумом излучения на 586 нм. Мощность излучения в импульсном режиме составляла 10 MBT/cm². Следует отметить, что из всех органических красителей только родамин 6Ж эффективно излучает в непрерывном режиме с квантовым выходом люминесценции 0.9.

Экспериментальные значения хорошо согласуются с результатами расчетов, полученными путем численного решения системы скоростных балансных уравнений и не являются предельными.

Так, используя бо́льшую длину активного волокна и резонатора, накачку от полупроводникового лазера, применяя волоконные усилители, а также учитывая уникальные свойства сердцевины лазера и сердцевины усилителя и более эффективный режим вынужденного излучения, существует возможность разработки лазера для формирования натриевых опорных звезд мощностью 50 Вт и более.

#### 6. ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что сердцевина активного волокна, содержащая в своем составе реактопласты, активированные молекулами органических красителей, и полимеризованная мелкодисперсными стеклянными порошками открывает новые возможности для создания твердотельных волоконных лазеров на красителях в видимом спектральном диапазоне длин волн.

Волоконный твердотельный лазер на красителях представляет собой четырехуровневую систему, у которой фотон накачки возбуждает переход из основного состояния  $S_0$  в возбужденное состояние  $S_1$ , а излучение связано с расселением уровня  $S_1$  на уровень  $S_0$ . Такой механизм вынужденного излучения хорошо работает при диодной накачке и приводит к высокой эффективности преобразования фотонов, а также к надежной и простой компоновке, в которой отсутствует дискретная оптика, требующая юстировки и выравнивания.

Сердцевина, обладающая трехмерной структурой, не способна плавиться, растворяться, обладает низким коэффициентом диффузии (10⁻¹⁰ см²/с), высокими адгезионными свойствами, что принципиально важно при формировании бездефектной границы раздела между сердцевиной и волноводом накачки.

Важным результатом исследований при разработке волоконных лазеров является возможность управления показателем преломления реактопласта и показателем преломления мелкодисперсного стеклянного порошка, активированного реакционно-способными группами, выбор которых осуществлен с учетом "солевой" формы красителя. Сердцевина предложенного состава обладает взаимной химической индифферентностью и характеризуется высокими значениями теплопроводности 0.71-0.75 Вт К⁻¹ м⁻¹ и лучевой прочности. Излучение имеет высокое оптическое качество. КПД преобразования источника накачки – полупроводникового лазера (электрический сигнал – в оптический, при длине волны излучения 532 нм) достигает величины 0.5-0.7, при суммарном КПД накачки волоконного лазера 0.25 - 0.35.

Волоконный твердотельный лазер на красителях может иметь большой диаметр сердцевины порядка 50—980 мкм и большой объем активной среды за счет длины волокна и резонатора, что позволит достигать значительных величин энергии и мощности. Длина активного волокна и оптического резонатора, построенного по технологии брэгговских решеток, может достигать несколько десятков метров. Волоконный лазер на красителях эффективно работает в схеме: волоконный генератор — волоконный усилитель. Существует возможность использования нескольких волоконных лазеров с возможностью последующего суммирования их излучения, что важно для получения натриевой звезды большой яркости.

Стимулированное излучение твердотельного волоконного лазера на красителе родамине 6Ж имеет длину волны излучения 585 нм (желтый спектральный диапазон) при ширине спектра излучения на уровне 0.5 около 14—15 нм, что позволяет согласовать с высокой точностью длину волны излучения лазера с длиной волны резонансных переходов атомов натрия 589.6 нм.

Предлагаемый лазер может использоваться в составе адаптивных оптических систем наземных телескопов, предназначенных для реконструкции искажений волнового фронта за счет турбулентности атмосферы по следующей схеме: твердотельный волоконный лазер на родамине 6Ж, волоконный усилитель, блок коррекции атмосферных искажений, содержащий датчик волнового фронта Шэка-Гартмана, корректор волнового фронта, устройство для управления корректором волнового фронта (деформируемым зеркалом). При этом исполнительным элементом всей системы адаптивной оптики является деформируемое зеркало, изгибаемое с помощью пьезоэлектрических или механических приводов (актуаторов), которое по командам устройства управления получает, анализирует данные об ис-
кажениях от датчика волнового фронта и исправляет эти искажения за счет изменения формы отражающих поверхностей [17–19].

# ФИНАНСИРОВАНИЕ

Работа выполнена в рамках Гранта Президента Российской Федерации для государственной поддержки молодых ученых — кандидатов технических наук (МК-2140.2022.4).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. С. Э. Фриш, Оптические спектры атомов (М.: Ленинград, 1963).
- И. Ю. Возмищев, В. В. Клейменов, Тр. Военно-космической академии им. А.Ф. Можайского 671, 254 (2019).
- В. П. Лукин, Оптика атмосферы и океана 11(5), 460 (1998).
- Л. А. Больбасова, В. П. Лукин, Адаптивная коррекция атмосферных искажений оптических изображений на основе искусственного опорного источника (М.: ФИЗМАТЛИТ, 2012).
- X. Huo, Y. Qi, Y. Zhang, B. Chen, Z. Bai, J. Ding, Y. Wang, and Z. Lu, Opt. Laser Eng. 134, id. 106207 (2020).
- Я. В. Кравченко, А. А. Маненков, Г. А. Матюшин, Квантовая электроника 23(12), 1075 (1996).
- 7. Т. Т. Басиев, М. Е. Дорошенко, П. Г. Зверев, А. М. Прохоров, Твердотельный лазер желтого спектрального диапазона, Патент РФ № 2178939, Бюл. № 3 (2002).
- В. В. Клейменов, Е. В. Новикова, Изв. ВУЗов. Приборостроение 61(10), 827 (2018).

- 9. А. Х. Султанов, Т. Я. Якубов, И. Л. Виноградова, Волоконно-оптический усилитель, Патент РФ № 2203502 (2003).
- В. Е. Поляков, А. Ю. Смирнов, О. О. Карапетян, Ю. М. Парамонов, М. К. Пактер, Ю. С. Зайцев, С. М. Коломоец, Активная среда для эпоксиполимерных лазеров на красителях, Авт. свид. № 197764 от 1 февраля 1984 г.
- 11. В. И. Иржак, Б. А. Розенберг, И. С. Ениколонян, Сетчатые полимеры (М.: Наука, 1979).
- А. В. Борткевич, С. А. Гейдур, О. О. Карапетян, А. Р. Кузнецов, С. М. Ланькова, А. Г. Морозов, В. Е. Поляков, В. П. Сидякова, Журн. приклад. спектроскопии 50(2), 210 (1989).
- Т. М. Брык, Н. Н. Баглей, Е. П. Смирнов, С. К. Гордеев, А. Ф. Бурбан, В. Б. Алесковский, Докл. АН СССР 272(6), 1399 (1983).
- 14. Г. Б. Альтшулер, Е. Г. Дульнова, И. К. Мешковский, К. И. Крылов, Журн. приклад. спектроскопии 36(4), 592 (1982).
- В. Е. Поляков, А. В. Емельянов, А. А. Закутаев, В. В. Широбоков, Журн. приклад. спектроскопии 89(1), 110 (2022).
- В. Е. Поляков, В. Ю. Шосталь, А. А. Закутаев, В. В. Широбоков, Активная среда для волоконных лазеров и способ ее изготовления, Патент РФ № 2715085, Бюлл. № 6 (2020).
- Д. Б. Шумкова, А. Е. Левченко, Специальные волоконные световоды (Изд-во Пермского НИПУ, 2011).
- 18. *В. П. Лукин*, Успехи физ. наук **184**(6), 599 (2014).
- В. В. Клейменов, И. Ю. Возмищев, Е. В. Новикова, Научно-техн. вестник информ. технологий, механики и оптики 21(4), 443 (2021).

# ОТНОШЕНИЕ ИНТЕНСИВНОСТЕЙ Н¹³СN-HN¹³С КАК ИНДИКАТОР ТЕМПЕРАТУРЫ МЕЖЗВЕЗДНЫХ ОБЛАКОВ

© 2022 г. А. Г. Пазухин^{1, 2, *}, И. И. Зинченко^{1, 2, **}, Е. А. Трофимова^{1, ***}, К. Хенкель^{3, 4, ****}

¹ Федеральный исследовательский центр Институт прикладной физики РАН, Нижний Новгород, Россия ² Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

³ Институт радиоастрономии общества Макса Планка, Бонн, ФРГ

⁴ Университет имени короля Абдул-Азиза, Джидда, Саудовская Аравия

*E-mail: pazukhinandrey@bk.ru **E-mail: zin@ipfran.ru ***E-mail: tea@ipfran.ru ****E-mail: chenkel@mpifr-bonn.mpg.de Поступила в редакцию 02.09.2022 г. После доработки 10.10.2022 г. Принята к публикации 20.10.2022 г.

С помощью 30-м радиотелескопа IRAM были проведены наблюдения нескольких областей образования массивных звезд на длинах волн 3-4 и 2 мм. Температура газа в источниках оценивалась по линиям CH₃CCH и по полученным при наблюдениях на 100-м радиотелескопе в Эффельсберге линиям молекулы NH₃. В результате были получены корреляции отношения интенсивностей переходов J = 1-0 молекул H¹³CN-HN¹³C и кинетической температуры. Полученные результаты позволяют предложить использование отношения интенсивностей H¹³CN-HN¹³C как возможный индикатор температуры межзвездных облаков. Полученные оценки кинетической температуры сравнены с оценками температуры пыли  $T_{dust}$ . В результате значимой корреляции не было обнаружено.

*Ключевые слова:* звездообразование, межзвездная среда, молекулярные облака, температура **DOI:** 10.31857/S0004629922110159

# 1. ВВЕДЕНИЕ

Молекула цианистого водорода HCN и изомер HNC широко распространены в межзвездной среде. Известно, что отношение содержаний HCN/HNC сильно зависит от кинетической температуры. Например, в работе [1] получено, что отношение содержаний в протозвездных объектах большой массы составляет 4, тогда как в горячих ультракомпактных областях H II среднее значение равно 9. В работе [2] предложено использовать отношение интенсивностей линий HCN к HNC в качестве индикатора температуры на основе наблюдений за волокном интегральной формы в Орионе.

Основным путем образования изомеров HCN и HNC является диссоциативная рекомбинация иона HCNH⁺ с электроном:

$$\mathrm{HCNH}^{+} + \mathrm{e}^{-} \rightarrow \begin{cases} \mathrm{HCN} + \mathrm{H} \\ \mathrm{HNC} + \mathrm{H} \end{cases}$$
(1)

Реакции происходят примерно с одинаковой вероятностью [3], а различия в распространенности

между HCN и HNC во многом определяются реакциями разрушения и изомеризации HNC. К ним относятся следующие реакции (напр., [4]):

$$HNC + H \to HCN + H, \tag{2}$$

$$HNC + O \rightarrow CO + NH.$$
(3)

Энергетический барьер для реакции (2) равен 200 К [4], для реакции (3) – 20 К, что определяет доминирующую роль реакции (3) при низких температурах порядка 50 К [2]. Однако классические рассчитанные энергетические барьеры составляют 1200 и 2000 К соответственно (см. подробнее в [4]).

# 2. НАБЛЮДЕНИЯ И ОБРАБОТКА

2.1. Наблюдения на 30-м радиотелескопе Института миллиметровой астрономии (IRAM)

В сентябре 2019 г. при помощи 30-м радиотелескопа Института миллиметровой астрономии (IRAM) на Пико Велета были проведены наблюдения нескольких областей образования массив-

Объект	α (2000)		δ (2000)		$V_{\rm lsr}$ , км/с	<i>d</i> , кпк	Примечание		
L 1287	00 ^h	36 ^m	47.5 ^s	63°	29′	02.1″	-17.7	0.93	G121.30+0.66, IRAS 00338+6312
<b>S</b> 187	01	23	15.4	61	49	43.1	-14.0	1.0	G126.68–0.81, IRAS 01202+6133
S 231	05	39	12.9	35	45	54.0	-16.6	2.3	G173.48+2.45, IRAS 05358+3543
DR 21(OH)	20	39	00.6	42	22	48.9	-03.8	1.5	G81.72+0.57
NGC 7538	23	13	44.7	61	28	09.7	-57.6	2.8	G111.54+0.78, IRAS 23116+6111

Таблица 1. Список источников

Примечание. Расстояния до объектов взяты из работ [5-7].

ных звезд на длинах волн 2 и 3–4 мм (в рамках проекта 041–19). Список источников приведен в табл. 1. В настоящей работе обсуждается часть полученных данных. В табл. 2 приведен соответствующий список линий молекул. Частота переходов и энергия верхнего уровня взяты из каталога CDMS¹.

Ширина основного лепестка диаграммы направленности на уровне половины интенсивности на обсуждаемых частотах составляла от ~30" до ~16". Антенная температура  $T_A^*$  была приведена к значениям температуры в основном лепестке  $T_{\rm mb}$ , используя значение эффективности основного лепестка  $B_{\rm eff}$ , которое определялось по формуле Рузе в соответствии с рекомендациями IRAM и составило 0.72–0.82. Минимальная шумовая температура системы составляла ~100 К в диапазоне 3 мм и ~200 К в диапазоне 2 мм.

Наблюдения проводились методом непрерывного картирования (OTF, On The Fly) площадки размером 200" × 200" в режиме полной мощности. Опорная позиция выбиралась со сдвигом на 10' по прямому восхождению. В некоторых протяженных источниках – DR 21(OH), NGC 7538 – наблюдались две частично перекрывающиеся площадки. Точность наведения проверялась периодически по наблюдениям близких источников континуума.

# 2.2. Наблюдения на 100-м радиотелескопе Института радиоастрономии Общества Макса Планка в Эффельсберге

При помощи 100-метрового телескопа вблизи Эффельсберга (Германия) 9 декабря 2019 г. мы провели наблюдения мазерного перехода  $H_2O$  на частоте 22 ГГц, а также инверсионных линий аммиака (1, 1), (2, 2) и (3, 3). Ширина основного лепестка диаграммы направленности на уровне половины интенсивности составляла ~40". Измерения проводились методом непрерывного картирования с использованием приемника *К*-диапазона во вторичном фокусе с двойной полосой пропускания 300 МГц, включая упомянутые выше линии  $H_2O$  в одной полосе и  $NH_3$  в другой полосе. Карты размером 5' × 5' получены со скоростью сканирования 20" в секунду по прямому восхождению, интервалы между сканами 15'. Опорная позиция была смещена на +15' по азимуту. Погодные условия включали слабый дождь при небольшой скорости ветра (~2 м/с).

При калибровке использовался источник NGC 7027 с плотностью потока 5.5 Ян на частоте 22 ГГц [8]. Антенная температура  $T_A^*$  была получена путем умножения наблюдаемых интенсивностей на  $T_{cal}$  и с учетом поглощения в атмосфере².

# 2.3. Обработка данных

Для обработки данных была использована программа CLASS пакета GILDAS³. Весь набор данных IRAM-30m и Effelsberg-100m был приведен к одинаковому пространственному разрешению 40". После вычитания базовой линии и процедуры сглаживания спектральное разрешение для данных Effelsberg-100m составило ~0.46 км/с.

При анализе были использованы карты интегральной интенсивности ( $I = \int T_{mb} dV$  в единицах [K км/c]) в диапазоне скоростей [ $V_{lsr} - 10$ ,  $V_{lsr} + 10$ ] для HCN, H¹³CN и [ $V_{lsr} - 4$ ,  $V_{lsr} + 4$ ] для HNC, HN¹³C. Стоит отметить, что в источнике DR 21(OH) наблюдаются два скоростных компонента ~-4 и ~0 км/с (см. подробнее [9]). В процессе обработки компоненты были разделены, и для анализа были использованы только значения ~-4 км/с, так как они более сильны и наблюдаются на протяжении всего источника.

## 3. РЕЗУЛЬТАТЫ

# 3.1. Кинетическая температура по наблюдениям CH₃CCH

В работах [10, 11] было показано, что вращательная температура CH₃CCH дает хорошую

¹ http://cdms.de

² http://eff100mwiki.mpifr-bonn.mpg.de

³ http://www.iram.fr/IRAMFR/GILDAS

оценку кинетической температуры газа при кон-

центрациях газа  $n \ge 10^{3-4}$  см⁻³ (рассматривались переходы J = 5-4 и J = 6-5). Это обусловлено тем обстоятельством, что вследствие малого дипольного момента ( $\mu = 0.78$  D) молекула CH₃CCH легко термализуется при таких условиях. Концентрации газа в наших источниках выше этого порога (Пазухин и др., готовится к печати). Таким образом, линии CH₃CCH в наших данных могут быть хорошим индикатором кинетической температуры газа. Вращательная (и, соответственно, кинетическая) температура определяется методом диаграмм населенностей:

$$\ln\left(\frac{3k\int T_{\rm mb}dV}{8\pi^3 v \mu^2 g_I g_K S}\right) = -\frac{E_u}{T_{\rm kin}} + \ln\left(\frac{N_{\rm tot}}{Q}\right), \qquad (4)$$

где S – сила линии, равная  $\frac{J^2 - K^2}{J}$ , v – частота перехода,  $E_u$  – энергия верхнего уровня в единицах температуры,  $\mu$  – дипольный момент,  $\int T_{\rm mb} dV$  – интегральная интенсивность линии,  $N_{\rm tot}$  – полная лучевая концентрация, Q – статистическая сумма,  $g_K$  – статистический вес, связанный с квантовым числом K, обусловленным проекцией полного углового момента на ось молекулы,  $g_I$  – статистический вес, связанный с ядерным спином. При этом предполагается, что оптическая толщина в линиях мала и излучением реликтового фона можно пренебречь.

