СОДЕРЖАНИЕ

Том 92, номер 11, 2022

Изучение влияния N-винилпирролидона на распад пероксида бензоила <i>Т. Г. Тюрина, О. М. Заречная</i>	1655
Экспериментальное и теоретическое изучение структуры ацетоацетанилида Л. П. Ознобихина, И. М. Лазарев, Н. Ф. Лазарева	1668
Взаимодействие гидразида изоникотиновой кислоты и его триметилсилилпроизводных с изоцианатами Л. О. Белова, Н. А. Голуб, М. В. Плетнева, Н. И. Кирилина, А. Д. Кирилин	1678
Синтез тиадиазол-4- и пиразол-3-карбоксилатов на основе (гет)ароилгидразонов этилпируватов И. С. Адюков, В. В. Пелипко, Р. И. Байчурин, С. В. Макаренко	1683
Синтез и анальгетическая активность этил-4-[(4-арил-2-гидрокси-4-оксобут-2-еноил)амино]бензоатов В. Л. Гейн, А. В. Романова, О. В. Бобровская, О. В. Назарец, Р. Р. Махмудов, Е. В. Градова	1687
Электрохимическое окисление 3-арил-2-цианотиоакриламидов В. И. Осьминин, А. А. Мироненко, П. Г. Дахно, М. А. Назаренко, А. И. Офлиди, В. В. Доценко, В. Д. Стрелков, Н. А. Аксенов, И. В. Аксенова	1692
Синтез производных 4,4а-дигидроксантона, содержащих сложноэфирную и нитрильную группы В. И. Лукьяненко, Н. М. Чернов, Р. В. Шутов, И. П. Яковлев	1704
Первый пример получения производных 2-амино-5-гидрокси-4 <i>H</i> -хромен-3-карбонитрила из 4-(2-пиридилазо)резорцина В. В. Доценко, Е. А. Варзиева, Д. С. Бурый, Н. А. Аксенов, И. В. Аксенова	1713
Конъюгаты такрина с аминометилидензамещенными малонатами: синтез и биологическая оценка М. В. Грищенко, Н. А. Елькина, Г. Ф. Махаева, Я. В. Бургарт, Н. П. Болтнева, Е. В. Рудакова, Е. В. Щегольков, Н. В. Ковалева, О. Г. Серебрякова, В. И. Салоутин	1719
Реакции тетраметилэтинилдифосфоната с замещенными 2-аминопиридинами К. Н. Дакуо, А. С. Крылов, Н. И. Свинцицкая	1728
Синтез полидентатных селенсодержащих производных бис(2-хлорэтилового) эфира В. А. Безбородов, И. А. Бабенко, М. В. Быков, Г. В. Ратовский, Н. И. Бородин, И. А. Ушаков, А. И. Вильмс	1735
Изоцианидфосфиновые комплексы дигалогенидов палладия(II): синтез, структура и устойчивость в реакциях лигандного диспропорционирования <i>Г. А. Гаврилов, М. А. Кинжалов</i>	1742
Влияние строения фосфорорганических подандов на экстракцию актинидов и лантанидов(III) из азотнокислых растворов <i>А. Н. Туранов, В. К. Карандашев, В. Е. Баулин, Д. В. Баулин, Г. В. Костикова, А. М. Федосеев</i>	1754
Комплексные соединения марганца(II) с яблочным пектином, модифицированным аминокислотами (L-фенилаланином, L-гистидином и L-триптофаном) <i>Р. Х. Мударисова, О. С. Куковинец, С. В. Колесов</i>	1762
Синтез и физико-химические свойства новых координационных соединений тербия(III) и гадолиния(III) с 3,5-диалкоксибензойными кислотами <i>М. А. Григорян, М. А. Назаренко, А. И. Офлиди, Ю. С. Береснева, А. М. Васильев</i>	1773

Майенит (обзор) С. Н. Шкерин, А. С. Толкачева	1780
Синтез, строение и термическое поведение сульфат-фосфата свинца-магния В. И. Петьков, А. И. Боков, Е. А. Асабина, Е. Ю. Боровикова	1803
Окислительно-восстановительные реакции в слое адсорбированных катионов Mn(II) и молекул RuO ₄ . Синтез методом ионного наслаивания оксида марганца, допированного рутением	
М. В. Канева, В. П. Толстой	1809

УДК 544.43:547-39:(543.429.23+544.18)

ИЗУЧЕНИЕ ВЛИЯНИЯ N-ВИНИЛПИРРОЛИДОНА НА РАСПАД ПЕРОКСИДА БЕНЗОИЛА

© 2022 г. Т. Г. Тюрина^{*a*,*}, О. М. Заречная^{*a*}

^а Институт физико-органической химии и углехимии имени Л. М. Литвиненко, ул. Р. Люксембург 70, Донецк, 283114 Россия *e-mail: t tiurina@mail.ru

> Поступило в редакцию 12 июля 2022 г. После доработки 23 августа 2022 г. Принято к печати 25 августа 2022 г.

Методом спектроскопии ЯМР ¹Н изучен распад пероксида бензоила в растворе или массе N-винилпирролидона, его смесях с малеиновым ангидридом и/или метилметакрилатом. Обнаружено, что константы скорости распада пероксида изменяются от 10^{-3} с⁻¹ для смеси N-винилпирролидона с малеиновым ангидридом (1:1, 313 K) до 10^{-4} с⁻¹ для смеси с метилметакрилатом (1:1, 333 K). Энергия активации распада пероксида бензоила в N-винилпирролидоне составила 75.5±6.8 кДж/моль. Предложены возможные реакции взаимодействия N-винилпирролидона с бензоатным радикалом, на уровне ω B97x-V/def2-TZVP оценены их термохимические характеристики.

Ключевые слова: пероксид бензоила, N-винилпирролидон, спектроскопия ЯМР, квантово-химические расчеты

DOI: 10.31857/S0044460X22110014, EDN: LNBQDB

Изучение распада пероксида бензоила, начатое в 50-х годах XX века, продолжается до настоящего времени. Такая ситуация обусловлена широким применением пероксида бензоила как инициатора в промышленных процессах, а также возможностью создания инициирующих систем на его основе, позволяющих ускорять распад пероксидной связи и снижать температуру полимеризационных процессов [1–3].

Ранее в ряде работ, например [1, 4], были представлены результаты, показывающие, что низкотемпературное (278–308 К) инициирование пероксидами характерно для гомо- и сополимеризации азотсодержащих виниловых мономеров. Факты специфического увеличения скорости распада в присутствии некоторых мономеров привели к появлению гипотезы о распаде комплексно-связанных молекул инициатора, что в ряде случаев подтверждено методом спектроскопии ЭПР [5]. В то же время влияние среды на кинетику термолиза пероксида бензоила чаще всего связывают с механизмом индуцированного распада, при котором радикалы, образующиеся в мономолекулярной реакции гомолитического разрыва пероксидной связи, реагируют с молекулами растворителя или мономера.

Полимеризация N-винилпирролидона, содержащего азот в лактамном цикле, в присутствии пероксида бензоила практически не изучалась, так как полагалось, что в протонных растворителях, используемых для получения поли-N-винилпирролидона, могут протекать побочные реакции образования бензойной кислоты и гидролиза N-винилпирролидона [6]. Этот полимер весьма перспективен в качестве носителя в фармацевтике [7], но его молекулярная масса и разветвленность цепей существенно зависят от условий синтеза [8]. В работе [9] показана возможность получения поли-N-винилпирролидона при использовании пероксида бензоила в качестве инициатора в отсут-

Рис. 1. Спектр ЯМР ¹Н пероксида бензоила (0.1 моль/л) в ацетонитриле: исходный раствор (*1*); через 100 мин выдержки при 333 К (2–4). Добавки: 2 моль/л N-винилпирролидона (*3*), 2 моль/л N-метилпирролидона (*4*).

ствие растворителя. Нами в аналогичных условиях были получены (со)полимеры N-винилпирролидона. При этом вопрос о том, каким образом протекает распад пероксида в присутствии N-винилпирролидона, нельзя считать вполне выясненным.

Цель работы состоит в исследовании экспериментальными и теоретическими методами процесса распада пероксида бензоила в N-винилпирролидоне и в его смесях с другими мономерами, а также специфических особенностей полимеризации N-винилпирролидона, инициируемой пероксидом бензоила.

Попытка определить величины константы распада пероксида бензоила (k_d) в ацетонитриле с добавками N-винилпирролидона или N-метилпирролидона, насыщенного аналога N-винилпирролидона, распространенным методом иодометрии

[10] при ~ 353 К привела к следующим результатам. Величина $k_{\rm d}$ в среде ацетонитрила в данном эксперименте составила (7.3±0.2)×10⁻⁶ с⁻¹. Это значение в 2.4 раза меньше, чем опубликованное ранее (1.76×10⁻⁵ с⁻¹) [11], и в 2.6 раза больше, чем рассчитанное по данным работы [2] (2.8× 10⁻⁶ с⁻¹), что можно считать удовлетворительным совпадением. В растворе, содержащем 2.6 моль/л N-метилпирролидона, величина $k_{\rm d} \approx 10^{-4} \ {\rm c}^{-1}$ в 14 раз больше, чем в чистом ацетонитриле, что свидетельствует о существенном ускорении распада пероксида в присутствии насыщенного соединения с лактамным циклом. При введении в раствор пероксида 2.2 моль/л N-винилпирролидона, имеющего лактамный цикл и винильную группу, активный распад пероксида бензоила проходит уже во время подготовки к анализу при температуре 298-303 К. По титрованию пробы в этих условиях найдено, что $k_{\rm d}$ составляет ~ 1.4×10⁻⁴ c^{-1} , тогда как в ацетонитриле при 303 К k_d равна 1.76×10⁻⁸ с⁻¹ [2]. Таким образом, вследствие высокой скорости распада пероксида бензоила в среде N-винилпирролидона метод иодометрии оказался непригодным. Для исследования данной системы мы использовали метод ЯМР ¹Н спектроскопии, применявшийся ранее для сравнительного анализа продуктов разложения диацилпероксидов под действием СВЧ-излучения и температуры [12].

В спектре анализируемой пробы молекула N-винилпирролидона характеризуется 5 мультиплетами в области от 7.1 до 2.0 м. д., группа CH₃ ацетонитрила представлена синглетом с центром при 2.029 м. д., тогда как сигналы *орто-, пара-* и *мета-*протонов пероксида бензоила регистрируются при 8.066, 7.826, 7.661 м. д. (растворитель – ДМСО-*d*₆). Таким образом, сигналы пероксида бензоила не перекрываются сигналами N-винилпирролидона и ацетонитрила, что позволяет выявить их в исследуемых смесях.

Первоначально было рассмотрено протекание процесса распада пероксида бензоила в ацетонитриле. В ходе прогрева бесцветный раствор приобретал слабо-желтое окрашивание, которое несколько усиливалось во времени, что может указывать на образование ненасыщенных продуктов с атомом N при кратной связи. При этом на протяжении 10 ч вид спектров в области 8.2–7.6 м. д. (рис. 1)

	Интегральная интенсивность сигналов в области б, м. д.									
Время,	пеј	ооксид бензои.	1a	пр	продукты (бензоаты)					
МИН	8.12–8.04 (<i>opmo</i> -H)	7.86–7.77 (<i>napa</i> -Н)	7.71–7.60 (<i>мета-</i> Н)	8.04-7.90	7.71–7.60 ⁶	7.58–7.46	7.42–7.33			
	Раствор 0.1 моль/л пероксида бензоила в ацетонитриле (333 К)									
0	0.368	0.207	0.425	_	_	_	_			
100	0.369	0.202	0.411	_	_	_	0.013			
360	0.384	0.196	0.395	_	_	_	0.035			
600	0.372	0.190	0.381	_	_	_	0.052			
Ι	Раствор 0.1 молн	/л пероксида (бензоила в аце	тонитриле + 2 м	оль/л N-метилг	пирролидона (3	33 K)			
0	0.392	0.202	0.407							
100	0.181	0.099		0.166	0.279	0.171	0.091			
150	0.127	0.069		0.208	0.244	0.217	0.108			
210	0.122	0.063		0.241	0.244	0.247	0.125			
Ι	Раствор 0.1 молн	/л пероксида 6	бензоила в аце	тонитриле + 2 м	оль/л N-винилі	пирролидона (3	33 K)			
0	0.414	0.202	0.383				_			
60	0.015	0.008		0.385	0.203	0.390	_			
100	0.006	0.003		0.405	0.205	0.411	_			
210	0	0		0.392	0.185	0.397	-			
	Pac	гвор 0.1 моль/л	і пероксида бе	нзоила в N-вині	илпирролидоне	(313 K)				
0	0.386	0.204	0.406							
20	0.232	0.103		0.192	0.296	0.199				
40	0.117	0.064		0.270	0.253	0.292				
60	0.067	0.039		0.338	0.241	0.358				
80	0.033	0.021		0.349	0.221	0.381				
	Pac	гвор 0.1 моль/л	пероксида бе	нзоила в N-вині	илпирролидоне	(333 K)				
0	0.386	0.204	0.406							
5	0.061	0.036		0.349	0.246	0.372				
15	0.025	0.014	.	0.389	0.226	0.422				
25	0.010	0.005		0.372	0.201	0.380				
45	0.005	0.002		0.373	0.197	0.393				
Ра	створ 0.01 моль	/л пероксида б	ензоила в сме	си N-винилпирр	олидон:метилм	иетакрилат 1:1 ((333 K)			
0	0.375	0.202	0.424							
21	0.343	0.176			0.394	0.088				
33	0.298	0.175		0.052	0.357	0.119				
51	0.308	0.154		0.019	0.373	0.145				
71	0.293	0.146		0.018	0.355	0.138				

Таблица 1. Величина интегральной интенсивности сигналов протонов пероксида бензоила и продуктов его распада в различных средах^а

^а Сумма интенсивностей сигналов пероксида бензоила приведена к 1.

⁶ Суммарная интенсивность сигналов 7.71–7.60 (пероксид бензоила) и 7.74–7.60 м. д. (продукты распада).

не изменялся, а интенсивность сигналов *пара*-Н пероксида бензоила уменьшалась примерно на 4, 7 и 10% за 1.7, 6 и 10 ч (табл. 1). Единственным новым сигналом в спектрах этих растворов был соответствующий бензолу синглет при 7.37 м. д.

[13], интенсивность которого возрастала со временем прогрева (рис. 1, табл. 1).

Из этих результатов следует, что в растворе ацетонитрила распад пероксида бензоила (1) со-

провождается выделением $CO_2(2)$ и образованием радикала ацетонитрила за счет отрыва фенильным радикалом атома водорода от молекулы растворителя (3):

$$(C_6H_5COO)_2 \rightarrow 2 C_6H_5COO^{\bullet}, \qquad (1)$$

$$C_6H_5COO^{\bullet} \rightarrow C_6H_5^{\bullet} + CO_2, \qquad (2)$$

$$C_6H_5 + CH_3CN \rightarrow C_6H_6 + CH_2CN.$$
 (3)

Протекание реакции (3) вполне вероятно, так как ранее [14, 15] на примере радикала адамантана было показано, что в растворе ацетонитрила осуществляется отрыв атома водорода от молекулы растворителя или присоединение к ней этого радикала, причем скорость отрыва в 4 раза больше. Учитывая, что продукты, полученные при участии радикала ацетонитрила, предположительно имеют кратные связи, можно представить их образование следующей реакцией (4).

$$2^{\circ}CH_2CN + CH_3CN \rightarrow CH_3 - C(CH_2CN) = N - CH_2CN.$$
 (4)

Безусловно, реакция (4) не доказана экспериментально, однако представляется весьма вероятной. Так, сигналы протонов образующегося в ней нитрила, согласно инкрементам заместителей [16], должны находиться примерно при ~ 4.4 (NCH₂), ~ 3.4 (C–CH₂) и ~ 2.3 м. д. (CH₃). Действительно, в спектре раствора после 10 ч распада обнаруживается сигнал при 4.28 м. д. с интенсивностью, составляющей 1/7 от таковой для сигнала бензола (теоретически ожидаемое соотношение по реакциям (3) и (4) 1:6). Два других сигнала продукта реакции (4) не могут быть видны, поскольку в соответствующей области спектра находятся интенсивные сигналы протонов воды из ДМСО- d_6 и CH₃-группы ацетонитрила.

При сопоставлении спектров реакционных смесей с добавками N-винилпирролидона и N-метилпирролидона, выдержанных при 333 K, обнаружено, что интенсивность мультиплетов *орто-* и *пара*-протонов пероксида бензоила снижается в ходе распада при соблюдении их соотношения ~2:1 (табл. 1) и сохранении формы сигналов (рис. 1, 2), вместе с тем наблюдается появление новых сигналов с δ 8.04–7.90 и 7.60–7.47 м. д., которые характеризуют продукты распада.

Интенсивность сигнала при 7.71–7.60 м. д. (*мета*-Н исходного пероксида бензоила) в ходе ре-

акции снижается медленнее, чем сигналов *орто*и *пара*-Н (табл. 1) и удовлетворительно соответствует сумме удвоенной интенсивности сигнала *пара*-Н пероксида бензоила при 7.87–7.78 м. д. и половине интенсивности сигнала при 8.04– 7.91 м. д. Таким образом, сигналы при 8.04– 7.91 м. д. Таким образом, сигналы при 8.04– 7.91 м. д. соответствуют *орто*- и *мета*-протонам бензоатных остатков, а мультиплет при 7.71–7.60 м. д. является неразделенной суммой сигналов *мета*-протонов пероксида бензоила и *пара*-протонов образовавшегося бензоата, что подтверждается сопоставлением со спектрами эфиров бензойной кислоты [17].

Из сравнения результатов распада пероксида бензоила в ацетонитриле без добавок и с добавкой N-метилпирролидона (рис. 1, 2 и 4) следует, что за одинаковое время нагрева в смеси с N-метилпирролидоном происходит существенное снижение интенсивности сигналов протонов пероксида бензоила и образование намного большего количества бензола (синглет при 7.42-7.33 м. д.), интенсивность сигнала которого составила 1.3 и 9.2% от общей интенсивности сигналов при 8.2-7.3 м. д. без и в присутствии N-метилпирролидона соответственно (100 мин нагрева). Установлено, что на протяжении 210 мин соотношение количества образовавшихся бензоатов и бензола в смеси с N-метилпирролидоном оставалось постоянным и равным 3, что соответствует протеканию параллельных реакций присоединения бензоатного радикала к молекуле добавки и его участию в реакциях образования бензола подобно реакциям (2)–(3), как показано на схеме 1.

Возможность образования радикала N-метилпирролидона обусловлена характерной для N-замещенных пирролидонов лабильностью связей C–H в α-положении к гетероатому или карбонилу [18, 19], которая должна быть присуща также и N-винилпирролидону. Такой путь передачи цепи на этот мономер с созданием центров разветвления поли-N-винилпирролидона рассмотрен в работе [8].

В спектре реакционной смеси с 2 моль/л N-винилпирролидона в ацетонитриле после 100 мин выдержки при 333 К сигналы исходного пероксида бензоила отсутствуют (рис. 1, 3), поэтому распад в массе N-винилпирролидона изучали, сокра-

тив время реакции, либо уменьшив температуру до 313 К (рис. 2, табл. 1). Обнаружено, что при 333 К в ацетонитриле с добавкой 2 моль/л N-винилпирролидона и в массе N-винилпирролидона через 60 и 45 мин реакции интенсивность сигналов *орто-* и *пара*-протонов пероксида бензоила составляет ~4 и ~ 1% от исходной соответственно (табл. 1), тогда как в смеси N-винилпирролидона с метилметакрилатом (1:1, [N-винилпирролидон] ~ 4.6 моль/л) за 51 мин реакции она снижается всего на ~20%.

В смесях N-винилпирролидона с малеиновым ангидридом, N-винилпирролидона с малеиновым ангидридом и метилметакрилатом интенсивный синглет малеинового ангидрида при ~7.46 м. д. перекрывает малоинтенсивные сигналы параи мета-протонов пероксида бензоила, однако имеется возможность следить за концентрацией орто-Н пероксида. Оказалось, что что в смеси N-винилпирролидона с малеиновым ангидридом уже через 52 мин выдержки при 313 К дублет орто-Н пероксида не виден, но появляется мультиплет орто-Н бензоата при 8.00-7.95 м. д., тогда как в трехкомпонентной смеси сигнал орто-Н обнаруживается еще через 94 мин с начала реакции (313 К). Таким образом, введение метилметакрилата в N-винилпирролидон существенно замедляет распад пероксида бензоила, видимо, вследствие увеличения вклада основного процесса роста цепи и снижения вклада побочных реакций.

Установлено, что при нормировке к 1 суммарная интенсивность сигналов в диапазоне 8.2– 7.4 м. д. для каждой серии опытов с участием N-винилпирролидона остается постоянной (в пределах стандартной ошибки ее определения 5–10%). В

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

спектрах реакционных смесей отсутствуют сигналы кислотных (~12.5 м. д. для бензойной кислоты в ДМСО-*d*₆) и фенильных протонов (~7.37 м. д.), т. е. в данных условиях в ходе распада пероксида

Рис. 2. Изменения в спектре ЯМР ¹Н пероксида бензоила (0.1 моль/л) в N-винилпирролидоне (1) после нагревания при 313 К в течение 20 (2) и 80 мин (3), при 333 К в течение 5 (4) и 25 мин (5). 6 – фрагмент спектра поли-N-винилпирролидона, выделенного из смеси, выдержанной при 313 К в течение 80 мин в присутствии 0.1 моль/л пероксида бензоила.

Рис. 3. Изменение концентрации пероксида бензоила в ацетонитриле, содержащем 2 моль/л N-метилпирролидона (1) или N-винилпирролидона (2), а также в массе N-винилпирролидона (3) и накопление (S) продуктов распада: бензоатов (1'-3') и бензола (1'') в указанных выше средах (1-3) при 333 К.

выделения СО₂ не происходит, и других продуктов распада пероксида, кроме бензоатов, не образуется. Это означает, что в процессе инициированной пероксидом полимеризации N-винилпирролидона или его сополимеризации с метилметакрилатом в массе рост макромолекулярной цепи начинается с реакций присоединения мономеров к бензоатным радикалам. Действительно, в спектрах смесей, содержащих пероксид бензоила и N-винилпирролидон, сигналы бензоатных протонов имеют сглаженную структуру, характерную для высокомолекулярных продуктов, что особенно ярко проявляется в отсутствие растворителя (рис. 2). Более того, три мультиплета в области 8.05-7.45 м. д., аналогичные по положению, форме и соотношению интенсивностей, присутствуют в спектрах выделенного из этих смесей поли-N-винилпирролидона (рис. 2).

Концентрацию пероксида бензоила при распаде в различных средах [ПБ], а также содержание

Рис. 4. Анаморфоза в полулогарифмических координатах кривых расходования пероксида бензоила в смеси N-винилпирролидон–метилметакрилат (50:50) при 333 К (1), N-винилпирролидон–малеиновый ангидрид– метилметакрилат (45:45:10) (2), N-винилпирролидона (3) и N-винилпирролидон–малеиновый ангидрид (50:50) (4) при 313 К.

продуктов распада (рис. 3) рассчитывали, используя начальную и текущую величину интегральной интенсивности сигналов (I_0 , I_t) (табл. 1) только *орто-* или суммы *орто-* и *пара-*Н пероксида при 8.12–8.04 и 7.87–7.78 м. д., что приводит к практически одинаковому результату.

Константу скорости распада пероксида бензоила (k_d) определяли по зависимости $\ln I_0/I_t \equiv \ln[\Pi B]_0/[\Pi B]_t$ от продолжительности реакции, которая является линейной (рис. 4), подтверждая, что распад пероксида бензоила в изучаемых средах протекает как реакция первого порядка. Найденная таким образом величина k_d в ацетонитриле при 333 К составила 2.9×10^{-6} с⁻¹ (табл. 2), что хорошо согласуется с теоретически ожидаемым значением, $2-3 \times 10^{-6}$ с⁻¹ (по данным публикаций $k_d \times 10^6 = 0.018$, 0.26 и 17.6 с⁻¹ при 303, 323 [2] и 343 К [11] соответственно). Это еще раз подтверждает, что метод ЯМР можно применять для контроля за количеством пероксида бензоила в

	$k_{\rm d}, {\rm c}^{-1}$			
Среда, в которои проводили распад пероксида оензоила	313 K	333 K		
Ацетонитрил	8.5×10 ^{-8 a}	(2.9±0.3)×10 ⁻⁶		
2 моль/л N-метилпирролидона в ацетонитриле		$(1.3\pm0.1)\times10^{-4}$		
2 моль/л N-винилпирролидона в ацетонитриле		4×10 ⁻³		
N-Винилпирролидон	(5±1)×10 ⁻⁴	6×10 ^{-3 б}		
N-Винилпирролидон-малеиновый ангидрид, 50:50	1×10 ^{-3 б}	_		
N-Винилпирролидон-малеиновый ангидрид-метилметакрилат, 45:45:10	(1.79±0.08)×10 ⁻⁴	_		
N-Винилпирролидон-метилметакрилат, 50:50		$(0.81\pm0.08)\times10^{-4}$		
Метилметакрилат [16]		3.6×10 ⁻⁶		

	Таблица 2. Константы	распада пероксида	і бензоила (k_d)) в ј	растворителях	к, мономе	рах и их	смесях
--	----------------------	-------------------	--------------------	-------	---------------	-----------	----------	--------

^а Значение k_d рассчитано по данным для 303, 323 [2] и 343 К [11].

^б Оценка по одной точке.

процессе распада при условии, что сигналы протонов среды полностью или частично не перекрывают область 8.1–7.4 м. д.

Определенные в среде N-винилпирролидона при температурах от 298 до 323 К величины констант распада пероксида бензоила (k_d от 0.84× 10^{-4} до 1.15×10^{-3} с⁻¹ соответственно) линеаризуются в координатах уравнения Аррениуса и дают активационные параметры реакции: E_a 75.5± 6.8 кДж/моль, ln.4 21.1±2.6 (R^2 0.976). Таким образом, найденная величина энергии активации распада пероксида бензоила в массе N-винилпирролидона примерно в 2 раза меньше, чем в ацетонитриле (136±4 кДж/моль [2]).

Из величин констант распада (табл. 2) следует, что с наименьшей скоростью распад пероксида бензоила протекает в ацетонитриле, а с максимальной – в смеси N-винилпирролидона с малеиновым ангидридом, что может быть связано с образованием в этой смеси радикальных частиц в отсутствие инициатора, как было показано в работе [20]. Из-за высокой скорости реакции определение константы распада пероксида в смеси N-винилпирролидон– малеиновый ангидрид (1:1) при 313 К оказалось затруднительным.

Таким образом, введение малеинового ангидрида в среду N-винилпирролидона (1:1) ускоряет распад пероксида бензоила примерно в 2 раза, тогда как добавка 10 мол% метилметакрилата к этой смеси замедляет его в ~5 раз, что вполне ожидаемо, так как величина k_d в метилметакрилате незначительно выше (на ~20%), чем в ацетонитриле (при 333 К). При введении 2 моль/л N-метилпирролидона в ацетонитрил величина k_d возрастает в ~40 раз, а такого же количества N-винилпирролидона – на ~2 порядка по сравнению с ацетонитрилом (табл. 2), что свидетельствует как о возможности реакции радикалов пероксида бензоила с лактамным кольцом N-метилпирролидона или N-винилпирролидона, так и активации винильной группы, находящейся при атоме азота N-винилпирролидона по сравнению с группой C–CH=CH₂ в составе традиционных виниловых мономеров.

Несмотря на то, что скорость распада пероксида бензоила в N-винилпирролидоне намного превышает таковую в среде других виниловых мономеров, образование поли-N-винилпирролидона при инициировании пероксидом бензоила протекает с относительно малой скоростью – 10.1%/ч (0.01 моль/л пероксида бензоила, 333 K), что в ~5 раз меньше, чем в присутствии азобисизобутиронитрила (51.9%/ч) в аналогичных условиях. Более того, скорость полимеризации N-винилпирролидона в присутствии пероксида бензоила снижается со временем (рис. 5).

Действительно, высокая скорость реакции распада и образование большого количества первичных радикалов могут приводить к появлению небольших цепей, участвующих далее в реакциях обрыва и передачи цепи. Это наиболее заметно

Рис. 5. Накопление поливинилпирролидона в течение полимеризации при 333 (1-3) и 313 К (4) в присутствии 0.1 (1), 0.01 (2, 3) и 0.001 (4) моль/л пероксида бензо-ила. Контроль за конверсией осуществлялся методами ЯМР (1, 2) и дилатометрии (3, 4).

должно проявляться при высокой концентрации пероксида бензоила, что подтверждает ход кривых накопления полимера на рис. 5.

Для проверки этого предположения был проведен анализ содержания групп двойной связи N-винилпирролидона в его смесях с пероксидом бензоила по данным ЯМР, который показал, что при высокой концентрации пероксида бензоила (0.1 моль/л) распад пероксида и полимеризация N-винилпирролидона идут со скоростями, обеспечивающими соотношение раскрытых двойных связей N-винилпирролидона и бензоатных остатков на уровне ~2 и 2.5-4 при 313 и 333 К (в растворе 2 моль/л N-винилпирролидона в ацетонитриле это соотношение близко к 1). Вместе с тем в образцах поли-N-винилпирролидона, выделенных из указанных реакционных смесей, обнаруживается ~8 и ~13 звеньев N-винилпирролидона на 1 бензоатную группу соответственно, т. е. полимеры содержат в 3-4 раза меньше бензоатных остатков, чем находилось в смеси. Масса выделенного поли-N-винилпирролидона ниже, чем рассчитанная по количеству прореагировавших групп двойной связи N-винилпирролидона по результатам ЯМР (ср. кривые 2 и 3 на рис. 5). Это означает, что в реакционной смеси находится большое количество ди- и олигомерных продуктов или продуктов замещения по кольцу.

При уменьшении содержания пероксида бензоила в смеси до 0.01 моль/л количество бензоатных остатков в поли-N-винилпирролидоне (~48 звеньев N-винилпирролидона/бензоат) приближается к рассчитанному по конверсии N-винилпирролидона и концентрации пероксида бензоила в реакционной среде (~33 звена N-винилпирролидона/бензоат), хотя и в этом случае распад пероксида протекает с высокой скоростью: через 60 мин (333 K) его присутствие в смеси не обнаруживается.

Отсутствие в реакционных смесях с N-винилпирролидоном следов бензойной кислоты или бензола позволяет полагать, что бензоатные радикалы присоединяются к кольцу или группе двойной связи N-винилпирролидона (1 или 2 бензоатных фрагмента на молекулу N-винилпирролидона). К сожалению, такие соединения невозможно идентифицировать методом ЯМР ¹Н на фоне существенного (10-50-кратного) избытка мономера N-винилпирролидона относительно продуктов полимеризации (или замещения/присоединения) вследствие близкого соответствия положения сигналов протонов исходного, замещенного N-винилпирролидона и поли-N-винилпирролидона. В спектрах образцов полимеров, выделенных из этих смесей, имеются слабые уширенные сигналы с центрами при 6.45, 5.75 (5.47, 5.25) и 4.8 м. д., которые могут быть отнесены к резонансу протонов в замещенных радикалом бензоата (R) группах цикла N-CHR, CHR-C(=O) и C-CHR-C соответственно со слабой интенсивностью до 5-6% от звена N-винилпирролидона.

В спектрах выделенных полимеров обнаруживается также дублетный сигнал при 1.19, 1.18 (1.15, 1.14) м. д., интенсивность которого составляет от 1 до 3 мол% относительно звена поли-N-винилпирролидона. Это свидетельствует о присутствии примеси, содержащей группу –СНСН₃. Таким соединением может быть димер [20] или олигомер N-винилпирролидона.

Подводя краткий итог экспериментальных исследований, можно констатировать специфические особенности процесса инициированной пероксидом бензоила полимеризации N-винилпирролидона и предложить схему взаимодействия

1662

N-винилпирролидона с бензоатными радикалами (схема 2).

Единственным продуктом распада пероксида в присутствии N-винилпирролидона являются бензоатные радикалы C₆H₅C(O)O[•] (R[•]), присоединение которых к «голове» или «хвосту» винильной группы мономера (N-винилпирролидона) инициирует реакции роста цепи с образованием первичных радикалов 2а или 26, а затем димеров или олигомеров N-винилпирролидона (через образование радикалов За или Зб). Вследствие высокой скорости распада пероксида бензоила и образования большого количества бензоатных радикалов возможно присоединение второго радикала R[•] к радикалу 2а (26), обрывающее цепь с образованием продукта 6. Возможно также взаимодействие молекулы N-винилпирролидона с первичным радикалом 2а (2б) с отрывом атома Н от лактамного кольца [продукты 4а (4б) и радикал 5], что при присоединении R[•] приводит к обрыву цепи с образованием продукта 7.

Для кинетической и термодинамической оценки вероятности предполагаемых путей взаимодействия N-винилпирролидона с бензоатным радикалом в рамках теории переходного состояния (TS) был проведен квантово-химический расчет на уровне DFT ω B97х-V/def2-TZVP//BP86/def2-SVP, результаты которого приведены в табл. 3. Судя по рассчитанным значениям ΔG , реакции инициирования, роста и передачи цепи протекают самопроизвольно (за исключением реакции образования радикала **36**) с барьерами свободной энергии ΔG^{\neq} , возрастающими в порядке: инициирование < рост < передача.

Присоединение бензоатного радикала к «голове» (образование радикала 2а) характеризуется более низким активационным барьером, хотя термодинамические параметры присоединения к «хвосту» ниже; в то же время для дальнейшего роста цепи энергетически выгоднее присоединение молекулы N-винилпирролидона к радикалу 2а. Последнее справедливо также для реакции передачи цепи с образованием продукта 4 и радикала 5; участием в ней радикала 26 можно практически пренебречь.

В реакциях обрыва цепи отсутствует барьер активации ΔG^{\neq} и имеется существенный выигрыш в

	A	ктивационнь	ие	Термодинамические			
Реакция	ΔH^{\neq}	$T\Delta S^{\neq}$	ΔG^{\neq}	ΔH	$T\Delta S$	ΔG	
$1 + R^{\bullet} \rightarrow TS_{1a} \rightarrow 2a$	-35.8	-55.1	19.3	-99.7	-53.3	-46.4	
$1 + \mathrm{R}^{\bullet} \rightarrow \mathrm{TS}_{16} \rightarrow 26$	-25.0	-57.0	32.0	-130.7	-57.6	-73.1	
$1 + 2a \rightarrow TS_{2a} \rightarrow 3a$	-24.2	-63.5	39.4	-153.1	-66.1	-86.9	
$1 + 26 \rightarrow \mathrm{TS}_{26} \rightarrow 36$	-0.8	-60.5	59.7	-103.6	-59.2	-44.4	
$1 + 2a \rightarrow TS_{3a} \rightarrow 4a + 5$	19.2	-58.4	77.6	-43.1	-1.1	-42.0	
$1+26 ightarrow { m TS}_{36} ightarrow 46+5$	38.9	-57.2	96.1	10.6	3.6	7.0	
$2a + R \rightarrow TS_4 \rightarrow 6$	_	_	_	-388.7	-68.8	-319.9	
$26 + R \rightarrow TS_4 \rightarrow 6$	-	_	-	-357.7	-64.5	-293.2	
$5 + R^{\bullet} \rightarrow TS_5 \rightarrow 7$	-	_	_	-372.3	-65.1	-307.2	

Таблица 3. Активационные и термодинамические параметры реакций (кДж/моль) при 298.15 К

 ΔG , что неизбежно должно привести к превалированию их относительно реакции роста.

Из этого анализа следует, что радикал пероксида бензоила с смесях с N-винилпирролидоном может активно расходоваться в реакциях обрыва, в том числе за счет отрыва лабильных атомов водорода лактамного цикла. Образующиеся соединения (радикал 5, продукт 7) могут также участвовать в росте и включаться в полимерную цепь, на что указывает наличие сигналов в области 6.5-4.8 м. д. в спектрах выделенных образцов полимеров. Этот результат совпадает с выводом авторов [18], которыми было показано, что при полимеризации N-винилпирролидона в водных растворах наиболее вероятным является передача цепи с образованием радикала 5. Кроме того, полученные результаты не противоречат предложенной авторами [8] схеме образования разветвленных цепей поли-N-винилпирролидона.

Таким образом, применение метода спектроскопии ЯМР при изучении распада пероксида бензоила в N-винилпирролидоне, его растворах и смесях позволило не только определить константы скорости распада, но и количественно проанализировать кинетику расходования групп двойных связей и бензоатных радикалов, и тем самым получить экспериментальное свидетельство их участия в побочных реакциях обрыва и передачи цепи. Последнее подтверждается проведенными теоретическими расчетами и объясняется спецификой строения молекулы N-винилпирролидона, имеющей в своем составе лабильные атомы водорода лактамного цикла.

Вследствие расходования инициатора на побочные процессы инициирование полимеризации N-винилпирролидона пероксидом бензоила относительно малоэффективно, особенно в смесях с малеиновым ангидридом, где возможно образование радикалов и в отсутствие инициатора. Повышение эффективности инициирования пероксидом бензоила систем с N-винилпирролидоном и снижение вероятности побочных процессов возможно при введении в систему виниловых мономеров и снижении концентрации инициатора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Определение концентрации пероксида методом иодометрии проводили по стандартной методике [10], нагревая пробу 10–15 мин при ~353 К.

Для анализа расходования пероксида бензоила методом ЯМР приготовленную весовым методом реакционную смесь, содержащую 0.1 или 0.02 моль/л пероксида бензоила, заливали в ампулы, продували аргоном и запаивали, после чего погружали в термостаты с температурой от 298 до 333 К (термостатирование $\pm 0.1^{\circ}$), отсчет времени начинали через 5 мин после погружения. Через заданные промежутки времени ампулы вынимали и резко охлаждали погружением в воду со льдом, после чего вскрывали и отбирали аликвоту для анализа (0.2 мл), которую вносили в ампулы для ЯМР, добавляя 0.5 мл ДМСО- d_6 . Спектры ЯМР ¹Н полученных растворов регистрировали с помощью прибора Вruker Avance II (400 МГц) при 298 К. В качестве внутреннего стандарта использовали ТМС, погрешность измерения химических сдвигов составляет ±0.0005 м. д. (¹Н), стандартная ошибка определения интегральной интенсивности 5–10%. Для количественного анализа данных интенсивности всех сигналов, имеющихся в спектре, проводили нормировку интенсивности I_i каждого *i*-сигнала по соотношению с общей интенсивностью сигналов исходного пероксида бензоила и бензоатов в области 8.2–7.4 м. д., а также бензола при 7.37 м. д.

Для изучения полимеризации N-винилпирролидона методом дилатометрии использовали дилатометры с объемом баллончика ~5 см³ и диаметром калиброванного капилляра 1 мм. После заполнения мономером и его дегазации в токе аргона дилатометр помещали в термостат, в котором поддерживали необходимую температуру с точностью ± 0.1 K, изменение объема фиксировали с помощью катетометра B-630. Процесс проводили до степени конверсии не более 8–10%, после чего смесь охлаждали и высаживали в диэтиловый эфир. Степень конверсии рассчитывали, используя определенную ранее величину коэффициента контракции 0.133 или 0.148 для 313 или 333 К.

Все расчеты выполнены с пакетом ORCA 4.2.1 [21] в рамках теории функционала плотности DFT в газовой фазе, в основном состоянии. Для систем с закрытыми и открытыми оболочками использовали соответственно ограниченный (RKS) и неограниченный по спину (UKS) методы Кона–Шэма.

Поиск переходных состояний (TS) осуществляли, используя одномерное сканирование поверхности потенциальной энергии с релаксацией вдоль выбранной координаты реакции (расстояние между атомами), с последующей оптимизацией геометрии полученной седловой точки. Далее релевантность структуры TS проверяли построением путей IRC [22], соединяющих TS с реактантами и продуктами реакций.

Равновесные геометрические параметры реагентов, ТS и продуктов рассчитывали с использованием GGA-функционала BP86 [23, 24] в сочетании с основным def2-SVP и вспомогательным def2/J базисными наборами [25, 26] (использовали приближение Split-RI-J [27] для аппроксимации кулоновских интегралов). На этом же уровне были рассчитаны частоты колебаний при стандартных условиях (298 К, 1 атм) для верификации характера стационарных точек (локальный минимум или TS) и определения поправок на энергию нулевых колебаний, величин энтропии (*S*), термических поправок к энтальпии (*H*) и энергии Гиббса (*G*).

Для всех равновесных структур уровня BP86/ def2-SVP была проведена одноточечная оценка электронных энергий более высокого уровня с использованием функционала wB97x-V в сочетании с трехэкспоненциальным базисом с добавлением поляризационных функций def2-TZVP [25, 26]. Применялось приближение RIJCOSX [28, 29] для аппроксимации кулоновских и обменных интегралов (дополнительный базис def2/J). (Гибридный функционал wB97x-V [30] с разделением по диапазонам и поправкой на дисперсию VV10 [31] рекомендован в исследовании [32] как один из лучших для общей термохимии на основе тестирования обширной эталонной базы данных GMTKN55).

Окончательные значения свободной энергии и энтальпии получены добавлением соответствующих термических поправок из вычислений BP86/def2-SVP к потенциальной энергии уровня ω B97x-V/def2-TZVP.

На основе полученных термохимических данных были оценены активационные (как разница сумм значений S, H и G для TS и несвязанных реагентов) и термодинамические (как разница сумм S, H и G несвязанных продуктов и реагентов) характеристики реакций.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Тюрина Татьяна Григорьевна, ORCID: hppts:// orcid.org/0000-0003-2950-3616

Заречная Ольга Михайловна, ORCID: https:// orcid.org/0000-0002-6069-3967

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ибрагимов А.Т., Рафиков А.С., Исмаилов И.И., Аскаров М.А. // Высокомол. соед. (Б). 1992. Т. 34. № 12. С. 27.
- 2. Туровский Н.А., Целинский С.Ю., Опейда И.А., Шапиро Ю.Е. // ТЭХ. 1992. Т. 28. № 4. С. 324.
- Sideridou I.D., Achilias D.S., Karava O. // Macromolecules. 2006. Vol. 39. N 6. P. 2072. doi 10.1021/ma0521351
- 4. Трубицина С.Н., Исмаилов И.И., Аскаров М.А. // Высокомол. соед. (А). 1978. Т. 20. № 11. С. 2608.
- 5. Большаков А.И., Гордон Д.А., Емельянова Н.С., Кузина С.И., Кирюхин Д.П. // Химия высоких энергий. 2019. Т. 53. № 5. С. 354. doi 10.1134/ S0023119319050048; Bol'shakov A.I., Gordon D.A, Emel'yanova N.S., Kuzina S.I., Kiryukhin D.P. // High Energy Chem. 2019. Vol. 53. Р. 356. doi 10.1134/ S0018143919050047
- Кирш Ю.Э. Поли-N-винилпирролидон и другие поли-N-виниламиды: Синтез и физико-химические свойства. М.: Наука, 1998. 252 с.
- Franco P., De Marco I. // Polymers. 2020. Vol. 12. N 5. P. 1114. doi 10.3390/polym12051114
- Welzel S., Zander C., Hungenberg K.-D., Nieken U. // Macromol. React. Eng. 2022. Vol. 16. N 3. P. 2200005. doi 10.1002/mren.202200005
- Camilo A.P.R., Felisberti M.I., Mano V. // IX Brazilian MRS Meeting, 2010, Ouro Preto. Vol. 1. P. 638.
- Антоновский В.П., Бузанова М.М. Аналитическая химия органических пероксидных соединений. М.: Химия, 1978. 309 с.
- Hammond G.S., Nandi U.S. // J. Am. Chem. Soc. 1961.
 Vol. 83. N 5. P. 1213. doi 10.1021/ja01466a044
- Гайдукевич О.А., Скаковский Е.Д., Тычинская Л.Ю., Зверева Т.Д., Дикусар Е.А., Ламоткин С.А., Рыков С.В. // Ж. прикл. спектр. 2012. Т. 79. № 2. С. 323; Haidukevich O.A., Skakovskii E.D., Tychinskaya L.Y. Zvereva T.D., Dikusar E.A., Lamotkin S.A. // J. Appl. Spectrosc. 2012. Vol. 79. N 2. P. 302. doi 10.1007/s10812-012-9598-y
- Gottlieb H.E., Kotlyar V., Nudelman A. // J. Org. Chem. 1997. Vol. 62. N 21. P. 7512. doi 10.1021/jo971176v
- Engel P.S., Lee W.-K., Marschke G.E., Shine H.J. // J. Org. Chem. 1987. Vol. 52. N 13. P. 2813. doi org/10.1021/jo00389a031
- de Lijser H.J.P., Arnold D.R. // J. Phys. Chem. (A). 1998. Vol. 102. N 28. P. 5592. doi 10.1021/jp980204q

- Günter H. NMR Spectroscopy Basic Principles, Concepts, and Applications in Chemistry. Weinheim: Wiley-VCH, 2013. P. 121, 124.
- 17. Spectral Database for Organic Compounds, SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top. cgi
- Deglmann P., Hellmund M., Hungenberg K.-D., Nieken U., Schwede C., Zander C. // Macromol. React. Eng. 2019. Vol. 13. N 5. P. 1900021. doi 10.1002/ mren.201900021
- Dispenza C., Sabatino M.A., Grimaldi N., Dahlgren B., Al-Sheikhly M., Wishart J.F., Tsinas Z., Poster D.L., Jonsson M. // Radiat. Phys. Chem. 2020. Vol. 174. P. 108900. doi 10.1016/j.radphyschem.2020.108900
- Тюрина Т.Г., Заречная О.М., Зайцева В.В., Зайцев С.Ю. // ЖОХ. 2020. Вып. 5. С. 664; Tyurina T.G., Zarechnaya О.М., Zaitseva V.V., Zaitsev S.Yu. // Russ. J. Gen. Chem. 2020. Vol. 90. N 5. P. 773. doi 10.1134/S1070363220050023
- Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. Vol. 152. P. 224108. doi10.1063/5.0004608
- Fukui K. // Acc. Chem. Res. 1981. Vol. 14. P. 363. doi 10.1021/ar00072a001
- Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi 10.1063/1.464913
- Perdew J.P. // Phys. Rev. (B). 1986. Vol. 33. P. 8822. doi 10.1103/PhysRevB.33.8822
- 25. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi 10.1039/B508541A
- Weigend F. // Phys. Chem. Chem. Phys. 2006. Vol. 8. P. 1057. doi 10.1039/B515623H.
- Neese F. // J. Comput. Chem. 2003. Vol. 24. N 14. P. 1740. doi 10.1002/jcc.10318
- Neese F., Wennmohs F., Hansen A., Becker U. // Chem. Phys. 2009. Vol. 356. P. 98. doi 10.1016/j. chemphys.2008.10.036.
- Izsák R., Neese F. // J. Chem. Phys. 2011. Vol. 135.
 P. 144105. doi 10.1063/1.3646921
- Mardirossian N., Head-Gordon M. // Phys. Chem. Chem. Phys. 2014. Vol. 16. P. 9904. doi 10.1039/ C3CP54374A
- Vydrov O.A., Van Voorhis T. // J. Chem. Phys. 2010. Vol. 133. N 24. P. 244103. doi 10.1063/1.3521275
- Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. // Phys. Chem. Chem. Phys. 2017. Vol. 19. P. 32184. doi 10.1039/C7CP04913G

Study of The N-Vinylpirrolidone Effect on Destruction of Benzoyl Peroxide

T. G. Tyurina^{*a*,*} and O. M. Zarechnaya^{*a*}

^a L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, Donetsk, 83114 Ukraine *e-mail: t_tiurina@mail.ru

Received July 12, 2022; revised August 23, 2022; accepted August 25, 2022

The decomposition of benzoyl peroxide in a solution or bulk of *N*-vinylpyrrolidone, its mixtures with maleic anhydride and/or methyl methacrylate was studied by ¹H NMR spectroscopy. It was found that the peroxide decomposition rate constants vary from 10^{-3} s⁻¹ for a mixture of *N*-vinylpyrrolidone with maleic anhydride (1:1, 313 K) to 10^{-4} s⁻¹ for a mixture with methyl methacrylate (1:1, 333 K). The activation energy for the decomposition of benzoyl peroxide in *N*-vinylpyrrolidone was 75.5±6.8 kJ/mol. Possible reactions of the interaction of *N*-vinylpyrrolidone with the benzoate radical were proposed, and their thermochemical characteristics were evaluated at the level of ω B97x-V/def2-TZVP.

Keywords: benzoyl peroxide, N-vinylpyrrolidone, NMR spectroscopy, quantum-chemical calculations

ЭКСПЕРИМЕНТАЛЬНОЕ И ТЕОРЕТИЧЕСКОЕ ИЗУЧЕНИЕ СТРУКТУРЫ АЦЕТОАЦЕТАНИЛИДА

© 2022 г. Л. П. Ознобихина^{*a*,*}, И. М. Лазарев^{*a*}, Н. Ф. Лазарева^{*a*}

^а Иркутский институт химии имени А.Е. Фаворского Сибирского отделения Сибирского отделения Российской академии наук, ул. Фаворского 1, Иркутск, 664033 Россия *e-mail: 1 oznobikhina@irioch.irk.ru

> Поступило в редакцию 24 июня 2022 г. После доработки 24 июня 2022 г. Принято к печати 15 июля 2022 г.

Методами DFT (B3LYP/6-311++G**) и ИК спектроскопии изучены конформеры и таутомеры ацетоацетанилида. Получены геометрические и энергетические характеристики димеров ацетоацетанилида, образованные межмолекулярными водородными связями O–H…O и N–H…O. Методом NBO оценена энергия донорно-акцепторного взаимодействия неподеленных электронных пар атомов азота и кислорода и разрыхляющей π^* -орбитали карбонильной группы C=O, а также двойных и одинарных связей в таутомерах ацетоацетанилида.

Ключевые слова: ацетоацетанилид, таутомерия, водородная связь, ИК спектроскопия, квантово-химические расчеты

DOI: 10.31857/S0044460X22110026, EDN: LNBZYS

β-Кетоамиды представляют собой интересный и важный класс соединений, и в этой области были проведены многочисленные исследования [1-3]. β-Кетоамидные группы широко распространены во многих встречающихся в природе молекулах и терапевтических агентах [см., например, 4–6]. Уникальная структура β-кетоамидов, содержащих несколько реакционноспособных центров в молекуле, обеспечивает их широкое применение в качестве строительных блоков для органического синтеза. Это в значительной степени связано с тем, что В-кетоамиды являются типичными представителями β-дикарбонильных соединений, а их реакционная способность связана с их структурой и таутомерным равновесием. Понимание процессов таутомерии играет важную роль в изучении механизмов реакций в современной органической, медицинской химии, биохимии и фармакологии [7]. Поэтому исследование таутомерных равновесий в β-кетоамидах имеет практическое и теоретическое значение. Среди β-дикарбонильных соединений широко изучалась кето-енольная таутомерия β-дикетонов, β-кетоэфиров и β-кетонитрилов с помощью различных экспериментальных методов [8–11]. Однако кето-енольная таутомерия β-кетоамидов (схема 1) глубоко не изучена, за исключением нескольких предыдущих работ [12–20].

Кето-енольная таутомерия α-амидо-β-кетоамида и двух α-алкил-β-кетоамидов была изучена с помощью спектроскопии ЯМР ¹Н и ¹³С в CDCl₃. Результаты исследований показали, что α-алкил-β-кетоамиды существуют в кетоформе, тогда как α-амидо-β-кетоамид имеет как кето-, так и енольную формы [18]. Дипольные моменты и спектроскопические измерения (особенно ИК спектроскопия) подтверждают, что кетоформа метил-6-гидрокси-4-пиридона-2, наблюдаемая в твердом состоянии, также присутствует в растворе. Эта форма стабилизирована внутримолекулярными и межмолекулярными водородными связями [19]. Джилли с коллегой исследовал сопряженные формы таутомеров, стабилизированные аномально прочными внутримолекулярными связями О-Н…О, образованными фрагментом

 β -енолона O=C-C=C-OH, которые типичны для енолов β -дикетонов. Эта модель может быть применена к внутримолекулярным водородным связям NH···O, образованным рядом гетеросопряженных систем O=CC=C-NH β -енаминонов, O=CC=N-NH кетогидразонов и O=NC=C-NH нитрозоенаминов. [20]. Изучение таутомерного равновесия в ряде β -кетоамидов методом спектроскопии ЯМР показало, что кето-енольное равновесие доминирует над амидо-имидолом и эти соединения существуют преимущественно в виде кетоамидных и еноламидных таутомеров с внутримолекулярными водородными связями [15].

Ацетоацетанилид 1 – типичный представитель β-кетоамидов, широко используемый в синтетической органической химии [21-26]. По результатам рентгеноструктурного исследования в кристаллическом состоянии ацетоацетанилид существует в виде в-кетоамида А. В кристалле присутствуют две кристаллографически независимые молекулы, карбамоильные группы которых связаны водородной связью N-H-O=C, образуя водородно-связанное звено [27]. Монокристаллический ацетоацетанилид обладает нелинейными оптическими свойствами [28-33]. Авторы этих работ разработали новые методы выращивания его монокристаллов, а также исследовали структуру экспериментальными (ЯМР, ИК, рамановской и УФ спектроскопией, РСА) и квантово-химическими (МЕР, ВЗМО-НВМО) методами. Однако кетоенольная таутомерия ацетоацетанилида еще недостаточно изучена. По результатам исследования методом спектроскопии ЯМР ¹Н и ¹³С в растворе соединение 1 существует преимущественно в кетоформе [34]. Скорость енолизации ацетоацетанилида в смеси этанол-вода (70:30 по объему) также исследовали с помощью спектрофотометрии с остановленным потоком. Скорость енолизации измеряли по их скорости галогенирования, результаты показали, что этот процесс катализируется Ni⁺², Zn⁺² и кислотой [12]. Для бензоилацетанилида и салициланилида методом измерения дипольного момента были определены равновесные мольные доли енольной и кетоформ в бензоле, CHCl₃ и диоксане [35].

В данной работе мы анализируем структуру таутомеров ацетоацетанилида и его димеров в газе, твердом состоянии и растворах с помощью ИК спектроскопии и квантовохимических расчетов методом B3LYP с использованием базиса 6-311++G**. Анализ NBO использовали для оценки степени сопряжения в таутомерах и конформерах. Согласно расчету, наиболее устойчивы в газовой фазе пять таутомерных форм соединения 1: две кето-енольные 1а, в и три дикетона 16, г, д (табл. 1, рис. 1). Авторы [36] показали, что енольные структуры β-кетоэфиров более стабильны, чем дикетотаутомеры. Наиболее устойчивы в газовой фазе кето-енольные таутомеры 1а, в образуют 6-членные хелатные циклы, замкнутые прочной внутримолекулярной водородной связью ОН····О=С, как и дикето-таутомер 16 NH···O=C, с невалентным расстоянием 1.673, 1.642 и 1.946 Å соответственно. Последний менее стабилен на 1.6 ккал/моль. Наряду с дикето- и кето-енольными таутомерами ацетилацетанилид подобно β-аминоенонам [37] в изолированном состоянии может существовать в имидатных формах 1е, ж, з. Однако вклад их в образец маловероятен, так как их энергии достаточно высоки (16-33 ккал/моль, рис. 1).

В полярной среде (MeCN) внутримолекулярная водородная связь NH···O таутомера **16** укорачива-

Ma		п	1 Å	ν, cm ⁻¹				
JND	ΔL , KKdJI/MOJIE	μ, Д	ι _{ΟΗ···Ο} , Α	C=O/C=C	С=О/С=С _{шкал.}	NH	ОН	
1a	0.0	3.64	1.673	1686	1635	3618	3200	
	0.0	5.24	1.667	1668	1617		3104	
				1653	1603	3606	3179	
				1620	1571		3084	
16	1.6	3.12	1.946 ^в	1765 ⁶	1712	3480		
	0.0	4.22	1.899 ^в	1738	1686	3439		
				1742	1690			
				1693	1642			
1в	2.3	3.92	1.642	1674	1624	3590	3119	
	2.6	5.32	1.635	1656	1606	3580	3065	
				1651	1601		3096	
				1608	1560		3003	
1г	5.5	4.83	2.230 ^r	1788 ⁶	1734	3616		
	1.9	7.74	2.244 ^r	1756 ⁶	1703	3507		
				1748 ⁶	1696	3610		
				1701 ⁶	1650	3501		
1д	7.5	3.80	2.449 ^r	1788 ⁶	1734	3574		
	4.9	6.34		17550	1702	3466		
				17286	1676	3567		
				1679 ^б	1629			

Таблица 1. Значения относительной энергии, дипольные моменты, длины внутримолекулярных водородных связей и волновые числа v(C=O), v(C=C), v(NH) и v(OH) таутомеров **1**a–д (B3LYP/6-311++G**)

^а Значения, рассчитанные методом IEF-PCM-B3LYP/6-311++G** (растворитель MeCN) даны курсивом.

 $^{\delta}\nu_{C=O}.$

^BNH…O.

г СН…О.

ется на 0.047 Å, а разница энергий между таутомерами **1а** и **1б** нивелируется, как и в бензилацетоацетате [38]. В полярной среде электростатическое отталкивание между карбонильными группами дикетотаутомера **1г** уменьшается, и его относительная энергия понижается до 1.9 ккал/моль (против 5.5 ккал/моль в вакууме) (табл. 1).

Поскольку таутомеры 1 имеют в составе кислотные и основные центры, они могут образовывать циклические и линейные димеры. Так, были оптимизированы димеры, образованные посредством водородных связей О-H···O и N-H···O: циклические 1а-1а и 1а-1в с двумя связями О-H···O и димеры 1в-1в и 1д-1д с двумя связями N-H···O. Линейные димеры 1а-16, 1а-1г, 16-1г и 1г-1г образованы одной связью N-H···O. Результа-

ты расчетов приведены в табл. 2. Энергия образования димеров посчитана по формуле (1), которую часто применяют для оценки энергии водородной связи [39].

$$\Delta E = E_{\rm дим} - 2 E_{\rm moho}.$$
 (1)

Димеры 1a-1a и 1a-1b имеют трициклическую структуру с центральным 4-членным и двумя боковыми 6-членными кольцами, замкнутыми двумя бифуркационными водородными связями ОН…О=С с бифуркацией на карбонильных атомах кислорода и атомах водорода ОН-групп. Согласно расчету, значения $E_{дим}$ довольно низки и равны 0.66 и 0.82 ккал/моль. Длины внутримолекулярных водородных связей в димере 1a-1a составляют 1.749 Å, а межмолекулярных водородных связей –

Рис. 1. Значения относительных энергий (ккал/моль) и длины водородных связей в таутомерах 1а-з.

2.482 Å. Образование бифуркационных водородных связей в димерах 1а-1а и 1а-1в приводит к увеличению длины внутримолекулярных водородных связей ОН…О=С по сравнению с таутомером 1a на 0.076 Å и 0.139 Å соответственно. В компоненте 1в димера 1а-1в это расстояние также увеличивается на 0.044 Å по сравнению с мономером. Однако, несмотря на низкое значение энергии димеризации, их существование в твердом состоянии возможно за счет эффектов упаковки. Высокосимметричный димер 1в-1в имеет трициклическую структуру с центральным 8-членным и двумя боковыми 6-членными кольцами, замкнутыми двумя бифуркационными водородными связями NH…O=C с бифуркацией на карбонильных атомах кислорода. Короткие межмолекулярные водородные связи NH···O=C (1.867 Å) отражают более высокую энергию димеризации 12.44 ккал/моль (6.22 ккал/моль на одну связь) (табл. 2). Несмотря на низкую стабильность мономера 1д, *цис*-конфигурация его амидной группы способствует образованию наиболее стабильного 8-членного циклического димера 1д–1д с наиболее короткими межмолекулярными водородными связями NH···O=C (1.855 и 1.864 Å). Его энергия димеризации составляет 6.92 ккал/моль на одну связь.