Для построения вращательных диаграмм использовались переходы J = 5-4 и J = 9-8 молекулы СН₃ССН. Спектры аппроксимировались гауссианами, считая равными ширины каждого компонента, а расстояние между ними – известным. Затем строился график, где по оси абсцисс откладывалась энергия верхнего уровня  $E_{\mu}$ , а по оси ординат левая часть из уравнения (4). Тогда значение *T*_{kin} равно величине, обратной тангенсу угла наклона прямой. На рис. 1 в направлении IRAS 23116+6111 и DR 21(OH) приведены спектры молекулы СН₃ССН и вращательные диаграммы. На рис. 2 (слева) представлено сравнение оценок кинетической температуры по переходам J = 5-4и J = 9-8 CH₃CCH. В целом эти оценки близки друг к другу, следовательно, мы можем использовать оба перехода при построении диаграммы населенностей.

Стоит отметить, что для источника L 1287 оценки кинетической температуры получены только в двух точках (0", 0") и (-14", -14") и равны 21.5 ± 1.9 К и 20.4 ± 1.8 К соответственно. Для объектов S 187, S 231 линии CH₃CCH оказались слабыми для оценки кинетической температуры.

Таблица 2. Наблюдаемые линии молекул

Молекула	Переход	Частота, МГц	$E_u/k$ , K
NH ₃	(1, 1)	23694.495	23.4
	(2, 2)	23722.634	64.9
CH ₃ CCH	$5_3 - 4_3$	85442.601	77.3
	$5_2 - 4_2$	85450.766	41.2
	$5_1 - 4_1$	85455.667	19.5
	$5_0 - 4_0$	85457.300	12.3
H ¹³ CN	1 - 0	86339.921	4.1
HN ¹³ C	1 - 0	87090.825	4.2
HCN	1 - 0	88631.602	4.3
HNC	1 - 0	90663.568	4.4
CH ₃ CCH	$9_3 - 8_3$	153790.772	101.9
	$9_2 - 8_2$	153805.461	65.8
	$9_1 - 8_1$	153814.276	44.1
	$9_0 - 8_0$	153817.215	36.9

# 3.2. Кинетическая температура по наблюдениям NH₃

Переходы молекулы  $NH_3$  наблюдались в источниках S 187, DR 21(OH) на радиотелескопе Effelsberg-100m. Для S 231 была использована оценка кинетической температуры по аммиаку из работы [12].

Оптическая толщина и вращательная температура определялись с помощью методов, описанных в работе [13]. Спектры аппроксимировались гауссианами, в переходе (1,1) ширины каждого компонента считались равными, а расстояние между ними — известным. В предположении, что сверхтонкие переходы находятся в условиях ЛТР, оптическая толщина  $\tau(1,1,m)$  может быть определена из отношений интенсивностей главного компонента линии и сателлитов:

$$\frac{T_A^*(m)}{T_A^*(s)} = \frac{1 - \exp(-\tau(1, 1, m))}{1 - \exp(-\alpha\tau(1, 1, m))},$$
(5)

где  $T_A^*$  — антенная температура, величина *a* есть теоретическое отношение интенсивностей главного компонента линии и сателлитов, равное a = 0.28 для внутренних сателлитов и a = 0.22 для внешних сателлитов. Из уравнения (5) численно определялись значения оптической толщины  $\tau(1,1,m)$ .

Таким образом, вращательная температура может быть получена из отношения интенсивно-



**Рис. 1.** Спектры (слева) и диаграммы населенностей (справа) для IRAS 23116+6111 (верхняя панель) и DR 21(OH) (нижняя панель). Черным цветом приведены спектры  $CH_3CCH J = 9-8$  и J = 5-4, линии красного и синего цвета – результат вписывания гауссиан. Прямые на диаграммах населенностей построены методом наименыших квадратов. В нижнем левом углу диаграмм приведено полученное значение кинетической температуры. Для DR 21(OH) гауссианы построены для скоростных компонентов ~-4 и ~0 км/с, а диаграмма населенностей – для компонента ~-4 км/с.

стей главных компонентов переходов (1,1) и (2, 2) с помощью уравнения:

$$T_{\rm rot} = -41.5/\ln\left[\frac{-0.282}{\tau(1,1,m)} \times \ln\left(1 - \frac{T_A^*(2,2,m)}{T_A^*(1,1,m)} \{1 - \exp(-\tau(1,1,m))\}\right)\right].$$
(6)

Значения кинетической температуры были получены по формуле из работы [14]:

$$T_{\rm kin} = \frac{T_{\rm rot}}{1 - \frac{T_{\rm rot}}{41.5} \ln \left[ 1 + 1.1 \exp \left( -\frac{16}{T_{\rm rot}} \right) \right]}.$$
 (7)

#### 4. ОБСУЖДЕНИЕ

На рис. 2 (справа) представлено сравнение оценок кинетической температуры по переходам аммиака и CH₃CCH для источника DR 21(OH). В

целом наблюдается достаточно хорошее согласие между ними, хотя оценки по переходам CH₃CCH демонстрируют немного бо́льшие значения, чем оценки по аммиаку. Вероятно, это связано с тем, что метилацетилен наблюдается в более плотном газе, где температура выше.

Кроме этого, для источников L 1287, DR 21(OH), NGC 7538 имеются карты температуры пыли  $T_{dust}$ и лучевой концентрации  $N(H_2)$  по данным с телескопа Herschel из открытой базы данных⁴, которые были получены с помощью алгоритма PPMAP [15, 16]. Оценки температуры пыли  $T_{dust}$ мы сравнили с оценками кинетической температуры (рис. 3). В результате значимой корреляции не было обнаружено. Значения  $T_{dust}$  лежат в диапазоне ~18–25 К, в то время как  $T_{kin}$  растет до 35 К. Возможно, что отсутствие корреляции свя-

⁴ http://www.astro.cardiff.ac.uk/research/ViaLactea



**Рис. 2.** Сравнение оценок кинетической температуры по переходам J = 5-4 и J = 9-8 CH₃CCH (слева) и для источника DR 21(OH) по переходам аммиака и CH₃CCH (справа). По диагонали проведены прямые вида y = x.



Рис. 3. Сравнение температуры пыли и кинетической температуры.



**Рис. 4.** Зависимость от оценок оптической толщины  $\tau$ (HCN) для молекул HCN и HNC величины  $\tau$ (HNC) (слева) и отношения  $R_{12}/R_{13}$  (справа). Цветная шкала соответствует значениям лучевой концентрации  $N(H_2)$ .

зано с недостаточной плотностью наших источников. Так, в работе [17] показано, что температура пыли приближается к температуре газа при концентрациях газа  $n \gtrsim 10^{7-8}$  см⁻³, что значительно выше оценок концентрации газа в наших источниках, которая, по нашим данным, составляет  $n \sim 10^{4-6}$  см⁻³ (Пазухин и др., готовится к печати).

Мы оценили оптические толщины в линиях HCN и HNC. Для этого мы использовали отношение интенсивностей изотопологов HCN/H¹³CN и HNC/HN¹³C в формуле (5) и величину *а* из отношения обилия изотопов углерода [18]

$$\frac{{}^{12}\text{C}}{{}^{13}\text{C}} = 4.7\text{R}_{\text{GC}} + 25.05,$$

где R_{GC} – галактоцентрическое расстояние источника. На рис. 4 (слева) представлено сравнение полученных значений оптической толщины. Оптические толщины в обеих линиях велики. Оптическая толщина в линии HCN в среднем выше, чем в линии HNC и достигает ~20. При этом наблюдается довольно большой разброс отношения оптических толщин в этих линиях. Это делает предпочтительным использование линий их изотопологов H¹³CN и HN¹³C, оптическая толщина в которых заведомо мала. В работе [2] пришли к выводу, что оптическая толщина в линиях HCN и HNC не оказывает значительного влияния на полученную ими корреляцию между отношением интенсивностей этих линий и температурой газа. Наши данные заставляют в этом усомниться. На рис. 4 (справа) построена зависимость отношения  $R_{12}/R_{13}$  [ $R_{12} = I(\text{HCN})/I(\text{HNC})$ ,  $R_{13} = I(\text{H}^{13}\text{CN})/I(\text{HN}^{13}\text{C})$ ] от оптической толщины  $\tau(\text{HCN})$ , а также выделены значения лучевой концентрации  $N(\text{H}_2)$ . Видно, что при больших оптических толщинах, которые типичны для линий HCN, отношение  $R_{12}/R_{13}$  значительно меньше единицы. С уменьшением оптической толщины это отношение ожидаемо стремится к 1. Лучевая концентрация водорода, при которой оптическая толщина в линиях становится мала, составляет  $N(\text{H}_2) \sim 10^{22} \text{ см}^{-2}$ .

Вариации отношения  $R_{12}$  могут быть вызваны различными значениями температуры возбуждения  $T_{ex}$  HCN и HNC. Однако на построенной с помощью программы RADEX [19] зависимости  $T_{kin}$  от  $R_{12}$  при  $n = 10^5$  см⁻³ и  $N = 10^{12}$  см⁻² можно заметить, что отношение слабо меняется с ростом температуры и составляет  $\leq 1$  (рис. 5).

В результате анализа наших данных была построена зависимость кинетической температуры газа от отношений  $R_{12}$  и  $R_{13}$  (рис. 6). Значение  $R_{13}$ растет от 1 до 10, а отношение интенсивностей основных изотопологов – от 1 до 4 в диапазоне температур ~15–45 К.

Таким образом, в результате аппроксимации были получены следующие зависимости:

$$T_{\rm kin} = \begin{cases} 2.4R_{\rm l3} + 19.1, \\ 8.7R_{\rm l2} + 6.4. \end{cases}$$
(8)



**Рис. 5.** Построенная с помощью программы RADEX зависимость кинетической температуры  $T_{kin}$  от отношения  $R_{12}$  при  $n = 10^5$  см⁻³ и  $N = 10^{12}$  см⁻².



**Рис. 6.** Зависимость кинетической температуры от отношения интегральных интенсивностей молекул H¹³CN и HN¹³C (слева) и HCN и HNC (справа). Результаты подгонки представлены синей прямой вида ax + b и красной кривой, описываемой функцией  $A \exp\left(\frac{-\Delta E}{T_{kin}}\right)$ . Зеленая кривая соответствует  $\Delta E = 20$  K из работы [2]. Параметры зависимостей ( $a, b, A, \Delta E$ ) приведены на каждом из рисунков.



**Рис. 7.** Карты для NGC 7538 (верхняя панель) и DR 21(OH) (нижняя панель). Приведены отношение интегральных интенсивностей молекул  $H^{13}$ CN и HN 13 C (a);  $T_{kin}$  ( $H^{13}$ CN/HN 13 C) (б), кинетическая температура, полученная по переходам CH₃CCH (в) и кинетическая температура, полученная по переходам NH₃ (г). Контурными линиями показаны границы излучения в континууме по данным SCUBA 850 µм [22]. Маркер в форме звезды обозначает положение IRAS 23116+6111.

Полученная прямая для HCN и HNC согласуется с прямой  $T_{\rm kin} = 10 \frac{\rm I(HCN)}{\rm I(HNC)}$ , полученной в работе [2], которая справедлива для отношения интенсивностей  $\leq 4$  и вплоть до температур  $T_{\rm kin} \sim 40$  K.

Помимо этого, на рис. 6 представлена аппроксимация функцией вида  $A \exp\left(\frac{-\Delta E}{T_{\rm kin}}\right)$ , которая выбрана исходя из соотношения населенностей, выраженных через распределение Больцмана. В результате были получены зависимости:

$$R_{13} = 179 \exp\left(\frac{-109}{T_{\rm kin}}\right),$$
 (9a)

$$R_{12} = 8.4 \exp\left(\frac{-34}{T_{\rm kin}}\right),\tag{96}$$

энергетический барьер для отношения  $R_{13}$  составил  $\Delta E \sim 109$  K, а для основных изотопологов  $\Delta E \sim 34$  K. Результаты из других работ имеют некоторые расхождения, энергетический барьер при низких температурах равен  $\Delta E \sim 20$  K [2],

при дальнейшем возрастании температуры  $\Delta E \sim 200 \text{ K} [4, 20].$ 

В целом данные для HCN и HNC согласуются с результатами из работы [2]. Однако результаты для отношения  $R_{13}$  заметно отличаются. Основной причиной расхождения результатов, вероятно, является большая оптическая толщина линий HCN и HNC, а также наличие аномалий сверхтонкой структуры молекулы HCN.

Использование линий  $H^{13}CN$  и  $HN^{13}C$  для оценки температуры было также недавно предложено и продемонстрировано в работе [21]. Однако в этой работе для оценки температуры используется корреляционная зависимость  $R_{12}$  от температуры, найденная в работе [2]. Как показано выше, зависимость  $R_{13}$  от температуры от нее отличается.

Мы полагаем, что в качестве индикатора температуры предпочтительнее использовать зависимость (9а) для отношения  $R_{13}$ . Оценки температуры для источников NGC 7538, DR 21(OH) представлены на рис. 7. Построенные карты демонстрируют хорошую согласованность с оценками, полученными по линиям CH₃CCH и NH₃. Виден градиент температуры, пики совпадают с излучением в континууме и излучением ИК источника. Кроме того, карты простираются дальше, чем карты, построенные по линиям CH₃CCH и NH₃.

Стоит отметить, что карты температуры могут быть еще расширены путем комбинирования данных наблюдений изотопологов  $H^{13}CN$  и  $HN^{13}C$  с наблюдениями основных изотопологов, например, как предложено в работе [21]. В этой работе в тех областях источника, где линии  $H^{13}CN$  и  $HN^{13}C$  становятся слишком слабыми, используется отношение интенсивностей основных изотопологов  $R_{12}$ .

# 5. ЗАКЛЮЧЕНИЕ

На основе наблюдений пяти областей образования массивных звезд, которые были получены с помощью радиотелескопов IRAM-30m и Effelsberg-100m, а также используя оценки температуры пыли  $T_{\rm dust}$  по данным с телескопа Herschel, в работе получены следующие результаты:

1. Обнаружена корреляция отношения интегральных интенсивностей переходов J = 1-0 молекул H¹³CN, HN¹³C и кинетической температуры. Отношение интенсивностей растет от 1 до 10 в диапазоне температур ~15-45 К. Поскольку эти линии можно обнаружить при наблюдениях большинства источников, полученные результаты позволяют предложить использование отношения интенсивностей H¹³CN/HN¹³C как возможный индикатор температуры межзвездных облаков.

2. Для низкотемпературной реакции HNC + + O  $\rightarrow$  CO + NH энергетический барьер, полученный из отношения H¹³CN/HN¹³C, составил  $\Delta E \sim 109$  K, а из отношения основных изотопологов  $\Delta E \sim 34$  K. Основной причиной расхождения результатов, вероятно, является большая оптическая толщина линий HCN и HNC, а также наличие аномалий сверхтонкой структуры молекулы HCN.

3. Полученные оценки кинетической температуры мы сравнили с оценками температуры пыли  $T_{dust}$ . В результате наличие значимой корреляции не было обнаружено. Значения  $T_{dust}$  лежат в диапазоне ~18–25 К, в то время как  $T_{kin}$  растет до 35 К. Возможно, что отсутствие корреляции связано с недостаточной плотностью наших источников.

#### ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке РНФ (грант 22-22-00809).

#### БЛАГОДАРНОСТИ

Работа основана на наблюдениях, проведенных в рамках проекта 041—19 с помощью 30-м телескопа, а также на наблюдениях с помощью 100-м телескопа MPIfR (Max Planck Institut fur Radioastronomie) в Эффельсберге. IRAM поддерживается INSU/CNRS (Франция), MPG (Германия) и IGN (Испания). Мы благодарны сотрудникам обеих обсерваторий за помощь в наблюдениях. Авторы благодарны анонимному рецензенту за полезные замечания, которые позволили улучшить качество статьи.

# СПИСОК ЛИТЕРАТУРЫ

- 1. *M. Jin, J.-E. Lee, and K.-T. Kim*, Astrophys. J. Suppl. **219**, 2 (2015).
- 2. *A. Hacar, A. D. Bosman, and E. F. van Dishoeck*, Astron. and Astrophys **635**, id. A4 (2020).
- 3. *M. B. Mendes, H. Buhr, M. H. Berg, M. Froese, et al.*, Astrophys. J. Letters **746**, id. L8 (2012).
- 4. D. M. Graninger, E. Herbst, K. I. Öberg, and A. I. Vasyunin, Astrophys. J. 787, id. 74 (2014).
- K. L. J. Rygl, A. Brunthaler, M. J. Reid, K. M. Menten, H. J. van Langevelde, and Y. Xu, Astron. and Astrophys 511, id. A2 (2010).
- 6. M. Fich and L. Blitz, Astrophys. J. 279, 125 (1984).
- 7. K. L. J. Rygl, A. Brunthaler, A. Sanna, K. M. Menten, et al., Astron. and Astrophys **539**, id. A79 (2012).
- M. Ott, A. Witzel, A. Quirrenbach, T. P. Krichbaum, K. J. Standke, C. J. Schalinski, and C. A. Hummel, Astron. and Astrophys 284, 331 (1994).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

1262

- 9. N. Schneider, T. Csengeri, S. Bontemps, F. Motte, R. Simon, P. Hennebelle, C. Federrath, and R. Klessen, Astron. and Astrophys **520**, id. A49 (2010).
- 10. J. Askne, B. Hoglund, A. Hjalmarson, and W. M. Irvine, Astron. and Astrophys **130**, 311 (1984).
- 11. E. A. Bergin, P. F. Goldsmith, R. L. Snell, and H. Ungerechts, Astrophys. J. 431, 674 (1994).
- 12. O. L. Ryabukhina, M. S. Kirsanova, M. Wienen, and C. Henkel, INASAN Sci. Rep. 5, 207 (2020).
- 13. P. T. P. Ho and C. H. Townes, Ann. Rev. Astron. Astrophys 21, 239 (1983).
- 14. *M. Tafalla, P. C. Myers, P. Caselli, and C. M. Walmsley*, Astron. and Astrophys **416**, 191 (2004).
- 15. K. A. Marsh, A. P. Whitworth, and O. Lomax, Monthly. Not. Roy. Astron. Soc **454**, 4282 (2015).