Для линейных димеров **1а**-г энергия димеризации лежит в пределах 5–13 ккал/моль (табл. 2).

Донорно-акцепторные взаимодействия неподеленных электронных пар (НЭП) гетероатомов, а также одинарных и кратных связей оценены методом NBO на уровне теории B3LYP/6-311++G**

ОЗНОБИХИНА и др.

	l, Å					
Димер	MBC	BBC	$\Delta v_{\rm NH} / v_{\rm OH}^{\rm pac4/3\kappacn}$, cm ⁻¹	$v_{\rm NH}/v_{\rm OH}^{3\kappacn}$, cm ⁻¹	$-\Delta E$, ккал/моль	
1а–1а , цикл. ОН…О	2.482	1.749	309/290	3136	0.82	
1а–1в , цикл. ОН…О	2.302	1.686	230/230	3196	0.66	
	2.544	1.812				
1в–1в , цикл. NH…O	1.866	1.646	305/290	3136	12.44	
	1.867	1.647				
1д−1д, цикл. NH…O	1.855	-	326/358	3068	13.84	
	1.864					
1а–1б , лин. NH⋯O	1.989	1.664	160/138	3288	7.40	
		1.892				
1а–1г , лин. NH⋯O	2.130	1.664	78/53	3375 ⁶	5.42	
1б–1г , лин. NH…O	1.936	1.871	189/173	3253	13.29	
1г–1г , лин. NH…O	2.078	_	90/129	3297	8.65	

Таблица 2. Длины меж- и внутримолекулярных водородных связей, разность волновых чисел $\Delta v(NH)$ и $v(OH)^a$, значения энергии димеризации циклических и линейных димеров соединения **1** (B3LYP/6-311++G**)

^a $\Delta \nu$ (NH) = ν (NH)_{мономер} – ν (NH)_{димер} или ν (NH)_{своб} – ν (NH)_{асс}.

⁶ Полоса поглощения в ИК спектре пленки проявляется при 104 К.

Таблица 3. Энергия возмущений второго порядка орбитальных взаимодействий в таутомерах 1, рассчитанная методом NBO (B3LYP/6-311++G**)

	$E^{(2)}$, ккал/моль								
$n_{\rm N} \rightarrow \pi^*_{\rm C} l_{=0} l$	$\pi_{\rm C}^2 = C^3 \rightarrow \pi^*{}_{\rm C}^1 = O^1$	$n_{\rm O}$ 1 \rightarrow $\sigma^*_{\rm O}$ 3 _{-H}	$n_{\rm O}1 \rightarrow \sigma^*_{\rm N-C}1$	$n_{\rm O}3 \rightarrow \pi^*{}_{\rm C}2{}_{=\rm C}3$	$\pi^*{}_{\mathrm{C}}1_{=\mathrm{O}}1 \longrightarrow \pi^*{}_{\mathrm{C}}2_{=\mathrm{C}}3$				
63.48	27.23	25.71	22.60	53.05	76.01				
64.76		22.19 ^a	24.55	20.84 ^b					
56.88	27.35	29.56	20.75	54.11	132.62				
57.86		22.05 ^a	27.15	23.05 ⁶					
59.97		21.95 ^a	25.46	23.39 ⁶					
	$n_{\rm N} \rightarrow \pi^*{}_{\rm C}{}^{1}{}_{=\rm O}{}^{1}$ 63.48 64.76 56.88 57.86 59.97	$\begin{array}{c c c c c c c c c }\hline n_{\rm N} \rightarrow \pi^*{}_{\rm C}{}^{1}{}_{={\rm O}}{}^1 & \pi_{\rm C}{}^2{}_{={\rm C}}{}^3 \rightarrow \pi^*{}_{\rm C}{}^1{}_{={\rm O}}{}^1 \\\hline 63.48 & 27.23 \\\hline 64.76 \\ 56.88 & 27.35 \\\hline 57.86 \\ 59.97 & \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$E^{(2)}$, ккал/моль $n_{\rm N} \rightarrow \pi^*{}_{\rm C}{}^{1}{}_{=0}{}^1$ $n_{\rm O}{}^1 \rightarrow \sigma^*{}_{{\rm O}}{}^3{}_{-{\rm H}}$ $n_{\rm O}{}^1 \rightarrow \sigma^*{}_{{\rm N}{-}{\rm C}}{}^1$ 63.4827.2325.7122.6064.7622.19a24.5556.8827.3529.5620.7557.8622.05a27.1559.9721.95a25.46	$ \begin{array}{ c c c c c c c c } \hline E^{(2)}, \ \mbox{ккал/моль} \\ \hline $n_{\rm N} \rightarrow \pi^*_{\rm C}{}^1_{=0}$1 $ $\pi_{\rm C}{}^2_{=\rm C}{}^3 \rightarrow \pi^*_{\rm C}{}^1_{=0}$1 $ $n_{\rm O}{}^1 \rightarrow \sigma^*_{\rm O}{}^3_{-\rm H}$ $n_{\rm O}{}^1 \rightarrow \sigma^*_{\rm N-C}$1 $ $n_{\rm O}{}^3 \rightarrow \pi^*_{\rm C}{}^2_{=\rm C}{}^3$ \\ \hline 63.48 $ 27.23 25.71 22.60 53.05 \\ \hline 64.76 22.19^a 24.55 20.84^b \\ \hline 56.88 27.35 29.56 20.75 54.11 \\ \hline 57.86 22.05^a 27.15 23.05^6 \\ \hline 59.97 21.95^a 25.46 23.39^6 \\ \hline \end{array} $				

^а Для дикетоформ $n_0 1 \rightarrow \sigma^*_{C} 1_{-C} 2$. ⁶ Для дикетоформ $n_0 3 \rightarrow \sigma^*_{C} 2_{-C} 3$.

для таутомеров **1а**–д (табл. 3). Энергия сопряжения $E^{(2)}$ НЭП атома азота с разрыхляющей π^* -орбиталью карбонильной группы C=O $n_N \rightarrow \pi^*_{C^{1}=O^1}$ в исследованных таутомерах, достаточно высока и составляет 57–65 ккал/моль. (схема 2, табл. 3). Кроме того, в таутомерах **1а**, **б**, г НЭП атома азота взаимодействует с ароматической системой бензольного кольца $n_N \rightarrow \pi^*$ 32–34 ккал/моль, при этом все атомы фрагмента HNC_{Ph}=C_{Ph} лежат в одной плоскости. Эти значения значительно меньше для таутомеров **1в** ($E^{(2)}$ 16.94 ккал/моль) и **1**д ($E^{(2)}$ 11.45 ккал/моль), у которых двугранный угол HNCPh=CPh равен –135 и –125° соответственно. Сопряжение в таутомерах **1а** и **1в** характеризуется энергией взаимодействия связывающей π -орбитали C²=C³ с разрыхляющей π^* -орбиталью карбонильной группы $\pi_{C^2=C^3} \rightarrow \pi^*_{C^1=O^1}$, равной 27 ккал/моль, и антисвязывающая π^* -орбиталь карбонильной группы с антисвязывающей π^* -орбиталью двойной связи C²=C³. Энергия последнего взаимодействия $\pi^*_{C^1=O^1} \rightarrow \pi^*_{C^2=C^3}$ в таутомере **1в** почти в два раза выше, чем в таутомере **1а** и составляет 132.62 ккал/моль против 76 ккал/моль у последнего. Обе неподеленные электронные пары атома кислорода O¹ кето-енольных форм **1а** и **1в** участвуют в сопряжении с разрыхляющей σ^* -орбиталью гидроксильной группы OH $n_{O^1} \rightarrow \sigma^*_{O^3-H}$.

Полоса	CCl ₄	CH ₂ Cl ₂	MeCN	KBr	Пленка из MeCN
NH	3438 cp	3422 cp		3426 о. сл	3426 о. сл
NH···O=C (BBC)	3327 cp	3321 cp	3348 c	3297 c	3295 с, уш.
NH···O=C (MBC)	3307 cp	3301 cp	3288 пл	3288 пл	
	3260 о. сл	3256 о. сл		3256 о. сл	3258 c
OH…O=C (MBC)			3205 о. сл	3196 cp	3199 ср
OH…O=C (BBC)	3141 о. сл	3141 о. сл	3140 о. сл	3136 cp	3138 cp
NH···O=C (MBC)				3068 ср, уш.	3082 ср, уш.
С=О (кето)	1716 o. c	1714 o. c	1725 c		1719 o. c
С=О (кето)		1691 пл	1711 пл	1716 o. c	
С=О (амид)	1692 o. c	1684 o. c	1688 o. c		1684 пл
С=О (амид)				1684 пл	1662 o. c
С=О-С=С-С-ОН	1618 сл	1619 сл	1618 сл	1660 o. c	
С=О-С=С-ОН		1600 c	1601 c	1600 o. c	1599 o. c

Таблица 4. Данные ИК спектроскопии для ацетоацетиланилида 1

Энергия сопряжения НЭП атома кислорода О³ с двойной связью C²=C³ $n_{O}^3 \rightarrow \pi^*_{C^2=C^3}$ кетоенольных таутомеров **1а** и **1**в составляет 53.05 и 54.11 ккал/моль соответственно (табл. 3). А в дикетотаутомерах **16**, **г**, д этот же атом кислорода взаимодействует с разрыхляющей σ^* -орбиталью одинарной связи C²–C³ $n_{O}^3 \rightarrow \sigma^*_{C^2-C^3}$ с энергией около 20 ккал/моль.

Интерпретация ИК спектров ацетоацетанилида 1 свидетельствует о сосуществовании кето- и енольных таутомеров. Отметим, что существут много полос, которые являются общими для разных таутомеров и настолько близки, что не могут быть разрешены. Сравнение теоретических и экспериментальных результатов свидетельствует о наличии двух кетоформ и двух енольных таутомеров соединения 1. ИК спектры твердого ацетоацетанилида 1, полученные в различных условиях (таблетки с KBr, пленка, полученная из раствора в MeCN), в области 3400–2600 см⁻¹ содержат группу полос v(NH), v(OH) разной интенсивности, обусловленных валентными колебаниями свобод-

Схема 2.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

ных групп NH и ассоциированных групп NH и OH дикето- и кето-енольных форм. В спектре твердого соединения 1 высокочастотная малоинтенсивная полоса с максимумом при 3426 см⁻¹ может принадлежать свободной группе NH как таутомера 1a (v_{pac4} 3618 см⁻¹), так и таутомера 1г (v_{pac4} 3616 см⁻¹) в ассоциатах, образованных с их участием.

Высокочастотный максимум интенсивной дублетной полосы при 3297 см⁻¹ принадлежит линейному димеру **1г–1г**. Плечо 3288 см⁻¹ соответствует NH-группам дикетотаутомера **16**. Об этом свидетельствует разница Δv (NH) между расчетной частотой колебаний свободных NH-групп в таутомерах **1а** или **1г** и NH-групп, участвующих во внутримолекулярной водородной связи NH···O=C таутомера **16**, равная 136 см⁻¹, что совпадает с экспериментально наблюдаемой (138 см⁻¹, табл. 2, 4).

Узкая полоса при 3253 см⁻¹ характеризует колебания межмолекулярной водородной связи NH··· O=C линейного димера **16–1г**. Согласно расчету, узкие полосы средней интенсивности при 3196 и 3136 см⁻¹ принадлежат циклическому димеру **1а–1в**, причем последняя принадлежит как димеру **1а–1а**, так и димеру **1в–1в**, так как их расчетные Δv близки. Широкие полосы 3068 см⁻¹ отнесены к циклическому димеру **1д–1д**, а также колебаниям олефиновой группы CH в таутомерах **1а**, **в**, **д** с полосами при 3045 и 3030 см⁻¹ колебаний фенильной группы подобно работе [36]. В ИК спектре пленки эти полосы регистрируются при 3295, 3258, 3199, 3138 и 3082 см⁻¹. В твердом состоянии и пленке наиболее интенсивная высокочастотная полоса 3297 и 3295 см⁻¹ указывает на преобладание линейного димера **1г–1г** при комнатной температуре. При понижении температуры пленки до 104 К относительная интенсивность полосы 3258 см⁻¹ увеличивается, а ее максимум смещается в низкочастотную область до 3247 см⁻¹, что указывает на рост линейного димера **16–1г**. В этих условиях наиболее отчетливо проявляется плечо 3375 см⁻¹, принадлежащее линейному димеру **1а–1г**.

Узкая полоса средней интенсивности при 3136 см⁻¹ отнесена к колебаниям внутримолекулярной водородной связи ОН···O=С устойчивой енольной формы **1а**, как в работе [36]. Полосы 2953, 2924 см⁻¹ относятся к С–Н колебанию группы CH₃, а полосы при 2873, 2826 см⁻¹ соответствуют колебаниям групп CH₂–C=О дикето-таутомеров **16** или **1**г.

Широкая полоса v(OH) 3200–2500 см⁻¹ свидетельствует о наличии ассоциированных OH-групп внутримолекулярной водородной связи OH···O=C енольной формы [42, 20]. Полоса 1716 см⁻¹ колебаний связанных карбонильных групп v(C=O), как и полоса колебаний группы C=O амидного фрагмента при 1660 см⁻¹ с высокочастотным плечом при 1684 см⁻¹, относятся к кетоформам **16** и **1г** (табл. 4).

Наиболее интенсивная полоса при 1660 см⁻¹ может принадлежать как ассоциированным группам C=O, так и, согласно вычисленному колебательному спектру **1а**, колебаниям хелатного цикла –C=O–C=C–C–O–H. Благодаря высокой степени сопряжения эти колебания перекрываются с колебаниями бензольного кольца и дают интенсивную полосу при 1599 см⁻¹ [36]. Полосы плоскостных и внеплоскостных деформационных колебаний δ (NH) и δ (OH) в спектрах ацетоацетанилида **1** регистрируются при 1541, 1409 см⁻¹ и 755 и 692 см⁻¹ соответственно. Таким образом, в твердом состоянии и в пленке ацетоацетанилид находится в виде димеров, образованных таутомерами **1а–1д**.

Известно, что в растворе содержание таутомеров зависит от природы растворителя [40], а бен-

занилид имеет *транс*-конфигурацию и дает одну полосу поглощения за счет валентных колебаний свободных NH-групп в области 3460-3440 см⁻¹ [41]. В ИК спектре соединения 1 в четыреххлористом углероде CCl₄ очень узкая полоса средней интенсивности при 3439 см⁻¹ отнесена к свободной NH-группе таутомера 1г. Более интенсивная дублетная полоса с максимумами при 3327 и 3307 см⁻¹ принадлежит линейному димеру $1\Gamma - 1\Gamma$ и внутримолекулярной водородной связи NH---O=C дикетоформы 16 соответственно. Вычисленная разность Δv(NH) между свободной NH-группой таутомера 1г и ассоциированными NH-группами димера 1г-1г и дикетоформы 16 составляет 90 и 136 см⁻¹, что хорошо согласуется с экспериментально наблюдаемой величиной (112 и 132 см⁻¹). Соотношение интенсивностей этих трех полос поглощения не меняется при уменьшении концентрации раствора до ~10⁻³ моль/л. В ИК спектре в полярном CH₂Cl₂ эти полосы сдвигаются до 3422, 3321 и 3301 см⁻¹.

Спектры ацетоацетанилида 1 в CCl₄ и CH₂Cl₂ содержат интенсивные v(С=О) полосы 1716 и 1692, 1714 и 1684 см⁻¹ соответственно. Согласно расчету колебательных спектров таутомеров 16 и 1г. высокочастотная полоса обусловлена колебаниями кетогруппы v(C=O) таутомера 1г, а низкочастотная – колебаниями групп С=О амидного фрагмента обеих форм. Колебания карбонильных групп v(C=O) таутомера 16, участвующих в образовании внутримолекулярной водородной связи, перекрываются с последними и проявляются на основной полосе в виде высокочастотного плеча при 1699 см⁻¹ в CCl₄ и 1695 см⁻¹ в CH₂Cl₂. Согласно работе [27], в растворе хлороформа присутствует соединение с внутримолекулярной водородной связью.

В ИК спектре ацетоацетанилида 1 в растворе ацетонитрила полоса 3348 см⁻¹ относится к валентным колебаниям v(NH) таутомера 1г, участвующего в межмолекулярной водородной связи NH…N. Об этом свидетельствует близкая разность частот $\Delta v(NH)$ свободных NH-групп таутомера 1г и его H-комплекса с ацетонитрилом, рассчитанная в газе и найденная экспериментально между v(NH) в растворе CCl₄ и CH₃CN (90 см⁻¹). Валентные колебания v(C=O) кетогруппы в полярном ацето-

нитриле смещены в сторону высоких частот до 1725 см⁻¹ относительно инертной среды. Высокоинтенсивная полоса v(C=O) амидной группы таутомера **1г** расположена при 1688 см⁻¹. Экспериментально найденная разность частот колебаний групп C=O соответствует расчетной и составляет 37 см⁻¹.

Таким образом, по данным ИК спектроскопии, ацетоацетанилид в твердом состоянии и в растворах представлен преимущественно дикетотаутомерами и образующимися из них ассоциатами. Наиболее стабилен в газовой фазе кето-енольный таутомер **1а** и линейный димер с NH···O-связью. Типы самоассоциатов, образующихся в пленке в интервале температур 298–104 К, определяли путем анализа индуцированного H-связью сдвига частот v(NH) = v(NH_{своб}) – v(NH_{асс}).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали коммерческий ацетилацетанилид (Sigma-Aldrich). ИК спектры твердого соединения и растворов в CCl₄ и CH₂Cl₂ снимали на ИК Фурье-спектрометре Varian 3100. ИК спектры пленки регистрировали в диапазоне 298-104 К в термостатируемой кювете, охлаждаемой жидким азотом. Для определения типа Н-связи в ассоциатах использовали экспериментальные и расчетные значения v(NH). Квантово-химические расчеты выполнены с помощью программы Gaussian'09 с полной оптимизацией геометрии и расчетом колебательных частот для соединения 1 и его димеров методом B3LYP/6-311++G(**) [43]. Принадлежность стационарных точек к минимумам доказана положительными значениями гессиана. Относительные энергии (ΔE) рассчитаны по отношению к наиболее стабильной форме.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Ознобихина Лариса Петровна, ORCID: https:// orcid.org/000-0003-0499-4842

Лазарев Игорь Михайлович, ORCID: http:// orcid.org/0000-0002-8946-6792

Лазарева Наталья Федоровна, ORCID: https:// orcid.org/0000-0003-0877-9656

БЛАГОДАРНОСТЬ

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

Работа выполнена с использованием оборудования Байкальского аналитического центра коллективного пользования Сибирского отделения Российской академии наук.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Hussain S.M., El-Reedy A.M., El-Sherabasy S.A. // J. Heterocycl. Chem. 1988. Vol. 25. P. 9. doi 10.1002/ jhet.5570250102
- El-Meligie S.E.M., Khalill N.A., El-Nassan H.B., Ibraheem A.A.M. // Curr. Org. Chem. 2019. Vol. 23. P. 2005. doi 10.2174/1385272823666191021120336
- Li W., Zheng Y., Qu E., Bai J., Deng Q. // Eur. J. Org. Chem. 2021. P. 5151. doi 10.1002/ejoc.202100692
- Smith K.M., Bu Y., Suga H. // Chem. Biol. 2003. Vol. 10 P. 81. doi 10.1016/s1074-5521(03)00002-4
- Kim E. J., Lee J.H., Choi H., Pereira A.R., Ban Y.H., Yoo Y.J., Kim E., Park J. W., Sherman D.H., Gerwick W.H., Yoon Y.J. // Org. Lett. 2012. Vol. 14. P. 5824. doi 10.1021/ol302575h
- Nogawa T., Terai A., Amagai K., Hashimoto J., Futamura Y., Okano A., Fujie M., Satoh N., Ikeda H., Shin-Ya K., Osada H., Takahashi S. // J. Nat. Prod. 2020. Vol. 83. P. 3598. doi 10.1021/acs.jnatprod.0c00755
- Raczynska E.D., Kosinska Osmiałowski W.B., Gawinecki R. // Chem. Rev. 2005. Vol. 105. P. 3561. doi 10.1021/cr030087h
- Iglesias E. // Curr. Org. Chem. 2004. Vol. 8. P. 1. doi 10.2174/1385272043486124
- Smith K.T., Young S.C., DeBlasio J.W., Hamann C.S. // J. Chem. Educ. 2016. Vol. 93. P. 790. doi 10.1021/acs. jchemed.5b00170
- Sandler I., Harper J.B., Ho J. // J. Chem. Educ. 2021. Vol. 98. P. 1043. doi 10.1021/acs.jchemed.0c01076
- Ruiz D.L., Albesa A.G., Ponzinibbio A., Allegretti P.E., Schiavoni M.M. // J. Phys. Org. Chem. 2010. Vol. 23. P. 985. doi 10.1002/poc.1764
- Hynes M.J., Clarke E.M. // J. Chem. Soc. Perkin Trans. 1994. Vol. 2. P. 901. doi 10.1039/P29940000901
- Wengenroth H., Meier H. // Chem. Ber. 1990. Vol. 123.
 P. 1403. doi 10.1002/cber.19901230633
- Naoum M. M., Saad G. R. // J. Solut. Chem. 1998. Vol. 17. P. 67. doi 10.1007/BF00651854
- Laurella S.L., Sierra M.G., Furlong J.J.P., Allegretti P.E. // Open J. Phys. Chem. 2013. Vol. 3. P. 138. doi 10.4236/ojpc.2013.34017

- Laurella S.L., Latorrea C., Dietricha R., Furlong J.J.P., Allegretti P.E. // J. Phys. Org. Chem. 2012. Vol. 25. P. 1365. doi 10.1002/poc.3051
- Newberry R.W., Orke S.J., Raines R.T. // Org. Lett. 2016. Vol. 18. P. 3614. doi 10.1021/acs.orglett.6b01655
- Sung K., Wu R.-R., Sun S.-U. // J. Phys. Org. Chem. 2002. Vol. 15. P. 775. doi 10.1002/poc.554
- Castillo S., Bouissou T., Favrot J., Brazier J.F., Fayet J.P. // Spectrochim. Acta. 1993. Vol. 49A. P. 1591. doi 10.1016/0584-8539(93)80116-R
- Gilli P., Bertolasi V., Ferretti V., Gilli G. // J. Am. Chem. Soc. 2000 Vol. 122. P. 10405. doi 10.1021/ja000921+
- Downs J.R., Grant S.P., Townsend J.D., Schady D.A., Pastine S.J., Embree M.C., Metz C.R., Pennington W.T., Walsch R.D.B., Beam C.F. // Canad. J. Chem. 2004. Vol. 82. P. 659. doi 10.1139/v04-029
- 22. Ke Z., Lam Y.-P., Chan K.-S., Yeung Y.-Y. // Org. Lett. 2020. Vol. 22. P. 7353. doi 10.1021/acs.orglett.0c02701
- Zhang Z., Gao X., Yu H., Bi J., Zhang G. // ACS Omega. 2017. Vol. 2. P. 7746. doi 10.1021/acsomega.7b01526
- Lieby-Muller F., Constantieux T., Rodriguez J. // J. Am. Chem. Soc. 2005. Vol. 127. P. 17176. doi 10.1021/ ja055885z.
- Tkachenko V.V., Muravyova E.A., Desenko S.M., Shishkin O.V., Shishkina S.V., Sysoiev D.O., Müller T.J.J., Chebanov V.A. // Beilstein J. Org. Chem. 2014. Vol. 10. P. 3019. doi 10.3762/bjoc.10.320
- 26. *Azzam R.A., Moharebb R.M.* // Chem. Pharm. Bull. 2015. Vol. 63. P. 1055. doi 10.1248/cpb.c15-00685
- Kubozono Y., Kohno I., Ooishi K., Namazue S., Haisa M., Kashino S. // Bull. Chem. Soc. Japan. 1992. Vol. 65. P. 3234. doi 10.1246/bcsj.65.3234
- Prabhu Sh.G., Rao P.M. // J. Crystal Growth. 2000. Vol. 210. P. 824. doi 10.1016/0960-8974(90)90020-S
- Vijayana N., Babua R.R., Gopalakrishnana R., Ramasamy P. // J. Crystal Growth. 2004. Vol. 267. P. 646. doi 10.1016/j.jcrysgro.2004.04.008
- Ravikumar C., Joe I.H., Sajan D. // Chem. Phys. 2010.
 Vol. 369. P. 1.
- 31. *Ravikumar C., Joe I.H.* // XXII Int. Conf. Raman Spectrosc. 2010. CP 1267. doi 10.1063/1.3482727
- Senthilkannan K., Venkatachalam K., Thamarikannan P., Kalaipoonguzhali V., Kannan S., Jothibas M. // AIP Conf. Proceed. 2020. Vol. 2270. N 1. P. 040014. doi 10.1063/5.0019332
- Arjunan V., Kalaivani M., Senthilkumari S., Mohan S. // Spectrochim. Acta (A). 2013. Vol. 115. P. 154. doi 10.1016/j.saa.2013.06.003

- Barros M.T., Geraldes C.F., Maycock C.D., Silva M.I. // J. Mol. Struct. 1986. Vol. 142. P. 435. doi 10.1016/0022-2860(86)85150-X
- Naoum M.M., Saad G.R. // Indian J. Chem. (A). 1987. Vol. 26. P. 510.
- Schiavoni M.M., Di Loreto H.E., Hermann A., Mack H.-G., Ulic S.E., Védova C.O.D. // J. Raman Spectrosc. 2001. Vol. 32. P. 319. doi 10.1002/jrs.701
- Rocha M., Gil D.M., Echeverría G.A., Piro O.E., Jios J.L., Ulic S.E. // J. Fluor. Chem., 2018. Vol. 208. P. 36. doi 10.1016/j.jfluchem.2018.01.001
- Tayyaria S.F., Naghavi F., Pojhan S., McClurg R.W., Sammelson R.E. // J. Mol. Struct. 2011. Vol. 987. P. 241. doi 10.1016/j.molstruc.2012.01.039
- Karthika M., Senthilkumar L., Kanakaraju R. // Comp. Theor. Chem. 2012. Vol. 979. P. 54. doi 10.1016/j. comptc.2011.10.015
- 40. *Nakanishi K*. Infrared Absorption Spectroscopy. San Francisco: Holden-Day Inc., 1962.
- 41. *Bellami L*. The infrared spectra of complex molecules. New York: John Willey&Sons, 1956.
- Petkov I., Dodov N., Marko P. // J. Photochem. Photobiol. (A). 1990. Vol. 54. P. 119. doi 10.1016/1010-6030(90)87016-5
- 43. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Ivengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford, CT, 2010.

L. P. Oznobikhina^{*a*,*}, I. M. Lazarev^{*a*}, and N. F. Lazareva^{*a*}

^a Irkutsk Institute of Chemistry named after A.E. Favorsky Siberian Branch of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033 Russia *e-mail: 1 oznobikhina@irioch.irk.ru

Received June 24, 2022; revised June 24, 2022; accepted July 15, 2022

Conformers and tautomers of acetoacetanilide were studied by DFT (B3LYP/6-311++G**) and IR spectroscopy methods. The geometric and energy characteristics of acetoacetanilide dimers formed by intermolecular hydrogen bonds O–H···O and N–H···O were obtained. The energy of the donor-acceptor interaction of lone electron pairs of nitrogen and oxygen atoms and the antibonding π *-orbitals of the C=O carbonyl group, as well as double and single bonds in acetoacetanilide tautomers, was estimated using the NBO method.

Keywords: acetoacetanilide, tautomerism, hydrogen bonding, IR spectroscopy, quantum chemical calculations

УДК 547.245

ВЗАИМОДЕЙСТВИЕ ГИДРАЗИДА ИЗОНИКОТИНОВОЙ КИСЛОТЫ И ЕГО ТРИМЕТИЛСИЛИЛПРОИЗВОДНЫХ С ИЗОЦИАНАТАМИ

© 2022 г. Л. О. Белова^а, Н. А. Голуб^{а, *}, М. В. Плетнева^а, Н. И. Кирилина^b, А. Д. Кирилин^a

^а МИРЭА – Российский технологический университет (Институт тонких химических технологий имени М. В. Ломоносова), Москва, 119454 Россия

^b Государственный научно-исследовательский институт химии и технологии элементоорганических соединений, ш. Энтузиастов 38, Москва, 105118 Россия

*e-mail: golub-n.a@mail.ru

Поступило в редакцию 9 июля 2022 г. После доработки 30 июля 2022 г. Принято к печати 4 сентября 2022 г.

Взаимодействием триметилсилильного производного гидразида изоникотиновой кислоты (изониазида) с органическим и кремнийорганическими изоцианатами получены ранее неизвестные производные изониазида, благодаря предварительному силилированию субстрата.

Ключевые слова: гидразид изоникотиновой кислоты, N-(триметилсилил)изоникотиногидразид, триметилсилилизоцианат, (триметоксисилилпропил)изоцианат, гексаметилдисилазан, семикарбазиды

DOI: 10.31857/S0044460X22110038, EDN: LNDSEV

Производные гидразина широко применяются, в том числе при создании лекарств. Среди них особое место занимает гидразид изоникотиновой кислоты, являющийся субстанцией известного противотуберкулезного препарата изониазид [1, 2]. Однако способы и возможности получения его аналогов, особенно кремнийорганических, остаются недостаточно изученными.

Известно, что открытие в 1963 г. специфической биологической активности у 1-арилсилатранов нарушило существовавшее в научном мире мнение о биологической инертности кремнийорганических соединений, что способствовало началу интенсивных исследований в области синтеза и целенаправленного изучения свойств этих веществ [3]. Было установлено, что очень часто биологическая активность кремнийорганических соединений внутри класса зависит от типа функциональных групп в молекуле. Так, например, показана возможность синтеза производных изониазида, содержащих пространственно-затрудненные фрагменты, снижающие токсичность продукта [4]. Этой проблемой активно занимались как за рубежом [5], так и в России [6].

Ранее была показана возможность синтеза кремнийорганических производных гидразида изоникотиновой кислоты с помощью различных силилирующих реагентов: триметилхлорсилана, N,O-бис(триметилсилил)ацетамида, N,O-бис(триметилсилил)трифторацетамида, N-триметилсилилилимидазола (схема 1) [1].

Известно также, что часто при создании новых лекарственных препаратов используют принцип химического модифицирования структуры хорошо зарекомендовавших себя веществ. Учитывая значимость аналогов изониазида, продолжение исследований в области их синтеза остается актуальной задачей.

Проведенные нами исследования показали, что даже длительное нагревание (18 ч) гидразида

Схема 1.

Схема 2.

изоникотиновой кислоты с триметилсилилизоцианатом при 80°С, в том числе с применением катализатора [ди(2-этилгексаноата)олова], и использование растворителя не приводило к образованию соответствующего триметилсилилпроизводного семикарбазида. Однако предварительное введение в молекулу гидразида изоникотиновой кислоты триметилсилильной группы резко изменило характер процесса и позволило получить целевые продукты (схема 2).

Установлено, что в результате введения триметилсилильного заместителя в молекулу гидразида изоникотиновой кислоты с помощью гексаметилдисилазана продуктом реакции является равновесная смесь N- и О-таутомеров 1 и 1'. Доказательством наличия изомеров 1 и 1' является регистрация в ИК спектре интенсивных полос поглощения при 3302, 3250, 1546, 843 (NH₂), 1667 (C=O), 1578 (C=N) и 1131 см⁻¹ (Si–O). В спектре ЯМР ¹Н зарегистрированы два сигнала протонов Ме₃Si-группы в области –0.02 и 0.02 м. д., которые характерны для протонов NSiMe₃ и OSiMe₃ соответственно. В спектре ЯМР ²⁹Si присутствуют два сигнала кремния в области 7.38 и 22.64 м. д., в спектре ЯМР ¹³С – сигналы в области –1.28 и 0.11 м. д., также характерные для этих групп.

Получение триметилсилилпроизводного гидразида изоникотиновой кислоты 1 позволило впервые синтезировать кремнийорганические семикарбазиды 3 и 4. В случае триметилсилилизоцианата реакция идет длительное время при повышенной температуре и использовании катализатора (схема 3). При этом образуется равновесная смесь N-таутомера – 1-изоникотиноил-N-(триметилсилил)гидразинкарбоксамида 3 – и О-таутомера–4-{(*E*)-[(аминокарбонил)гидразоно]-[(триметилилил)окси]метил}пиридина 3' (О-форма).

В то же время замена триметилсилилизоцианата на фенилизоцианат не меняло характер процесса: реакция протекала без использования катализатора (3 ч при 90°С против 20 ч при 75–78°С) и заканчивалась образованием равновесной смеси

Схема 4.

двух таутомеров – 1-изоникотиноил-N-фенил-N-(триметилсилил)гидразинкарбоксамида **4** (N-форма) и 4-{(*E*)-[(анилинокарбонил)гидразоно][(триметилилил)окси]метил}пиридина **4'** (О-форма, схема 4).

Оказалось, что помимо триметилсилилизоцианата и фенилизоцианата можно использовать и (триметоксисилилпропил)изоцианат. Реакция идет при температуре 55–60°С с образованием также равновесной смеси двух таутомеров – 1-изоникотиноил-N-[3-(триметоксисилил)пропил]-N-(триметилсилил)гидразинкарбоксамида **5** (N-форма) и 4-{(1*E*)-9,9-диметокси-4-оксо-1-[(триметилсилил)- окси]-1-окса-2,3,5-триаза-9-силаундец-1-ен-1-ил}пиридина 5' (О-форма, схема 5).

Таким образом, можно сделать вывод, что состав и строение образующихся кремнийорганических продуктов в реакции триметилсилильного производного гидразида изоникотиновой кислоты с органическим и кремнийсодержащими изоцианатами определяются наличием заместителя у атома азота. При этом исходный N-(триметилсилил)изоникотиногидразид, также как и образующиеся семикарбазиды, существуют в виде равновесной смеси таутомерных форм. Схема 5.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на спектрометрах Specord 75 IR, Nicolet 7600 в тонком слое (для жидкостей) и в вазелиновом масле (для кристаллических соединений). Спектры ЯМР ¹Н регистрировали на приборе Bruker DRX400 (400.13 МГц) в CDCl₃ и ДМСО, внутренний стандарт – ТМС. Спектр ЯМР ²⁹Si регистрировали на спектрометре Bruker Avance II 300 (60 МГц) в CDCl₃. Элементный анализ выполнен на приборе FLASH EA 1112. Температуры плавления определяли на приборе BUCHI Melting PointB-540

Реагенты и растворители перед использованием тщательно сушили и очищали перегонкой. Все операции, включая выделение и отбор проб, проводили в атмосфере сухого азота.

N-(Триметилсилил)изоникотиногидразид/ триметилсилил-4-пиридин-карбогидразоноат (1/1'). Смесь 30 г (0.218 моль) изониазида и 22.5 г (0.139 моль) гексаметилдисилазана с каталитическим количеством конц. серной кислоты выдерживали в течение 31 ч при температуре 100°С. Фракционированием выделили 4.57 г (10%) смеси соединений 1/1′, т. кип. 89–90°С (1 мм рт. ст.), $n_{\rm D}^{20}$ 1.5101. ИК спектр, v, см⁻¹: 3302, 3250 (NH₂), 1667 (C=O), 1578 (C=N), 1546 (NH₂), 1131 (Me₂SiO), 843 (NH₂). Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: -0.02 c (9H, NSiMe₃), 0.02 c (9H, OSiMe₃), 5.37 c (2H, NH₂), 7.27 д (2H, CH, J 28.0 Гц), 8.30 д (2H, CH, J 24.0 Гц). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д.: –1.28 (NSiMe₃), 0.11 (OSiMe₃), 118.62 (2C, C_{Ar}), 140.00 (C=O), 141.63 (1C, C_{Ar}), 149.09 (2C, C_{Ar}) Спектр ЯМР ²⁹Si (CDCl₃), δ_{Si}, м. д.: 7.38 (NSiMe₃), 22.64 (OSiMe₃). Найдено, %: С 51.24; Н 7.95; N 19.85. С₉H₁₅O₁N₃Si₁. Вычислено, %: С 51.64; Н 7.22; N 20.07.

1-Изоникотиноил-N-(триметилсилил)гидразинкарбоксамид/4-{(Е)-[(аминокарбонил)гидразоно][(триметилилил)окси]метил}пиридин (3/3'). Смесь 8.00 г (0.038 моль) N-(триметилсилил)изоникотиногидразида и 4.40 г (0.038 моль) триметилсилилизоцианата выдерживали при 75-78°C в течение 20 ч в присутствии каталитических количеств ди(2-этилгексаноата)олова. Фракционированием выделили 8.92 г (92.5%) смеси соединений 3/3', т. кип. 118-120°С (1 мм рт. ст.), n_D²⁰ 1.4980. ИК спектр, v, см⁻¹: 3338, 3250 (NH₂), 1714 (C=O), 1578 (C=N), 1545 (NH₂), 1130 (Me₃SiO), 850 (NH₂). Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 0.04 с (9H, NSiMe₃), 0.24 с (9H, OSiMe₃) 5.70 (2H, NH₂), 7.52 д (2H, CH, *J* 64.0 Гц), 8.58 д (2Н, СН, Ј 52.0 Гц). Найдено, %: С 47.38; Н 6.35; N 21.43. C₁₀H₁₆O₂N₄Si. Вычислено, %: С 47.59; Н 6.39; N 22.20.

1-Изоникотиноил-N-фенил-N-(триметилсилил)гидразинкарбоксамид/4-{(*E*)-[(анилинокарбонил)гидразоно][(триметилилил)окси]метил}пиридин (4/4'). Смесь 4.00 г (0.019 моль) N-(триметилсилил)изоникотиногидразида и 2.28 г (0.019 моль) фенилизоцианата выдерживали в течение 3 ч при 90°С. Осадок отфильтровывали и сушили. Выход 5.77 г (92.0%), т. пл. 210–212°С. ИК спектр, v, см⁻¹: 3300, 3250 (NH₂), 1780 (C=O), 1578 (C=N), 1545 (NH₂), 1130 (Me₃SiO), 850 (NH₂). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: –0.01 с (9H, NSiMe₃), 0.05 с (9H, OSiMe₃), 5.30 (2H, NH₂), 6.98 т (2H, CH, *J* 36.0 Гц), 7.27 т (2H, CH, *J* 16.0 Гц) 7.70 м (2H, CH, *J* 12.0 Гц), 7.71 т (H, CH, *J* 12.0 Гц), 8.75 м (2H, CH, *J* 12.0 Гц). Найдено, %: С 58.67; Н 6.12; N 17.03. C₁₆H₂₀O₂N₄Si. Вычислено, %: С 58.51; Н 6.14; N 17.06.

1-Изоникотиноил-N-[3-(триметоксисилил)пропил]-N-(триметилсилил)гидразинкарбоксамид/4-{(1Е)-9,9-диметокси-4-оксо-1-[(триметилсилил)-окси]-1-окса-2,3,5-триаза-9-силаундец-1-ен-1-ил Пиридин (5/5'). Смесь 1.40 г (7 ммоль) N-(триметилсилил)-изоникотиногидразида и 1.37 г (7 ммоль) (триметоксисилилпропил)изоцианата выдерживали при температуре 55-60°С в течение 10.5 ч в присутствии каталитических количеств ди(2-этилгексаноата)олова. Осадок отфильтровали и сушили. Выход 2.75 г (99.3%), т. пл. 68-69°С. ИК спектр, v, см⁻¹: 3300, 3200 (NH₂), 1600 (C=O), 1578 (C=N), 1545 (NH₂), 1130 (Me₃SiO), 850 (NH₂). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 0.06 с (9H, NSiMe₃), 0.11 с (9H, OSiMe₃), 0.83 т (2H, SiCH₂CH₂, J 16.0 Гц), 1.57 к (2H, N<u>CH</u>₂CH₂, *J* 64.0 Гц), 3.15 к (2H, SiCH₂<u>CH</u>₂, *J* 96.0 Гц), 3.45 с (9H, OCH₃), 5.27 с (2H, NH₂), 7.77 т (2Н, СН, J 76.0 Гц), 8.75 т (2Н,СН, J 44.0 Гц). Найдено, %: С 46.74; Н 7.58; N 13.30. С₁₆Н₃₀О₅N₄Si₂. Вычислено, %: С 46.35; Н 7.29; N 13.51.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Голуб Наталия Александровна, ORCID: https:// orcid.org/0000-0002-2315-6783 Плетнева Мария Владимировна, ORCID: https:// orcid.org/0000-0002-4940-292X

Кирилина Надежда Ивановна, ORCID: https:// orcid.org/0000-0001-9932-7588

Кирилин Алексей Дмитриевич, ORCID: https:// orcid.org/0000-0001-9225-9551

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Richard B.M., Manno J.E., Manno B.R. // J. Chromatogr. 1974. Vol. 89. P. 80. doi 10.1016/S0021-9673(01)84162-5
- 2. Кирилин А.Д., Белова Л.О., Кирилина Н.И., Петроградский А.В., Шембель Н.Л. // Наукоемкие химические технологии. 2018. Т. 13. № 4. С. 39. doi 10.32362/2410-6593-2018-13-4-39-49
- 3. Воронков М.Г., Дьяков В.М. Силатраны. Новосибирск.: Наука, 1978. 208 с.
- Бухаров С.В., Тагашева Р.Г., Нугуманова Г.Н., Мавромати Л.В. // Вестн. Казанск. технол. унив. 2010. № 9. С. 23. doi 10.14258/jepem.2020026278
- 5. *Tacke R., Steffen D.* Topics in Medicinal Chemistry. New York: Springer, 2016. P. 29.
- Lazareva N.F., Baryshok V.P., Lazarev I.M. // Arch. Pharm. Chem. Life Sci. 2017. Vol. 351. P. 1. doi 10.1002/ardp.201700297

Reactions of Isonicotinic Acid Hydrazide and Its Trimethylsilyl Derivatives with Isocyanates

L. O. Belova^a, N. A. Golub^{a,*}, M. V. Pletneva^a, N. I. Kirilina^b, and A. D. Kirilin^a

^a MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technology), Moscow, 119571 Russia

^b State Research Institute of Chemistry and Technology of Organoelement Compounds, Moscow, 105118 Russia *e-mail: golub-n.a@mail.ru

Received July 9, 2022; revised July 30, 2022; accepted September 4, 2022

Reactions of isonicotinic acid hydrazide and its trimethylsilyl derivatives with hexamethyldisilazane and organic and organosilicon isocyanates were studied. The possibility of synthesizing previously unknown isoniazid derivatives by preliminary introduction of a trimethylsilyl substituent to the nitrogen atom was established.

Keywords: isonicotinic acid hydrazide, *N*-(trimethylsilyl)isonicotinohydrazide, trimethylsilyl isocyanate, (trimethoxysilylpropyl)isocyanate, hexamethyldisilazane, semicarbazides УДК 547.484.22;547.776;547.793.3

СИНТЕЗ ТИАДИАЗОЛ-4-И ПИРАЗОЛ-3-КАРБОКСИЛАТОВ НА ОСНОВЕ (ГЕТ)АРОИЛГИДРАЗОНОВ ЭТИЛПИРУВАТОВ

© 2022 г. И. С. Адюков^а, В. В. Пелипко^а, Р. И. Байчурин^а, С. В. Макаренко^{а,*}

^а Российский государственный педагогический университет имени А. И. Герцена, наб. р. Мойки 48, Санкт-Петербург, 191186 Россия *e-mail: kohrgpu@yandex.ru

> Поступило в редакцию 31 августа 2022 г. После доработки 20 сентября 2022 г. Принято к печати 22 сентября 2022 г.

Осуществлен синтез этил-1,2,3-тиадиазол-4-карбоксилата и этил-4-формил-1*H*-пиразол-3-карбоксилата в условиях реакции Харда–Мори и Вильсмейера–Хаака на основе (гет)ароилгидразонов этилпируватов.

Ключевые слова: гидразон этилпирувата, реакция Харда–Мори, реакция Вильсмейера–Хаака, 1,2,3-тиадиазол, 1*H*-пиразол, гетероциклические соединения

DOI: 10.31857/S0044460X2211004X, EDN: LNGPMG

Замещенные гидразоны алкилпируватов являются перспективными субстратами для получения различных гетероциклических соединений [1–8], в том числе ряда 1*H*-пиразола [9] и 1,2,3-тиадиазола [10, 11]. Представители этих гетероциклов оказываются интересны с точки зрения их биологической активности. Например, производные тиадиазол-4-карбоксилата являются нейропротекторными агентами [12], ингибиторами агрегации тромбоцитов [13], обладают противоопухолевым [14] и антибактериальным [15] действием, а про-

изводные пиразол-3-карбоксилата проявляют противоопухолевую активность [16].

Нами изучено поведение ранее полученных замещенных гидразонов этилпируватов [17] – этил-2-(2-(гет)ароилгидразинилиден)пропаноатов **1–3** – в условиях реакции Харда–Мори [11] и Вильсмейера–Хаака [18], приводящее к образованию этил-1,2,3-тиадиазол-4-карбоксилата **4** и этил-4-формил-1*H*-пиразол-3-карбоксилата **5** соответственно (схема 1).

При этом оказалось, что выдержка гидразонов этилпируватов **1** или **2** в избытке тионилхлорида (соотношение гидразон:тионилхлорид = 1:55) при комнатной температуре в течение 1 ч завершается образованием тиадиазол-4-карбоксилата **4** с выходами 13 или 40% соответственно (методы *а* и δ). Увеличение времени выдержки до 24 ч при использовании гидразонов этилпируватов **1** или **3** приводит к получению тиадиазол-4-карбоксилата **4** с выходами 81 или 44% соответственно (методы *в* и *г*).

Отметим, что ранее тиадиазол-4-карбокслилат 4 был получен в условиях реакции Харда–Мори из метил-2-(1-этокси-1-оксопропан-2-илиден)гидразин-1-карбоксилата с выходом 45% [12], а так же путем этерификации 1,2,3-тиадиазол-4-карбоновой кислоты с выходом 60% [19].

Взаимодействие этил-2-(2-бензоилгидразинилиден)пропаноата 1 с хлорокисью фосфора при нагревании до 60°С в растворе ДМФА в течение 4 ч привело к образованию этил-4-формил-1*H*-пиразол-3-карбоксилата 5 с выходом 16% (схема 1). Отметим, что 1*H*-пиразол-3-карбоксилат 5 ранее был получен в условиях реакции Вильсмейера–Хаака из этил-2-(2-ацетилгидразоно)пропаноата с выходом 55% [20].

Строение полученных гетероциклов **4**, **5** охарактеризовано нами данными физико-химических методов исследования (ЯМР ¹H, ¹³C, ИК спектроскопия), состав подтвержден результатами элементного анализа.

Таким образом, изучение поведения замещенных гидразонов этилпируватов в условиях реакции Харда–Мори и Вильсмейера–Хаака позволило получить этил-1,2,3-тиадиазол-4-карбоксилат и этил-4-формил-1*H*-пиразол-3-карбоксилат. При этом, синтез этил-1,2,3-тиадиазол-4-карбоксилата осуществлен с бо́льшим выходом, чем описанными в литературе методами.

ЭКСПЕРЕМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³С{1H} зарегистрированы в CDCl₃ на спектрометре Jeol ECX400A с рабочими частотами 399.78 (¹H) и 100.53 (¹³C) МГц. В качестве стандарта использованы остаточные сигналы растворителя. Колебательные спектры записаны

на ИК Фурье-спектрометре Shimadzu IRPrestige-21 в таблетках КВг (разрешение – 2 см⁻¹). Элементный анализ проведен на анализаторе EuroVector EA3000 (CHN Dual).

Этил-1,2,3-тиадиазол-4-карбоксилат (4). а. К 5 мл (68.9 ммоль) охлажденного до 0°С тионилхлорида добавляли порциями 0.30 г (1.28 ммоль) этил-2-(2-бензоилгидразинилиден)пропаноата 1. Полученную смесь выдерживали при 18-20°С в течение 1 ч, затем выливали в насыщенный раствор карбоната натрия (20 мл), доводя рН раствора до среды и экстрагировали хлороформом (3× 10 мл), экстракт сушили MgSO₄. После удаления растворителя осмоленный остаток обрабатывали этанолом. Выход 0.03 г (13%). т. пл. 85-87°С (EtOH) {т. пл. 86–86.5°С (EtOH) [19]}. ИК спектр. v, см⁻¹: 3072 ср (С–Н), 1724 с (С=О). Спектр ЯМР ¹Н, б, м. д.: 1.46 т (3Н, CH₃CH₂O, ³*J* 7.1 Гц), 4.53 к (2H, CH₂O, ³J 7.1), 9.26 с (1H, CH). Спектр ЯМР ¹³С, δ_C, м. д.: 14.4 (СН₃), 62.5 (СН₂О), 155.0 (С⁴), 142.5 (С⁵), 159.7 (С=О). Найдено, %: С 37.84; Н 3.76; N 17.77. C₅H₆N₂O₂S. Вычислено, %: С 37.97; H 3.79; N 17.72.

б. Получали аналогично методике *а* из 0.106 г (0.47 ммоль) этил-2-[2-(фуран-2-илкарбонил)гидразинилиден]пропаноата **2**. Выход 0.04 г (40%), т. пл. 85–87°С (ЕtOH). Проба смешения с образцом, полученным по методу *а*, депрессии температуры плавления не давала.

в. Получали аналогично методике *а* из 0.30 г (1.28 ммоль) этил-2-(2-бензоилгидразинилиден)-пропаноата **1**. Смесь выдерживали 24 ч. Выход 0.17 г (81%), т. пл. 85–87°С (ЕtOH). Проба смешения с образцом, полученным по методу *a*, депрессии температуры плавления не давала.

г. Получали аналогично методике *в* из 0.30 г (1.27 ммоль) этил 2-[2-(пиридин-3-илкарбонил)-гидразинилиден]пропаноата **3**. Выход 0.09 г (44%), т. пл. 85–87°С (ЕtOH). Проба смешения с образцом, полученным по методу *a*, депрессии температуры плавления не давала.

Этил-4-формил-1*Н*-пиразол-3-карбоксилат (5). К 2.5 мл охлажденного до 0°С диметилформамида добавляли по каплям 1.1 мл (11.87 ммоль) хлорокиси фосфора таким образом, чтобы температура смеси не поднималась выше 10°С, и выдерживали в течение 1 ч. Затем к реакционной массе добавляли 0.470 г (2.0 ммоль) этил-2-(2-бензоилгидразинилиден)пропаноата 1. Смесь оставляли до достижения комнатной температуры и выдерживали 4 ч при 60°С. Раствор выливали в ледяную крошку и добавляли NaOH до достижения pH 7, затем выдерживали 5 мин при 60°С. Раствор экстрагировали хлороформом (30 мл) и сушили MgSO₄. После удаления растворителя осмоленный остаток обрабатывали этанолом. Выход 0.054 г (16%), т. пл. 139–141°С (ЕtOH). ИК спектр, v, см⁻¹: 3217 vш. ср (NH), 1708 оч. с (С=О), 1682 оч. с (Н-С=О). Спектр ЯМР ¹Н, б, м. д.: 1.45 т (3H, CH₃CH₂O, ³*J* 7.1 Гц), 4.52 к (2H, CH₂O, ³J 7.1 Гц), 8.43 с (1H, СН), 10.41 с (1Н, Н–С=О), 10.78 уш. с (1Н, NН). Спектр ЯМР ¹³С, δ_{C} , м. д.: 14.4 (СН₃), 62.5 (СН₂О), 123.4 (C⁴), 134.2 (C⁵), 141.1 (C³), 161.0 (C=O), 186.3 (H-C=O). Найдено, %: С 50.14, Н 4.81, N 14.66. С₇Н₈N₂O₃. Вычислено, %: С 50.00, Н 4.76, N 14.63.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Адюков Иван Сергеевич, ORCID: https://orcid. org/0000-0001-7904-4302

Пелипко Василий Васильевич, ORCID: https:// orcid.org/0000-0003-1885-7005

Байчурин Руслан Измаилович, ORCID: https:// orcid.org/0000-0002-2737-1448

Макаренко Сергей Валентинович, ORCID: https://orcid.org/0000-0002-7284-5147

БЛАГОДАРНОСТЬ

Физико-химические исследования выполнены с использованием оборудования Центра коллективного пользования «Физико-химические методы исследования нитросоединений, координационных, биологически активных веществ и наноструктурированных материалов» Междисциплинарного ресурсного центра коллективного пользования «Современные физико-химические методы формирования и исследования материалов для нужд промышленности, науки и образования» Российского государственного педагогического университета им. А. И. Герцена.

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства просвещения России (проект № FSZN-2020-0026).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Пелипко В.В., Гомонов К.А. // ХГС. 2021. Т. 57. № 6. С. 624; Pelipko V.V., Gomonov К.А. // Chem. Heterocycl. Compd. 2021. Vol. 57. N 6. P. 624. doi 10.1007/s10593-021-02958-8
- Jiang H.-X., Zhuang D.-M., Huang Y., Cao X.-X., Yao J.-H., Li J.-Y., Wang J.-Y., Zhang C., Jiang B. // Org. Biomol. Chem. 2014. Vol. 12. N 21. P. 3446. doi 10.1039/C3OB42186D
- Schantl J.G., Lang S., Wurst K. // Heterocycles. 1999.
 Vol. 50. N 1. P. 251. doi 10.3987/COM-98-S(H)35
- Looker J.H., Wilson L.W., Jr., // J. Heterocycl. Chem. 1965. Vol. 2. N 4. P. 348. doi 10.1002/jhet.5570020405
- Caron M. // J. Org. Chem. 1986. Vol. 51. N 21. P. 4075. doi 10.1021/jo00371a033
- Gudala S., Ambati S.R., Patel J.L., Vedula R.R., Penta S. // J. Heterocycl. Chem. 2019. Vol. 56. N 8. P. 2163. doi 10.1002/jhet.3609
- Kurandina D., Gevorgyan V. // Org. Lett. 2016. Vol. 18. N 8. P. 1804. doi 10.1021/acs.orglett.6b00541
- Magalhães J., Franko N., Raboni S., Annunziato G., Tammela P., Bruno A., Bettati S., Mozzarelli A., Pieroni M., Campanini B., Costantino, G. // ACS Med. Chem. Lett. 2020. Vol. 11. N 5. P. 790. doi 10.1021/ acsmedchemlett.9b00627
- 9. Братенко М.К., Барус М.М., Вовк М.В. // ХГС. 2009. № 12. С. 1817; Bratenko M.K., Barus M.M., Vovk M.V. // Chem. Heterocycl. Compd. 2009. Vol. 45. N 12. P. 1464. doi 10.1007/s10593-010-0451-z
- Shafiee A. // J. Heterocycl. Chem. 1976. Vol. 13. N 2. P. 301. doi 10.1002/jhet.5570130220
- Hurd C.D., Mori R.I. // J Am. Chem. Soc. 1955. Vol. 77. N 20. P. 5359. doi 10.1021/ja01625a047
- Amirhamzeh A., Vosoughi M., Shafiee A., Amini M. // Med. Chem. Res. 2013. Vol. 22. N 3. P. 1212. doi 10.1007/s00044-012-0124-9
- Li J.J., Ji X.T., Huang,Y., Morzherin Y.Y., Hua X.W., Zong G.N., Song H.B., Belskaya N.P., Fan,Z.J., Li F.Y., Liu C.L., Bakulev V.A. // Jiegou Huaxue. 2014. Vol. 33. N 4. P. 535.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

АДЮКОВ и др.

- Wu M., Sun Q., Yang C., Chen D., Ding J., Chen Y., Lin L., Xie Y. // Bio. Med. Chem. Lett. 2007. Vol. 17. N 4. P. 869. doi 10.1016/j.bmcl.2006.11.060
- Thomas E.W., Nishizawa E.E., Zimmermann D.C., Williams D.J. // J Med. Chem. 1985. Vol. 28. N 4. P. 442. doi 10.1021/jm00382a009
- Kovács D., Wölfling J., Szabó N., Szécsi M., Schelz Z., Zupkó I., Frank É. // Eur. J. Med. Chem. 2016. Vol. 120. P. 284. doi 10.1016/j.ejmech.2016.05.006
- Пелипко В.В., Адюков И.С., Байчурин Р.И., Макаренко С.В. // ЖОХ. 2022. Т. 92. № 2. С. 167. doi 10.31857/S0044460X22020019; Pelipko V.V., Adyukov I.S., Baichurin R.I., Makarenko S.V. // Russ. J. Gen. Chem. 2022. Vol. 92. N 2. P. 141. doi 10.1134/ S1070363222020013

- Vilsmeier A., Haack // Ber. 1927. Bd. 60. Hf 1. S. 119. doi 10.1002/cber.19270600118
- Pain D. L., Slack R. // J. Chem. Soc. 1965. P. 5166. doi 10.1039/JR9650005166
- Devasthale P., Wang W., Hernandez A.S., Moore F., Renduchintala K., Sridhar R., Pelleymounter M.A., Longhi D., Huang N., Flynn N., Azzara A.V., Rohrbach K., Devenny J., Rooney S., Thomas M., Glick S., Godonis H., Harvey S., Cullen M.J., Zhang H., Caporuscio C., Stetsko P., Grubb M., Huang C., Zhang L., Freeden C., Li Y.-X., Murphy B.J., Robl J.A., Washburn W.N. // Bioorg. Med. Chem. Lett. 2015. Vol. 25. N 14. P. 2793. doi 10.1016/j.bmcl.2015.05.008

Synthesis of Thiadiazole-4- and Pyrazole-3-carboxylates Based on Ethyl Pyruvates (Het)Aroylhydrazones

I. S. Adyukov^a, V. V. Pelipko^a, R. I. Baichurin^a, and S. V. Makarenko^{a,*}

^a Herzen State Pedagogical University of Russia, St. Petersburg, 191186 Russia *e-mail: kohrgpu@yandex.ru

Received August 31, 2022; revised September 20, 2022; accepted September 22, 2022

Ethyl 1,2,3-thiadiazole-4-carboxylate and ethyl 4-formyl-1*H*-pyrazole-3-carboxylate were synthesized under Hurd–Mori and Vilsmeier–Haack reaction conditions based on (het)aroylhydrazones of ethyl pyruvates.

Keywords: ethyl pyruvate hydrazone, Hurd–Mori reaction, Vilsmeier–Haack reaction, 1,2,3-thiadiazole, 1*H*-pyrazole, heterocyclic compounds

1686

УДК 547.327

СИНТЕЗ И АНАЛЬГЕТИЧЕСКАЯ АКТИВНОСТЬ ЭТИЛ-4-[(4-АРИЛ-2-ГИДРОКСИ-4-ОКСОБУТ-2-ЕНОИЛ)-АМИНО]БЕНЗОАТОВ

© 2022 г. В. Л. Гейн^{а,*}, А. В. Романова^{*a*}, О. В. Бобровская^{*a*}, О. В. Назарец^{*a*}, Р. Р. Махмудов^{*b*}, Е. В. Градова^{*b*}

^а Пермская государственная фармацевтическая академия, ул. Полевая 2, Пермь, 614990 Россия ^b Пермский государственный национальный исследовательский университет, Пермь, 614990 Россия *e-mail: geinvl48@mail.ru

> Поступило в Редакцию 13 июня 2022 г. После доработки 7 июля 2022 г. Принято к печати 12 июля 2022 г.