- 16. K. A. Marsh, A. P. Whitworth, O. Lomax, S. E. Ragan, et al., Monthly. Not. Roy. Astron. Soc **471**, 2730 (2017).
- 17. *R. Banerjee, R. E. Pudritz, and D. W. Anderson*, Monthly. Not. Roy. Astron. Soc **373**, 1091 (2006).
- T. Liu, Y. Wu, and H. Zhang, Astrophys. J. Letters 775, id. L2 (2013).
- F. F. S. van der Tak, J. H. Black, F. L. Schöier, D. J. Jansen, and E. F. van Dishoeck, Astron. and Astrophys 468, 627 (2007).
- 20. T. Hirota, S. Yamamoto, H. Mikami, and M. Ohishi, Astrophys. J. 503, 717 (1998).
- 21. H. Beuther, F. Wyrowski, K. M. Menten, J. M. Winters, et al., Astron. and Astrophys 665, id. A63 (2022).
- 22. J. Di Francesco, D. Johnstone, H. Kirk, T. MacKenzie, and E. Ledwosinska, Astrophys. J. Suppl. 175, 277 (2008).

# ИСПОЛЬЗОВАНИЕ ОБОБЩЕННЫХ ЭКСПОНЕНЦИАЛЬНЫХ ФУНКЦИЙ ПРИ АНАЛИЗЕ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК МЕЖЗВЕЗДНЫХ МЕРЦАНИЙ ПУЛЬСАРОВ

© 2022 г. М. В. Попов*

Астрокосмический центр Физического института им. П.Н. Лебедева РАН, Москва, Россия

**E-mail: popov069@asc.rssi.ru* Поступила в редакцию 09.10.2022 г. После доработки 20.10.2022 г. Принята к публикации 24.10.2022 г.

Предлагается аппроксимировать частотные и временные сечения двумерных автокорреляционных функций динамических спектров мерцаний пульсаров универсальной экспоненциальной функцией с произвольным показателем *m*. Эта аппроксимация существенно лучше описывает форму корреляционной функции, чем гауссовская или простая экспоненциальная функции. Путем численного моделирования проведено исследование связи формы автокорреляционных функций с формой исходного профиля средней частотной структуры дифракционных мерцаний. Показано, что истинная ширина этого среднего частотного профиля значительно отличается от ширины самой автокорреляционной функции, что приводит к смещению оценок некоторых эффектов, обусловленных мерцаниями. Представлены примеры таких искаженных оценок для скорости пульсаров ( $V_{iss}$ ) и для перехода от ширины полосы декорреляции  $\Delta f$  к времени рассеяния  $\Delta \tau_s$ .

*Ключевые слова:* пульсары, рассеяние радиоизлучения на межзвездной плазме **DOI:** 10.31857/S0004629922110160

# 1. ВВЕДЕНИЕ

Размеры области радиоизлучения пульсаров не могут превышать размеры магнитосферы нейтронной звезды, ограниченной световым цилиндром радиусом  $R_L = Pc/2\pi$ , что составит для периода повторения импульсов пульсара P в одну секунду величину около 5×10⁹ см. Угловой размер такой области при типичном расстоянии до пульсаров в несколько сотен парсек оказывается меньше угловой микросекунды. На самом деле размеры области радиоизлучения R_{em} гораздо меньше размеров светового цилиндра: при типичной длительности субимпульсов пульсаров  $\delta t$ в несколько миллисекунд  $R_{\rm em} \approx c \delta t = 3 \times 10^7$  см. Таким образом, пульсары являются точечными радиоисточниками, удобными для изучения эффектов рассеяния радиоизлучения на неоднородностях межзвездной плазмы. так как нет необходимости учитывать собственную структуру источника радиоизлучения. Поэтому интенсивные исследования эффектов рассеяния начались именно после открытия пульсаров. Изложение основных теоретических представлений можно найти в обзорной статье Риккета [1]. Основными параметрами рассеяния являются: характерное

время мерцаний t_{scint}, время размытия импульса  $\Delta \tau_s$ , частотный масштаб дифракционных искажений радиоспектра  $\Delta f$ , называемый полосой декорреляции, и видимое угловое расширение источника  $\theta_{sc}$ . Для оценки параметров рассеяния  $t_{\rm scint}$  и  $\Delta f$  обычно анализируют динамические спектры на временном интервале  $T_{\rm obs} > t_{\rm scint}$ , для достижения некоторой статистической значимости ([2-4]). На таком наблюдательном интервале вычисляются двумерные корреляционные функции (АКФ) от динамических спектров. Подробности вычисления и нормировки АКФ изложены в цитированных выше публикациях [2–4]. Время размытия импульса  $\Delta \tau_s$  определяется путем анализа формы среднего профиля импульса (см., напр., статью Кузьмина и Лосовского [5]). Такие "прямые" измерения величины Δτ_s возможны для пульсаров с большой мерой дисперсии и/или на низких радиочастотах, где величина уширения превосходит несколько микросекунд. Меньшие значения Δτ, получаются путем пересчета из измеренной полосы декорреляции  $\Delta f$  через соотношение неопределенности  $2\pi\Delta\tau_s\Delta f = 1$ ; мы рассмотрим ограничения на использование такого способа в разделе 4.2. В разделе 2 мы сформулируем исходные положения для дальнейшего анализа, затем в разделе 3 представим результаты численного моделирования основных типов автокорреляционных функций и установим связь между параметрами этих функций. В разделе 4 проведем сравнение наших результатов с наблюдательными данными.

# 2. ИСХОДНЫЕ ПОЛОЖЕНИЯ

Видимое угловое расширение источника θ_{sc} измеряется путем интерферометрических наблюдений со сверхдлинными базами (РСДБ). Большой прогресс в этой области был достигнут в ходе реализации проекта наземно-космического интерферометра Радиоастрон [6]. Некоторые итоги таких измерений рассмотрены в работе Попова и соавт. [7]. В этой работе проведен анализ формы интерферометрического отклика в зависимости от временной задержки (амплитуда функции видности  $V(\tau)$ ). Оказалось, что усредненная автокорреляционная функция от функции видности хорошо описывается функцией Лоренца  $ACF(V(\tau)) =$  $= L(\delta \tau) = A_l/(\delta \tau^2 + d^2)$ , где параметр *d* равен полуширине этой функции на уровне 1/2, а  $A_{l}$  – масштабный множитель. Ввелем несколько математических соотношений, полезных для дальнейшего изложения. Запишем выражение для функции Лоренца:

$$L(d,t) = A_{l}/(t^{2} + d^{2}).$$
(1)

Автокорреляционная функция для функции Лоренца дается следующей формулой:

$$ACF[L(d,t)] = L(2d,\Delta t), \qquad (2)$$

т.е. полуширина автокорреляционной функции вдвое превышает полуширину самой функции. Фурье преобразование от функции Лоренца является двухсторонней экспоненциальной функцией

$$FT(L(d,t)) = A_F \exp(-2\pi d |x|).$$
(3)

Здесь полуширина функции *FT* по уровню 1/*e* составляет величину  $W_{1/e}^{F} = 1/(2\pi d)$ , так что именно в этом случае точно выполняется соотношение неопределенности  $2\pi W_{1/e}^{F} W_{1/2}^{L} = 1$ . Как уже упоминалось выше, согласно результатам анализа, представленным в работе Попова и соавт. [7], *ACF* от функции видности  $V(\tau)$  для всех исследованных пульсаров хорошо аппроксимируется функцией Лоренца. В соответствии с выражением (2) и сама функция видности  $V(\tau)$  должна описываться функцией Лоренца. Функция видности  $V(\tau)$  получается в результате обратного Фурье преобразования от кросс-корреляционного спектра S(f), т.е.  $V(\tau) = FT^{-1}(S(f))$ . Следовательно, в соответствии с уравнением (3), средняя структура кросс-корреляционного (или автокорреляционного) спектра представляет собой набор двухсторонних экспонент. В отличие от среднего профиля импульса пульсара, накопить средний профиль частотной дифракционной структуры не представляется возможным, так как эта структура меняется со временем случайным образом, что и представляет собой явление мерцаний. Однако можно сразу накопить автокорреляционную функцию частотной структуры мерцаний или двумерную АКФ от динамических спектров для измерения временных и частотных сечений. Такой подход использовался многими исследователями (см., напр., [2-4]. При этом временные и частотные сечения АКФ аппроксимировались гауссианами. Другие исследователи, использующие корреляционные функции для анализа данных [8-10], указывали на отклонения этих функций от гауссовой формы. Согласно представлениям, изложенным выше, частотное сечение АКФ должно соответствовать автокорреляционной функции от двухсторонней экспоненты:

$$E(b,f) = A_e \exp\left(-\frac{|f|}{b}\right). \tag{4}$$

Эта функция уже объявлялась в соотношении (3). Приведем выражение для *ACF* от двухсторонней экспоненты,

$$ACF(E(b,f)) = A_{ACF}(|\delta f| + b) \exp\left(-\frac{|\delta f|}{b}\right), \quad (5)$$

которую мы будем называть модифицированной экспонентой; здесь  $A_{ACF}$  — масштабный коэффициент, а *b* представляет полуширину исходной экспоненты по уровню 1/*e*. Однако полуширина автокорреляционной функции ACF(E(b, f)) отнюдь не равняется *b*, но превышает ее более чем в два раза! Алгебраические выражения (1–5) были заимствованы из монографии Феллера [11]. В работе Попова и Смирновой [12] анализировались временные сечения двумерных АКФ для нескольких пульсаров. Было обнаружено, что гауссианы не годятся для аппроксимации временны́х сечений. Было предложено использовать универсальную экспоненциальную функцию вида

$$U(\mathbf{v}) = A_u \exp\left(-\frac{|\mathbf{v}|^m}{b}\right),\tag{6}$$

где  $A_u$  — масштабный коэффициент, а полуширина U(v) определяется из соотношения  $W_{1/e}^U = b^{1/m}$ . В случае временны́х сечений АКФ в работе Попова и Смирновой [12] было показано, что показатель степени *m* можно связать с показателем степени *n* пространственного спектра неоднородностей межзвездной плазмы, который описывается соотношением  $F_n(q) = Cq^{-n}$ , где q – пространственная частота, а С – структурная константа. Эта связь задается простым равенством n = m + 2. Мы провели аппроксимацию универсальной функцией (6) частотных сечений двумерных корреляционных функций по данным, использованным в работе [12]. Сводка показателей *т* для временны́х и частотных сечений будет приведена ниже. Для частотных сечений простой интерпретации показателя *т* в связи с показателем степени *п* пространственного спектра неоднородностей не было предложено. В этой статье мы будем использовать универсальную экспоненциальную функцию U(v) для моделирования формы усредненной частотной структуры с целью установления связи между частотными функциями и их автокорреляционными функциями. Эта функция не имеет очевидного физического смысла, но обладает свойством хорошо аппроксимировать колоколообразные кривые из-за наличия трех свободных параметров A, b, m.

# 3. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ АВТОКОРРЕЛЯЦИОННЫХ ФУНКЦИЙ

Как уже было упомянуто во Введении, в ходе анализа наблюдательных данных (динамических спектров) вычисляются двумерные корреляционные функции (АКФ), усредненные за время  $T_{obs}$ , значительно превышающее характерное время мерцаний t_{scint}. Из временны́х и частотных сечений этих АКФ получаются важные параметры мерцаний. Однако, как уже было показано в предыдущем разделе, полуширина автокорреляционной функции не совпадает с полушириной исходной функции, присущей процессу рассеяния. Получить из наблюдаемого сечения АКФ форму этой исходной функции (деконволюция) невозможно без предварительных условий. Поэтому в нашем численном моделировании мы в качестве исходного сигнала задавали средний профиль частотной структуры мерцаний в виде функции U(v) с различными показателями степени *m*₀, а затем вычисляли соответствующие автокорреляционные функции в виде свертки

$$A(\Delta v) = \frac{1}{B - \Delta v} \int_{0}^{B - \Delta v} U(v)U(v + \Delta v)dv.$$
(7)

Здесь B — спектральный интервал, на котором задана функция U(v). На самом деле интеграл в выражении (7) определялся путем вычисления суммы произведений на этом частотном интервале B. Для ясности укажем, что полуширина всех модельных функций была одинакова и принята равной 100 кГц, а спектральный интервал T составил 32.768 МГц (N = 32768). Такая конкретизация необходима для перехода к функции видности  $V(\tau)$ .

Таким образом, исходные функции U(v) задают среднюю форму дифракционных частотных (или временны́х) искажений радиоспектра пульсара. Эти функции являются действительными и четными. По смыслу они имитируют структуру спектра мощности в предположении, что существует некий средний частотный профиль спектральных искажений, что подтверждается существованием устойчивых и повторяющихся форм усредненных ACF от динамических спектров. Естественным условием, которое всегда принималось, было предположение, что этот средний частотный профиль описывается функцией Гаусса. Тогда и ACF от динамических спектров имели бы форму гауссианы. На практике наблюдается большое разнообразие форм средних ACF. Наш анализ носит чисто математический характер. Никаких шумовых составляющих исходные функции U(v) не содержат. Результаты моделирования даны в табл. 1. В первом столбце указан показатель степени  $m_0$  функции U(v); во втором столбце приведены значения показателя степени  $m_1$  для автокорреляционной функции  $A(\Delta v)$  при ее аппроксимации универсальной экспоненциальной функцией  $U(\Delta v)$ ; в третьем столбце содержится показатель степени  $m_2$ , полученный в результате аппроксимации функции видности  $V(\tau)$ , которая была вычислена через обратное преобразование Фурье от исходной функции U(y):  $V(\tau) = FT^{-1}(U(\nu))$ . Временное разрешение функции видности составляет для наших условий величину  $\delta \tau = 1/B = 0.0305 \,\mu s$ . В четвертом столбце дан фактор *R* увеличения полуширины автокорреляционной функции  $A(\Delta y)$  по отношению к полуширине исходной функции U(v). В пятом столбце мы поместили значения полуширины функции видности, а в двух последних столбцах приведены значения произведения  $2\pi\Delta\nu\Delta\tau$ ,  $K_1$  и  $K_2$ . На рис. 1 показаны примеры модельных функций дифракционной частотной структуры U(v) (слева), и соответствующие им автокорреляционные функции  $A(\Delta v)$  (справа). Штриховая линия соответствует случаю, когда спектральный профиль частотной структуры U(v) задается двухсторонней экспонентой (*m*₀ = 1.0); для такой функции автокорреляционная функция описывается модифицированной экспонентой (5), полуширина которой примерно в 2 раза превышает полуширину частотного профиля. Пунктирная линия соответствует гауссову частотному профилю. Известно, что автокорреляционная функция от гауссианы также является гауссианой с полушириной в  $\sqrt{2}$  раз превышающей исходную полуширину. Наконец, третий пример, изображен-

Ι	Токазатель степен	и	Фактор <i>R</i>	Полицириис		<i>K</i> ₂
$U(\mathbf{v})(m_0)$	AKΦ ot $U(v)$ ( $m_1$ )	$V(\tau)(m_2)$	уширения АКФ	$V(\tau), \mu s$	$K_1$	
0.45 0.77 0.6		0.61	9.32	0.197	0.124	1.155
0.50	0.84	0.67	6.87	0.298	0.187	1.284
0.55	0.91	0.73	5.42	0.415	0.261	1.414
0.60	0.98	0.80	4.48	0.552	0.346	1.515
0.65	1.05	0.87	3.80	0.689	0.433	1.662
0.70	1.11	0.94	3.38	0.836	0.525	1.744
0.75	1.17	1.01	3.04	0.976	0.613	1.863
0.80	1.22	1.08	2.77	1.113	0.699	1.936
0.85	1.28	1.16	2.56	1.241	0.780	1.997
0.90	1.33	1.23	2.40	1.363	0.856	2.054
0.95	1.38	1.30	2.26	1.476	0.929	2.099
1.00	1.43	1.36	2.15	1.560	0.992	2.133
1.05	1.48	1.43	2.05	1.678	1.054	2.161
1.10	1.52	1.49	1.97	1.766	1.109	2.185
1.15	1.56	1.54	1.90	1.848	1.161	2.206
1.20	1.60	1.60	1.84	1.928	1.211	2.228
1.25	1.64	1.64	1.78	1.998	1.255	2.234
1.30	1.67	1.69	1.74	2.062	1.295	2.253
1.35	1.71	1.73	1.70	2.126	1.336	2.271
1.40	1.74	1.77	1.66	2.181	1.370	2.274
1.45	1.77	1.80	1.63	2.236	1.404	2.288
1.50	1.80	1.83	1.60	2.284	1.435	2.296
1.55	1.83	1.86	1.57	2.330	1.464	2.298
1.60	1.85	1.88	1.55	2.376	1.493	2.314
1.65	1.88	1.90	1.53	2.416	1.518	2.328
1.70	1.90	1.92	1.52	2.455	1.542	2.434
1.75	1.92	1.94	1.49	2.489	1.564	2.330
1.80	1.94	1.95	1.47	2.525	1.587	2.333
1.85	1.96	1.97	1.46	2.556	1.606	2.344
1.90	1.97	1.98	1.44	2.586	1.625	2.340
1.95	1.99	1.99	1.43	2.614	1.642	2.348
2.00	2.00	2.00	1.41	2.641	1.660	2.349

Таблица 1. Результаты моделирования

ный сплошной линией, соответствует случаю, когда автокорреляционная функция имеет вид чистой экспоненты. Такой автокорреляционной функции соответствует частотный профиль в виде модифицированной функции Бесселя второго рода нулевого порядка, формально стремящейся к бесконечности при нулевом сдвиге [11]. В нашем численном моделировании ближе всего к этому случаю подходит вариант с показателями  $m_0 = 0.60$  и  $m_1 = 0.98$ . Именно этот случай показан на рис. 1 сплошной линией, так что автокорреляционная функция не выглядит чистой экспонентой, а функция частотного профиля не стремится к бесконечности.