В результате реакции метиловых эфиров 4-арил-2-гидрокси-4-оксобут-2-еновых (ароилпировиноградных) кислот с этил-4-аминобензоатом (бензокаином, анестезином) в ледяной уксусной кислоте в присутствии безводного ацетата натрия синтезированы этил-4-[(*Z*)-(4-арил-2-гидрокси-4-оксобут-2-еноил)амино]- бензоаты. Полученные соединения проявляют выраженную анальгетическую активность.

Ключевые слова: этил-4-[(Z)-(4-арил-2-гидрокси-4-оксобут-2-еноил)амино]бензоаты, этил 4-аминобензоат (бензокаин, анестезин), анальгетическая активность

DOI: 10.31857/S0044460X22110051, EDN: LNHGBN

В структуре амидов ароилпировиноградных кислот находится несколько реакционных центров, что позволяет проводить с их участием целенаправленный синтез соединений различных классов, вводя в их состав фармакофорные группы. Амиды ароилпировиноградных кислот проявляют различные виды биологической активности: анальгетическую, противосудорожную, противовоспалительную, противомикробную и другие [1, 2].

С целью изучения биологического действия нами получены N-ариламиды 4-арил-2-гидрокси-4-оксобут-2-еновых кислот с этоксикарбонилфенильной группой в амидном фрагменте, которая является структурной основой лекарственного средства бензокаина (анестезина) – местноанестезирующего средства, обладающего поверхностной анестезией [3]. Реакцию проводили по известной методике [4–7] при кипячении этил-4-аминобензоата (бензокаина) с метиловыми эфирами ароилпировиноградных кислот в ледяной уксусной кислоте в течение 15–20 мин в присутствии безводного натрия ацетата и получили этил-4-[(Z)-(4-арил-2гидрокси-4-оксобут-2-еноил)амино]бензоаты 1–6 (схема 1). Соединение 2 получено ранее [5], нами воспроизведен его синтез.

Соединения **1–6** представляют собой светло-желтые или желтые кристаллические вещества, растворимые в ДМСО, ДМФА, при нагревании – в диоксане, ледяной уксусной кислоте, ацетонитриле, этаноле и нерастворимые в воде.

В ИК спектрах соединений 1–6 наблюдаются полосы валентных колебаний связи N–H ($3377-3350 \text{ см}^{-1}$), гидроксильной группы ($3125-3116 \text{ см}^{-1}$), сложноэфирной, амидной и кетонной карбонильных групп (1715-1705, 1710-1690 и $1610-1603 \text{ см}^{-1}$). В спектрах ЯМР ¹Н соединений 1–6 кроме сигналов ароматических протонов присутствуют триплет и квартет протонов этоксигруппы (1.32-1.41 и 4.29-4.38 м. д., J 7.2 Гц), синглеты

1-6 (75-89%)

 $R = 4-Cl(1), 4-F(2), 4-Br(3), 4-Me(4), 3, 4-(MeO)_2(5), 2, 4-Cl_2(6).$

Схема 2.

протонов енольной группипровки HC=C-O (6.83-7.27 м. д.) и группы CONH (10.83-10.95 м. д.). Сигналы протонов других групп наблюдаются в ожидаемых областях.

По данным ЯМР ¹Н, соединения **1–6** существуют в двух таутомерных формах **A** и **Б**, так как в их спектрах ЯМР ¹Н присутствует сигнал низкой интенсивности при 4.61–4.70 м. д., принадлежащий метиленовой группе дикетонной формы. Исходя из соотношения интегральной интенсивности сигналов метиленовой группы и протона в группе О–С=СН, в полученных соединениях преобладает енольная форма **A** (~ 90%), которая по данным спектров существует в *Z*-форме, а на кетонную форму **Б** приходится (~ 10%). Отсутствие в спектрах ЯМР ¹Н сигнала протона енольного гидроксила, по-видимому, объясняется обменными процессами, наблюдающимися и в других произ-

водных ароилпировиноградных кислот [8, 9]. Все полученные соединения дают характерное интенсивное окрашивание со спиртовым раствором железа(III) хлорида.

В масс-спектрах соединений **1–6** присутствуют пики молекулярных ионов, подтверждающие их структуру.

Исключительное образование амидов 1–6, по-видимому, объясняется тем, что натрия ацетат вступает в обменное взаимодействие с исходным эфиром ароилпировиноградной кислоты [4, 6, 7], образуя натрийпроизводное, в котором дезактивирована карбонильная группа в α -положении и становится возможной атака сложноэфирного карбонильного фрагмента первичной аминогруппой бензокаина (схема 2).

Соединения 1-6 были испытаны на анальгетическую активность методом термического раздра-
Соединение	R	Время оборонительного рефлекса через 2.0 ч, с
1	4-C1	20.20±1.26 ^a
2	4-F	23.30±1.44 ^a
3	4-Br	19.60±2.68ª
4	4-Me	20.83 ± 2.66^{a}
5	3,4-(MeO) ₂	$22.80{\pm}1.74^{a}$
6	2,4-Cl ₂	21.20±1.26 ^a
Метамизол натрия		116.60±3.40
Контроль		11.89±2.20

Таблица 1. Анальгетическая активность соединений 1–6	Ó, C	определенная методом	«горячая пластина»
--	------	----------------------	--------------------

 $\frac{1}{a} p < 0.05$ по сравнению с контролем.

жения «горячая пластина». Результаты испытаний представлены в табл. 1. Из данных таблицы следует, что все анализируемые соединения проявляют выраженное анальгетическое действие, превосходящее по анальгетической активности эталон сравнения – метамизол натрия. Наиболее высокий анальгетический эффект оказывает соединение 2 с атомом фтора в ароилпируватном фрагменте.

Таким образом, препаративная методика синтеза позволяет получить этил-4-[(Z)-(4-арил-2гидрокси-4-оксобут-2-еноил)амино]бензоаты, обладающие выраженной анальгетической активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР¹Н записывали на приборе Bruker Avance III HD (400 МГц) в ДМСО- d_6 , внутренний стандарт – ТМС. ИК спектры снимали на ИК Фурье-спектрометре IRAffinity-1 Shimadzu в таблетках КВг. Масс-спектры высокого разрешения получали на масс-спектрометре Shimadzu Nexera X2 LCMS-9030. Элементный анализ проводили на приборе Perkin Elmer 2400. Температуры плавления определяли на приборе Melting Point M-565.

Этил-4-{[(Z)-2-гидрокси-4-оксо-4-(4-хлорфенил)бут-2-еноил]амино}бензоат (1). К 1.65 г (0.01 моль) этил-4-аминобензоата, растворенного при нагревании в 15 мл ледяной уксусной кислоты, добавляли раствор 2.41 г (0.01 моль) метилового эфира 4-хлорбензоилпировиноградной кислоты и 0.82 г (0.01 моль) безводного ацетата натрия в 10 мл ледяной уксусной кислоты. Реакционную смесь кипятили 20 мин. Выпавший при охлаждении осадок отфильтровывали и кристаллизовали из этанола. Выход 3.06 г (82%), т. пл. 198–200°С (EtOH). ИК спектр, v, см⁻¹: 3354 (N–H), 3116 (O–H), 1714 [(<u>C=O)OC</u>₂H₅], 1694 [(<u>C=O</u>)NH], 1607 (C=O). Спектр ЯМР ¹H, δ , м. д.: 1.33 т (3H, CH₃CH₂O, J 7.2 Гц), 4.30 к (2H, CH₃CH₂O, J 7.2 Гц), 4.65 с (2H, COCH₂CO), 7.22 с (1H, O–C=CH), 7.64–8.11 м (8H, CH_{Ar}), 10.90 с (1H, NH). Масс-спектр (HRMS-ESI), *m/z*: 372.0646 [*M* – H]⁺, 374.0620 [*M* – H]⁺. Найдено, %: С 61.19; H 4.29; N 3.82. C₁₉H₁₆ClNO₅. Вычислено, %: С 61.05; H 4.31; N 3.75.

Соединения 2-6 получали аналогично.

Этил-4-{[(*Z*)-2-гидрокси-4-оксо-4-(4-фторфенил)бут-2-еноил]амино}бензоат (2). Выход 2.75 г (77%), т. пл. 183–185°С (ЕtOH). ИК спектр, v, см⁻¹: 3350 (N–H), 3116 (O–H), 1712 [(<u>C=O</u>)OC₂H₅], 1690 [(<u>C=O</u>)NH], 1603 (C=O). Спектр ЯМР ¹H, δ, м. д.: 1.32 т (3H, CH₃CH₂O, *J* 7.2 Гц), 4.30 к (2H, CH₃CH₂O, *J* 7.2 Гц), 4.65 с (2H, COCH₂CO), 7.20 с (1H, O–C=CH), 7.39–8.19 м (8H, CH_{Ar}), 10.88 с (1H, NH). Масс-спектр (HRMS-ESI), *m/z*: 356.0935 [*M* – H]⁺. Найдено, %: С 63.72; H 4.55; N 3.98. С₁₉H₁₆FNO₅. Вычислено, %: С 63.86; H 4.51; N 3.92.

Этил-4-{[(*Z*)-4-(4-бромфенил)-2-гидрокси-4оксобут-2-еноил]амино}бензоат (3). Выход 3.64 г (87%), т. пл. 196–197°С (ЕtOH). ИК спектр, v, см⁻¹: 3355 (N–H), 3116 (O–H), 1714 [(<u>C=O</u>)OC₂H₅], 1694 [(<u>C=O</u>)NH], 1610 (C=O). Спектр ЯМР ¹Н, δ, м. д.: 1.32 т (3H, C<u>H</u>₃CH₂O, *J* 7.2 Гц), 4.30 к (2H, CH₃C<u>H</u>₂O, *J* 7.2 Гц), 4.64 с (2H, COCH₂CO), 7.18 с (1H, O–C=CH), 7.77–8.01 м (8H, CH_{Ar}), 10.89 с (1H, NH). Масс-спектр (HRMS-ESI), *m/z*: 416.0138 [*M*]⁺, 418.0120 [*M*]⁺. Найдено, %: С 54.44; Н 3.82; N 3.40. С₁₉Н₁₆ВгNO₅. Вычислено, %: С 54.56; Н 3.86; N 3.35.

Этил-4-{[(Z)-2-гидрокси-4-(4-метилфенил)-4-оксобут-2-еноил]амино}бензоат (4). Выход 2.75 г (78%), т. пл. 147–148°С (ЕtOH). ИК спектр, v, см⁻¹: 3352 (N–H), 3117 (O–H), 1714 [(<u>C=O)</u>OC₂H₅], 1696 [(<u>C=O</u>)NH], 1608 (С=O). Спектр ЯМР ¹H, δ, м. д.: 1.41 т (3H, C<u>H</u>₃CH₂O, *J* 7.2 Гц), 2.59 с (3H, CH₃), 4.38 к (2H, CH₃C<u>H</u>₂O, *J* 7.2 Гц), 4.70 с (2H, COCH₂CO), 7.27 с (1H, O–C=CH), 7.45–8.09 м (8H, CH_{Ar}), 10.95 с (1H, NH). Масс-спектр (HRMS-ESI), *m/z*: 352.1190 [*M* – H]⁺. Найдено, %: С 68.11; H 5.45; N 3.91. C₂₀H₁₉NO₅. Вычислено, %: С 67.98; H 5.42; N 3.96.

Этил-4-{[(*Z*)-2-гидрокси-4-(3,4-диметоксифенил)-4-оксобут-2-еноил]амино}бензоат (5). Выход 3.55 г (89%), т. пл. 178–180°С (ЕtOH). ИК спектр, v, см⁻¹: 3377 (N–H), 3125 (О–H), 1705 [(<u>C=O</u>)OC₂H₅], 1705 [(<u>C=O</u>)NH], 1605 (C=O). Спектр ЯМР ¹H, δ, м. д.: 1.32 т (3H, CH₃CH₂O, *J* 7.2 Гц), 3.87 с (3H, CH₃O), 3.89 с (3H, CH₃O) 4.30 к (2H, CH₃C<u>H</u>₂O, *J* 7.2 Гц), 4.62 с (2H, COCH₂CO), 7.20 с (1H, O– C=CH), 7.14–8.01 м (7H, CH_{Ar}), 10.84 с (1H, NH). Масс-спектр (HRMS-ESI), *m/z*: 398.1248 [*M* – H]⁺. Найдено, %: C 63.24; H 5.36; N 3.47. C₂₁H₂₁NO₇. Вычислено, %: C 63.15; H 5.30; N 3.51.

Этил-4-{[(Z)-2-гидрокси-4-оксо-4-(2,4-дихлорфенил)бут-2-еноил]амино}бензоат (6). Выход 3.06 г (75%), т. пл. 177–179°С (ЕtOH). ИК спектр, v, см⁻¹: 3371 (N–H), 3118 (O–H), 1715 [(<u>C=O</u>)OC₂H₅], 1710 [(<u>C=O</u>)NH], 1610 (C=O). Спектр ЯМР ¹H, δ , м. д.: 1.32 т (3H, CH₃CH₂O, J 7.2 Гц), 4.29 к (2H, CH₃CH₂O, J 7.2 Гц), 4.61 с (2H, СОСН₂CO), 6.83 с (1H, O–C=CH), 7.58–7.95 м (7H, CH_{Ar}), 10.83 с (1H, NH). Масс-спектр (HRMS-ESI), *m/z*: 406.0255 [*M*]⁺, 408.0229 [*M*]⁺, 407.0288 [*M*]⁺, 409.0261 [*M*]⁺. Найдено, %: С 55.87; Н 3.65; N 3.50. С₁₉H₁₅Cl₂NO₅. Вычислено, %: С 55.90; Н 3.70; N 3.43.

Анальгетическую активность соединений **1–6** определяли на беспородных мышах (самках) массой 18–22 г методом термического раздражения «горячая пластина» [10]. Для оценки болевой чувствительности использовали анальгезиметр, модель EH-01 компании Orchid Scientific (Индия). Исследуемые соединения вводили внутрибрюшинно в дозе 50 мг/кг в виде взвеси в 2%-ном крахмальном растворе за 30 мин до помещения животных на нагретую до 53.5°С металлическую пластину. Показателем оценки болевой чувствительности служила длительность пребывания животных на горячей пластине с момента помещения на горячую поверхность до появления характерных поведенческих реакций на ноцицептивную стимуляцию (облизывание задних лап, подергивание, прыжки), измеряемая в секундах. Результаты оценивали по увеличению времени наступления оборонительного рефлекса по сравнению с исходными данными. Контрольной группе животных вводили 2%-ный крахмальный раствор в эквиобъемных количествах. В качестве эталона сравнения использовали метамизол натрия (ООО «Фармхимкомплект», Россия) в дозе 93 мг/кг, соответствующей ЕД₅₀ [11] по тесту «горячая пластина», который вводили аналогично. Результаты статистически обработаны с вычислением *t*-критерия Фишера-Стьюдента. Эффект считали достоверным при *p* < 0.05 [12].

ИНФОРМАЦИЯ ОБ АВТОРАХ

Гейн Владимир Леонидович, ORCID: https:// orcid.org/0000-0002-8512-0399

Бобровская Ольга Васильевна, ORCID: https:// orcid.org/0000-0002-3394-9031

Назарец Ольга Владимировна, ORCID: https:// orcid.org/0000-0002-1674-5117

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Пермского научно-образовательного центра «Рациональное недропользование», 2022 г.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ НОРМ

Все процедуры, выполненные в исследованиях с участием животных, соответствовали этическим стандартам учреждения, в котором проводились исследования, и утвержденным правовым актам РФ и международных организаций.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Милютин А.В.* Дис. ... докт. фарм. наук. Пермь, 1998. 256 с.
- Андрейчиков Ю.С., Милютин А.В., Крылова И.В., Сараева Р.Ф., Дормидонтова Е.В., Дровосекова Л.П., Назметдинов Ф.Я., Колла В.Э. // Хим.-фарм. ж. 1990. Т. 24. № 7. С. 33; Andreichykov Yu.S., Milyutin A.V., Krylova I.V., Saraeva R.F., Dormidontova E.V., Drovosekova L.P., Nazmetdinov F.Ya., Kolla V.E. // Pharm. Chem. J. 1990. Vol. 24. N 7. P. 473. doi 10.1007/ BF00764994.3
- 3. *Машковский М.Д.* Лекарственные средства. М.: Новая волна, 2012. С. 309.
- Гейн В.Л., Бобровская О.В., Гейн Л.Ф. // ЖОрХ. 2014. Т. 50. Вып. 11. С. 1703; Gein V.L., Bobrovskaya O.V., Gein L.F. // Russ. J. Org. Chem. 2014. Vol. 50. N 11. P. 1692. doi 10.1134/S1070428014110268
- 5. Гейн В.Л., Бобровская О.В., Одегова Т.Ф. Пат. РФ 2624226 (2017).
- Гейн В.Л., Бобровская О.В., Русских А.А., Петухова Н.Н. // ЖОХ. 2018. Т. 88. Вып. 2. С. 338; Gein V.L., Bobrovskaya O.V., Russkikh А.А., Petukhova N.N. // Russ. J. Gen. Chem. 2018. Vol. 18. N 2. P. 334. doi 10.1134/S1070363218020238

- Гейн В.Л., Бобровская О.В., Ковтоногова И.В., Новикова В.В. // ЖОХ. 2015. Т. 85. Вып. 4. С. 588; Gein V.L., Bobrovskaya O.V., Kovtonogova I.V., Novikova V.V. // Russ. J Gen. Chem. 2015. Vol. 85. N 4. P. 833. doi 10.1134/S1070363215040106
- Андрейчиков Ю.С., Гейн В.Л., Аникина И.Н. // ЖОрХ. 1986. Т. 22. Вып. 8. С. 1749.
- Бобровская О.В. Дис. ... докт. фарм. наук. Пермь. 2021. 476 с.
- Руководство по проведению доклинических исследований лекарственных средств / Под ред. А.Н. Миронова, Н.Д. Бунятян, А.Н. Васильева, О.Л. Верстаковой, М.В. Журавлевой, В.К. Лепахина, Н.В. Коробова, В.А. Меркулова, С.Н. Орехова, И.В. Сакаевой, Д.Б. Утешева, А.Н. Яворского. М.: Гриф и К, 2012. Ч. 1. 944 с.
- Сигидин Я.А., Шварц Г.Я., Арзамасцев А.П., Либерман С.С. Лекарственная терапия воспалительного процесса: Экспериментальная и клиническая фармакология противовоспалительных препаратов. М.: Медицина, 1988. 240 с.
- Беленький М.Л. Элементы количественной оценки фармакологического эффекта. Л.: Медгиз, 1963. С. 81.

Synthesis and Analgesic Activity of Etyl 4-[(4-Aryl-2-hydroxy-4-oxobut-2-enoyl)amino]benzoates

V. L. Gein^{*a*,*}, A. V. Romanova^{*a*}, O. V. Bobrovskaya^{*a*}, O. V. Nazarets^{*a*}, R. R. Makhmudov^{*b*}, and E. V. Gradova^{*b*}

> ^a Perm State Pharmaceutical Academy, Perm, 614990 Russia ^b Perm State Natsional Research University, Perm, 614990 Russia *e-mail: geinvl48@mail.ru

Received June 13, 2022; revised July 7, 2022; accepted July 12, 2022

The reaction of methyl esters of 4-aryl-2-hydroxy-4-oxobut-2-enoic acids (aroylpyruvic acids) with ethyl ester of 4-aminobenzoic acid (benzocaine, anesthesin) in glacial acetic acid in the presence of anhydrous sodium acetate gave rise to ethyl (Z)-4-(4-aryl-2-hydroxy-4-oxobut-2-enamido)benzoates. The analgesic activity of the synthesized compounds was studied.

Keywords: ethyl (*Z*)-4-(4-aryl-2-hydroxy-4-oxobut-2-enamido)benzoates, ethyl ester of 4-aminobenzoic acid (benzocaine, anesthesin), analgesic activity

УДК 544.653.1:547.794.3

ЭЛЕКТРОХИМИЧЕСКОЕ ОКИСЛЕНИЕ 3-АРИЛ-2-ЦИАНОТИОАКРИЛАМИДОВ

© 2022 г. В. И. Осьминин^{*a*}, А. А. Мироненко^{*a*}, П. Г. Дахно^{*a*}, М. А. Назаренко^{*a*}, А. И. Офлиди^{*a*}, В. В. Доценко^{*a,b,**}, В. Д. Стрелков^{*a,b*}, Н. А. Аксенов^{*b*}, И. В. Аксенов^{*b*}

^а Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия ^b Северо-Кавказский федеральный университет, Ставрополь, 355009 Россия *e-mail: victor dotsenko @mail.ru

> Поступило в редакцию 23 августа 2022 г. После доработки 5 сентября 2022 г. Принято к печати 8 сентября 2022 г.

Электрохимическое окисление (*E*)-3-арил-2-цианопроп-2-ентиоамидов в неразделенной ячейке в присутствии КВг в водной или водно-органической среде приводит к образованию (2*E*,2'*E*)-2,2'-(1,2,4-тиадиазол-3,5-диил)бис[3-арилакрилонитрилов] с выходами 37–76%. Обсуждается возможный механизм реакции. (2*E*,2'*E*)-2,2'-(1,2,4-Тиадиазол-3,5-диил)бис[3-(4-метоксифенил)акрилонитрил] в условиях лабораторного опыта обнаруживает выраженный антидотный эффект в отношении гербицида 2,4-Д на проростках подсолнечника при отсутствии выраженных рострегулирующих свойств.

Ключевые слова: тиоамиды, окислительная димеризация, электрохимический синтез, 1,2,4-тиадиазолы, рострегулирующая активность, антидотная активность в отношении 2,4-Д

DOI: 10.31857/S0044460X22110063, EDN: LNPLRV

За последние 15-20 лет электрохимический синтез стремительно эволюционировал от относительно экзотического направления синтетической химии до почти универсальной стратегии, обеспечивающей получение соединений самых разнообразных классов (недавние обзорные работы по электрохимическому синтезу см. [1-16]). Сегодня электрохимический синтез является мощным инструментом трансформации органических молекул. К преимуществам электросинтеза следует отнести отказ от использования защитных групп, мягкие условия реакции, региоуправляемость и высокая энергоэффективность процесса. Дополнительным преимуществом электроорганического синтеза является замещение высокоактивных химических реагентов (например, окислителей) молекулами-медиаторами, в числе которых следует указать дешевые и доступные галогениды щелочных металлов, аммония либо тетрабутиламмония [10]. В то же время, несмотря на значительный прогресс в этой области, имеется ряд относительно малоизученных направлений, имеющих широкие перспективы для внедрения электрохимических подходов. К таким направлениям относится обширная область превращений на основе реакций окисления тиоамидов.

Тиоамиды весьма активно используются в синтетической практике, реакциях комплексообразования и медицине (наиболее значимые обзорные работы по химии тиоамидов см. [17–21]). Результат реакции окисления тиоамидов существенным образом зависит от типа окислителя и механизма его действия, условий синтеза, а также строения тиоамидного компонента реакции [19, 22–24].

Электрохимическое окисление тиоамидов и родственных субстратов представлено в литературе относительно немногочисленными примерами. Ранние данные (до 2000 г.) по электрохимии тиоамидов суммированы в обзорной работе [25]. С препаративной точки зрения представляет инте-

рес тот факт, что на капельном ртутном электроде тиоамиды различного строения подвергаются электрохимическому восстановлению. Строение продуктов существенно зависит от строения субстрата и pH среды; в числе доминирующих продуктов отмечены альдимины, нитрилы, амины и меркаптаны [25]. В работе [26] описано непрямое электрохимическое окисление тиобензамидов в

присутствии бис(4-метоксифенил)теллурида: в зависимости от строения субстратов и промежуточно образующегося производного теллура (IV), тиоамиды превращаются либо в нитрилы, либо в 1,2,4-тиадиазолы (схема 1).

Недавно Вальдфогель и сотр. представили новый способ получения производных 3,5-диимино-1,2-дитиоланов 1 через анодное окисление дитиомалондианилидов 2 [27] (схема 1). Электрохимическое окисление N-(гет)арилтиоамидов 3 протекает по типу реакции Якобсона и дает производные бензотиазола либо тиазолопиридина [28-32]. В работе [33] сообщается о мягком электрохимическом окислении первичных тиоамидов в присутствии NH₄I на стеклоуглеродном (RVC) аноде и платиновом катоде с образованием 1,2,4-тиадиазолов 4 с выходами 63-94%. Тиоамиды более сложного строения в условиях электросинтеза могут реагировать иначе. Так, 3-аминотиоакриламиды 5 при анодном окислении превращаются в соли изотиазолия 6, которые при обработке Et₃N рециклизуются в производные 3-аминопиррол-2-карбоновой кислоты 7 с потерей атома серы [34]. В работе [35] представлены результаты полярографических и вольтамперометрических исследований поведения незамещенного тиоциннамамида PhCH=CHCSNH₂ в водно-спиртовом растворе под действием постоянного или переменного тока с использованием капельного ртутного электрода. Отмечается, что в качестве органического продукта электрохимического процесса образуется нитрил коричной кислоты.

Цианотиоацетамид **8** [36–39] и его производные, (*E*)-3-арил-2-цианопроп-2-ентиоамиды (3-арил-2-цианотиоакриламиды) **9** [40–42], являются доступными и многофункциональными реагентами, широко используемыми в тонком органическом синтезе. Продолжая цикл исследований в области химии соединений 8 и 9 [43–50], мы решили изучить поведение 2-цианотиоакриламидов 9 в условиях электросинтеза. Из более ранних данных известно, что тиоакриламиды 9 могут окисляться под действием перекиси водорода с образованием S-оксидов 10 [51], либо под действием бромнитрометана [52], ДМСО–НСІ [53] или NaNO₂ в AcOH [54] с образованием замещенных 1,2,4-тиадиазолов 11 (схема 2).

Следует отметить, что соединения со структурным фрагментом 1,2,4-тиадиазола заметно менее исследованы, чем 1,3,4-изомеры. Вероятно, это связано с ограниченным набором удобных методов получения и различной доступностью исходных реагентов. В то же время, 1,2,4-тиадиазолы демонстрируют хороший потенциал в области фармации (обзорные работы см. [24, 55, 56]), а также как исходные соединения для построения супрамолекулярных систем [57, 58]. В последние годы среди производных 1,2,4-тиадиазола были найдены нейропротекторы [59, 60], ингибиторы катепсина В [61, 62], блокаторы натриевых каналов с антиишемическим действием [63], антибактериальные агенты [64]. Конъюгаты такрина с фрагментом 1,2,4-тиадиазола представляют интерес как новые средства для терапии болезни Альцгеймера [65]. Молекулярные гибриды 1,2,4-тиадиазола с 1,2,4-триазолами [66, 67], препаратом эрлотиниб ряда хиназолина [68] и бензолсульфонамидами [69] перспективны как антираковые агенты. Недавно производные 1,2,4-тиадиазола были использованы для создания дырочных транспортных слоев для перовскитных солнечных элементов [70] и для получения темно-красных фосфоресцентных OLED-материалов [71]. Потенциал 1,2,4-тиадиазолов в области агрохимии раскрыва-

No		Параметры тока		Время		
опыта	Растворитель, электролит	I, A	U, B	синтеза, мин	Температура, °С	Выход, %
1	Этилацетат, 0.075 М. водный KBr (1:1)	0.15	10	240	25	51
2	1.0 М. водный KBr	1.0	4	90	60	65
3	0.5 М. KBr в 50%-ной AcOH	0.3	4	70	25	64
4	0.5 M. водный KBr	0.3	5	60	50	63
5	0.5 М. водный KBr	0.3	4	60	60	46
6	0.5 М. водный KBr	0.3	4	240	25	76

Таблица 1. Результаты экспериментов по оптимизации выхода тиадиазола 11а

ет фунгицидный и пестицидный препарат этридиазол [3-(трихлорметил)-5-этокси-1,2,4-тиадиазол, терразол] [72,73].

Первоначально нами был проведен электролиз модельного соединения, (*E*)-3-(4-метоксифенил)-2-цианотиоакриламида **9а**, в неразделенной ячейке с графитовыми электродами в водно-органической среде (этилацетат-вода, 1:1) в присутствии КВг при постоянном токе *I* 0.15 A и напряжении *U* 10 В на протяжении 4 ч (табл. 1, опыт № 1). В результате с выходом 51% был выделен продукт, который по данным ИК, ЯМР спектроскопии и масс-спектрометрии высокого разрешения был идентифицирован как (2*E*,2*'E*)-2,2*'*-(1,2,4-тиадиазол-3,5-диил)бис[3-(4-метоксифенил)акрилонитрил] **11а** (схема 3).

Дальнейшие эксперименты показали, что для успешного протекания реакции в качестве реакционной среды можно использовать раствор КВг в 50%-ной водной АсОН, или даже чистый водный раствор КВг без добавления органических растворителей. Ход реакции контролируется методом TCX, а также визуально. В ходе электросинтеза происходит постепенное растворение исходного желто-оранжевого тиоакриламида **9a** и выпадение желто-зеленого осадка 1,2,4-тиадиазола **11a**. Результаты экспериментов по оптимизации условий синтеза суммированы в табл. 1.

Достигнутый выход (76%) сопоставим с выходами тиадиазолов **11**, полученных при использовании стехиометрических количеств окислителей [52–54]. Электрохимическое окисление тиоакриламидов **96–г** в аналогичных условиях дает тиадиазолы **116–г** с выходами 37–64% (схема 4).

Соединения 11а-г представляют собой окрашенные мелкокристаллические порошки. Соединения 11 не растворяются в воде и спиртах, плохо растворяются в ДМФА, умеренно растворяются в кипящих EtOAc, Me₂CO, AcOH, HCOOH или в ДМСО при нагревании. Растворы соединения 11а

Схема 3.

Ar = 4-MeOC₆H₄ (**a**), 2-ClC₆H₄ (**b**), 4-HOC₆H₄ (**b**), 4-Me₂NC₆H₄ (\mathbf{r}).

Схема 5.

в кипящей НСООН или АсОН обладают интересной сольватохромной особенностью: изначально желто-зеленый тиадиазол **11а** при растворении в указанных кислотах дает растворы винно-красного цвета. Окраска исчезает по мере остывания раствора и кристаллизации продукта. Причины батохромного сдвига и сольватохромные особенности полученных 1,2,4-тиадиазолов подлежат дальнейшему изучению.