На рис. 2 представлена зависимость множителя *R*, определяющего расширение автокорреля-



**Рис. 1.** Сравнение синтезированных средних профилей частотных искажений (слева) и формы соответствующих автокорреляционных функций (справа). Штриховая линия – спектральный профиль U(v) задается двухсторонней экспонентой ( $m_0 = 1.0$ ). Пунктирная линия соответствует гауссову частотному профилю. Сплошная линия – автокорреляционная функция имеет вид чистой экспоненты.



**Рис. 2.** Зависимость множителя R, характеризующего величину расширения АКФ относительно исходной ширины исследуемого процесса мерцаний, от значения показателя  $m_1$  в аппроксимации самой АКФ универсальной экспоненциальной функцией U(x).

ционной функции по отношению к исходной функции профиля частотной дифракционной структуры, от показателя степени *m* универсальной экспоненциальной функции, аппроксимирующей данную АКФ. В отдельных случаях этот фактор указывает на десятикратное уширение, а в минимальных случаях он оказывается около 1.4.

# 4. СРАВНЕНИЕ С НАБЛЮДАТЕЛЬНЫМИ ДАННЫМИ

Сравнение с наблюдательными данными мы начнем с рассмотрения табл. 2, в которой представлены измеренные показатели степени  $\beta$ , определенные по сечениям двумерных автокорреляционных функций для 11 пульсаров, пред-

Und Hum cono	Показатель степени				
имя пульсара	$m_f$	$m_t$			
B0329+54	1.14	1.67			
B0525+21	1.11	—			
B0809+74	—	1.33			
B0823+26	0.76	1.66			
B0834+06	1.11	1.53			
B0919+06	0.83	1.57			
B1133+16	1.45	1.86			
B1237+16	1.47	1.39			
B1749-28	1.26	1.82			
B1929+10	1.26	1.65			
B1933+16	0.98	1.18			
B2016+28	1.38	1.36			

Таблица 2. Сводка результатов измерений показателей степени универсальной экспоненциальной функции

ставленных в работе [12]. В отношении частотной структуры наименьшее значение показателя  $m_1$ обнаружено у пульсара B0823+26 ( $m_1 = 0.76$ ), что соответствует уширению АКФ почти в 10 раз. Наибольшее(трехкратное) уширение АКФ сечения по времени имеем у пульсара B1933+16 ( $m_1 = 1.18$ ). Хотя статистику из десятка пульсаров нельзя считать убедительной, мы все же приведем средние величины уширения АКФ по частоте и по времени, которые составили 3.0 и 2.0 соответственно с надежностью в 30%. Эта оценка пригодится нам в следующем параграфе.

#### 4.1. Сцинтилляционные скорости

В 1986 г. Кордс [3] опубликовал большую статью, посвященную определению пространственных скоростей для 71 пульсара на основе измерения параметров мерцания  $\Delta f$  и  $t_{scint}$ . Эти величины автор определял по временным и частотным сечениям двумерных автокорреляционных функций, используя аппроксимацию гауссианами. Основное выражение, по которому вычислялись пространственные скорости, имеет следующий вид

$$V_{\rm iss} = A_V \frac{\sqrt{\Delta f D_{\rm kpc}}}{(v_{\rm GHz} t_{\rm scint})}.$$
 (8)

Так как параметры  $\Delta f$  и  $t_{scint}$  определялись по автокорреляционным функциям, то их величины оказались завышенными в 3 раза по  $\Delta f$  и в 2 раза по  $t_{scint}$ . При переходе к действительны значениям  $\Delta f$  и  $t_{scint}$  оценки  $V_{iss}$  следует исправить на коэффициент  $2/\sqrt{3} = 1.15$ . В данном случае поправочные множители в числителе и знаменателе дроби скомпенсировали друг друга, и оценки скорости в работе [3] можно считать состоятельными.

#### 4.2. Сотношение неопределенности

При сравнении параметров  $\Delta f$  и  $\Delta \tau_{c}$  часто используется соотношение неопределенности  $2\pi\Delta f \Delta \tau_s = K$  (см., напр., [1, 13–15]. В большинстве случаев коэффициент K полагается равным единице. Правда, Риккет [1] замечает, что этот коэффициент зависит от формы автокорреляционной функции и от передаточной функции среды, и только для тонкого фазового экрана с Гауссовым спектром неоднородностей можно считать K = 1. B 6-м столбце табл. 1 приведены значения  $K_1$ , полученные в результате численного моделирования для различной формы заданного частотного профиля спектральных искажений, в предположении, что нам удалось каким-то образом измерить истинные ширины частотного профиля и истинную величину  $\Delta \tau_{c}$ , например, по анализу рассеянного среднего профиля. Видно, что даже в этом идеальном эксперименте коэффициент  $K_1$ близок к единице только для формы частотного профиля в виде двухсторонней экспоненты, что отмечалось еще в разделе 2. В общем случае коэффициент  $K_1$  меняется от 0.124 до 1.66. В последнем столбце табл. 1 приведены рассчитанные значения коэффициента К2 для более реального случая, когда  $\Delta \tau_s$  определены по измерению уширения импульса, а  $\Delta f$  берется как полуширина частотного сечения АКФ. В таком варианте  $K_{2}$ изменяется от 1.15 до 2.35. Именно этот вариант используется часто для пересчета измеренного времени уширения импульса Δτ_s в величину полосы декорреляции  $\Delta f$  и наоборот.

Рассмотрим, например, представленные в австралийском каталоге пульсаров [16] значения  $\Delta \tau_s$ , которые были получены двумя способами: 1) по измерению уширения среднего профиля импульса из-за рассеяния и 2) путем пересчета от Δf, измеренной по частотной корреляционной функции, по соотношению неопределенности  $2\pi\Delta f \Delta \tau_s = K \ c \ K = 1$ . На рис. 3 показана зависимость  $\Delta \tau_s$  от величины меры дисперсии по данным австралийского каталога [16]. Можно заметить, что на рисунке выделяются две зоны, разделенные пунктирной линией по величине  $\Delta \tau_s = 10 \, \mu s$ . Бо́льшие значения Δτ_s определены по измерениям уширения импульса, а меньшие значения получены путем пересчета из  $\Delta f$ . Но из нашего анализа следует, что величина К в среднем равна примерно 2! Значит, пересчитанные значения  $\Delta \tau_{e}$  уменьшены примерно в 2 раза. На наш взгляд, это объ-



**Рис. 3.** Зависимость уширения импульса  $\Delta \tau_s$  на частоте 1 ГГц от меры дисперсии по данным каталога пульсаров [16]. Пунктирная линия соответствует  $\Delta \tau_s = 10 \, \mu s$ . Бо́льшие значения  $\Delta \tau_s$  определены по измерениям уширения импульса, а меньшие значения получены путем пересчета из  $\Delta f$ .

ясняет наблюдаемое нарушение непрерывного распределения точек на рисунке.

#### 5. ЗАКЛЮЧЕНИЕ

При оценке основных параметров рассеяния радиоизлучения пульсаров на неоднородностях межзвездной плазмы  $\Delta f$  (полоса декорреляции) и t_{scint} (характерное время мерцаний) принято их измерять по ширинам частотных и временных автокорреляционных функций, взятых по уровню 1/2 и 1/е соответственно. Такое соглашение удобно при сравнении результатов, полученных разными авторами в разные эпохи и на разных частотах. Выполненное в данной работе численное моделирование указывает на то, что оценки параметров мерцаний по автокорреляционным функциям дают смещенные значения по отношению к истинным характеристикам процессов рассеяния, а именно, завышенные величины в среднем в 3 раза для полосы декорреляции  $\Delta f$ , и в 2 раза для времени мерцаний t_{scint}. Такие значительные переоценки параметров могут иметь существенное значение при построении статистических зависимостей и при сравнении наблюдений с теоретическими предсказаниями. Для перехода от измеренных параметров АКФ к истинным значениям мы рекомендуем аппроксимировать сечения АКФ с помощью универсальной экспоненциальной функции U(x) (6), измерить полуширину этой функции  $W_{1/e}^U = b^{1/m}$ , по величине показателя  $m_1$  (второй столбец табл. 1) найти соответствующий множитель R увеличения ширины АКФ (четвертый столбец табл. 1) и получить оценку истинного значения параметра  $W_{1/e}^{cor} = W_{1/e}^{obs}/R$ .

Для перехода от значений полосы декорреляции  $\Delta f$  к величине уширения импульса из-за рассеяния  $\Delta \tau_s$  (и наоборот) повсеместно используется соотношение  $2\pi\Delta f \Delta \tau_s = K$ . В большинстве случаев принимается, что K = 1. Риккет (1977) высказал замечание, что величина K может зависеть теоретически от передаточной функции среды. В табл. 1 в двух последних столбцах даются значения коэффициентов  $K_1$  и  $K_2$  для идеального случая измерений ( $K_1$ ) и для реальных условий перехода от измеренной по сечению АКФ ширине полосы декорреляции  $\Delta f$  к значению временно́го уширения импульса  $\Delta \tau_s$ . Если частотное сечение АКФ аппроксимировалось универсальной экспоненциальной функцией U(x), то можно

выбрать значение  $K_2$  в соответствующей строке табл. 1. В среднем величина множителя  $K_2 = 2.2$ .

## СПИСОК ЛИТЕРАТУРЫ

- 1. *B. J. Rickett*, Ann. Rev. Astron. Astrophys. **15**, 479 (1977).
- J. M. Cordes, J. M. Weisberg, and V. Boriakoff, Astrophys. J. 288, 221 (1985).
- 3. J. M. Cordes, Astrophys. J. 311, 183 (1986).
- N. D. R. Bhat, A. P. Rao, and Y. Gupta, Astrophys. J. Suppl. 121, 483 (1999).
- 5. A. D. Kuzmin and B. Ya. Losovsky, Astron. Astrophys. Trans. 26, 597 (2007).
- В. В. Андреянов, Н. С. Кардашев, В. В. Хартов, Космич. исслед. 52, 353, (2014).

- M. V. Popov, N. Bartel, M. S. Burgin, C. R. Gwinn, T. V. Smirnova, and V. A. Soglasnov, Astrophys. J. 888, id. 57 (2020).
- 8. V. I. Shishov, Soviet Astron. 17, 598 (1974).
- 9. J. M. Armstrong and B. J. Rickett, Monthly Not. Roy. Astron. Soc. 194, 623 (1981).
- 10. *A. Wolszczan*, Monthly Not. Roy. Astron. Soc. **204**, 591 (1983).
- 11. W. Feller, An Introduction to Probability Theory and its Application. Vol.2, 2nd ed. (John Wiley and Sons, 1971).
- 12. *М. В. Попов, Т. В. Смирнова*, Астрон. журн. **98**, 929 (2021).
- 13. O. B. Slee, G. A. Dulk, and R. E. Otrupchek, Proc. Astron. Soc. Australia **4**(1), 100 (1980).
- 14. J. M. Sutton, Monthly Not. Roy. Astron. Soc. 155, 51 (1971).
- 15. D. C. Backer, Astrophys. J. 190, 667 (1974).
- R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astron. J. 129, 1993 (2005).

# ТЕМП ПОТЕРИ МАССЫ АТМОСФЕРЫ ГОРЯЧИМ НЕПТУНОМ GJ 436b

© 2022 г. Е. С. Калиничева^{1, *}, В. И. Шематович¹, И. С. Саванов¹

¹ Институт астрономии Российской академии наук, Москва, Россия

**E-mail: kalinicheva@inasan.ru* Поступила в редакцию 14.09.2022 г. После доработки 30.09.2022 г. Принята к публикации 30.09.2022 г.

В данной работе представлены результаты моделирования верхней атмосферы экзопланеты GJ 436b, выполненные с помощью ранее разработанной одномерной самосогласованной аэрономической модели. Используемая модель учитывает вклад надтепловых частиц, что значительно уточняет функцию нагрева атмосферы. Получены высотные профили температуры, скорости и плотности, рассчитан темп потери атмосферы. Проведено сравнение расчетов темпа потери атмосферы с результатами, полученными из наблюдений и при помощи других моделей.

*Ключевые слова:* экзопланеты, потеря массы атмосферы, кинетические модели **DOI:** 10.31857/S0004629922110081

# 1. ВВЕДЕНИЕ

Результаты миссии Кеплер показали наличие большого разнообразия планетных систем, чья структура и геометрия существенно отличаются от параметров Солнечной системы. Обнаружение большого числа внесолнечных планет с массами и радиусами в промежутке между радиусами и массами Земли и Нептуна является особенно показательным [1]. Так называемые супер-земли и мини-нептуны, отсутствующие в Солнечной системе, являются ярким примером отличия других планетных систем. Они очень распространены и легче поддаются обнаружению по сравнению с планетами меньших масс, поэтому такие планеты вызывают большой интерес и находятся среди первичных целей для миссий по обнаружению и характеризации планет, таких как CHEOPS [2], TESS [3], CUTE [4], PLATO [5], ARIEL [6] и Спектр-УФ [7].

Считается, что планеты формируются внутри газопылевого протопланетного диска и накапливают свои первичные атмосферы, состоящие преимущественно из легких элементов. Каменистые планеты, вероятнее всего, теряют свою первичную водородную атмосферу вследствие ее убегания, в то время как газовые гиганты с низкой плотностью удерживают ее на протяжении всей жизни. В [8] обнаружены две области в распределении радиусов планет у супер-земель и мининептунов, открытых миссией Кеплер (см. также [9, 10]). В работах [11, 12] интерпретировали это как результат процессов атмосферного убегания, индуцированных фотоиспарением и происходящих во время первых нескольких сотен миллионов лет после рассеивания протопланетного диска (авторы [13] предлагают другую точку зрения). В работе [14] показано, что атмосферное убегание, вероятно, играет важную роль в формировании имеющейся наблюдаемой популяции экзопланет и распределения масса—радиус. Поскольку верхние атмосферы горячих экзопланет (планет, чья большая полуось орбиты не превышает 0.1 а.е.) могут быть нагреты рентгеновским и жестким ультрафиолетовым (XUV) излучением родительской звезды [15, 16] до крайне высоких температур (в случае газовых гигантов больше 10000 К), они могут испытывать гидродинамический отток водородных атмосфер.

В соответствии с данными [17] атмосферное убегание определяется как гидродинамический режим, который заменяет газокинетическое убегание, когда тепловая энергия kT на атом или молекулу превышает ее гравитационную энергию. В литературе обсуждаются различные сценарии испарения водородной атмосферы ([15, 16, 18-25]). В работе [26] показано, что в случае планет, чья атмосфера практически полностью заполняет свою полость Роша, наблюдается существенное (до нескольких раз) повышение темпа оттока атмосферы в сравнении с референтным случаем, когда граница полости Роша находится бесконечно далеко от планеты и эффектом наличия приливных сил от родительской звезды можно пренебречь. В той же работе предложены аппроксимационные формулы для вычисления темпа оттока для случая близости атмосферы планеты к полости Роша, а также показано, что горячий газовый гигант с горячей и плотной верхней атмосферой может испытывать гидродинамическое убегание более охотно, чем экзопланеты под таким же XUV-потоком, но для которых приливные силы родительской звезды пренебрежимо малы. Этот эффект может иметь большое влияние на эволюцию короткопериодических газовых гигантов с водородными атмосферами.

Открытие протяженной убегающей атмосферы горячего юпитера HD 209458b [27] способствовало развитию многих теоретических и наблюдательных работ, имеющих целью изучение и понимание планетных атмосфер, в частности процесса диссипации и его роли в эволюции планет. Темп потери массы атмосферы, таким образом, стал одним из ключевых параметров как наблюдательных, так и теоретических исследований верхних атмосфер экзопланет. За последние несколько лет было разработано множество различных вычислительных кодов с целью моделирования верхней атмосферы и ее убегания для различных экзопланет [16, 22, 28-40]. Эти сложные инструменты моделирования учитывают множество физических и химических процессов, описывающих взаимодействие между планетной атмосферой и XUV-излучением звезды и ее ветром. Работа этих вычислительных кодов занимает длительное время и больше подходит для детального изучения отдельных систем. Изучение эволюции экзопланет и моделирование различных популяций тяготеют к использованию аналитических аппроксимаций, требуют значительно меньше времени на вычисления, но и дают существенно менее точные результаты.

В данной статье приведены результаты расчетов темпа тепловой потери атмосферы для горячего нептуна GJ 436b, полученные при помощи усовершенствованной аэрономической модели [35]. Также проведено сравнение результатов расчетов с данными наблюдений, расчетами других авторов и оценками, полученными при помощи часто используемых аналитических аппроксимаций темпа потери массы атмосферы горячими экзопланетами.

# 2. ОПИСАНИЕ МОДЕЛИ

В данной работе с помощью одномерной самосогласованной аэрономической модели с учетом надтепловых фотоэлектронов, описанной в работе [35], были получены высотные профили температуры, скорости, плотности атмосферы активно наблюдаемого горячего нептуна GJ 436b. Преимущество модели в сравнении с аналогичными состоит в учете вклада надтепловых частиц, что позволяет уточнить темп нагрева атмосферы. Взаимодействие излучения с веществом атмосферы осуществляется посредством реакций ионизации и диссоциации:

$$H_{2} + hv \rightarrow H_{2}^{+} + e + (e_{p}),$$

$$H_{2} + hv \rightarrow H(1s) + H(1s, 2s, 2p),$$

$$H_{2} + hv \rightarrow H(1s, 2p) + H^{+} + e + (e_{p}),$$

$$H + hv \rightarrow H^{+} + e + (e_{p}),$$

$$He + hv \rightarrow He^{+} + e + (e_{p}),$$

где hv — приходящий от родительской звезды фотон,  $e_p$  — фотоэлектрон, e — вторичный электрон. Энергия приходящего фотона распределяется между внутренней энергией продуктов реакции и их кинетической энергией. Если кинетическая энергия образовавшегося при ионизации фотоэлектрона превосходит тепловую более, чем на порядок величины, такую частицу называют надтепловой.

Надтепловые фотоэлектроны могут вступать во вторичные реакции с компонентами атмосферы, и их кинетическая энергия в свою очередь расходуется на внутреннюю и кинетическую энергию продуктов вторичной реакции. Таким образом, учет вклада надтепловых частиц ведет к уменьшению части энергии излучения родительской звезды, приходящейся на нагрев атмосферы. Особенно важен этот эффект в случае горячих экзопланет.

Данная модель предполагает реализацию принципа расщепления по физическим процессам и включает в себя три последовательных блока: блок Монте-Карло, блок химической кинетики и газодинамический блок. Модуль Монте-Карло использует кинетический метод Монте-Карло из работ [41, 42] с учетом адаптации к водородной атмосфере, осуществляет решение уравнения Больцмана для надтепловых фотоэлектронов в предположении, что атмосферный газ характеризуется локальным равновесным максвелловским распределением скоростей. В данном блоке производится расчет интенсивности нагрева атмосферы с учетом влияния надтепловых фотоэлектронов, а также скорости ионизации, диссоциации и возбуждения атомов атмосферы на основе входных данных о распределении температуры и концентраций компонентов. Данные о скоростях реакций передаются в химический блок, обновляющий распределения концентраций компонентов и включающий в себя 9 компонентов (Н,

 $H_2$ , e⁻, H⁺,  $H_2^+$ ,  $H_3^+$  He, He⁺, HeH⁺) и 19 реакций. Газодинамический модуль производит расчет профилей макроскопических характеристик с учетом вычисленных ранее темпа нагрева и распределения компонентов с высотой. Особенностью газодинамического модуля является использование лагранжевых координат, что предполагает подвижность границ ячеек. Параметры планеты приведены в табл. 1, масса и радиус планеты выражены в единицах массы и радиуса Юпитера [43], в качестве граничного условия было выбрано внешнее давление  $1 \times 10^{-6}$  дин/см², что имитирует наличие давления ветра родительской звезды. Начальная атмосфера состоит на 85% из молекулярного водорода и на 15% из гелия. Высота начальной атмосферы была выбрана эмпирически с тем условием, чтобы включать в себя полосу нагрева от приходящего XUV-излучения от родительской звезды.

#### 3. ОЦЕНКА ТЕМПА ПОТЕРИ МАССЫ

Применение аэрономической модели позволяет получить оценки темпа потери атмосферы *M* по следующей формуле:

$$\dot{M} = 4\pi\rho v R_{\rm esc}^2, \tag{1}$$

где  $\rho$  — плотность атмосферы, v — скорость на заданной высоте.  $R_{\rm esc}$  — расстояние, на котором массовая скорость атмосферного газа равна локальной скорости звука. Для получения оценок темпа потери атмосферы планеты без детального моделирования системы широко используются различные аппроксимационные подходы, в том числе аппроксимация на основе системы параметров — это уравнение ограничения по энергии [44]:

$$\dot{M} = \frac{\pi n R_{\rm pl}^3 F_{\rm XUV}}{G M_{\rm pl}},\tag{2}$$

или его вариация, учитывающая влияние края полости Роша [26]:

$$\dot{M} = \frac{\pi n R_{\rm pl} R_{\rm XUV}^2 F_{\rm XUV}}{G M_{\rm pl} K},\tag{3}$$

где  $R_{\rm pl}$  — фотометрический радиус планеты,  $R_{\rm XUV}$  — эффективный радиус, на котором излучение звезды наиболее эффективно поглощается в верхней атмосфере планеты [26, 45], G — гравитационная постоянная, n — эффективность нагрева,  $F_{\rm XUV}$  — получаемый планетой поток XUV излучения от родительской звезды,  $M_{\rm pl}$  — масса планеты, K — фактор полости Роша [26]. В общем случае формула хорошо воспроизводит темпы убегания, полученные с помощью детального гидродинамического моделирования верхней атмосферы, особенно для горячих газовых гигантов с атмосферами в гидродиномическом режиме [37, 46–49].

Аналитическая форма позволяет проводить вычисления быстро, поэтому такой подход к моделированию атмосферного убегания применяется в большей части моделей планетной эволюции

Таблица 1. Параметры модели атмосферы GJ 436b

Параметр	Значение
Масса планеты	$0.07 \; M_J$
Радиус планеты	$0.35 R_J$
Равновесная температура	750 K
Поток УФ излучения	1760 эрг/с/см ²
Плотность на внутренней границе	$10^{-11}$ г/см ³
Давление на внешней границе	$1.3 \times 10^{-6}$ дин/см ²

и популяции экзопланет [11, 12, 50-53]. Тем не менее данное приближение существенно недооценивает темп потери массы для планет, обладающих низкой плотностью и при этом испытывающих сильное облучение потоком от родительской звезды. У таких планет убегание контролируется как внутренней тепловой энергией планеты, так и ее низкой гравитацией [11, 54-56]. Также уравнение существенно переоценивает темп потери массы для планет с гидростатическими атмосферами, где процесс контролируется джинсовским убеганием [48, 57]. Кроме того, это уравнение не учитывает эффекты диссоциации и ионизации молекулярного водорода, и не учитывает, что в сверхзвуковых атмосферах большая часть входной энергии в итоге переходит в кинетическую энергию газа, которая сильно влияет на гидродинамическую модель.

В [39] был расширен подход [58], который предполагал программирование малой сетки гидродинамических моделей верхних атмосфер и экстракцию темпа потери массы методом интерполяции между ячейками сетки. В [58] такой подход использовался для моделирования возможной эволюции атмосферы молодой Земли и для обхода допущений, связанных с использованием аналитических формул. Этот подход дает более надежные вычисления в планетной эволюции, подходящий для использования с различными режимами оттока и позволяющий увидеть гладкий переход между ними. В [39] представлена большая сетка гидродинамических моделей верхних атмосфер, вычисленных для параметров планет в диапазоне (1-40) масс Земли, а также метод интерполяции для получения модельных выходных параметров, таких как атмосферная температура, скорости, плотности, обилие производных водорода и итоговые темпы оттока для любой планеты внутри границ сетки. Такой подход может быстро дать результат полного моделирования верхней атмосферы без необходимости проведения длительного расчета. В [59] представлено аналитическое выражение для вычисления темпа потери массы как функции системы параметров, разработанное на основе результатов предыдущего метода. По конструкции это выражение имеет преимущество над уравнением ограничения по энергии и корректно учитывает  $R_{XUV}$  и более адекватно воспроизводит темп потери массы даже для случаев, где уравнение ограничения по энергии не применимо (например, случаи горячих планет с низкой средней плотностью и планет с гидростатическими атмосферами).

Гидродинамическая аппроксимация основана на решетке из почти 7000 одномерных гидродинамических моделей водородной верхней атмосферы, покрывающих системы, удовлетворяющие следующим ограничениям: планета массой (1–39) масс Земли, радиусом (1–10) радиусов Земли, равновесной температурой 300–2000 К, родительская звезда массой (0.4–1.3) масс Солнца, радиус орбиты 0.002-1.3 а.е. и светимость в диапазоне XUV около  $10^{26}-5 \times 10^{30}$  эрг/с. Данная аппроксимация задается выражением

$$\dot{M} = \mathrm{e}^{\beta} F_{\mathrm{XUV}}^{\alpha_1} d^{\alpha_2} R^{\alpha_3} L^{\zeta + \theta \ln d}, \qquad (4)$$

где  $\beta$ ,  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\zeta$ ,  $\theta$  – вычисленные в работе [59] коэффициенты, выбираемые в зависимости от режима истечения оболочки, d – радиус орбиты в астрономических единицах, R – радиус планеты в радиусах Земли, L – джинсовский параметр системы.

# 4. РЕЗУЛЬТАТЫ

На рис. 1 представлены высотные профили плотности, температуры и скорости атмосферы экзопланеты GJ 436b. Хорошо заметно, что температура атмосферы, полученная с помощью описанной в данной работе модели, в отличие от работ [43, 60], не поднимается выше 3700 К. Также обращает на себя внимание факт смещения пика температуры в сторону более плотных слоев атмосферы в нашей модели. Это объясняется в том числе тем, что ограничения нашей модели не позволяют учитывать влияние звездного ветра, а также осуществить моделирование более удаленных слоев атмосферы.

Профили газодинамической скорости совпадают качественно, однако в нашей модели скорость не превышает 3 км/с, в то время как линии, соответствующие другим моделям, поднимаются выше этой отметки. Профиль плотности показывает схожие результаты, однако именно на профиле, полученном с помощью нашей модели, хорошо видна двусоставность атмосферы. Слева (до 1.1  $R_{pl}$ ) выделяется тонкий слой стационарной атмосферы, постепенно переходящий в протяженную разреженную планетную корону. Именно аккуратный расчет степени нагрева атмосферы с учетом вклада надтепловых частиц позволяет увидеть эту картину более ясно. На нижней панели рис. 2, где показана степень ионизации вещества, хорошо видно, что доля нейтральных частиц ожидаемо быстро убывает с удалением от фотометрического радиуса планеты. Таким образом, описанная выше протяженная планетная корона более, чем на 80% состоит из ионизованных частиц. Профиль концентраций компонентов атмосферы представлен на верхней панели рис. 2 и показывает неожиданно резкое падение количества молекул водорода. Таким образом, молекулярный водород практически не выходит за пределы стационарной части атмосферы и полностью отсутствует в планетной короне. Концентрация же нейтральных атомов водорода достигает пика в месте, где атмосфера перестает быть стационарной и начинается переходная к короне область. Нейтральный гелий также уменьшается в переходной области. Интересно, что и нейтральные атомы, хотя и перестают быть основными компонентами после 1.5  $R_{pl}$ , сохраняются в заметном количестве на протяжении практически всей планетной короны.

Полученная в ходе моделирования оценка темпа потери атмосферы (1) составила  $1.9 \times 10^9$  г/с (строка 4 в табл. 2). Описанные в предыдущем разделе аппроксимационные подходы к оценке убегания атмосферы также используются достаточно широко и требуют знания таких параметров системы, как эффективность поглощения излучения родительской звезды, а также высота атмосферы планеты, на которой поглощение максимально. С использованием выходных данных представленной в данной работе модели

Таблица 2. Темп оттока атмосферы

N⁰	Источник	<i>М</i> , 10 ⁹ г/с
1	[61]	22
2	[63]	0.1 - 1
3	[62]	0.0037-1.1
4	Аэрономическая модель (1)	1.9
5	Подход ограничения по энергии (2)	2.0
6	Подход ограничения по энергии с	3.3
	учетом влияния полости Роша (3)	
7	Аналитическое выражение гидро-	2.5
	динамической аппроксимации (4)	
8	Гидродинамическая аппроксима-	2.3
	ция [59]	
9	[43]	4
10	[60]	3.1
11	[38]	10
12	[48]	4.5

**Примечание.** В круглых скобках приведены номера уравнений, согласно которым вычислены значения *M*.



**Рис. 1.** Верхняя панель – высотные профили температуры, средняя панель – скорости и нижняя панель – плотности атмосферы GJ 436b. Черные линии показывают профили, полученные в данной работе, красные – результаты расчетов из работы [43], синие – из работы [60]. Видно, что аэрономическая модель (1) показывает ожидаемо менее высокий уровень нагрева. На средней панели видно, что скорости, получаемые в модели (1), также в основном меньше по сравнению с другими моделями, черной штриховой линией обозначена скорость звука для аэрономической модели (1). Массовая скорость атмосферного газа и локальная скорость звука сравниваются на высоте  $R_{\rm esc} = 4.4 R_{\rm pl}$ . На нижней панели, где даны зависимости плотности газа от высоты  $\rho(R)$  в логарифмической шкале, заметно разделение на более плотную стационарную атмосферу и разреженную корону.



**Рис. 2.** Вверху – высотные профили концентраций компонентов атмосферы. Внизу – изменение степени ионизации атмосферы с высотой.

 $(R_{XUV} = 1.2R_{pl}, n = 0.2)$  и в рамках описанных выше подходов (2)–(4) был вычислен темп оттока атмосферы для данной системы (строки 4–7 в табл. 2), что наглядно демонстрирует, как сильно используемый подход влияет на итоговый результат.

Также в табл. 2 представлены данные из литературы, основанные как на наблюдениях (строки 1-3 в табл. 2), так и на моделировании (строки 8-12 в табл. 2). Самый большой отток ( $\dot{M} = 10^{10}$  г/с и более) указан в работах [38, 61]. Другие исследования называют более низкие оценки ( $\dot{M} = (1-4.5) \times$ × 10⁹ г/с). Самые низкие оценки основаны на наблюдениях и предложены в работах [62, 63]  $(\dot{M} \leq 10^9$  г/с). Оценки с использованием выходных данных нашей модели показывают сравнительно низкий отток ( $\dot{M} = 1.9 \times 10^9$  г/с). Использование аппроксимационной формулы (2) дает близкий результат ( $\dot{M} = 2.2 \times 10^9$  г/с). Учет влияния полости Роша (3) дает более высокий темп оттока ( $\dot{M} = 3.3 \times 10^9$  г/с). Следует отметить, что результат, полученный согласно (4) с использованием выходных данных нашей модели ( $\dot{M} = 2.5 imes$  $\times 10^9$  г/с), очень близок к результату гидродинамической аппроксимации из работы [59] ( $\dot{M}$  =  $= 2.3 \times 10^9$  г/с), что говорит в пользу предлагаемого в [59] подхода.

# 5. ЗАКЛЮЧЕНИЕ

Было проведено моделирование внешней газовой оболочки известного горячего нептуна GJ 436b с учетом вклада надтепловых частиц, а также сделаны оценки скорости убегания атмосферы различными способами. Сравнение полученных высотных профилей атмосферы с результатами работ других авторов показывает ожидаемо более низкий уровень нагрева атмосферы, а также более явно показывает деление моделируемой атмосферы на узкую стационарную часть и разреженную протяженную планетную корону. Вычисление темпа потери массы атмосферы в рамках различных подходов, описанных в разделе 3, но с использованием выходных данных модели, демонстрирует различие (наибольшее – в три раза) между этими подходами и указывает на важность выбора метода оценивания темпа потери массы. Чрезвычайная схожесть результатов (отличие 10%) вычисления темпа потери массы с использованием гидродинамической аппроксимации (4) и результата моделирования из работы [59] говорит в пользу надежности предлагаемого в упомянутой работе подхода. Сравнение полученного темпа потери атмосферы с расчетами других авторов показывает в среднем ожидаемо более низкий уровень оттока. Данный результат показывает важность учета вклада надтепловых частиц, пренебрежение которым может привести к значительным ошибкам в оценке темпа потери массы, в особенности у горячих экзопланет.

# 1278

## ФИНАНСОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-32-90149.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. F. Mullally, J. L. Coughlin, S. E. Thompson, J. Rowe, et al., Astrophys. J. Suppl. 217(2), id. 31 (2015).
- C. Broeg, A. Fortier, D. Ehrenreich, Y. Alibert, et al., Hot Planets and Cool Stars, Garching, Germany, edited by R. Saglia, EPJ Web of Conferences 47, id. 03005 (2013).
- 3. G. R. Ricker, J. N. Winn, R. Vanderspek, D. W. Latham, et al., J. Astron. Telesc. Instrum. and Systems 1, id. 014003 (2015).
- B. T. Fleming, K. C. France, N. Nell, R. A. Kohnert, et al., J. Astron. Telesc. Instrum. and Systems 4, id. 014004 (2018).
- 5. *H. Rauer, C. Catala, C. Aerts, T. Appourchaux, et al.*, Exp. Astron. **38**, 249 (2014).
- G. Tinetti, P. Drossart, P. Eccleston, P. Hartogh, et al., European Planetary Science Congress 2017, held 17–22 September, 2017 in Riga, Latvia, EPSC2017 11, id. 713 (2017).
- B. M. Shustov, M. E. Sachkov, D. V. Bisikalo, and A.-I. G. de Castro, Astrophys. Space Sci. Library 411, 275 (2015).
- 8. B. J. Fulton, E. A. Petigura, A. W. Howard, H. Isaacson, et al., Astron. J. 154, id. 109 (2017).
- V. Van Eylen, C. Agentoft, M. S. Lundkvist, H. Kjeldsen, J. E. Owen, B. J. Fulton, E. Petigura, and I. Snellen, Monthly Not. Roy. Astron. Soc. 479, 4786 (2018).
- 10. B. J. Fulton and E. A. Petigura, Astron. J. 156, id. 264 (2018).
- 11. J. E. Owen and Y. Wu, Astrophys. J. 817, id. 107 (2016).
- 12. S. Jin and C. Mordasini, Astrophys. J. 853, id. 163 (2018).
- 13. S. Ginzburg, H. E. Schlichting, and R. Sari, Monthly Not. Roy. Astron. Soc. 476, 759 (2018).
- 14. M. S. Lundkvist, H. Kjeldsen, S. Albrecht, G. R. Davies, et al., Nature Comm. 7, id. 11201 (2016).
- 15. H. Lammer, F. Selsis, I. Ribas, E. F. Guinan, S. J. Bauer, and W. W. Weiss, Astrophys. J. **598**, L121 (2003).
- 16. R. V. Yelle, Icarus 170, 167 (2004).
- 17. E. J. Öpik, Geophys. J. 7(4), 490 (1963).
- 18. D. Sasselov, Astrophys. J. 596, 1327 (2003).
- 19. A. Lecavelier des Etangs, A. Vidal-Madjar, J. C. McConnell, and G. Hébrard, Astron. and Astrophys. **418**, L1 (2004).
- A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, et al., Astrophys. J. 604, L69 (2004).
- I. Baraffe, F. Selsis, G. Chabrier, T. S. Barman, F. Allard, P. H. Hauschildt and H. Lammer, Astron. and Astrophys. 419, L13 (2004).
- F. Tian, O. B. Toon, A. A. Pavlov, and H. De Sterck, Astrophys. J. 621, 1049 (2005).
- 23. R. V. Yelle, Icarus 183, 508 (2006).
- 24. *A. Lecavelier Des Etangs*, Astron. and Astrophys. **461**, 1185 (2007).