Вероятный механизм реакции представлен на схеме 5. Предположительно, бромид-ион на аноде претерпевает окисление до брома, который реа-

1	1				
Caamuua	V armanna 0/	Длина ги	покотиле	Длина корня	
Соединение	концентрация, 76	ММ	к контролю, %	MM	к контролю, %
Контроль	0	115	_	112	_
Гиббереллин	10 ⁻³	122	106	124	111
	10-2	116	101	105	94
Τ	10 ⁻³	114	99	108	96
пиадиазол Па	10-4	123	107	111	99

107

107

Таблица 2. Результаты оценки росторегулирующей активности 1,2,4-тиадиазола 11а и гиббереллина на проростках подсолнечника сорта Мастер

123

123

гирует с тиоамидом 9 с образованием катиона А. Окисление Br- до элементного брома представляется вероятным и критически важным этапом, поскольку, по данным работы [33], в отсутствие электролита/медиатора из тиоамидов образуются только следовые количества 1,2,4-тиадиазолов. Далее катион A теряет H⁺ и атом брома с образованием тиильного радикала В, который димеризуется в дисульфид Г. Образование дисульфидов Г, как и 1,2,4-дитиазола Д и дитиопероксоимидата Е в качестве интермедиатов в ходе окисления тиоамидов постулируется в работе [74]. Далее дитиопероксоимидат Е циклизуется с элиминированием H₂S, который в условиях электросинтеза окисляется до элементной серы (идентифицирована как примесь к тиадиазолам 11).

 10^{-5}

Ряд производных 1,2,4-тиадиазола представляет интерес в качестве контактных фунгицидов, регуляторов роста растений и пестицидов [72, 73, 75-78]. Вследствие этого было принято решение исследовать агрохимический потенциал новых соединений в качестве регуляторов роста и антидотов гербицида 2,4-Д (2,4-дихлорфеноксиуксусной кислоты) на культуре подсолнечника.

Исследование рострегулирующего действия проводили на проростках подсолнечника сорта Мастер по известной методике [79]. Результаты исследований показали, что ни одно из соединений не обнаруживает ростостимулирующей активности, сопоставимой либо превосходящей препарат сравнения гиббереллин. Лучшие результаты были получены для (2Е,2'Е)-2,2'-(1,2,4-тиадиазол-3,5-диил)бис[3-(4-метоксифенил)акрилонитрила] 11а, которое показывает сравнимые с гиббереллином результаты в концентрациях 10⁻⁴-10⁻⁵ мас% для гипокотиле, однако при этом вовсе не оказывает ростстимулирующее действие на корень (табл. 2).

111

110

Для соединения 11а по известной методике [80] была изучена антидотная активность соединений в отношении гербицида 2,4-Д на культуре подсолнечника. В условиях лабораторного опыта установлено, что 1,2,4-тиадиазол 11а проявляет сильный антидотный эффект в отношении 2,4-Д на проростках подсолнечника. Проросшие семена подсолнечника сорта Мастер обрабатывали гербицидом 2,4-Д (вариант эксперимента «гербицид»), гербицидом 2,4-Д и затем тиадиазолом 11а (вариант «гербицид + антидот»), контрольную группу семян оставляли без обработки. Антидотный эффект определяли по увеличению длины гипокотиле и корня в варианте «гербицид + антидот» относительно названных величин в варианте «гербицид» в процентах. Результаты суммированы в табл. 3. Как можно заметить, соединение 11а снижало отрицательное действие 2,4-Д на гипокотили проростков подсолнечника на 20-54 %, и на корни проростков - на 57-73 %.

Таким образом, электрохимическое окисление 3-арил-2-цианотиоакриламидов приводит к образованию (2E,2'E)-2,2'-(1,2,4-тиадиазол-3,5-диил)бис[3-арилакрилонитрилов]. Электросинтез легко протекает в водной среде в присутствии KBr и может быть охарактеризован как «зеленый» синтез, не требующий использования стехиометрических количеств окислителей. К преимуществам данно-

98

ОСЬМИНИН и др.

	IC0/	Длина ги	покотиле	Длина корня	
Препарат	концентрация, %	ММ	к 2,4-Д, %	ММ	к 2,4-Д, %
Контроль	-	115	_	112	—
2,4-Д	10 ⁻³	64	_	78	_
	10 ⁻²	84	131 ^a	123	157 ^a
2,4-Д + тиадиазол 11а	10 ⁻³	99	154 ^a	130	166 ^a
	10 ⁻⁴	77	120 ^a	129	165 ^a
	10 ⁻⁵	93	146 ^a	135	173 ^a

Таблица 3. Антидотная активность соединения 11а к гербициду 2,4-Д на проростках подсолнечника сорта Мастер

^а Различия между вариантами достоверны при Р 0.95.

го метода можно отнести отсутствие токсичных, легковоспламеняющихся или обладающих неприятным запахом побочных продуктов, атом-экономность. Оптимизация условий и выяснение возможностей и ограничений реакции составят предмет дальнейших исследований. Исследования биологической активности показали, что соединения не обладают рострегулирующим действием в эксперименте с проростками подсолнечника. В то же время, (2E,2'E)-2,2'-(1,2,4-тиадиазол-3,5-диил)бис[3-(4-метоксифенил)акрилонитрил] обладает выраженным антидотным действием по отношению к гербициду 2,4-Д в условиях лабораторного эксперимента на проростках подсолнечника.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на спектрофотометре Bruker Vertex 70 с приставкой НПВО методом нарушенного полного внутреннего отражения на кристалле алмаза, погрешность ± 4 см⁻¹. Спектры ЯМР регистрировали на приборах Bruker Avance III HD 400MHz [400.17 (¹H), 100.63 МГц (¹³C)] и Agilent 400/MR (400 и 100 МГц соответственно) в растворе ДМСО- d_6 или CF₃CO₂D–CDCl₃ (1:1). В качестве стандарта использовали остаточные сигналы растворителя. Элементный анализ проводили на приборе Carlo Erba EA 1106. Индивидуальность полученных образцов контролировали методом ТСХ на пластинах Сорбфил-А (ООО «Имид», Краснодар), элюент – ацетон-гексан (1:1), этилацетат-гексан (1:1) или ацетон-хлороформ (1:1), проявитель – пары иода, УФ детектор.

3-Арил-2-цианотиоакриламиды 9 получены конденсацией Кнёвенагеля между цианотиоаце-

тамидом [81] и коммерчески доступными ароматическими альдегидами по известным методикам [40–42].

Общая методика электрохимического окисления З-арил-2-цианотиоакриламидов 9а-г. В неразделенную электрохимическую ячейку с графитовыми электродами объемом 200 мл помещали 1.75 ммоль тонкорастертого (Е)-3-арил-2-цианопроп-2-ентиоамида 9а-г и 100 мл 0.5 М. водного раствора бромида калия. Суспензию при интенсивном перемешивании подвергали действию постоянного электрического тока (графитовые электроды, I 0.3 A, U 4.0 B, плотность тока 2.39 A/м²) в течение 240 мин. Смесь оставляли на ночь, осадок отфильтровывали, промывают водой, EtOH, и перекристаллизовывали из НСО2Н либо большого объема ацетона или EtOAc для отделения от механических примесей графита и элементной серы. Получали соответствующие (2E,2'E)-2,2'-(1,2,4-тиадиазол-3,5-диил)бис[3-арилакрилонитрилы] 11аг в аналитически чистом виле.

(2*E*,2*'E*)-2,2'-(1,2,4-Тиадиазол-3,5-диил)бис-[3-(4-метоксифенил)акрилонитрил] (11а). Выход 76%, желто-зеленый порошок. ИК спектр, v, см⁻¹: 2220 ср (С≡N). Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д.: 3.87 с (3H, MeO), 3.89 с (3H, MeO), 7.17 д (2H, Ar, ${}^{3}J_{\text{HH}}$ 8.8 Гц), 7.21 д (2H, Ar, ${}^{3}J_{\text{HH}}$ 8.8 Гц), 8.09 д (2H, Ar, ${}^{3}J_{\text{HH}}$ 8.8 Гц), 8.14 д (2H, Ar, ${}^{3}J_{\text{HH}}$ 8.8 Гц), 8.526 с (1H, CH=), 8.53 с (1H, CH=). Спектр ЯМР ¹³С DEPTQ (ДМСО- d_6), $\delta_{\text{С}}$, м. д.: 55.8* (Me), 55.9* (Me), 97.8 (<u>C</u>C≡N), 100.7 (<u>C</u>C≡N), 115.0* (2CH, Ar), 115.3* (2CH, Ar), 116.4 (C≡N), 116.8 (C≡N), 124.6 (C¹, Ar), 124.9 (C¹, Ar), 132.6* (2CH, Ar), 133.4* (2CH, Ar), 149.4* (CH=), 150.2* (CH=), 162.7 (C⁴, Ar), 163.6 (C⁴, Ar), 168.8 (C³_{тиадиазол}), 184.7 (C⁵_{тиадиазол}). *Звездочкой* отмечены сигналы в противофазе. Масс-спектр (HRMS-ESI), *m/z*: 423.0882 [*M* + Na]⁺ (вычислено для C₂₂H₁₆N₄NaO₂S: 423.4428). Найдено, %: C 65.87; H 4.14; N 13.91. C₂₂H₁₆N₄O₂S (M 400.45). Вычислено, %: C, 65.98; H, 4.03; N, 13.99.

(2*E*,2'*E*)-2,2'-(1,2,4-Тиадиазол-3,5-диил)бис-[3-(2-хлорфенил)акрилонитрил] (116). Выход 64%, бледно-желтый мелкокристаллический порошок. Спектры соединения идентичны описанным в работе [53].

(2*E*,2*'E*)-2,2*'*-(1,2,4-Тиадиазол-3,5-диил)бис-[3-(4-гидроксифенил)акрилонитрил] (11в). Выход 37%, желтый порошок. Спектры соединения идентичны описанным в работе [52].

(2*E*,2*'E*)-2,2*'*-(1,2,4-Тиадиазол-3,5-диил)бис-[3-(4-(диметиламино)фенил)акрилонитрил] (11г). Выход 64%, коричневый порошок. Спектры соединения идентичны описанным в работе [53].

Оценка антидотной активности соединения 11а. Исследование рострегулирующего действия проводили на проростках подсолнечника сорта Мастер по известной методике [79] на базе Федерального научного центра биологической защиты растений (Краснодар). Проросшие семена подсолнечника с длиной зародышевого корешка 2-4 мм помещали на 1 ч в раствор 2,4-Д в концентрации 10⁻³% в расчете на 40–60%-ное ингибирование роста гипокотиле. После гербицидного воздействия проростки промывали водой и помещали в раствор/тонкую суспензию соединения 11а в концентрациях 10⁻², 10⁻³, 10⁻⁴, 10⁻⁵ мас% (вариант «гербицид + антидот»). Спустя 1 ч семена промывали водой и раскладывали на полосы фильтровальной бумаги (размер 10×75 см) по 20 штук, которые сворачивали в рулоны и помещали в стаканы с 50 мл воды. Дальнейшее проращивание семян проводили в термостате в течение 3 сут при 28°С. Температура растворов и промывной воды – 28°С. Семена варианта «гербицид» (эталон сравнения) выдерживали 1 ч в растворе 2,4-Д в концентрации 10⁻³% и затем 1 ч в воде. Семена контрольного варианта выдерживали в воде 2 ч. Повторность опыта трехкратная. В каждой повторности использовали по 20 штук семян. Антидотный эффект (%) определяли по увеличению длины гипокотиле и корня в варианте «гербицид + антидот» относительно длины гипокотиле и корня в варианте «гербицид». Статистическая обработка экспериментальных данных проведена с использованием *t*-критерия Стъюдента при *P* 0.95.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Дахно Полина Григорьевна, ORCID: https:// orcid.org/0000-0002-5581-0241

Назаренко Максим Андреевич, ORCID: https:// orcid.org/0000-0002-3397-2434

Доценко Виктор Викторович, ORCID: http:// orcid.org/0000-0001-7163-0497

Стрелков Владимир Денисович, ORCID: https:// orcid.org/0000-0002-0682-4815

Аксенов Николай Александрович, ORCID: http://orcid.org/0000-0002-7125-9066

Аксенова Инна Валерьевна, ORCID: http:// orcid.org/0000-0002-8083-1407

БЛАГОДАРНОСТЬ

Исследования проведены с использованием оборудования научно-образовательного центра «Диагностика структуры и свойств наноматериалов» и Эколого-аналитического центра Кубанского государственного университета.

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект 0795-2020-0031) и Северо-Кавказского федерального университета (междисциплинарный проект «Синтез и антидотная активность в отношении гербицида 2,4-Д гетероциклических производных метиленактивных нитрилов») в рамках программы стратегического академического лидерства ПРИОРИТЕТ-2030.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

Jones A.M., Banks C.E. // Beilstein J. Org. Chem. 2014.
 Vol. 10. N 1. P. 3056. doi 10.3762/bjoc.10.323

- Дудкина Ю.Б., Грязнова Т.В., Синяшин О.Г., Будникова Ю.Г. // Изв. АН. Сер. хим. 2015. № 8. С. 1713; Dudkina Yu.B., Gryaznova T.V., Sinyashin O.G., Budnikova Yu.H. // Russ. Chem. Bull. 2015. Vol. 64. N 8. P. 1713. doi 10.1007/s11172-015-1067-3
- Элинсон М.Н., Дорофеева Е.О., Верещагин А.Н., Никишин Г.И. // Успехи химии. 2015. Т. 84. № 5. С. 485; Elinson M.N., Dorofeeva E.O., Vereshchagin A.N., Nikishin G.I. // Russ. Chem. Rev. 2015. Vol. 84. N 5. P. 485. doi 10.1070/RCR4465
- Yan M., Kawamata Y., Baran P.S. // Chem. Rev. 2017. Vol. 117. N 21. P. 13230. doi 10.1021/acs. chemrev.7b00397
- Waldvogel S.R., Lips S., Selt M., Riehl B., Kampf C.J. // Chem. Rev. 2018. Vol. 118. N 14. P. 6706. doi 10.1021/ acs.chemrev.8b00233
- Möhle S., Zirbes M., Rodrigo E., Gieshoff T., Wiebe A., Waldvogel S.R. // Angew. Chem. Int. Ed. 2018. Vol. 57. N 21. P. 6018. doi 10.1002/anie.201712732
- 7. Moeller K.D. // Chem. Rev. 2018. Vol. 118. N 9.
 P. 4817. doi 10.1021/acs.chemrev.7b00656
- Kärkäs M.D. // Chem. Soc. Rev. 2018. Vol. 47. N 15. P. 5786. doi 10.1039/C7CS00619E
- Ye Z., Zhang F. // Chin. J. Chem. 2019. Vol. 37. N 5. P. 513. doi 10.1002/cjoc.201900049
- Tang H.-T., Jia J.-S., Pan Y.-M. // Org. Biomol. Chem. 2020. Vol. 18. N 28. P. 5315. doi 10.1039/D0OB01008A
- Yamamoto K., Kuriyama M., Onomura O. // Chem. Rec. 2021. Vol. 21. N 9. P. 2239. doi 10.1002/tcr.202100031
- Shi S.H., Liang Y., Jiao N. // Chem. Rev. 2021. Vol. 121. № 1. P. 485. doi 10.1021/acs.chemrev.0c00335
- Кушхов Х.Б., Тленкопачев М.Р. // ЖОХ. 2021. Т. 91. № 2. С. 301; Kushkhov Kh.B., Tlenkopachev M.R. // Russ. J. Gen. Chem. 2021. Vol. 91. № 2. Р. 251. doi 10.1134/S1070363221020146
- Zou Z., Zhang W., Wang Y., Pan Y. // Org. Chem. Front. 2021. Vol. 8. N 11. P. 2786. doi 10.1039/D1QO00054C
- Hou Z.W., Xu H.C., Wang L. // Curr. Opin. Electrochem. 2022. Vol. 34. paper N 100988. doi 10.1016/j. coelec.2022.100988
- Du Z., Qi Q., Gao W., Ma L., Liu Z., Wang R., Chen J. // Chem. Rec. 2022. Vol. 22. N 1. Paper e202100178. doi 10.1002/tcr.202100178
- Hurd R.N., DeLaMater G. // Chem. Rev. 1961. Vol. 61. N 1. P. 45. doi 10.1021/cr60209a003
- Петров К.А., Андреев Л.Н. // Усп. хим. 1971. Т. 40. № 6. С. 1014; Petrov K.A., Andreev L.N. // Russ. Chem. Rev. 1971. Vol. 40. N 6. P. 505. doi 10.1070/ RC1971v040n06ABEH001934.
- Chemistry of Thioamides / Ed. T. Murai. Singapore: Springer, 2019. 238 p. doi 10.1007/978-981-13-7828-7

- Jagodziński T.S. // Chem. Rev. 2003. Vol. 103. N 1. P. 197. doi 10.1021/cr0200015
- Mahanta N., Szantai-Kis D.M., Petersson E.J., Mitchell D.A. // ACS Chem. Biol. 2019. Vol. 14. N 2. P. 142. doi 10.1021/acschembio.8b01022
- Corsaro A., Pistara V. // Tetrahedron. 1998. Vol. 54. N 50. P. 15027. doi 10.1016/S0040-4020(98)00880-1
- Sahu S., Rani Sahoo P., Patel S., Mishra B.K. // J. Sulfur Chem. 2011. Vol. 32. N 2. P. 171. doi 10.1080/17415993.2010.550294
- Castro A., Castaño T., Encinas A., Porcal W., Gil C. // Bioorg. Med. Chem. 2006. Vol. 14. N 5. P. 1644. doi 10.1016/j.bmc.2005.10.012
- Tanase Gh., David I.G., Cercasov C., Iorgulescu E.E., Galie L., Radu G.L. // Rom. Biotechnol. Lett. 2001. Vol. 6. N 2. P. 81
- Matsuki T., Hu N.X., Aso Y., Otsubo T., Ogura F. // Bull. Chem. Soc. Jpn. 1988. Vol. 61. N 6. P. 2117. doi 10.1246/bcsj.61.2117
- Breising V.M., Gieshoff T., Kehl A., Kilian V., Schollmeyer D., Waldvogel S.R. // Org. Lett. 2018. Vol. 20. N 21. P. 6785. doi 10.1021/acs.orglett.8b02904
- Laćan M., Jakopčić K., Rogić V., Damoni Sh., Rogić O., Tabaković I. // Synth. Commun. 1974. Vol. 4. N 4. P. 219. doi 10.1080/00397917408062076
- Tabaković I., Trkovnik M., Batušić M., Tabaković K. // Synthesis. 1979. Vol. 1979. N 8. P. 590. doi 10.1055/s-1979-28768
- Qian X.-Y., Li S.-Q., Song J., Xu H.-C. // ACS Catal. 2017. Vol. 7. N 4. P. 2730. doi 10.1021/acscatal.7b00426
- Wang P., Tang S., Lei A. // Green Chem. 2017. Vol. 19. P. 2092. doi 10.1039/C7GC00468K
- Folgueiras-Amador A.A., Qian X.-Y., Xu, H.-C., Wirth T. // Chem. Eur. J. 2018. Vol. 24. N 2. P. 487. doi 10.1002/ chem.201705016
- Wang Z.-Q., Meng X.-J., Li Q.-Y., Tang H.-T., Wang H.-S., Pan Y.-M. // Adv. Synth. Catal. 2018. Vol. 360. N 21. P. 4043. doi 10.1002/adsc.201800871
- Rolfs A., Brosig H., Liebscher J. // J. Prakt. Chem. 1995.
 Vol. 337. N 1. P. 310. doi 10.1002/prac.19953370163
- Bănică F.G., Florea M., Diacu E. // Electroanalysis. 1990. Vol. 2. N 1. P. 43. doi 10.1002/elan.1140020109
- 36. Abdel-Galil F.M., Sherif S.M., Elnagdi M.H. // Heterocycles. 1986. Vol. 24. N 7. P. 2023. doi 10.3987/ R-1986-07-2023
- Литвинов В.П. // Усп. хим. 1999. Т. 68. № 9. С. 817; Litvinov V.P. // Russ. Chem. Rev. 1999. Vol. 68. N 9. P. 737. doi 10.1070/RC1999v068n09ABEH000533
- 38. Дяченко В.Д., Дяченко И.В., Ненайденко В.Г. // Усп. хим. 2018. Т. 87. № 9. С. 1. doi 10.1070/ RCR4760?locatt=label:RUSSIAN; Dyachenko V.D.,

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

Dyachenko I.V., Nenajdenko V.G. // Russ. Chem. Rev. 2018. Vol. 87. N 1. P. 1. doi 10.1070/RCR4760

- Магеррамов А.М., Шихалиев Н.Г., Дяченко В.Д., Дяченко И.В., Ненайденко В.Г. α-Цианотиоацетамид. М.: Техносфера, 2018. 224 с.
- Гринитейн В.Я., Шеринь Л.А. // Изв. АН Латв. ССР. Сер. хим. 1963. № 4. С. 469; Grinsteins V., Serina L. Latvijas PSR Zinatnu Akad. Vestis Kim. Ser. N 4. P. 469 // Chem. Abstr. 1964. Vol. 60. 5391h.
- Brunskill J.S.A., De A., Ewing D.F. // J. Chem. Soc. Perkin Trans. 1. 1978. Vol. 6. P. 629. doi 10.1039/ p19780000629
- Bloxham J., Dell C.P. // J. Chem. Soc. Perkin Trans. 1. 1994. N 8. P. 989. doi 10.1039/P19940000989
- 43. Бурый Д.С., Доценко В.В., Аксенов Н.А., Аксенова И.В., Кривоколыско С.Г., Дядюченко Л.В. // ЖОХ. 2019.
 Т. 89. № 8. С. 1182; Buryi D.S., Dotsenko V.V., Aksenov N.A., Aksenova I.V., Krivokolysko S.G., Dyadyuchenko L.V. // Russ. J. Gen. Chem. 2019.
 Vol. 89. N 8. P. 1575. doi 10.1134/S1070363219080061
- Бурый Д.С., Доценко В.В., Левашов А.С., Лукина Д.Ю., Стрелков В.Д., Аксенов Н.А., Аксенова И.В., Нетреба Е.Е. // ЖОХ. 2019. Т. 89. № 5. С. 690; Buryi D.S., Dotsenko V.V., Levashov A.S., Lukina D.Yu., Strelkov V.D., Aksenov N.A., Aksenova I.V., Netreba E.E. // Russ. J. Gen. Chem. 2019. Vol. 89. N 5. P. 886. doi 10.1134/S1070363219050050
- Бибик И.В., Бибик Е.Ю., Доценко В.В., Фролов К.А., Кривоколыско С.Г., Аксенов Н.А., Аксенова И.В., Щербаков С.В., Овчаров С.Н. // ЖОХ. 2021. Т. 91.
 № 2. С. 190; Bibik I.V., Bibik E.Yu., Dotsenko V.V., Frolov K.A., Krivokolysko S.G., Aksenov N.A., Aksenova I.V., Shcherbakov S.V., Ovcharov S.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 2. P. 154. doi 10.1134/ S107036322102002X
- Пахолка Н.А., Абраменко В.Л., Доценко В.В., А ксенов Н.А., Аксенова И.В., Кривоколыско С.Г. // ЖОХ. 2021. Т. 91. № 3. С. 386; Pakholka N.A., Abramenko V.L., Dotsenko V.V., Aksenov N.A., Aksenova I.V., Krivokolysko S.G. // Russ. J. Gen. Chem. 2021. Vol. 91. N 3. P. 357. doi 10.1134/S1070363221030038
- Пахолка Н.А., Доценко В.В., Кривоколыско Б.С., Фролов К.А., Аксенов Н.А., Аксенова И.В., Щербаков С.В., Овчаров С.Н., Кривоколыско С.Г. // ЖОХ.
 2021. Т. 91. № 4. С. 522; Pakholka N.A., Dotsenko V.V., Krivokolysko B.S., Frolov K.A., Aksenov N.A., Aksenova I.V., Shcherbakov S.V., Ovcharov S.N., Krivokolysko S.G. // Russ. J. Gen. Chem. 2021. Vol. 91. N 4. P. 606. doi 10.1134/S1070363221040058
- 48. Dotsenko V.V., Bespalov A.V., Vashurin A.S., Aksenov N.A., Aksenova I.V., Chigorina E.A., Krivokolys-

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

ko S.G. // ACS Omega. 2021. Vol. 6. N 48. P. 32571. doi 10.1021/acsomega.1c04141

- Кривоколыско Д.С., Доценко В.В., Бибик Е.Ю., Мязина А.В., Кривоколыско С.Г., Василин В.К., Панков А.А., Аксенов Н.А., Аксенова И.В. // ЖОХ. 2022. Т. 92. № 1. С. 72; Krivokolysko D.S., Dotsenko V.V., Bibik E.Yu., Myazina A.V., Krivokolysko S.G., Vasilin V.K., Pankov A.A., Aksenov N.A., Aksenova I.V. // Russ. J. Gen. Chem. 2021. Vol. 91. N 12. P. 2588. doi 10.1134/S1070363221120306
- 50. Доценко В.В., Чигорина Е.А., Кривоколыско С.Г. // ЖОХ. 2020. Т. 90. № 8. С. 1199; Dotsenko V.V., Chigorina E.A., Krivokolysko S.G. // Russ. J. Gen. Chem. 2020. Vol. 90. N 8. P. 1411. doi 10.1134/ S107036322008006X
- Доценко В.В., Кривоколыско С.Г., Шишкина С.В., Шишкин О.В. // Изв. АН. Сер. хим. 2012. № 11. С. 2065; Dotsenko V.V., Krivokolysko S.G., Shishkina S.V., Shishkin O.V. // Russ. Chem. Bull. 2012. Vol. 61. N 11. P. 2082. doi 10.1007/s11172-012-0291-3
- Доценко В.В., Кривоколыско С.Г. // ХГС. 2014. Т. 50. № 4. С. 607; Dotsenko V.V., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2014. Vol. 50. N 4. P. 557. doi 10.1007/s10593-014-1507-2
- Доценко В.В., Кривоколыско С.Г. // ХГС. 2013. Т. 49. № 4. С. 682; Dotsenko V.V., Krivokolysko S.G. // Chem. Heterocycl. Compd. 2013. Vol. 49. N 4. P. 636. doi 10.1007/s10593-013-1291-4
- Дахно П.Г., Жиляев Д.М., Доценко В.В., Стрелков В.Д., Крапивин Г.Д., Аксенов Н.А., Аксенова И.В., Лиховид Н.Г. // ЖОХ. 2022. Т. 92. № 9. С. 1421; Dakhno P.G., Zhilyaev D.M., Dotsenko V.V., Strelkov V.D., Krapivin G.D., Aksenov N.A., Aksenova I.V., Likhovid N.G. // Russ. J. Gen. Chem. 2022. Vol. 92. N 9. P. 1667. doi 10.1134/S1070363222090080
- Tam T.F., Leung-Toung R., Li W., Spino M., Karimian K. // Mini Rev. Med. Chem. 2005. Vol. 5. N 4. P. 367. doi 10.2174/1389557053544056
- Frija L.M.T., Pombeiro A.J.L., Kopylovich M.N. // Eur. J. Org. Chem. 2017. Vol. 2017. N 19. P. 2670. doi 10.1002/ejoc.201601642
- Danilova E.A., Melenchuk T.V., Trukhina O.N., Islyaikin M.K. // Macroheterocycles. 2010. Vol. 3. N 1. P. 68. doi 10.6060/mhc2010.1.68.
- Suvorova Y.V., Kustova T.V., Danilova E.A., Mileeva M.N. // Macroheterocycles. 2020. Vol. 13. N 3. P. 234. doi 10.6060/mhc200494s
- Surov A.O., Voronin A.P., Vasilev N.A., Ilyukhin A.B., Perlovich G.L. // New J. Chem. 2021. Vol. 45. N 6. P. 3034. doi 10.1039/D0NJ05644H

- Volkova T.V., Terekhova I.V., Silyukov O.I., Proshin A.N., Bauer-Brandl A., Perlovich G.L. // Med. Chem. Comm. 2017. Vol. 8. P. 162. doi 10.1039/C6MD00545D
- Leung-Toung R., Wodzinska J., Li W., Lowrie J., Kukreja R., Desilets D., Karimian K., Tam T.F. // Bioorg. Med. Chem. 2003. Vol. 11. N 24. P. 5529. doi 10.1016/j.bmc.2003.09.040
- Pomeislová A., Otmar M., Rubešová P., Benýšek J., Matoušová M., Mertlíková-Kaiserová H., Pohl R., Poštová Slavětínská L., Pomeisl K., Krečmerová M. // Bioorg. Med. Chem. 2021. Vol. 32. Paper 115998. doi 10.1016/j.bmc.2021.115998
- John G.W., Létienne R., Le Grand B., Pignier C., Vacher B., Patoiseau J.F., Colpaert F.C., Coulombe A. // Cardiovasc. Drug Rev. 2004. Vol. 22. N 1. P. 17. doi 10.1111/j.1527-3466.2004.tb00129.x
- 64. Shetnev A., Tarasenko M., Kotlyarova V., Baykov S., Geyl K., Kasatkina S., Sibinčić N., Sharoyko V., Rogacheva E.V., Kraeva L.A. // Mol. Divers. 2022. doi 10.1007/s11030-022-10445-1
- Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Radchenko E.V., Palyulin V.A., Bachurin S.O., Richardson R.J. // Bioorg. Chem. 2020. Vol. 94. Paper 103387. doi 10.1016/j. bioorg.2019.103387
- Pragathi Y.J., Sreenivasulu R., Veronica D., Raju R.R. // Arab. J. Sci. Eng. 2021. Vol. 46. N 1. P. 225. doi 10.1007/s13369-020-04626-z
- Oyebamiji A.K., Akintelu S.A., Amao O.P., Kaka M.O., Morakinyo A.E., Amao F.A., Semire B. // Data Brief. 2021. Vol. 37. Paper 107234. doi 10.1016/j. dib.2021.107234
- Boulhaoua M., Pasinszki T., Torvisco A., Oláh-Szabó R., Bősze S., Csámpai A. // RSC Adv. Vol. 11. N 46. P. 28685. doi 10.1039/d1ra05095h
- Kumar R., Kumar A., Ram S., Angeli A., Bonardi A., Nocentini A., Gratteri P., Supuran C.T., Sharma P.K. // Arch. Pharm. 2022. Vol. 355. N 1. Paper e2100241. doi 10.1002/ardp.202100241

- Bogdanowicz K.A., Jewłoszewicz B., Iwan A., Dysz K., Przybyl W., Januszko A., Marzec M., Cichy K., Świerczek K., Kavan L., Zukalová M., Nadazdy V., Subair R., Majkova E., Micusik M., Omastova M., Özeren M.D., Kamarás K., Heo D.Y., Kim S.Y. // Materials. 2020. Vol. 13. N 11. Paper 2440. doi 10.3390/ ma13112440
- Guo R., Zhang W., Zhang Q., Lv X., Wang L. // Front. Optoelectron. 2018. Vol. 11. N 4. P. 375. doi 10.1007/ s12200-018-0855-4
- Radzuhn B., Lyr H. // Pestic. Biochem. Physiol. 1984.
 Vol. 22. N 1. P. 14. doi 10.1016/0048-3575(84)90004-X
- 73. Reregistration eligibility decision (RED) Etridiazole (Terrazole[®]) (2000) US EPA 738-R-00-019: 1-124. https://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.177.4844&rep=rep1&type=pdf
- Liebscher J., Hartmann H. // Lieb. Ann. Chem. 1977. Vol. 1977. N 6. P. 1005. doi 10.1002/jlac.197719770614
- 75. Parsons J. Pat. US 3770754 (1973).
- 76. Hagiwara K., Ishimitsu K., Hashimoto S., Shimoda S. Pat. GB 2124212A (1984).
- 77. Matthews I.R., Bacon D.P. Pat. WO 9505368 (1995).
- 78. Ihara H., Sakamoto N. Pat. WO 2004041798 (2004).
- 79. Шаповалов А.А., Жирмунская Н.М., Зубкова Н.Ф., Овсянникова Т.В., Грузинская Н.А. Методические рекомендации по проведению лабораторных испытаний синтетических регуляторов роста растений / Под ред. А.А. Шаповалова. Черкассы: НИИТЭХИМ, 1990.
- Стрелков В.Д., Дядюченко Л.В., Дмитриева И.Г. Синтез новых гербицидных антидотов для подсолнечника. Краснодар: Просвещение-Юг, 2014. С. 79.
- Доценко В.В., Кривоколыско С.Г., Половинко В.В., Литвинов В.П. // ХГС. 2012. Т. 48. № 2. С. 328; Dotsenko V.V., Krivokolysko S.G., Polovinko V.V., Litvinov V.P. // Chem. Heterocycl. Compd. 2012. Vol. 48. N 2. P. 309. doi 10.1007/s10593-012-0991-5

Electrochemical Oxidation of 3-Aryl-2-cyanothioacrylamides

V. I. Osminin^{*a*}, A. A. Mironenko^{*a*}, P. G. Dakhno^{*a*}, M. A. Nazarenko^{*a*}, A. I. Oflidi^{*a*}, V. V. Dotsenko^{*a,b,**}, V. D. Strelkov^{*a,b*}, N. A. Aksenov^{*b*}, and I. V. Aksenova^{*b*}

^a Kuban State University, Krasnodar, 350040 Russia ^b North Caucasus Federal University, Stavropol, 355009 Russia *e-mail: victor dotsenko @mail.ru

Received August 23, 2022; revised September 5, 2022; accepted September 8, 2022

Electrochemical oxidation of (*E*)-3-aryl-2-cyanoprop-2-enethioamides in an undivided cell in the presence of KBr in an aqueous or aqueous-organic medium leads to the formation of (2E,2'E)-2,2'-(1,2,4-thiadiazole-3,5-diyl)bis[3-arylacrylonitriles] in 37–76% yields. A plausible reaction mechanism is discussed. (2E,2'E)-2,2'-(1,2,4-Thiadiazol-3,5-diyl)bis[3-(4-methoxyphenyl)acrylonitrile] in laboratory experiments shows a pronounced antidote effect against herbicide 2,4-D on sunflower seedlings in the absence of pronounced growth-regulating properties.