- 25. T. Penz, N. V. Erkaev, Yu. N. Kulikov, D. Langmayr, et al., Planet. Space Sci. 56, 1260 (2008).
- N. V. Erkaev, Yu. N. Kulikov, H. Lammer, F. Selsis, D. Langmayr, G. F. Jaritz and H. K. Biernat, Astron. and Astrophys. 472, 329 (2007).
- A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Nature 422(6928), 143 (2003).
- 28. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).
- 29. J. E. Owen and A. P. Jackson, Monthly Not. Roy. Astron. Soc. 425, 2931 (2012).
- D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, and L. Fossati, Astrophys. J. 764, id. 19 (2013).
- 31. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).
- 32. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science **346**(6212), 981 (2014).
- I. F. Shaikhislamov, M. L. Khodachenko, Yu. L. Sasunov, H. Lammer, K. G. Kislyakova, and N. V. Erkaev, Astrophys. J. 795, id. 132 (2014).
- 34. V. I. Shematovich, D. E. Ionov, and H. Lammer, Astron. and Astrophys. 571, id. A94 (2014).
- 35. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61(5), 387 (2017).
- M. Salz, R. Banerjee, A. Mignone, P. C. Schneider, S. Czesla, and J. H. M. M. Schmitt, Astron. and Astrophys. 576, id. A21 (2015).
- N. V. Erkaev, H. Lammer, P. Odert, K. G. Kislyakova, C. P. Johnstone, M. Güdel, and M. L. Khodachenko, Monthly Not. Roy. Astron. Soc. 460, 1300 (2016).
- J. H. Guo and L. Ben-Jaffel, Astrophys. J. 818, id. 107 (2016).
- 39. D. Kubyshkina, M. Lendl, L. Fossati, P. E. Cubillos, H. Lammer, N. V. Erkaev, and C. P. Johnstone, Astron. and Astrophys. **612**, id. A25 (2018).
- 40. C. P. Johnstone, M. Güdel, H. Lammer and K. G. Kislyakova, Astron. and Astrophys. **617**, id. A107 (2018).
- 41. *V. I. Shematovich*, in: *Rarified Gas Dynamics*, Proc. of the 26th Intern. Symp. on Rarified Gas Dynamics, AIP Conf. Proc. **1084**, 1047 (2008).
- 42. V. I. Shematovich, Solar System Res. 44, 96 (2010).
- 43. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 481, 5315 (2018).
- 44. A. J. Watson, T. M. Donahue, and J. C. G. Walker, Icarus 48, 150 (1981).
- 45. N. V. Erkaev, H. Lammer, P. Odert, Yu. N. Kulikov and K. G. Kislyakova, Monthly Not. Roy. Astron. Soc. 448, 1916 (2015).
- 46. H. Lammer, P. Odert, M. Leitzinger, M. L. Khodachenko, et al., Astron. and Astrophys. 506, 399 (2009).
- 47. L. Fossati, K. France, T. Koskinen, I. G. Juvan, C. A. Haswell, and M. Lendl, Astrophys. J. 815, id. 118 (2015).
- 48. *M. Salz, P. C. Schneider, S. Czesla and J. H. M. M. Schmitt,* Astron. and Astrophys. **585**, id. L2 (2016).
- 49. N. V. Erkaev, P. Odert, H. Lammer, K. G. Kislyakova, et al., Monthly Not. Roy. Astron. Soc. **470**, 4330 (2017).

- 50. A. P. Jackson, T. A. Davis, and P. J. Wheatley, Monthly Not. Roy. Astron. Soc. **422**, 2024 (2012).
- 51. E. D. Lopez and J. J. Fortney, Astrophys. J. 776, id. 2 (2013).
- 52. S. Jin, C. Mordasini, V. Parmentier, R. van Boekel, T. Henning, and J. Ji, Astrophys. J. **795**, id. 65 (2014).
- 53. *E. D. Lopez*, Monthly Not. Roy. Astron. Soc. **472**, 245 (2017).
- 54. H. Lammer, N. V. Erkaev, L. Fossati, I. Juvan, et al., Monthly Not. Roy. Astron. Soc. **461**, L62 (2016).
- 55. A. Stökl, E. A. Dorfi, C. P. Johnstone, and H. Lammer, Astrophys. J. **825**, id. 86 (2016).
- 56. L. Fossati, N. V. Erkaev, H. Lammer, P. E. Cubillos, et al., Astron. and Astrophys. 598, id. A90 (2017).

- L. Fossati, T. Koskinen, K. France, P. E. Cubillos, C. A. Haswell, A. F. Lanza, and I. Pillitteri, Astron. J. 155, id. 113 (2018).
- 58. C. P. Johnstone, M. Güdel, A. Stökl, H. Lammer, et al., Astrophys. J. Letters 815, id. L12 (2015).
- 59. D. Kubyshkina, L. Fossati, N. V. Erkaev, P. E. Cubillos, et al., Astrophys. J. Letters 866, id. L18 (2018).
- R. O. P. Loyd, T. T. Koskinen, K. France, C. Schneider, and S. Redfield, Astrophys. J. Letters 834, id. L17 (2017).
- 61. *V. Bourrier and A. Lecavelier des Etangs*, Astron. and Astrophys. **557**, id. A124 (2013).
- 62. J. R. Kulow, K. France, J. Linsky, and R. O. P. Loyd, Astrophys. J. 786, id. 132 (2014).
- 63. D. Ehrenreich, V. Bourrier, P. J. Wheatley, A. Lecavelier des Etangs, et al., Nature **522**(7557), 459 (2015).

# О КОРРЕЛЯЦИИ УРОВНЯ МЕЖПЛАНЕТНЫХ МЕРЦАНИЙ И СКОРОСТИ СОЛНЕЧНОГО ВЕТРА

© 2022 г. В. Р. Лукманов^{1,*}, И. В. Чашей¹, С. А. Тюльбашев¹

¹ Физический институт им. П.Н. Лебедева РАН, Москва, Россия *E-mail: lukmanov@prao.ru

> Поступила в редакцию 24.07.2022 г. После доработки 30.09.2022 г. Принята к публикации 30.09.2022 г.

Приведены результаты наблюдений межпланетных мерцаний компактного радиоисточника 3С 48 на фазе спада 24 цикла солнечной активности. Наблюдения проводились на радиотелескопе БСА ФИАН на частоте 111 МГц. Проведено сравнение индекса (уровня) мерцаний и скорости солнечного ветра, которая вычислялась по ширине временных спектров мерцаний. Для полной серии наблюдений с 2015 по 2019 г. имеется слабая убывающая зависимость уровня мерцаний от скорости солнечного ветра, но из-за значительного разброса в данных корреляция невелика, в среднем около — 0.15. При усреднении по годичным интервалам модуль коэффициента корреляции возрастает почти до 1, причем индекс мерцаний в среднем примерно обратно пропорционален скорости солнечного ветра. Обсуждается возможная связь между пространственно-временной структурой уровня мерцаний и средней концентрацией плазмы солнечного ветра.

*Ключевые слова:* солнечный ветер, межпланетные мерцания, глобальная структура **DOI:** 10.31857/S0004629922110147

# 1. ВВЕДЕНИЕ

Метод межпланетных мерцаний широко применяется для исследования пространственной структуры солнечного ветра [1-6]. Преимущества данного метода в том, что он позволяет исследовать области солнечного ветра, недоступные для прямых измерений бортовыми приборами космических аппаратов, при этом наблюдения проводятся на наземных установках. Мерцания возникают за счет дифракции излучения компактных радиоисточников на движущихся неоднородностях просвечиваемой межпланетной плазмы. Характерный пространственный масштаб межпланетных мерцаний в метровом диапазоне длин волн составляет порядка сотен километров, временной масштаб – порядка секунды. Глобальная структура солнечного ветра в максимуме солнечной активности близка к сферически симметричной с медленными потоками ветра на всех гелиоширотах, а в минимуме имеет бимодальную структуру с быстрыми потоками на высоких широтах и медленными на низких широтах [1, 7]. Многолетние серии наблюдений мерцаний позволяют исследовать глобальную структуру солнечного ветра и ее эволюцию в цикле солнечной активности. При этом предполагается, что пространственное распределение уровня мерцаний отражает соответствующее распределение средней концентрации плазмы [1]. Такое предположение требует основанного на экспериментальных данных обоснования. В настоящей работе по данным наблюдений сильного компактного источника 3С 48 исследуются эволюция уровня мерцаний на спаде 24 цикла солнечной активности с 2015 по 2019 г. и корреляция уровня мерцаний со скоростью солнечного ветра.

## 2. НАБЛЮДЕНИЯ И ОБРАБОТКА ДАННЫХ

Наблюдения межпланетных мерцаний проводятся на радиотелескопе БСА ФИАН, центральная частота 111 МГц, полоса частот 2.5 МГц, период съема данных 0.1 с. БСА ФИАН является меридиональным радиотелескопом, который может фиксировать радиоисточник один раз в сутки. Полное время прохождения источника через диаграмму направленности антенны составляет около 7 мин. Индекс мерцаний вычисляется по измеренным флуктуациям плотности потока на интервале около 2 мин (1200 точек) вблизи пика диаграммы направленности в центральной части диаграммы направленности согласно формуле:

$$m^{2} = \frac{\left\langle \left(I - \left\langle I \right\rangle\right)^{2} \right\rangle}{\left\langle I \right\rangle^{2}},$$
(1)



Рис. 1. Измеренные значения индекса мерцаний и скорости солнечного ветра за 2015-2019 гг.

где I(t) — измеряемая плотность потока в зависимости от времени, а  $\langle I \rangle$  – ее среднее значение. Индекс мерцаний пропорционален усредненному по лучу зрения среднеквадратичному уровню флуктуаций концентрации плазмы на масштабе порядка масштаба первой зоны Френеля:  $m \sim \sqrt{\left< \delta n_e^2 \right>}$ . Для анализа в рамках данной работы выбран сильный компактный радиоисточник 3С 48. Наблюдения проводились на элонгациях от 25° до 60°. Это обусловлено тем, что на элонгациях меньше 25° мерцания переходят в фазу насыщения и подавляются угловым размером источника, а на элонгациях больше 60° мерцания ослабевают из-за удаления от Солнца модулирующего слоя, дающего наибольший вклад в мерцания. Отметим, что при оценке значений индексов мерцаний использовались те же данные, что и в работе [6], где оценивалась скорость солнечного ветра по временным спектрам мерцаний, а также взяты оценки скоростей солнечного ветра, полученные в рамках этой работы.

#### 3. КОРРЕЛЯЦИЯ ИНДЕКСА МЕРЦАНИЙ И СКОРОСТИ СОЛНЕЧНОГО ВЕТРА

На рис. 1 приведена измеренная зависимость индекса мерцаний от скорости солнечного ветра в 2015–2019 гг. Разным годам наблюдений соот-

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

ветствуют разные цвета. Из рис. 1 видно, что для каждого года наблюдений четко выраженная зависимость уровня мерцаний от скорости солнечного ветра отсутствует. При этом на рис. 1 отчетливо видно смещение облаков точек, обозначаемых разными цветами за разные годы. Полный разброс точек по вертикальной шкале значительно больше вблизи максимума солнечной активности (2015, 2016 гг.), что естественным образом объясняется повышенной частотой возмущений, таких, как выбросы корональной массы (СМЕ).

На рис. 2 в логарифмическом масштабе показаны данные из рис. 1, усредненные за каждый год. На рис. 2 видна четкая убывающая зависимость уровня мерцаний от скорости солнечного ветра: с уменьшением уровня солнечной активности средняя скорость солнечного ветра увеличивается, а уровень мерцаний падает. Гелиоширота прицельной точки луча зрения для источника 3С 48 в течение года изменяется от примерно  $50^{\circ}$  на элонгациях около  $25^{\circ}$  до примерно  $15^{\circ}$  при элонгациях около 60° [8]. Возрастание скорости при переходе от максимума активности к минимуму связано с возрастающим вкладом высокоскоростных потоков из корональных дыр на высоких гелиоширотах (медленный ветер преобладает на широтах меньше 20°, быстрый на более высоких широтах [7]). Уменьшение индекса мер-



**Рис. 2.** Среднегодовые значения индекса мерцаний и скорости солнечного ветра в логарифмическом масштабе со вписанной прямой. Коэффициент наклона прямой приведен в верхней части рисунка.

цаний с ростом скорости, видимое на рис. 2, может быть объяснено более низкой концентрацией плазмы в высокоскоростных потоках, если предположить, что существует пропорциональность между уровнем мелкомасштабных флуктуаций и средней концентрацией плазмы.

В табл. 1 приведены результаты численного анализа: количества наблюдений (*n*), среднегодовых значений скорости солнечного ветра и индекса мерцаний ( $\langle v \rangle$  и  $\langle m \rangle$ ), их среднеквадратичные отклонения ( $\sigma_v$  и  $\sigma_m$ ) и коэффициент корреляции по Пирсону  $\left(r_{vm} = \frac{\langle vm \rangle - \langle v \rangle \langle m \rangle}{\sigma_v \sigma_m}\right)$  за каждый год, доверительный интервал для коэффициента корреляции при доверительной вероятности 0.95.

Из табл. 1 видно, что наблюдаются значительные вариации коэффициента корреляции год от года, причем средние значения коэффициента, как правило, невелики. Поэтому можно утверждать, что явная корреляция между уровнем мерцаний и скоростью солнечного ветра на интервалах длительностью в один год отсутствует. Среднее по всем данным на рис. 1 значение коэффициента корреляции оказывается равным —0.15, что указывает в среднем на убывающую, но слабую зависимость индекса мерцаний от скорости солнечного ветра.

Аналогичный анализ данных, приведенных на рис. 2, показывает, что между среднегодовыми значениями индекса мерцаний и скорости солнечного ветра имеется достаточно высокая отри-

Год	п	$\langle v \rangle$ , км/с	$\sigma_v$ , км/с	$\langle m \rangle$	$\sigma_m$	$r_{vm}$	Довер. интервал для <i>r</i> _{vm}
2015	62	412	98	0.429	0.093	-0.156	от —0.391 до 0.098
2016	68	482	124	0.366	0.086	0.060	от -0.181 до 0.294
2017	77	530	114	0.362	0.102	0.260	от 0.038 до 0.457
2018	79	618	96	0.299	0.083	0.096	от -0.128 до 0.311
2019	57	604	118	0.300	0.100	0.353	от 0.102 до 0.562

Таблица 1. Результаты численного анализа

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

цательная корреляция: коэффициент корреляции составляет —0.981. Линейная зависимость, вписанная в данные рис. 2 в логарифмическом масштабе, по нашим оценкам имеет коэффициент наклона примерно —0.9.

# 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Таким образом, наблюдения мерцаний индивидуального источника на годичных интервалах показывают слабую отрицательную корреляцию между индексом мерцаний и скоростью солнечного ветра. При усреднении по годичным интервалам корреляция индекса мерцаний и скорости солнечного ветра резко увеличивается. Наблюдательные данные примерно соответствуют обратной пропорциональности между индексом мерцаний и скоростью солнечного ветра. Такая зависимость между параметрами мерцаний может рассматриваться как косвенное подтверждение пропорциональности между уровнем ответственных за мерцания мелкомасштабных флуктуаций и средней концентрацией плазмы, поскольку в соответствии с данными измерений KA Ulysses [7] плазма в быстрых потоках является более разреженной, чем в медленных, причем плотность потока частиц (и плотность потока массы) оказывается примерно постоянной,  $\langle Nv \rangle \approx \text{const.}$  Примерное постоянство потока массы потоков спокойного солнечного ветра обусловлено тем, что значительная часть выходящего в корону потока энергии расходуется на работу против гравитации Солнца [9].

Отметим, что убывающая зависимость уровня мерцаний от скорости солнечного ветра была найдена также в работе [10] в результате томографического анализа наблюдений межпланетных мерцаний, проведенных на трехпунктовой системе Нагойского университета. Эта зависимость проявилась при усреднении по всем лучам зрения для использованной в наблюдениях сетки источников. Как показано в работе [11], полученная в [10] зависимость согласуется с примерным постоянством потока массы солнечного ветра. Зависимость между уровнем мерцаний и скоростью солнечного ветра является следствием пропорциональности между уровнем мелкомасштабных флуктуаций плотности и средней концентрацией плазмы, ее существование может рассматриваться как основание для исследования глобальной структуры солнечного ветра. В недавней работе [12] найдена высокая корреляция уровня межпланетных мерцаний с измерениями средней концентрации солнечного ветра вблизи орбиты Земли на спутнике АСЕ. Этот результат также получен при усреднении данных мерцаний по большому числу лучей зрения. Результаты [10, 12] показывают, что наблюдения мерцаний большого числа источников в среднем описывают пространственное распределение концентрации плазмы солнечного ветра. Из результатов настоящей работы следует, что наблюдения индивидуальных источников при усреднении за периоды около года также дают информацию, которая может быть использована для исследования циклической динамики солнечного ветра. Для интервалов порядка периола врашения Солнца целесообразно использовать ланные мониторинга межпланетных мерцаний. в которых в течение суток наблюдается несколько тысяч компактных радиоисточников [13].

### СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Власов, И. В. Чашей, В. И. Шишов, Т. Д. Шишова, Геомагнетизм и аэрон. **19**, 401 (1979).
- 2. С. К. Глубокова, С. А. Тюльбашев, И. В. Чашей, В. И. Шишов, Астрон. журн. **90**, 639 (2013).
- 3. С. К. Глубокова, А. В. Глянцев, С. А. Тюльбашев, И. В. Чашей, В. И. Шишов, Астрон. журн. 92, 38 (2015).
- 4. *M. Tokumaru, M. Kojima, and K. Fujiki*, J. Geophys. Res. **117**, 06108 (2012).
- 5. P. K. Manoharan, Astrophys. J. 751, 128 (2012).
- 6. I. V. Chashei, V. R. Lukmanov, S. A. Tyul'bashev, and M. Tokumaru, Solar Phys. **296**, № 63, 14P (2021).
- D. J. McComas, H. A. Elliott, N. A. Schwadron, J. T. Goslig, R. M. Skoug, and B. E. Goldstein, Geophys. Res. Lett. 30, 1517 (2003).
- 8. В. Р. Лукманов, И. В. Чашей, Астрон. журн. 99. 160 (2022).
- 9. I. V. Chashei, Adv. Space Res. 20, 31 (1997).
- K. Asai, M. Kojima, M. Tokumaru, A. Yokobe, B. V. Jackson, P. L. Hick, and P. K. Manoharan, Journal of Geophysical Research 103, 1991 (1998).
- 11. И. В. Чашей, М. Коджима, И. Шимизу, Геомагнетизм и аэрон. **42**, 7 (2002).
- B. V. Jackson, M. Tokumaru, R. A. Fallows, M. M. Bisi, K. Fujiki, I. Chashei, S. Tyul'bashev, O. Chang, D. Barnes, A. Buffington, L. Cota, and M. Bracamontes, Adv. Space Res. (2022) https://doi.org/10.1016/j.asr.2022.06.029
- В. И. Шишов, И. В. Чашей, В. В. Орешко, С. В. Логвиненко, С. А. Тюльбашев, И. А. Субаев, П. М. Свидский, В. Б. Лапшин, Р. Д. Дагкесаманский, Астрон. журн. 93, 1045 (2016).

# ЛИНЕЙНАЯ ПОЛЯРИЗАЦИЯ ИЗЛУЧЕНИЯ В ЛИНИЯХ НЕ І 5876 Å (D₃) И 5015 Å В АТМОСФЕРЕ СОЛНЦА

© 2022 г. С. А. Богачев^{1, *}, М. Б. Шапочкин²

¹ Институт космических исследований Российской академии наук, Москва, Россия ² МОО Московское физическое общество, Москва, Россия

> *E-mail: bogachev.sergey@gmail.com Поступила в редакцию 18.03.2022 г. После доработки 22.08.2022 г. Принята к публикации 30.08.2022 г.

В работе теоретически исследована величина линейной поляризации излучения, возникающей в линиях атомарного гелия в хромосфере Солнца и в солнечных протуберанцах. В видимой области солнечного спектра наблюдается несколько интенсивных линий атома He I, поляризация в которых может возникать при ударном воздействии на солнечную плазму потоков ускоренных протонов и электронов. Мы представляем результаты расчетов для двух линий атома, а именно линии  $D_3$  5876 Å, которая широко наблюдается в эксперименте, а также линии He I 5015 Å, для которой степень линейной поляризации оказалась наиболее высокой среди исследованных нами линий в спектре гелия (более 30%). Наши расчеты указывают на хорошие возможности по экспериментальной регистрации поляризации в обеих этих линиях, как в ходе наземных наблюдений, например при затмениях Солнца, так и во время космических экспериментов.

*Ключевые слова:* хромосфера Солнца, спектр излучения, линейная поляризация, солнечные вспышки **DOI:** 10.31857/S0004629922120015

#### 1. ВВЕДЕНИЕ

Поляризация излучения спектральных линий в солнечной атмосфере — хорошо известный эффект, который является предметом широкого исследования. Основными причинами возникновения поляризации в линиях излучения может быть ударное воздействие на плазму со стороны электронов и протонов, а также влияние магнитного поля. В первом случае по характеру и величине поляризации можно сделать вывод об особенностях энергетического распределения ускоренных во вспышке частиц. Во втором случае измерения поляризации могут быть использованы для оценки напряженности и направления магнитного поля.

Первым примером регистрации поляризации в линиях излучения солнечного спектра являются, по-видимому, наблюдения линии S I 1437 Å, сделанные спектрополяриметром УФ диапазона на борту космической обсерватории SMM [1]. Соответствующая вспышка наблюдалась 15 июля 1980 г. Поляризация была объяснена воздействием на плазму вертикально направленного потока электронов, который представлял собой тепловой поток из расположенной выше переходной области Солнца, нагретой во время вспышки, вниз в солнечную хромосферу. Прямое воздействие на плазму со стороны ускоренных вспышечных электронов с энергиями порядка 10–100 кэВ было оценено как маловероятное. Электроны таких энергий просто не могли проникнуть в хромосферу на такую глубину. Измеренная степень поляризации составила 25%. Многочисленные примеры поляризации излучения зарегистрированы также при наблюдениях Солнца в линии водорода  $H_{\alpha}$  (см., например, [2, 3]). Среди иных примеров можно отметить наблюдения в хромосферной линии Na  $D_2$  589 нм [4] и Mg I 5528.4 Å [5].

Интерес к изучению поляризации излучения в линиях атомарного гелия пока заметно ниже, чем для перечисленных выше линий солнечного спектра. Одной из причин этого является более низкая интенсивность излучения в линиях Не I по сравнению с основными эмиссионными линиями солнечной хромосферы, такими как H_α, а также линии D₁ и D₂ натрия и линии H и K иона Са II. Вместе с тем при повышении температуры плазмы, например в верхней хромосфере Солнца, а также во внешних слоях солнечных протуберанцев, относительная роль линий гелия повышается. Поскольку тепловые потоки из короны в хромосферу, которые являются наиболее вероятной причиной возникновения поляризации в излучении, проникают на разные глубины, то сравнение поляризации в линиях нижней ( $H_{\alpha}$  и др.) и линиях верхней (He I) хромосферы может дать дополнительную информацию об изменении характеристик теплового потока и хромосферы вдоль направления движения электронов.

В видимой области солнечного спектра наблюдается несколько интенсивных линий как ионизированного атома гелия (например, линия 4686 Å), так и нейтрального атома гелия He I (например, триплет Не I 4471 Å, а также синглеты 5876 Å (D₃) и 5015 Å). В данной работе мы теоретически исслелуем величину возможной столкновительной поляризации излучения для линий 5876 Å и 5015 Å. В качестве места формирования такого излучения мы рассматриваем хромосферу Солнца, а также солнечные протуберанцы. Во всех случаях мы исследуем зависимость степени поляризации от анизотропии воздействующих частиц и направления (угла) распространения. Линия D₃ 5876 Å выбрана в связи с высоким интересом к ней со стороны экспериментальной астрономии. В частности. известны примеры измерения степени линейной поляризации линии D₃ во время солнечных затмений (например, [6, 7]). В последнее время в связи с проектом "Metis" интерес возрос не только к измерению интенсивности, но и измерению степени линейной поляризации линий 5876 Å [8]. Высказывается предположение, что измерение поляризации линии D₃ во время вспышек и v протуберанцев позволит оценить величины магнитного поля и потоков.

Что касается линии 5015 Å, то наш интерес к ней был вызван тем, что переход 2S¹-3P¹ потенциально обеспечивает высокую степень поляризации излучения. В следующем разделе мы излагаем наши методы расчета. В разделе 2 представлены результаты. В последнем разделе изложены выводы и заключение.

#### 2. МЕТОДЫ РАСЧЕТА

#### 2.1. Исходные данные

Как уже говорилось выше, в качестве источника поляризации мы рассматриваем столкновительное воздействие на плазму со стороны анизотропных потоков заряженных частиц; в первую очередь электронов. Основное состояние атомов гелия при этом выстраивается в соответствии с состоянием воздействующих частиц, как правило имеющих анизотропное угловое распределение. Это, в свою очередь, и приводит к анизотропии (поляризации) излучения. Обычным модельным описанием излучающей плазмы при рассмотрении ударной поляризации является отсутствие локального термодинамического равновесия [9-14]. В рамках такого приближения считается, что возбуждение атомов осуществляется исключительно ударным воздействием, а все остальные

процессы предполагаются несущественными. Также считается, что величина и ориентация магнитного поля не влияют на выстраивание возбужденных состояний (см., например, [15, 16]).

Мы проводим расчеты для случая, когда направление наблюдения перепендикулярно направлению оси анизотропии потока электронов. Положение источника на диске Солнца не является при этом существенным, однако в тех случаях, когда это условие не соблюдается, требуется пересчитать измеренную поляризацию на фактическое направление.

Расчет степени линейной поляризации был выполнен нами с использованием математического аппарата атомной матрицы плотности [15, 16]. В качестве степени линейной поляризации перехода и сечения возбуждения перехода используются экспериментальные данные и аналитические выражения, описанные в [17–19] аналитическими выражениями. Совокупность этих данных позволяет рассчитать степень линейной поляризации излучения в общем аналитическом виде. Ниже кратко изложен применявшийся нами математический аппарат, основанный преимущественно на работе [20].

#### 2.2. Модельное приближение и параметры плазмы и электронов

В качестве модели излучающей плазмы со слабой анизотропией, соответствующей отсутствию локального термодинамического равновесия, предложена модель функции распределения, учитывающая тепловые и нетепловые электроны в виде [20]:

$$f(\varepsilon, \theta) = \frac{N_t}{4\pi} f_t(\varepsilon) + N_{\rm nt} f_{\rm nt}(\varepsilon, \theta) f_{\rm nt}(\varepsilon), \qquad (1)$$

где  $N_{\rm t}$  — концентрация тепловых электронов, а  $f_{\rm t}(\varepsilon)$  — максвелловская функция распределения по энергии  $\varepsilon$  для тепловых электронов с температурой  $T_0$ :

$$f_{t}(\varepsilon) = 2\pi^{-1/2} T_{0}^{-3/2} \sqrt{\varepsilon} \exp\left(-\frac{\varepsilon}{T_{0}}\right).$$
 (2)

Кроме того,  $N_{\rm nt}$  — концентрация нетепловых электронов,  $f_{\rm nt}(\varepsilon)$  — функции распределения нетепловых электронов по энергии. Последняя может задаваться либо максвелловской функцией с  $T_{\rm nt} \gg T_0$ , либо, что применяется чаще, степенной функцией:

$$f_{\rm nt}(\varepsilon) = \frac{\delta - 1}{\varepsilon_1} \left(\frac{\varepsilon}{\varepsilon_1}\right)^{-\delta}.$$
 (3)

Здесь  $\varepsilon_1$  — порог отсечения ("low cut-off energy"), а  $\delta$  — спектральный индекс. Обе величины являются константами распределения. Угловая зависимость нетепловых электронов, согласно той же работе [20], предложена в виде:

$$f_{\rm nt}(\varepsilon, \Theta) = \begin{cases} \frac{a+1}{2\pi} \cos^a \Theta & \text{для} & 0 < \Theta \le \frac{\pi}{2}, \\ 0 & \text{для} & \frac{\pi}{2} \le \Theta \le \pi. \end{cases}$$
(4)

Здесь  $\Theta$  – питч угол,  $a = \frac{\overline{\epsilon}}{\epsilon_2}$  и  $\epsilon_2$  – константы

анизотропии, а  $\overline{\epsilon}$  — средняя э́нергия нетепловых электронов, которая для степенного распределения находится как

$$\overline{\varepsilon} = \int_{\varepsilon_{1}}^{\infty} \varepsilon f_{\rm nt}(\varepsilon) d\varepsilon = \frac{\delta - 1}{\delta - 2} \varepsilon_{1}$$

Параметр *a*, согласно работе [20], связан с питч-углом  $\Theta$  формулой

$$\cos\Theta = 2^{-\frac{1}{a}}$$

Далее при вычислениях мы будем использовать ряд значений a, который приведен в табл. 1. Здесь же показан соответствующий данному ряду набор углов  $\Theta$ .

Пучку электронов, в котором все частицы имеют одинаковый питч-угол, соответствует значение  $a \to \infty$ , а при  $a \to 0$  распределение стремится к изотропному.

Задание характеристик излучающей плазмы, таким образом, сводится к подставлению в формулы (1)–(4) конкретных значений констант, соответствующих условиям, в которых происходит возбуждение исследуемой линии – в нашем случае He I.

Температура тепловых электронов  $T_0$  в атмосфере Солнца может меняться в очень широких пределах от 4–5 тыс. К в хромосфере в области температурного минимума до 3 × 10⁷ К для высокотемпературной плазмы в короне Солнца [21]. С учетом интересующих нас объектов наблюдения (верхняя хромосфера и внешние слои протуберанцев) нами при вычислениях принято  $T_0 =$ = 10⁴ К, что соответствует как наблюдениям, так и, в целом, характерным значениям, принимаемым при расчете ударной поляризации для хромосферной плазмы [6–8].

Концентрация тепловых электронов  $N_t$  является наблюдаемой величиной и принята нами как лежащая в диапазоне от порядка  $10^{12}$  см⁻³ [1, 11, 21, 22] до  $1.5 \times 10^{14}$  см⁻³ [23]. Для сравнения в работе [22] дана оценка величины концентрации электронов  $N_t = 8.1 \times 10^{12}$  см⁻³ в области излучения. В целом приведенный диапазон значений характерен для верхней хромосферы, где формируется излучение в линиях 5876 и 5015 Å. Разница

Таблица 1. Зависимость степени линейной поляризации от температуры плазмы

<i>T</i> ₀ , эВ	14	12	10	8	6	4
(K)	(15400)	(13200)	(11000)	(8800)	(6600)	(4400)
P, %	7.4	7.7	8.5	10.6	16.8	42.9

в плотности просто соответствует разной глубине проникновения частиц в хромосферу.

Концентрация нетепловых электронов  $N_{\rm nt}$  соответствует их концентрации в потоке частиц, оказывающем ударное воздействие на хромосферу. В работе [21] сделана оценка концентрации электронов с энергией более 25 КэВ, которая лежит в диапазоне значений от  $10^7$  до 4 ×  $10^9$  см⁻³. Мы считаем эти значения достоверным и используем их для расчета.

Наименее уверенно определяемыми из эксперимента являются характеристики энергетического распределения нетепловых электронов, в особенности энергия отсечения  $\varepsilon_1$ . В работах [9–14] приводятся величины  $\varepsilon_1$  от 10 до 20 КэВ, в работе [24] расчеты выполнены для  $\varepsilon_1 = 15$  КэВ; в работе [21] использовано значение  $\varepsilon_1 = 25$  КэВ. Мы исходили из этого диапазона значений. Спектральный индекс для нетепловых электронов  $\delta$  принят нами 3 (см., например, [10, 14, 24]). На больших энергиях он может достигать значений 5 или 6 [13, 21, 24]. Максимальная энергия нетепловых электронов может достигать очень больших значений, до 400 КэВ [21] и выше.

В реальных условиях на Солнце перечисленные параметры, безусловно, варьируются от вспышки к вспышке.

#### 2.3. Расчет степени линейной поляризации излучения

Для расчета степени линейной поляризации *Р* при возбуждении электронным пучком из основного состояния атома удобно использовать аналитическую формулу для степени линейной поляризации излучающих переходов, основанную на методе Борна [19, 25]:

$$P = P_0 \frac{\ln\left(\frac{\varepsilon_0}{u}\right)}{\ln(\varepsilon_0 u^{1.4})}.$$
 (5)

Здесь  $\varepsilon_0$  — энергия, при которой поляризация меняет знак, выраженная в пороговых единицах, а u — порог возбуждения, т.е. минимальная энергия электронов, при которой возможно возбуждение перехода. Величина  $P_0$  — это степень линейной поляризации в пороге возбуждения. Для линии гелия 5876 Å, соответствующей переходу  $3D_{3,2,1}^3 - 2P_{2,1,0}^3$ , в работе [25] приводится теоретиче-

ская оценка значения поляризации в пороге, равная 31.7%. Экспериментальное значение  $P_0$  при этом составляет 10%. Энергия  $\varepsilon_0$  в пороговых единицах равна 5.25. Энергия возбуждения основного состояния атома  $\Delta \varepsilon = 23.07$  эВ. Погрешность описания поляризации около 6%.

Излучение в другой исследованной нами линии, Не I 5015 Å, соответствует переходу  $2S^1-3P^1$ с  $\Delta \varepsilon = 23.09$  эВ. В случае ударного возбуждения выстраивание состояния  $3P^1$  происходит сильнее, нежели  $3D_{3,2,1}^3$  состояния. В работе [25] приводится теоретическая оценка значения поляризации в пороге (для случая пучкового возбуждения), равная 100%, а экспериментальная величина равна 60%.

Согласно работам [16] и [26], структура выражения для поляризации имеет вид:

$$P = \frac{2I_1}{(n/2)I_0 + 2I_1},\tag{6}$$

где  $n = N_t/N_{nt}$  – отношение концентрации тепловых электронов  $N_t$  к концентрации нетепловых  $N_{nt}$ , а

$$I_0 = \int_{\Delta \varepsilon}^{\infty} Q(\varepsilon) f_t(\varepsilon) \sqrt{\varepsilon} d\varepsilon, \qquad (7)$$

$$I_{1} = \int_{\Delta\varepsilon}^{\infty} \frac{Q(\varepsilon) P_{0}(\varepsilon)}{1 - P_{0}(\varepsilon)/3} \frac{f_{\text{nt}}(\varepsilon)}{a+3} \sqrt{\varepsilon} d\varepsilon.$$
(8)

Для расчета величин  $I_0$  и  $I_1$  мы воспользовались аналитическом выражением для полного сечения  $Q(\varepsilon)$  возбуждения линии Не I электронным ударом из основного состояния атома, производимого электронным пучком, полученным в работе [18]. Остальные величины, такие как функция распределения для тепловых электронов  $f_t(\varepsilon)$ и функция распределения для нетепловых электронов  $f_{nt}(\varepsilon)$ , были определены выше.