Keywords: thioamides, oxidative dimerization, electrochemical synthesis, 1,2,4-thiadiazoles, growth-regulating activity, antidote activity against 2,4-D

УДК 547.814.1;547.815.1

СИНТЕЗ ПРОИЗВОДНЫХ 4,4а-ДИГИДРОКСАНТОНА, СОДЕРЖАЩИХ СЛОЖНОЭФИРНУЮ И НИТРИЛЬНУЮ ГРУППЫ

© 2022 г. В. И. Лукьяненко^а, Н. М. Чернов^{а,*}, Р. В. Шутов^а, И. П. Яковлев^а

^а Санкт-Петербургский государственный химико-фармацевтический университет Министерства здравоохранения России, ул. Профессора Попова 14/А, Санкт-Петербург, 197376 Россия *e-mail:nikita.chernov@pharminnotech.com

> Поступило в редакцию 20 июня 2022 г. После доработки 10 июля 2022 г. Принято к печати 14 июля 2022 г.

Изучена реакция [4+2]-циклоприсоединения N-(2-метилпропенил)пирролидина к 3-винилхромонам, содержащим некислотные электроноакцепторные группы (сложноэфирная, нитрильная). Найдены условия, позволяющие управлять побочно протекающей [1,5]-сигматропной перегруппировкой. В результате были получены новые производные 4,4а-дигидроксантона, содержащие сложноэфирную и нитрильную группы.

Ключевые слова: 3-винилхромон, енамин, 4,4а-дигидроксантон, [4+2]-циклоприсоединение

DOI: 10.31857/S0044460X22110075, EDN: LNVPGJ

3-Винилхромоны являются обширным и довольно реакционноспособным классом соединений, часто используемых при создании различных новых конденсированных гетероциклических систем, таких как хромено[4,3-*d*]-пиримидины, хромонилаллиламины, производные пиридонов и др. [1–5].

Не менее важным свойством электронодефицитных 3-винилхромонов 1 является возможность вступать в реакцию [4+2]-циклоприсоединения (схема 1) с образованием малоизученных производных 4,4а-дигидроксантона 3, некоторые представители которых обладают ярко выраженной биологической активностью, в частности, антибактериальной и иммуномодулирующей [6–8]. Недостатком данной реакции является побочное образование изомерных 3,4-дигидроксантонов 4 вследствие протекания [1,5]-сигматропного сдвига [9]. В нашей более ранней работе [10] установлена причина побочной реакции: оказалось, что сдвиг катализуется образующимся *in situ* пирролидином. Причем проведение подобной реакции с кислотами приводило к образованию целевых 4,4а-дигидроксантонов. Такая закономерность объясняется связыванием амина кислотной группой, что позволяет избежать побочной изомеризации.

Целью данной работы является изучение реакции [4+2]-циклоприсоединения енамина 2 с 3-винилхромонами, содержащими некислотные электроноакцепторные группы и создание на ее основе метода синтеза производных 4,4а-дигидроксантона.

На первом этапе в качестве изучаемых объектов были выбраны эфиры хромонилакриловых кислот **1а–и**, взаимодействие которых с енамином **2** приводит к получению 3,4-дигидроксантонов [9, 10]. Для связывания выделяющего пирролидина и предотвращения протекания сигматропной перегруппировки было предложено проводить реакцию в присутствии 4 экв. ледяной уксусной кислоты. В остальном условия реакции были аналогичны пре-

дыдущим опытам (дихлорметан, комнатная температура). В результате реакции удалось выделить в качестве основных продуктов 4,4а-дигидроксантоны **5а–и** со сложноэфирной группой (схема 2, табл. 1) с высокими выходами (65–82%).

Разработанный подход позволил расширить применимость методики и на винилхромоны **6а**– з, содержащие более акцепторную цианогруппу. Оказалось, что их взаимодействие с енамином **2** в дихлорметане без добавления уксусной кислоты (схема 3, табл. 2) приводит к ожидаемым продуктам тандемной реакции циклоприсоединения/сигматропной перегруппировки – 3,4-дигидроксантонам **8а**–з – с выходами 60–80%. Добавление же уксусной кислоты позволило подавить [1,5]-сигматропный сдвиг, аналогично реакциям с эфирами. В результате были выделены производные 4,4а-дигидроксантона **7а**-з с нитрильной группой.

Как и в ранее проведенных работах [11], была замечена зависимость скорости циклоприсоединения от природы заместителя R в винилхромонах. При наличии донорных групп реакция протекает медленнее в 2–3 раза. Так, введение метоксигруппы в ароматическое кольцо (положение 6) хромона 1 приводило к увеличению времени реакции с 4 до 15 ч. Однако введение нитрогруппы сокращает время реакции до 3 ч. Полная конверсия исходных веществ **5** и **6** достигалась за 3–24 ч.

Соединение	R	Время реакции, ч	Выход, %	Т. пл., °С
5a	7-Cl	4	82	126–127
56	7-Br	4	80	101–103
5в	7-F	4	77	106–108
5г	Н	12	77	82-84
5д	7-CH ₃	15	68	122–123
5e	7-OCH ₃	15	67	131–133
5ж	6-OH	15	65	110-112
53	7-NO ₂	3	67	183–185
5и	6,7-F	4	78	127–129

Таблица 1. Выходы и температуры плавления сложноэфирных производных 4,4а-дигидроксантона 5а-и

Строение полученных эфиров **5а–и**, нитрилов **7а–з** и их изомеров **8а–з** было доказано с помощью спектроскопии ЯМР ¹Н и ¹³С. В спектрах ЯМР ¹Н 4,4а-дигидроксантонов **5а–и** и **7а–з** в области 1–1.5 м. д. присутствуют 2 синглета неэквивалентных диастереотопных метильных групп в положении 4. В спектрах соответствующих 3,4-изомеров **8а–з** эти метильные группы регистрируются одним сигналом в области 1.3–1.4 м. д. из-за отсутствия асимметрического центра. Также специфическим для 4,4а-дигидроксантонов **5а–и** и **7а–з** является сигнал в области 5.3–5.5 м. д., который принадлежит протону Н^{4а}. Этот сигнал в спектрах изомерных 3,4-дигидропроизводных **8а–з** отсутствует.

Аналогично, в спектрах ЯМР ¹³С характеристичной для 4,4а-производных **5а–и** и **7а–з** является неэквивалентность метильных групп, сигналы которых располагаются в области 14–17 (**5а–и**) и 17–25 м. д. (**7а–3**). Также отличительной особенностью спектров 4,4а-дигидроксантонов **5а–и** и **7а–и** является наличие сигнала углерода С⁹ в области 178–179 м. д., тогда как в спектрах изомеров **8а–3** из-за возникновения пироновой замкнутой системы данный сигнал смещается в более сильное поле (172–175 м. д.).

Таким образом, на основе реакции [4+2]циклоприсоединения разработана методика синтеза 4,4а-дигидроксантонов, содержащих сложноэфирную и нитрильную группы. Побочно протекающий [1,5]-сигматропный сдвиг удалось предотвратить добавлением ледяной уксусной кислоты. Получены новые производные 4,4а- и

Соединение	R	Время реакции, ч	Выход, %	Т. пл., °С
7a	7-C1	8	65	125–127
76	7-Br	10	78	140-142
7в	7-F	6	60	150-152
7г	Н	14	72	129–131
7д	7-CH ₃	18	60	142–144
7e	7-OCH ₃	18	73	153–155
7ж	6,7-CH ₃	24	60	155–157
73	бензо[а]	24	60	152–154
8 a	7-Cl	8	60	200-202
86	7-Br	10	72	215-217
8в	7-F	6	65	188–190
8г	Н	14	77	175–177
8д	7-CH ₃	18	61	197–199
8e	7-OCH ₃	18	80	173–175
8ж	6,7-CH ₃	24	64	194–196
83	бензо[а]	24	72	209–211

Таблица 2. Выходы и температуры плавления нитрильных производных 4,4а- и 3,4-дигидроксантона 7а-з и 8а-з

3,4-дигидроксантона, содержащие различные заместители в ароматическом кольце, с хорошими выходами (60–82%). Синтезированные соединения, как представители ряда ксантона, могут представлять интерес как перспективные биологически активные вещества [12–16].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С растворов в ДМСО- d_6 зарегистрированы на спектрометре Bruker Avance III (400 и 100 МГц соответственно) с использованием остаточного сигнала дейтерированного растворителя в качестве внутреннего стандарта. Масс-спектры высокого разрешения (HRMS) с положительной ионизацией электроспреем (ESI) записаны на спектрометре Bruker micrOTOF. Тонкослойную хроматографию для доказательства индивидуальности соединения и полноты прохождения реакции выполняли на пластинах Silicagel 60 F254 (Merck), элюент этилацетат–гексан (1:1), проявление в УФ свете. Температуры плавления определяли капиллярным методом и не корректировали.

Эфиры **1а–и** и нитрилы **6а–**з были получены конденсацией Кнёвенагеля из соответствующих 3-формилхромонов [2]. Енамин **2** был получен по известной методике [17].

Общая методика получения 4,4а-дигидроксантонов 5а–и и 7а–з. К суспензии винилхромона 1а–и или 6а–з (4 ммоль) в 30 мл дихлорметана прибавляли по каплям ледяную уксусную кислоту (16 ммоль, 960 мг) и енамин 2 (6 ммоль, 750 мг). Полученную смесь перемешивали при комнатной температуре. Окончание реакции контролировали методом ТСХ. По окончании реакции смесь обрабатывали 10 мл 4 М. НСІ. Органический слой отделяли, водный слой трижды экстрагировали дихлорметаном. Объединенные органические фракции упаривали досуха в вакууме, остаток кристаллизовали из этанола.

Этил-4,4-диметил-9-оксо-7-хлор-4,4а-дигидро-9*Н*-ксантен-2-карбоксилат (5а). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.06 с (3H, CH₃), 1.28 т (3H, CH₃, *J* 7.0), 1.46 с (3H, CH₃), 4.24 к (2H, CH₂, *J* 7.0), 5.34 д. д (1H, H^{4a}, *J* 1.4, 3.0), 7.15 м (2H, H³, H⁵), 7.31 д. д (1H, H¹, *J* 1.6, 3.0), 7.63 д. д (1H, H⁶, *J* 2.6, 8.8), 7.72 д (1H, H⁸, *J* 2.6). Спектр ЯМР ¹³С, δ_C, м. д.: 14.51, 17.45, 25.74, 38.72, 61.50, 81.91, 121.12, 122.32, 125.74, 126.14, 126.57, 127.04, 129.94, 136.51, 153.41, 159.14, 164.13, 178.31. Масс-спектр (HRMS-ESI), *m/z*: 333.0907 [*M* + H]⁺ (вычислено для C₁₈H₁₇ClO₄: 333.0888).

Этил-7-бром-4,4-диметил-9-оксо-4,4а-дигидро-9*Н*-ксантен-2-карбоксилат (56). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.05 с (3H, CH₃), 1.28 т (3H, CH₃, *J* 7.0), 1.46 с (3H, CH₃), 4.23 к (2H, CH₂, *J* 7.0), 5.34 д. д (1H, H^{4a}, *J* 1.5, 3.0), 7.11 д (1H, H⁵, *J* 8.8), 7.14 квинтет (1H, H³, *J* 1.5), 7.32 д. д (1H, H¹, *J* 1.8, 3.0), 7.77 д. д (1H, H⁶, *J* 2.6, 8.8), 7.88 д (1H, H⁸, *J* 2.6). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 14.51, 17.41, 25.70, 38.75, 61.52, 82.17, 114.12, 121.42, 122.79, 125.73, 127.05, 129.20, 129.90, 139.25, 153.42, 159.52, 164.13, 178.19. Масс-спектр (HRMS-ESI), *m/z*: 377.0365 [*M* + H]⁺ (вычислено для C₁₈H₁₇BrO₄: 377.0383).

Этил-4,4-диметил-9-оксо-7-фтор-4,4а-дигидро-9*H*-ксантен-2-карбоксилат (5в). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.06 с (3H, CH₃), 1.28 т (3H, CH₃, *J* 7.0), 1.46 с (3H, CH₃), 4.23 к (2H, CH₂, *J* 7.0), 5.32 д. д (1H, H⁴a, *J* 1.5, 3.0), 7.13 квинтет (1H, H³, *J* 1.5), 7.17 д. д (1H, H⁵, *J* 4.3, 9.8), 7.33 д. д (1H, H¹, *J* 1.5, 3.0), 7.48–7.51 м (2H, H⁶, H⁸). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д. (*J*, Гц): 14.51, 17.45, 25.74, 38.75, 61.52, 81.91, 111.98 д (²*J*_{CF} 23.6), 121.01 д (³*J*_{CF} 7.4), 121.99 д (³*J*_{CF} 6.7), 124.48 д (²*J*_{CF} 24.2), 125.72, 126.85, 130.11, 153.42, 156.88, 157.34 д (¹*J*_{CF} 240.3), 164.13, 178.73. Масс-спектр (HRMS-ESI), *m/z*: 317.1185 [*M* + H]⁺ (вычислено для C₁₈H₁₇FO₄: 317.1184).

Этил-4,4-диметил-9-оксо-4,4а-дигидро-9*H*ксантен-2-карбоксилат (5г). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.04 с (3H, CH₃), 1.28 т (3H, CH₃, *J* 7.0), 1.44 с (3H, CH₃), 4.21 к (2H, CH₂, *J* 7.0), 5.27 д. д (1H, H^{4a}, *J* 1.4, 3.1), 7.11–7.15 м (3H, H³, H⁵, H⁷), 7.33 д. д (1H, H¹, *J* 1.8, 3.1), 7.58 м (1H, H⁶), 7.80 д. д (1H, H⁸, *J* 1.5, 7.8). Спектр ЯМР ¹³С, δ_C, м. д.: 14.47, 17.36, 25.76, 38.67, 61.42, 81.83, 118.64, 121.38, 122.46, 125.77, 126.25, 127.30, 130.67, 136.91, 152.99, 160.43, 164.18, 179.16. Масс-спектр (HRMS-ESI), *m/z*: 299.1274 [*M* + H]⁺ (вычислено для C₁₈H₁₈O₄: 299.1278).

Этил-4,4,7-триметил-9-оксо-4,4а-дигидро-9*H*-ксантен-2-карбоксилат (5д). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.06 с (3H, CH₃), 1.28 т (3H, CH₃, *J* 7.0), 1.43 с (3H, CH₃), 2.26 с (3H, CH₃), 4.22 к (2H, CH₂, *J* 7.0), 5.18 с (1H, H⁴a), 6.95 д (1H, H⁵, *J* 8.3), 7.08 с (1H, H³), 7.26 с (1H, H¹), 7.38 д (1H, H⁶, *J* 8.3), 7.57 с (1H, H⁸). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 14.47, 17.36, 20.40, 25.78, 38.85, 61.40, 81.66, 118.46, 121.05, 125.77, 126.04, 126.76, 130.86, 131.52, 137.79, 152.88, 158.51, 164.18, 179.14. Масс-спектр (HRMS-ESI), m/z: 313.1438 $[M + H]^+$ (вычислено для $C_{19}H_{20}O_4$: 313.1434).

Этил-4,4-диметил-7-метокси-9-оксо-4,4а-дигидро-9*H*-ксантен-2-карбоксилат (5е). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.06 с (3H, CH₃), 1.28 т (3H, CH₃, *J* 7.0), 1.46 с (3H, CH₃), 3.78 с (3H, OCH₃), 4.23 к (2H, CH₂, *J* 7.0), 5.25 д. д (1H, H^{4a}, *J* 1.5, 3.3), 7.05 д (1H, H⁵, *J* 7.8), 7.12 квинтет (1H, H³, *J* 1.5), 7.23–7.25 м (2H, H⁶, H⁸), 7.30 д. д (1H, H¹, *J* 1.5, 3.3). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 14.54, 17.45, 25.81, 38.70, 56.06, 61.48, 81.58, 108.07, 120.23, 121.57, 125.52, 125.78, 126.16, 130.85, 153.12, 154.56, 155.04, 164.28, 179.20. Масс-спектр (HRMS-ESI), *m/z*: 329.1402 [*M* + H]⁺ (вычислено для C₁₉H₂₀O₅: 329.1384).

Этил-6-гидрокси-4,4-диметил-9-оксо-4,4адигидро-9*H*-ксантен-2-карбоксилат (5ж). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.03 с (3H, CH₃), 1.27 т (3H, CH₃, *J* 7.0), 1.44 с (3H, CH₃), 4.23 к (2H, CH₂, *J* 7.0), 5.26 д. д (1H, H^{4a}, *J* 1.4, 2.9), 6.35 д (1H, H⁵, *J* 2.3), 6.56 д. д (1H, H⁷, *J* 2.3, 8.5), 7.06 м (1H, H³), 7.23 д. д (1H, H¹, *J* 1.8, 2.9), 7.70 д (1H, H⁸, *J* 8.5), 10.77 с (1H, OH). Спектр ЯМР ¹³С, δ_{C} , м. д.: 14.53, 17.34, 25.78, 38.68, 61.41, 82.02, 103.12, 111.94, 114.22, 124.98, 125.81, 129.62, 131.01, 152.37, 162.54, 164.34, 165.59, 177.49. Масс-спектр (HRMS-ESI), *m/z*: 315.1238 [*M* + H]⁺ (вычислено для C₁₈H₁₈O₅: 315.1227).

Этил-4,4-диметил-7-нитро-9-оксо-4,4а-дигидро-9*H*-ксантен-2-карбоксилат (53). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.09 с (3H, CH₃), 1.29 т (3H, CH₃, *J* 7.0), 1.49 с (3H, CH₃), 4.23 к (2H, CH₂, *J* 7.0), 5.59 д. д (1H, H^{4a}, *J* 1.3, 3.0), 7.18 с (1H, H³), 7.35 м (2H, H¹, H⁵) 8.42 д. д (1H, H⁶, *J* 2.5, 9.0), 8.55 д (1H, H⁸, *J* 2.5). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 14.53, 17.36, 25.56, 38.90, 61.60, 83.34, 120.51, 120.58, 123.22, 125.76, 127.81, 128.99, 131.13, 142.20, 153.74, 164.05, 164.62, 178.00. Масс-спектр (HRMS-ESI), *m/z*: 344.1141 [*M* + H]⁺ (вычислено для C₁₈H₁₇NO₆: 344.1129).

Этил-4,4-диметил-6,7-дифтор-9-оксо-4,4адигидро-9*H*-ксантен-2-карбоксилат (5и). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.06 с (3H, CH₃), 1.28 т (3H, CH₃, *J* 7.0), 1.45 с (3H, CH₃), 4.23 к (2H, CH₂, *J* 7.0), 5.38 д. д (1H, H⁴a, *J* 1.4, 2.9), 7.13 м (1H, H³), 7.29–7.32 м (2H, H¹, H⁵), 7.74 квинтет (1H, H⁸, *J*_{HF} 10.0). Спектр ЯМР ¹³С, δ_с, м. д. (*J*, Гц): 14.50, 17.41, 25.63, 38.74, 61.52, 82.72, 108.14 д (${}^{2}J_{CF}$ 20.2), 114.76 д (${}^{2}J_{CF}$ 16.8), 118.07, 125.70, 126.98, 129.69, 145.76 д. д (J_{CF} 13.5, 243.0), 153.28, 155.05 д. д (J_{CF} 14.1, 255.1), 157.67 д (${}^{3}J_{CF}$ 12.1), 164.12, 177.68. Масс-спектр (HRMS-ESI), *m/z*: 335.1086 [M + H]⁺ (вычислено для С₁₈H₁₆F₂O₄: 335.1089).

4,4-Диметил-9-оксо-7-хлор-4,4а-дигидро-9*H*ксантен-2-карбонитрил (7а). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.07 с (3H, CH₃), 1.43 с (3H, CH₃), 5.40 д. д (1H, H^{4a}, *J* 1.1, 2.9), 7.0 д. д (1H, H¹, *J* 1.5, 2.9), 7.16 д (1H, H⁵, *J* 8.8), 7.24 м (1H, H³), 7.65 д. д (1H, H⁶, *J* 2.6, 8.8), 7.74 д (1H, H⁸, *J* 2.6). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 17.30, 25.34, 38.99, 81.31, 108.21, 117.27, 121.20, 122.16, 125.94, 126.20, 126.75, 131.05, 136.80, 159.06, 159.26, 177.66. Масс-спектр (HRMS-ESI), *m/z*: 286.0647 [*M* + H]⁺ (вычислено для C₁₆H₁₂CINO₇: 286.0629).

7-Бром-4,4-диметил-9-оксо-4,4а-дигидро-9*H*ксантен-2-карбонитрил (76). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.07 с (3H, CH₃), 1.43 с (3H, CH₃), 5.43 с (1H, H^{4a}), 7.00 м (1H, H¹), 7.09 д (1H, H⁵, *J* 8.8), 7.25 м (1H, H³), 7.76 д. д (1H, H⁶, *J* 2.5, 8.8), 7.86 д (1H, H⁸, *J* 2.5). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 17.29, 25.34, 38.99, 81.26, 108.21, 114.31, 117.27, 121.49, 122.63, 125.95, 129.22, 131.02, 139.49, 159.26, 159.45, 177.54. Масс-спектр (HRMS-ESI), *m/z*: 330.0141 [*M* + H]⁺ (вычислено для C₁₆H₁₂BrNO₂: 330.0124).

4,4-Диметил-9-оксо-7-фтор-4,4а-дигидро-9*H*-ксантен-2-карбонитрил (7в). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 1.07 с (3H, CH₃), 1.43 с (3H, CH₃), 5.38 м (1H, H^{4a}), 6.99 м (1H, H¹), 7.19 д. д (1H, H⁵, *J* 4.1, 8.4), 7.24 м (1H, H³), 7.49–7.52 м (2H, H⁶, H⁸). Спектр ЯМР ¹³С, δ_{C} , м. д.: 17.32, 25.38, 38.96, 81.10, 108.21, 112.09 д (²*J*_{CF} 23.4), 117.31, 121.13 д (³*J*_{CF} 7.4), 121.83 д (³*J*_{CF} 6.7), 124.76 д (²*J*_{CF} 23.6), 125.78, 131.21, 156.83, 157.40 д (¹*J*_{CF} 239.7), 159.26, 178.10. Масс-спектр (HRMS-ESI), *m/z*: 270.0909 [*M* + H]⁺ (вычислено для С₁₆H₁₂FNO₂: 270.0925).

4,4-Диметил-9-оксо-4,4а-дигидро-9*H*-ксантен-2-карбонитрил (7г). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.08 с (3H, CH₃), 1.44 с (3H, CH₃), 5.39 д. д (1H, H^{4a}, *J* 1.5, 3.3), 6.96 д. д (1H, H¹, *J* 1.7, 3.3), 7.10–7.13 м (2H, H⁵, H⁷), 7.22 квинтет (1H, H³, *J* 1.6), 7.63 м (1H, H⁶), 7.84 д. д (1H, H⁸, *J* 1.7, 7.9). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 17.26, 25.39, 38.81, 80.89, 108.38, 117.27, 118.78, 122.74, 125.82, 126.65, 127.35, 131.61, 136.80, 158.95, 160.41, 178.57. Масс-спектр (HRMS-ESI), *m/z*: 252.1024 [*M* + H]⁺ (вычислено для C₁₆H₁₃NO₂: 252.1019).

4,4,7-Триметил-9-оксо-4,4а-дигидро-*9Н*-ксантен-2-карбонитрил (7д). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.06 с (3H,CH₃), 1.42 с (3H, CH₃), 2.29 с (3H, CH₃), 5.32 д. д (1H, H^{4a}, *J* 1.4, 3.1), 6.94 д. д (1H, H¹, *J* 1.6, 3.1), 7.00 д (1H, H⁵, *J* 8.5), 7.20 квинтет (1H, H³, *J* 1.5), 7.45 д. д (1H, H⁶, *J* 2.0, 8.5), 7.61 д (1H, H⁸, *J* 2.0). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 17.26, 20.45, 25.40, 38.94, 80.75, 108.23, 117.42, 118.67, 120.91, 125.01, 126.79, 131.87, 132.08, 138.23, 158.52, 158.92, 178.59. Масс-спектр (HRMS-ESI), *m/z*: 266.1168 [*M* + H]⁺ (вычислено для C₁₇H₁₅NO₂: 266.1176).

4,4-Диметил-7-метокси-9-оксо-4,4а-дигидро-9*Н***-ксантен-2-карбонитрил (7е). Спектр ЯМР ¹H, \delta, м. д. (***J***, Гц): 1.06 с (3H, CH₃), 1.43 с (3H, CH₃), 3.78 (3H, OCH₃), 5.29 д. д (1H, H^{4a},** *J* **1.6, 3.3), 6.95 д. д (1H, H¹,** *J* **1.6, 3.3), 7.08 д (1H, H⁵,** *J* **8.8), 7.21 квинтет (1H, H³,** *J* **1.6), 7.24–7.26 м (2H, H⁶, H⁸). Спектр ЯМР ¹³С, \delta_{C}, м. д.: 17.30, 25.43, 38.93, 56.02, 80.83, 108.02, 108.25, 117.40, 120.30, 121.41, 125.09, 125.80, 131.96, 154.67, 154.98, 158.91, 178.48. Масс-спектр (HRMS-ESI),** *m/z***: 282.1120 [***M* **+ H]⁺ (вычислено для С₁₇H₁₅NO₃: 282.1125).**

4,4,6,7-Тетраметил-9-оксо-4,4а-дигидро-*9Н*-ксантен-2-карбонитрил (7ж). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.05 с (3H, CH₃), 1.42 с (3H, CH₃), 2.21 с (3H, CH₃), 2.27 с (3H, CH₃), 5.30 д. д (1H, H^{4a}, *J* 1.5, 3.3), 6.92 д. д (1H, H¹, *J* 1.5, 3.3), 6.94 с (1H, H⁵), 7.20 м (1H, H³), 7.57 с (1H, H⁸). Спектр ЯМР ¹³С, δ_С, м. д.: 17.22, 18.84, 20.40, 25.41, 38.94, 80.75, 108.25, 117.46, 119.00, 119.11, 124.55, 127.03, 131.29, 132.26, 147.88, 158.68, 158.77, 178.15. Масс-спектр (HRMS-ESI), *m/z*: 280.1346 [*M* + H]⁺ (вычислено для С₁₈H₁₇NO₂: 280.1332).