В целом величины  $I_0$  и  $I_1$  не определяются однозначно, так как зависят от параметров функции распределения электронов хромосферы и атомной системы. В частности, величина  $I_0$  зависит от параметров  $\Delta \varepsilon$  и  $T_0$ , а величина  $I_1$  зависит от параметров  $\Delta \varepsilon$ ,  $P_0$ ,  $\varepsilon_0$ ,  $\varepsilon_2$  и  $\delta$ . Если считать заданными характеристики атомной системы  $\Delta \varepsilon$ ,  $P_0$  и  $\varepsilon_0$ , то результат расчета степени поляризации будет зависеть от пяти параметров, описывающих, в основном, характеристики электронов: *n*,  $T_0$ ,  $\varepsilon_1$ ,  $\delta$  и  $\varepsilon_2$ .

#### 3. РЕЗУЛЬТАТЫ РАСЧЕТА

Для проведения аналитических расчетов использовался пакет прикладных программ MATHCAD, позволяющий проводить численные расчеты и выполнять графические построения.

Расчеты, согласно плану статьи, были проведены для двух линий атомарного гелия: 5876 и 5015 Å. Для каждой линии в качестве источника излучения были рассмотрены верхняя хромосфера Солнца и солнечные протуберанцы.

Для хромосферы, в соответствии с приведенным выше обоснованием, для расчетов были использованы следующие значения: температура

$$T_0 = 10 \Rightarrow B (11000 \text{ K}); n = \frac{N_t}{N_{\text{nt}}} = 10^4 - 10^5 [1, 11], \varepsilon_1 =$$
  
= 10 K $\Rightarrow$ B,  $\delta = 2.5, \Theta = 37^\circ$ .

Для солнечных протуберанцев отличия заключаются в параметрах излучающей плазмы. Кроме того, если нагрев хромосферы производится вспышечными электронами, то возбуждение атомов гелия в протуберанцах производится в отсутствие вспышек, т.е. электронами с более низкими энергиями. Исходя из этого, нами были приняты следующие значения:  $T_0 = 6.5$  эВ (7150 K);

$$n = \frac{N_{\rm t}}{N_{\rm nt}} = 1.6 \times 10^4 \, [1, 11]; \varepsilon_1 = 1 \, \text{K} \Rightarrow \text{B}; \, \delta = 2.5; \, \Theta = 37^\circ.$$

Значение угла  $\Theta = 37^{\circ}$  в обоих случаях (и для хромосферы, и для протуберанцев) выбрано произвольно, как некая характерная величина. Изменение степени поляризации от этого параметра показано на рис. 3.

С учетом ограниченного объема статьи мы приводим ниже детальные результаты только для линии 5876 Å. Для второй линии представлены только характерные значения поляризации, без зависимостей от параметров плазмы и электронов.

## 3.1. Результаты расчета для линии Не I 5876 Å для хромосферы Солнца

Параметры плазмы для хромосферы были приведены выше. Расчеты были проведены для двух значений *n*, а именно  $n = 10^5$ , для которого получено P = 8.5%, и для  $n = 10^4$ , для которого P == 48.3%. Соответствующие значения, в целом, определяют диапазон, в котором может лежать экспериментальное значение поляризации.

Расчеты показывают достаточно сильную зависимость степени поляризации от температуры плазмы  $T_0$ . Зависимость P от некоторых значений  $T_0$  представлена в табл. 1 (расчеты проведены для  $n = 10^5$ ).

При фиксированных значениях параметров плазмы основным источником неопределенности являются параметры нетепловых электронов, а именно  $\varepsilon_1$ ,  $\delta$  и  $\Theta(\varepsilon_2)$ . Вид соответствующих зависимостей показан на рис. 1, 2 и 3.



**Рис. 1.** Зависимость степени линейной ударной поляризации линии He I 5876 Å в хромосфере Солнца от параметра  $\varepsilon_1$ . Расчеты проведены для  $\delta = 2.5$  и  $\Theta(\varepsilon_2) = 37^\circ$ .



**Рис. 2.** Зависимость степени линейной ударной поляризации линии He I 5876 Å в хромосфере Солнца от параметра  $\delta$ . Расчеты проведены для  $\varepsilon_1 = 10$  КэВ,  $\Theta(\varepsilon_2) = 37^\circ$ . Скачок при  $\delta = 3$  связан с особенностями процедуры вычислений и не влияет на общий характер зависимости.



**Рис. 3.** Зависимость степени линейной ударной поляризации линии He I 5876 Å в хромосфере Солнца от параметра  $\Theta(\varepsilon_2)$ . Расчеты проведены для  $\delta = 2.5$ ,  $\varepsilon_1 = 10$  КэВ. По оси *X* отложены значения питч-угла в соответствии с табл. 1.


**Рис. 4.** Зависимость степени линейной ударной поляризации линии He I 5876 Å в солнечном протуберанце от параметра  $\varepsilon_1$  для  $\delta = 2.5$  и  $\Theta(\varepsilon_2) = 37^\circ$ .



**Рис. 5.** Зависимость степени линейной ударной поляризации линии He I 5876 Å в солнечном протуберанце от параметра  $\delta$  для  $\varepsilon_1 = 1$  КэВ,  $\Theta(\varepsilon_2) = 37^\circ$ . Скачок при  $\delta = 3$  связан с особенностями процедуры вычислений и не влияет на общий характер зависимости.

# 3.2. Результаты расчета для линии Не I 5876 Å для протуберанцев

Расчеты для протуберанца проводятся аналогично, но, как уже говорилось, для несколько иных параметров плазмы и электронов, чем для хромосферы:  $T_0 = 6.5$  эВ (7150 K);  $n = N_t/N_{nt} =$  $= 1.6 \times 10^4$ ;  $\varepsilon_1 = 1$  KэB;  $\delta = 2.5$ ;  $\Theta = 37^\circ$ .

Таблица 2. Зависимость степени линейной поляризации от температуры протуберанца

<i>T</i> ₀ , эВ	12	10	8	6	4	3
(К)	(13200)	(11000)	(8800)	(6600)	(4400)	(3300)
P, %	2.6	2.9	3.6	6.0	19.2	51.4

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 12 2022

Для данного набора параметров расчет дает значения поляризации P = 5.1%. Как и для случая хромосферы Солнца, были исследованы зависимости степени поляризации от температуры  $T_0$  (табл. 2) и параметров  $\varepsilon_1$ ,  $\delta$  и  $\Theta(\varepsilon_2)$  (рис. 4, 5, 6).

# 3.3. Результаты расчета для линии Не I 5876 Å для протуберанцев

Результаты расчета для линии 5015 Å приводятся ниже без указания их зависимости от параметров плазмы и электронов. Для хромосферы Солнца расчет проведен для  $T_0 = 10$  эВ,  $n = N_t/N_{nt} =$  $= 10^5$ ,  $\varepsilon_1 = 10$  КэВ,  $\delta = 2.5$ ,  $\Theta = 37^\circ$ . Полученное значение поляризации P = 33.9% (для сравнения



**Рис. 6.** Зависимость степени линейной ударной поляризации линии He I 5876 Å в солнечном протуберанце от параметра  $\Theta(\varepsilon_2)$  для  $\delta = 2.5$  и  $\varepsilon_1 = 1$  КэВ. По оси *X* отложены значения питч-угла в соответствии с табл. 1.

для линии 5876 Å для этих же параметров получено значение P = 8.5%).

Для протуберанца были приняты параметры  $T_0 = 6.5$  эВ,  $n = 1.6 \times 10^4$ ,  $\varepsilon_1 = 1$  КэВ,  $\delta = 2.5$ ,  $\Theta = 37^\circ$ . Значение поляризации для них равно: P = 22.8%. Для линии 5876 Å для этих же параметров получено значение P = 5.1%.

### 4. ВЫВОДЫ

Результаты измерения степени линейной поляризации несут, в числе прочего, в себе информацию о характеристиках потоков частиц, ускоренных во время вспышек на Солнце. Достоверность такой информации зависит от достоверности измерения степени линейной поляризации наблюдаемой линии. Расчеты показывают, что при одинаковых условиях поляризация линии 5015 Å атома He I является существенной и может почти в полтора раза превышать поляризацию линии Н_α атома водорода. В частности, при использованных в работе параметрах ( $T_0 = 10 \ \text{эB}$ ,  $\delta = 2.5, \varepsilon_1 = 10$  КэВ,  $\Theta = 37^{\circ}$  и  $n = 10^{5}$ ), степень поляризации для линии 5015 Å составляет P = 33.9%, в то время как поляризация водородной линии  $H_{\alpha}$ , рассчитанная для таких же условий, составляет 23%. Отметим, впрочем, что интенсивность излучения в линии Н_а, безусловно, существенно выше интенсивности линии 5015 Å атома гелия.

Для линии D₃ 5876 Å расчеты степени поляризации, в целом, заметно ниже. Для условий, которые мы полагаем соответствующими верхней хромосфере Солнца, степень поляризации P = 8.5%. Для излучения в солнечных протуберанцах P = 5.1%.

Приведенные в настоящей статье выражения для расчета степени линейной поляризации (6, 7, 8) базируются на математическом аппарате атомной матрицы плотности [15, 16], который использовался для расчетов, например, в работе [26]. Основной особенностью является модель функции распределения, которая учитывает тепловые электроны в виде максвелловского распределения и нетепловые электроны в виде степенного распределения с угловой частью (1).

Еще одним существенным отличием работы от предыдущих расчетов поляризации, например, выполненных в работе [8], является иное модельное описание электронов, находящихся в состоянии отсутствия локального термодинамического равновесия. Для примера, модель в работах [27, 28] включала как параметры: температуру, давление газа, микротурбулентную скорость, скорость радиального потока. В то же время математическое описание модели функции распределения электронов не было представлено. Для нетепловых электронов не обсуждалась угловая зависимость. Мы полагаем, что расчет степени линейной поляризации с помощью математического аппарата атомной матрицы плотности более корректен, так как учитывает функцию распределения нетепловых электронов, содержащую угловую зависимость, что позволяет определить квадрупольный момент функции распределения (8).

В работах [8, 27, 28] расчеты проводились для температур 8, 30 и 100 тыс. К. Нами для верхней хромосферы и внешних слоев протуберанцев при вычислениях принято T = 10 тыс. К, что соответствует наблюдениям [6, 7]. По этой причине прямо сравнить результаты работ непросто. В работе [8] для температуры 8 тыс. К получено значение поляризации 2%, а для 30 тыс. К - 10%, что, в целом, соответствует результатам наших расчетов. Различия могут быть связаны с тем, что мы использовали модель с иными параметрами плазмы, а также не учитывали при расчетах эффект Ханле и Томсоновское рассеяние. Отметим также, что используемое нами модельное описание электронов содержит пять параметров, из которых только один, температура, использовался в работах [8, 27, 28].

То, что наша модель является многопараметрической, позволяет применять ее более гибко, хотя и создает дополнительные сложности в интерпретации полученных результатов. В некоторых предыдущих моделях авторы учитывали только нетепловые электроны; следовательно, для расчета было достаточно знания двух параметров:  $\delta$  и  $\varepsilon_1$ . Использованная в статье модель расчета учитывает не только нетепловые электроны, но и тепловые, т.е. оперирует пятью параметрами: *n*,  $T_0$ ,  $\delta$ ,  $\varepsilon_1$  и  $\varepsilon_2(\Theta)$ .

Для диагностики параметров ускоренных электронов во вспышках безусловный интерес представляет обратная задача: получение параметров спектра электронов из результатов измерений степени линейной поляризации. Сразу заметим, что в условиях, когда степень поляризации зависит от нескольких параметров, эта обратная задача однозначно не решается. Тем не менее, если можно наложить экспериментальные ограничения на часть параметров, то остальные параметры могут быть оценены с более или менее высокой точностью. В качестве примера приведем условный случай, когда измеренная степень линейной поляризации из источника излучения с известными параметрами  $T_0 = 10$  эВ,  $\delta = 2.5$ ,  $\varepsilon_1 =$ = 10 КэВ и  $n = 10^5$  составила величину P = 2.5%. В этом случае можно определить вероятные значения питч-угла электронов, который составляет  $\Theta = 70^{\circ}$ .

Наиболее благоприятные условия для спектральных наблюдений на Солнце возникают при наблюдениях за лимбом Солнца, где отсутствует фоновое излучение от диска. В то же время мы полагаем, что это инструментальное ограничение, и, в целом, измерения поляризации возможны для объектов на всем диске Солнца. Преимуществом наблюдения вблизи центра диска является минимальное влияние эффектов проекции, а также более низкое поглощение излучения веществом, чем при наблюдениях на краю. В то же время фоновое излучение диска может существенно влиять на формирование линий гелия через механизмы возбуждения и ионизации атома излучением (см., например, [29]). В целом мы полагаем, что вопрос о наиболее благоприятных условиях для измерения поляризации требует самостоятельного исследования.

Излучение в линиях  $D_3$  5876 Å и He I 5015 Å широко наблюдается в солнечных протуберанцах. В то же время нам неизвестны сообщения о таких наблюдениях для солнечных вспышек. Мы,

однако, исходим из того, что ударный нагрев хромосферы во время вспышек - это широко наблюдаемое явление. Возникающие при этом эмиссионные ленты в хромосфере формируют излучение в очень широком спектре, в том числе в линиях гелия (например, [30]). По этой причине мы считаем также полезными наши результаты для вспышек, так как они могут привлечь внимание экспериментаторов к этим линиям. Отдельные сообщения о возможности формирования излучения в этих линиях во время вспышек, в том числе на звездах, присутствующие в литературе (например, [31, 32]), в целом, подтверждают такую возможность. Программа исследования Солнца в линиях гелия прелусмотрена также в рамках научной программы новой солнечной европейской обсерватории Solar Orbiter [29].

## БЛАГОДАРНОСТИ

Мы благодарим рецензента за чрезвычайно полезные замечания, позволившие, по нашему мнению, существенно улучшить работу.

#### ФИНАНСИРОВАНИЕ

Исследование выполнено при поддержке гранта Российского научного фонда (проект 21-72-10157).

# СПИСОК ЛИТЕРАТУРЫ

- J. C. Henoux, D. Heristchi, G. Chambe, M. Machado, B. Woodgate, R. Shine, and J. Beckers, Astron. and Astrophys. 119, 233 (1983).
- 2. *M. Karlicky, J.-C. Henoux, and D. Smith*, Astron. and Astrophys. **310**, 629 (1996).
- 3. N. M. Firstova, V. I. Polyakov, and A. V. Firstova, Sol. Phys. **279** (2), 453 (2012).
- J. C. Hénoux and M. Karlický, Astron. and Astrophys. 556, id. A95, 8 (2013).
- 5. Z. Xu, J. C. Henoux, G. Chambe, A. G. Petrashen, and C. Fang, Astrophys. J. 650 (2), 1193 (2006).
- J. L. Leroy, G. Ratier, and V. Bommier, Astron. and Astrophys. 54, 811 (1977).
- R. Ramelli and M. Bianda, arXiv: astro-ph/0401497v1 23Jan2004 (2004).
- P. Heinzel, J. Stepan, A. Bemporad, S. Fineschi, S. Jejcic, N. Labrosse, and R. Susino, Astrophys. J. 900, 8 (2020).
- C. J. C. Fang and J. C. Henoux, Astron. and Astrophys. 118, 139 (1983).
- L. Fletcher and J. C. Brown, Astron. and Astrophys. 294, 260 (1995).
- 11. J. C. Henoux and M. Karlicky, Astron. and Astrophys. **341**, 896 (1999).
- 12. *E. Vogt and J. C. Henoux*, Astron. and Astrophys. **349**, 283 (1999).
- V. V. Zharkova and L. K. Kashapova, Astron. and Astrophys. 431, 1075 (2005).

- 14. J. Stepan, J. Kasparova, M. Karlicky, and P. Heinzel, Astron. and Astrophys. 472, L55 (2007).
- S. A. Kazantsev and J. C. Henoux, Polarization spektroscopy of ionized gases (London: Kluver Academic Publ., p. 214, 1995).
- 16. *М. Б. Шапочкин*, Физика плазмы **34**, 1 (2008).
- 17. M. B. Shapochkin, J. Phys. B 35, 4583 (2002).
- Л. А. Вайнштейн, И. И. Собельман, Е. А. Юков, Возбуждение атомов и уширение спектральных линий (М.: Наука, с. 319, 1979).
- 19. M. B. Shapochkin, Physica Scripta 60, 335 (1999).
- 20. E. Haug, Sol. Phys. 71, 77 (1981).
- 21. L. Glesener and G. D. Fleishman, Astrophys. J. 867, 13 (2018).
- 22. *M. E. Machado and A. G. Emslie*, Astrophys. J. **232**, 903 (1979).
- 23. L. N. Kurochka and L. B. Ribko, Sol. Phys. 57, 319 (1978).

- 24. V. V. Zharkova and D. V. Syniavskii, Astron. and Astrophys. 354, 714 (2000).
- 25. R. H. McFarland and E. A. Soltysik, Phys. Rev. 127, 2090 (1962).
- 26. М. Б. Шапочкин, Астрон. журн. 96, 955 (2019).
- 27. *N. Labrosse and P. Goutterbroze*, Astrophys. J. **617**, 614 (2004).
- 28. S. Jejcic, P. Heinzel, A. Zhukov, A. Bemporad, S. Fineschi, and S. Gunar, Sol. Phys. 293, 33 (2018).
- 29. G. Del Zanna, P. J. Storey, N. R. Badnell, and V. Andretta, Astrophys. J. 898, 72 (2020).
- 30. H. Zirin and L. W. Acton, Astrophys. J. 148, 501 (1967).
- 31. V. Andretta, P. J. D. Mauas, A. Falchi, and L. Teriaca, Astrophys. J. 681, 1, 650 (2008).
- 32. *C. de Jager and B. H. M. de Groot*, Bulletin of the Astronomical Institutes of the Netherlands **14**, 21 (1957).