8,8-Диметил-12-оксо-8,12-дигидро-7а*H***-бензо[***а***]ксантен-10-карбонитрил (73). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 1.11 с (3H, CH₃), 1.47 с (3H, CH₃), 5.42 д. д (1H, H^{7a},** *J* **1.6, 3.4), 6.95 д. д (1H, H¹¹,** *J* **1.6, 3.4), 7.20 квинтет (1H, H⁹,** *J* **1.6), 7.26 д (1H, H⁶,** *J* **9.0), 7.51 м (1H, H³), 7.69 м (1H, H²), 7.95 д (1H, H⁴,** *J* **7.8), 8.19 (1H, H⁵,** *J* **9.0). 9.33 д (1H, H¹,** *J* **7.8). Спектр ЯМР ¹³С, δ_C, м. д.: 17.36, 25.37, 38.86, 80.84, 108.47, 113.25, 117.52, 119.61, 124.11, 125.80 (2C), 129.40, 129.69, 130.23, 131.24,** 133.36, 138.89, 157.89, 162.88, 179.37. Масс-спектр (HRMS-ESI), *m/z*: 302.1168 [*M* + H]⁺ (вычислено для C₂₀H₁₅NO₂: 302.1176).

Общая методика получения производных 3,4-дигидроксантона 8а–з. К суспензии винилхромона 4а–з (4 ммоль) в 30 мл дихлорметана прибавляли по каплям енамин 2 (6 ммоль, 750 мг). Полученную смесь перемешивали при комнатной температуре. Ход реакции контролировали методом TCX. По окончании реакции смесь обрабатывали 10 мл 4 М. HCl. Органический слой отделяли, трижды экстрагировали дихлорметаном. Органические фракции объединяли и упаривали в вакууме досуха, остаток кристаллизовали из этанола.

4,4-Диметил-7-хлор-9-оксо-3,4-дигидро-9*H*ксантен-2-карбонитрил (8а). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.34 с (6H, CH₃), 2.65 д (2H, H³, *J* 1.4), 7.37 т (1H, H¹, *J* 1.4), 7.75 д (1H, H⁵, *J* 8.8), 7.85 д. д (1H, H⁶, *J* 2.6, 8.8), 7.92 д (1H, H⁸, *J* 2.6). Спектр ЯМР ¹³С, δ_{C} , м. д.: 24.32, 35.79, 38.80, 105.28, 113.17, 119.53, 121.71, 124.22, 124.79, 131.07, 133.40, 134.86, 154.34, 172.17, 173.62. Масс-спектр (HRMS-ESI), *m/z*: 286.0635 [*M* + H]⁺ (вычислено для C₁₆H₁₂CINO₂: 286.0629).

7-Бром-4,4-диметил-9-оксо-3,4-дигидро-9*H*ксантен-2-карбонитрил (86). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.34 с (6H, CH₃), 2.66 д (2H, H³, *J* 1.5), 7.41 д (1H, H¹, *J* 1.4), 7.73 д (1H, H⁵, *J* 8.9), 8.00 д. д (1H, H⁶, *J* 2.5, 8.9), 8.12 д (1H, H⁸, *J* 2.5). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 24.30, 35.83, 38.77, 105.29, 113.23, 119.03, 121.85, 121.92, 124.57, 127.84, 133.36, 137.59, 154.71, 172.03, 173.59. Масс-спектр (HRMS-ESI), *m/z*: 330.0121 [*M* + H]⁺ (вычислено для C₁₆H₁₂BrNO₂: 330.0124).

4,4-Диметил-9-оксо-7-фтор-3,4-дигидро-9*H*ксантен-2-нитрил (8в). Спектр ЯМР ¹H, δ , м. д.: 1.34 с (6H, CH₃), 2.66 с (2H, H³), 7.42 с (1H, H¹), 7.72–7.75 м (2H, H⁵, H⁶), 7.84 м (1H, H⁸). Спектр ЯМР ¹³C, $\delta_{\rm C}$, м. д. (*J*, Гц): 24.34, 35.83, 38.78, 105.18, 110.50 д (²*J*_{CF} 23.6), 112.57, 119.55, 122.06, 123.04 д (²*J*_{CF} 25.6), 124.28 д (³*J*_{CF} 7.4), 133.49 д (³*J*_{CF} 5.4), 152.20, 159.73 д (¹*J*_{CF} 245.0), 172.55, 173.57. Массспектр (HRMS-ESI), *m/z*: 270.0910 [*M* + H]⁺ (вычислено для C₁₆H₁₂FNO₂: 270.0925).

4,4-Диметил-9-оксо-3,4-дигидро-9*H*-ксантен-**2-нитрил (8г).** Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.34 с (6H, CH₃), 2.65 с (2H, H³), 7.43 с (1H, H¹), 7.53 квинтет (1H, H⁷, *J* 7.8), 7.70 д (1H, H⁵, *J* 8.5), 7.83 м (1H, H⁶), 8.08 д. д (1H, H⁸, *J* 1.3, 7.8). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 24.34, 35.76, 38.76, 104.77, 113.07, 119.13, 119.63, 122.97, 125.82, 126.65, 133.71, 135.02, 155.69, 173.11, 173.25. Масс-спектр (HRMS-ESI), *m/z*: 252.1006 [*M* + H]⁺ (вычислено для C₁₆H₁₃NO₇: 252.1019).

4,4,7-Триметил-9-оксо-3,4-дигидро-9*H***-ксантен-2-нитрил (8д).** Спектр ЯМР ¹H, δ, м. д.: 1.32 с (6H, CH₃), 2.42 с (3H, CH₃), 2.63 с (2H, H³), 7.41 с (1H, H¹), 7.59–7.63 м (2H, H⁵, H⁶), 7.84 с (1H, H⁸). Спектр ЯМР ¹³С, δ_C, м. д.: 20.91, 24.35, 35.74, 38.76, 104.57, 112.91, 118.91, 119.67, 122.65, 125.09, 133.82, 135.98, 136.29, 153.98, 173.05, 173.08. Масс-спектр (HRMS-ESI), *m/z*: 266.1172 [*M* + H]⁺ (вычислено для C₁₇H₁₅NO₂: 266.1176).

4,4-Диметил-7-метокси-9-оксо-3,4-дигидро-9*H***-ксантен-2-нитрил (8е).** Спектр ЯМР ¹H, δ, м. д. (*J*, Γц): 1.33 с (6H, CH₃), 2.64 д (2H, H³, *J* 1.4), 3.86 с (3H, OCH₃), 7.38–7.42 м (3H, H¹, H⁶, H⁸), 7.68 д (1H, H⁵, *J* 7.9). Спектр ЯМР ¹³С, δ_C, м. д.: 24.37, 35.76, 38.81, 56.30, 104.61, 105.79, 112.34, 119.64, 120.72, 123.71, 123.76, 133.83, 150.39, 157.44, 172.83, 172.91. Масс-спектр (HRMS-ESI), *m/z*: 282.1143 [*M* + H]⁺ (вычислено для C₁₇H₁₅NO₃: 282.1125).

4,4,6,7-Тетраметил-9-оксо-3,4-дигидро-9*H*-ксантен-2-нитрил (8ж). Спектр ЯМР ¹H, δ , м. д.: 1.32 с (6H, CH₃), 2.33 с (3H, CH₃), 2.36 с (3H, CH₃), 2.63 с (2H, H³), 7.40 с (1H, H¹), 7.51 с (1H, H⁵), 7.79 с (1H, H⁸). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 19.33, 20.27, 24.37, 35.71, 38.80, 104,38. 112.84, 119.03, 119.69, 120.73, 125.25, 125.32, 133.85, 135.71, 145.31, 154.20, 172.90. Масс-спектр (HRMS-ESI), *m/z*: 280.1326 [*M* + H]⁺ (вычислено для C₁₈H₁₇NO₂: 280.1332).

8,8-Диметил-12-оксо-9,12-дигидро-8*H*-бензо[*а*]ксантен-10-карбонитрил (83). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.39 с (6H, CH₃), 2.70 с (2H, H⁹), 7.57 с (1H, H¹¹), 7.70 квинтет (1H, H³, *J* 7.5), 7.80– 7.82 м (2H, H², H⁶), 8.13 д (1H, H⁴, *J* 8.5), 8.38 д (1H, H⁵, *J* 9.0), 9.92 д (1H, H¹, *J* 8.5). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 24.38, 35.47, 38.93, 105.28, 115.29, 115.97, 118.48, 119.72, 126.49, 127.38, 129.22, 129.85, 130.24, 131.08, 134.02, 136.58, 157.15, 170.80, 174.91. Масс-спектр (HRMS-ESI), *m/z*: 302.1189 [*M* + H]⁺ (вычислено для С₂₀H₁₅NO₂: 302.1176).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Чернов Никита Максимович, ORCID: http:// orcid.org/0000-0003-1278-8109

Шутов Роман Вадимович, ORCID: http://orcid. org/0000-0002-7288-0225

ФОНДОВАЯ ПОДДЕРЖКА

Синтетическая часть работы выполнена в рамках государственного задания Министерства здравоохранения России (№ АААА-А20-120121790030-8). Анализ соединений выполнен с использованием оборудования Аналитического центра Санкт-Петербургского химико-фармацевтического университета Министерства здравоохранения России при финансовой поддержке Министерства образования и науки России (проект № 075-15-2021-685).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Sosnovskikh V.Y. // SynOpen. 2021. Vol. 5. P. 255. doi 10.1055/a-1589-9556
- Chernov N.M., Shutov R.V., Potapova A.E., Yakovlev I.P. // Synthesis. 2020. Vol. 52. N 1. P. 40. doi 10.1055/s-0039-1690723
- Chernov N.M., Shutov R.V., Barygin O.I., Dron M.Y., Starova G.L., Kuz'mich N.N., Yakovlev I.P. // Eur. J. Org. Chem. 2018. Vol. 2018. P. 6304. doi 10.1002/ ejoc.201801159
- Pintiala C., Lawson A.M., Comesse S., Daich A. // Tetrahedron Lett. 2013. Vol. 54. N 22. P. 2853. doi 10.1016/j.tetlet.2013.03.096
- Abdel-Megid M., Ibrahim M. A., Gabr Y., El-Gohary N.M., Mohamed E.A. // J. Heterocycl. Chem. 2013. Vol. 50. N 3. P. 615. doi 10.1002/jhet.1608

- Fujimoto H., Asai T., Kim Y.-P., Ishibashi M. // Chem. Pharm. Bull. 2006. Vol. 54. P. 550. doi 10.1248/ cpb.54.550
- Tatsuta K., Yoshihara S., Hattori N., Yoshida S., Hosokawa S. // J. Antibiot. 2009. Vol. 62. P. 469. doi 10.1038/ja.2009.52
- Sato S., Fukuda Y., *Nakagawa R., Tsuji T., Umemura K., Andoh T.* // Biol. Pharm. Bul. 2000. Vol. 23. N 4. P. 511. doi 10.1248/bpb.23.511
- Bodwell G.J. Hawco K. M., da Silva R. P. // Synlett. 2003.Vol. 2. P. 179. doi 10.1055/s-2003-36800
- Chernov N.M., Shutov R.V., Sharoyko V.V., Kuz'mich N.N., Belyakov A.V., Yakovlev I.P. // Eur. J. Org. Chem. 2017. Vol. 2017. P. 2836. doi 10.1002/ ejoc.201700310
- Чернов Н.М., Мороз Т.В., Шутов Р.В., Кузьмич Н.Н., Щеголев А.Е., Сопова М.В., Яковлев И.П. // ЖОХ.
 2020. Т. 90. Вып. 1. С. 63; Chernov N.M., Moroz T.V., Shutov R.V., Kuz'mich N.N, Shchegolev A.E., Sopova M.V., Yakovlev I.P. // Russ. J. Gen. Chem. 2019. Vol. 89. N 12. P. 2463. doi 10.1134/S1070363219120223
- Palmeira A., Paiva A., Sousa E., Seca H., Almeida G.M., Lima R.T., Fernandes M.X., Pinto M., Helena M.H. // Chem. Biol. Drug Des. 2010. Vol. 76 P. 43. doi 10.1111/j.1747-0285.2010.00978.x
- Singh S., Zheeshan F., Saif H. // Plant Phenol. Sustain. Agricult. 2020. Vol 1. P. 407. doi 10.1007/978-981-15-4890-1_17
- Pinto E., Afonso C., Duarte S., Vale-Silva L., Costa E., Sousa E., Pinto M. // Chem. Biol. Drug Des. 2011. Vol.77. P. 212. doi 10.1111/j.1747-0285.2010.01072.x
- Panda S.S., Chand M., Sakhuja R., Jain S.C. // Curr. Med. Chem. 2013. Vol. 20. N 36. P. 4481. doi 10.2174/09298673113209990144
- Feng Z., Lu X., Gan l., Zhang Q., Lin L. // Molecules.
 2020. Vol. 25. P. 598. doi 10.3390/molecules25030598
- Dang A.T., Miller D.O., Dawe L.N., Bodwell J.C. // Org. Lett. 2008. Vol.10. N 2. P. 233. doi 10.1021/ol702614b

ЛУКЬЯНЕНКО и др.

Synthesis of 4,4a-Dihydroxanthone Derivatives Containing Ester and Nitrile Groups

V. I. Lukyanenko^a, N. M. Chernov^a, *, R. V. Shutov^a, and I. P. Yakovlev^a

^a St. Petersburg State Chemical Pharmaceutical University of the Ministry of Health of Russia, St. Petersburg, 197376 Russia *e-mail: nikita.chernov@pharminnotech.com

Received June 20, 2022; revised July 10, 2022; accepted July 14, 2022

The reaction of N-(2-methylpropenyl)pyrrolidine with 3-vinylchromones containing non-acidic electron-withdrawing groups (ester, nitrile) was studied. The conditions, that make it possible to manage the side [1,5] signatropic rearrangement, were found. As a result, new derivatives of 4,4a-dihydroxanthone containing ester and nitrile groups were obtained.

Keywords: 3-vinylchromone, enamine, 4,4a-dihydroxanthone, [4+2] cycloaddition

УДК 547.461.3:547.564.63:547.565.2:547.814

ПЕРВЫЙ ПРИМЕР ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ 2-АМИНО-5-ГИДРОКСИ-4*Н*-ХРОМЕН-3-КАРБОНИТРИЛА ИЗ 4-(2-ПИРИДИЛАЗО)РЕЗОРЦИНА

© 2022 г. В. В. Доценко^{а,b,*}, Е. А. Варзиева^а, Д. С. Бурый^а, Н. А. Аксенов^b, И. В. Аксенова^b

^а Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия ^b Северо-Кавказский федеральный университет, Ставрополь, 355009 Россия *e-mail: victor dotsenko @mail.ru

> Поступило в редакцию 6 сентября 2022 г. После доработки 20 сентября 2022 г. Принято к печати 22 сентября 2022 г.

Натриевая соль 4-(2-пиридилазо)резорцина (PAR) реагирует с ароматическими альдегидами и малононитрилом в водном растворе этанола с образованием 2-амино-4-арил-5-гидрокси-6-(2-пиридилазо)-4*H*хромен-3-карбонитрилов.

Ключевые слова: 4-(2-пиридилазо)резорцин (PAR), малононитрил, 2-амино-4*H*-хромен-3-карбонитрилы, 6-(2-пиридилазо)хромены

DOI: 10.31857/S0044460X22110087, EDN: LOALLK

2-Амино-4Н-хромен-3-карбонитрилы 1 являются значимой группой органических соединений [1-6]. Важным фактором, способствующим интересу к этим соединениям, является биологическая активность многих 2-амино-4Н-хромен-3-карбонитрилов. Среди них обнаружены противоопухолевые агенты, гербициды, образцы с антиконвульсантным, противотуберкулезным, фунгицидным, бактерицидным действием и др. (обзорные работы см. [1, 3-6]). Интерес к хроменам 1 также обусловлен их исключительной препаративной доступностью - эти соединения легко получаются из активированных фенолов, карбонильных соединений и малононитрила в широко варьируемом диапазоне условий (схема 1). В качестве активированных фенолов достаточно часто используется резорцин и некоторые его производные [7–12]. За последние 5 лет появился ряд работ [13-16], описывающих получение 6-(арилазо)-2-амино-4*H*-хроменов 2 из 4-(арилазо)резорцинов 3. Арилазохромены 2 представляют интерес, в первую очередь, как комплексообразователи и азокрасители [17]. Кроме того,

1713

некоторые из соединений **2** обнаружили противоопухолевую активность [13, 14], противомикробное [15–18] и антиоксидантное [18] действие.

4-(2-Пиридилазо)резорцин (PAR, 4). доступный в виде моногидрата натриевой соли, давно и активно используется в практике аналитической химии в качестве неселективного тридентатного комплексообразователя для извлечения и концентрирования ионов тяжелых металлов, как металлохромный индикатор для комплексонометрического титрования, реагент для фотометрического определения аналитов (см. обзорные работы [19-23]). В последние годы РАК активно использовался для создания оптических сенсоров и тестовых материалов для определения и экстракции тяжелых металлов [24-27], спектрофотометрического анализа переходных металлов в катализатоpax [28], извлечения ионов Rh³⁺ [29], Ga³⁺ [30], Ir⁴⁺ [31], Co^{2+} [32], получения комплексов с переносом заряда с ароматическими нитросоединениями [33] и др. Однако, насколько нам известно, 4-(2-пири-

дилазо)резорцин до сих пор не находил применения в качестве реагента для тонкого органического синтеза. Возможные продукты взаимодействия РАR с альдегидами и малононитрилом с ожидаемой структурой 6-(2-пиридилазо)-4*H*-хроменов перспективны как новые металлохромные индикаторы, реагенты для извлечения тяжелых металлов из органической фазы, либо как биологически активные соединения по аналогии с имеющимися данными [18, 34, 35]. В продолжение наших исследований химии 4*H*-пиранов и 4*H*-хроменов [36–39], мы решили изучить возможность использования РАR в органическом синтезе, и в частности, для получения 2-амино-4*H*-хромен-3-карбонитрилов.

Нами было установлено, что натриевая соль моногидрата PAR **4** реагирует с ароматическими альдегидами и малононитрилом в присутствии небольшого количества AcOH в водном спирте с образованием ранее не описанных интенсивно окрашенных 2-амино-6-(2-пиридилазо)-4*H*-хроменов **5а**, **б** (схема 2). Основанием, необходимым для протекания конденсации по Кнёвенагелю между альдегидами и малононитрилом и последующего присоединения по Михаэлю к арилиденмалононитрилам **6**, является ацетат натрия, образующийся *in situ* после добавления уксусной кислоты.

Следует особо отметить, что в случае незамещенного резорцина [7–12] и 4-(арилазо)резорцинов [13–16] продукты конденсации имеют строение 7-OH-хроменов, тогда как в случае РАR образуются 5-OH-изомеры 5. Образование 5-гидрокси-4*H*-хроменов ранее отмечалось в случае орцина (5-метилрезорцина) [40, 41] либо резорцинов, имеющих сильный акцепторный заместитель в положении 4 [42–44]. В ЯМР ¹Н спектрах соединений 5 обнаруживаются два характерных [42–44] дублета протонов H⁷ (δ 7.71–7.72 м. д.) и H⁸ (δ 6.78 м. д.) с КССВ ³J 9.2 Гц, тогда как в спектрах 7-OH-изомеров следовало бы ожидать появления двух синглетов.

Полученные 2-амино-6-(2-пиридилазо)-4*H*-хромены представляют новый класс перспективных комплексообразующих агентов и индикаторов. Описанная выше реакция является первым примером использования PAR в качестве реагента в гетероциклическом синтезе. Особенности строения новых соединений, возможности и ограничения реакции, спектральные особенности и аспекты возможного применения 2-амино-6-(2-пиридилазо)-4*H*-хроменов в аналитической химии составят предмет дальнейших исследований.

Ar = $4 - ClC_6H_4(\mathbf{a}), 3, 4 - (MeO)_2C_6H_3(\mathbf{6}).$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на спектрофотометре Вruker Vertex 70 с приставкой НПВО методом нарушенного полного внутреннего отражения на кристалле алмаза, погрешность ± 4 см⁻¹. Спектры ЯМР записывали на приборе Bruker Avance III HD 400MHz [400.17 (¹H), 100.63 МГц (¹³C)] в растворе ДМСО- d_6 . Индивидуальность образцов и ход реакции контролировали методом ТСХ на пластинах Сорбфил-А (ООО Имид, Краснодар), элюент – ацетон–гексан (1:1) или EtOAc, проявитель – пары иода, УФ детектор. Температуры плавления измеряли в капилляре на приборе ПТП.

4-(2-Пиридилазо)резорцин **4** является коммерчески доступным реагентом.

2-Амино-4-арил-5-гидрокси-6-(2-пиридилазо)-4*H***-хромен-3-карбонитрилы (5а, б). К 300 мг (1.175 ммоль) РАК 4** добавляли 14 мл водного раствора этанола (50% по объему) и перемешивали до растворения. Затем добавляли АсОН (0.07 мл, 1.22 ммоль), малононитрил (78 мг, 1.175 ммоль) и соответствующий ароматический альдегид (1.175 ммоль). Реакционную массу кипятили до исчезновения PAR по TCX. Смесь охлаждали, выдерживали 12 ч, выпавший осадок отфильтровывали и перекристаллизовывали из смеси EtOH– EtOAc.

2-Амино-5-гидрокси-6-(2-пиридилазо)-4-(4-хлорфенил)-4Н-хромен-3-карбонитрил (5а). Выход 41%, т. пл. 204°С, темно-красный порошок. ИК спектр, v, см⁻¹: 3460 ср. ш, 3342 ср. ш (O–H, N–H), 2191 с (C≡N). Спектр ЯМР ¹Н, δ, м. д.: 4.76 с (1H, H⁴), 6.78 д (1H, H⁸, ³J 9.2 Гц), 7.17 уш. с (2H, NH₂), 7.23 д (2H, Ar, ³*J* 8.5 Гц), 7.36 д (2H, Ar, ³*J* 8.5 Гц), 7.46–7.49 м (1Н, Н⁵-Ру), 7.72 д (1Н, Н⁷, ³J 9.2 Гц), 7.92 уш. д (1Н, Н³-Ру, ³J 8.2 Гц), 7.96-8.01 м (1H, H⁴-Ру), 8.61–8.62 м (1H, H⁶-Ру), 13.19 уш. с (1H, OH). Спектр ЯМР ¹³С DEPTQ, б_С, м. д.: 35.9* (C⁴H), 56.7 (C³), 109.7* (C⁸H), 112.4* (C⁷H), 112.5 (C^{4a}), 120.0 (C≡N), 125.0* (C⁵H-Py), 126.5* (C³H-Py), 128.5* (2CH-Ar), 129.3* (2CH-Ar), 131.3 (C⁴Cl-Ar), 134.7 (C⁶), 138.9* (C⁴H-Py), 143.9 (C¹-Ar), 149.3* (C⁶H-Py), 153.6 (C^{8a}), 157.9 (C⁵-OH), 159.4 (С²-Ру), 160.3 (С²). Здесь и далее звездочкой обозначены сигналы в противофазе. Найдено, %: С 62.35; Н 3.63; N 17.30. С₂₁Н₁₄СlN₅O₂. Вычислено, %: С 62.46; Н 3.49; N 17.34. М 403.82.

2-Амино-5-гидрокси-4-(3,4-диметоксифенил)-6-(2-пиридилазо)-4Н-хромен-3-карбони**трил (56).** Выход 51%, т. пл. 189°С, темно-красный порошок. ИК спектр, v, см⁻¹: 3389 ср. ш, 3321 ср. ш (O-H, N-H), 2189 с (C≡N). Спектр ЯМР ¹Н, δ, м. д.: 3.68 c (3H, MeO), 3.70 c (3H, MeO), 4.69 c (1H, H⁴), 6.65 д. д (1Н, Н⁶-Аг, ⁴J 2.1, ³J 8.3 Гц), 6.78 д (1Н, Н⁸, ³*J* 9.2 Гц), 6.82 д (1Н, Н²-Аг, ⁴*J* 2.1 Гц), 6.86 д (1H, H⁵-Ar, ³J 8.3 Гц), 7.08 уш. с (2H, NH₂), 7.46– 7.49 м (1Н, Н⁵-Ру), 7.71 д (1Н, Н⁷, ³Ј 9.2 Гц), 7.93 уш. д (1H, H³-Ру, ³J 8.1 Гц), 7.97–8.01 м (1H, H⁴-Ру), 8.61–8.63 м (1Н, Н⁶-Ру), 13.23 уш. с (1Н, ОН). Спектр ЯМР ¹³С DEPTQ, $\delta_{\rm C}$, м. д.: 35.9* (С⁴H), 55.48* (MeO), 55.52* (MeO), 57.4 (C³), 109.7* (C⁸H), 111.3* (C²H-Ar), 112.0* (C⁵H-Ar), 112.4* $(C^{7}H)$, 113.3 (C^{4a}) , 119.2* $(C^{6}H-Ar)$, 120.2 $(C\equiv N)$, 125.0* (C⁵H-Py), 126.3* (C³H-Py), 134.7 (C⁶), 137.5 (C¹-Ar), 138.9* (C⁴H-Py), 147.6 (C–OMe), 148.4 (C-OMe), 149.3* (C⁶H-Py), 153.6 (C^{8a}), 157.8 (C⁵-OH), 159.4 (С²-Ру), 160.3 (С²). Найдено, %: С 64.25; H 4.59; N 16.22. С₂₃Н₁₉N₅O₄. Вычислено, %: C 64.33; H 4.46; N 16.31. M 429.43.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Доценко Виктор Викторович, ORCID: http:// orcid.org/0000-0001-7163-0497

Варзиева Екатерина Анатольевна, ORCID: https://orcid.org/0000-0002-3204-8995

Бурый Дмитрий Сергеевич, ORCID: https:// orcid.org/0000-0002-9812-0144

Аксенов Николай Александрович, ORCID: http://orcid.org/0000-0002-7125-9066

Аксенова Инна Валерьевна, ORCID: http:// orcid.org/0000-0002-8083-1407

БЛАГОДАРНОСТЬ

Исследования проведены с использованием оборудования научно-образовательного центра «Диагностика структуры и свойств наноматериалов» и Эколого-аналитического центра Кубанского государственного университета.

ФИНАНСОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Кубанского научного фонда (проект H-21.1/15 «Высокофункционализированные

4*H*-пираны: синтез, свойства и биологическая активность»).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Litvinov Yu.M., Shestopalov A.M. // Adv. Heterocycl. Chem. 2011. Vol. 103. P. 175. doi 10.1016/B978-0-12-386011-8.00003-4.
- Шаранин Ю.А., Гончаренко М.П., Литвинов В.П. // Усп. хим. 1998. Т. 67. № 5. С. 442; Sharanin Yu.A., Goncharenko M.P., Litvinov V.P. // Russ. Chem. Rev. 1998. Vol. 67. N 5. P. 393. doi 10.1070/ RC1998v067n05ABEH000371
- Raj V., Lee J. // Front. Chem. 2020. Vol. 8. P. 623. doi 10.3389/fchem.2020.00623
- Patil S.A., Patil S.A., Patil R. // Future Med. Chem. 2015. Vol. 7. N 7. P. 893. doi 10.4155/fmc.15.38
- Tashrifi Z., Mohammadi-Khanaposhtani M., Hamedifar H., Larijani B., Ansari S., Mahdavi M. // Mol. Divers. 2020. Vol. 24. P. 1385. doi 10.1007/s11030-019-09994-9
- Patil S.A., Patil R., Pfeffer L.M., Miller D.D. // Future Med. Chem. 2013. Vol. 5. N 14. P. 1647. doi 10.4155/ fmc.13.126
- Шестопалов А.М., Емельянова Ю.М., Нестеров В.Н. // Изв. АН. Сер. хим. 2002. № 12. С. 2079; Shestopalov A.M., Emelianova Y.M., Nesterov V.N. // Russ. Chem. Bull. 2002. Vol. 51. N 12. P. 2238. doi 10.1023/A:1022135402451
- Aminkhani A., Talati M., Sharifi R., Chalabian F., Katouzian F. // J. Heterocycl. Chem. 2019. Vol. 56. N 6. P. 1812. doi 10.1002/jhet.3555
- Choudhare S.S., Bhosale V.N., Chopade M. // Russ. J. Org. Chem. 2022. Vol. 58. N 6. P. 913. doi 10.1134/ S1070428022060227
- Parveen I., Ahmed N., Idrees D., Khan P., Hassan M.I. // Bioorg. Med. Chem. Lett. 2017. Vol. 27. N 18. P. 4493. doi 10.1016/j.bmcl.2017.07.077
- Bardasov I.N., Alekseeva A.U., Ershov O.V., Grishanov D.A. // Heterocycl. Commun. 2015. Vol. 21. N 3. P. 175. doi 10.1515/hc-2015-0077
- Safari J., Heydarian M., Zarnegar Z. // Arab. J. Chem. 2017. Vol. 10. Suppl. 2. P. S2994. doi 10.1016/j. arabjc.2013.11.038
- Okasha R.M., Alsehli M., Ihmaid S., Althagfan S.S., El-Gaby M.S.A., Ahmed, H.E.A., Afifi T.H. // Bioorg. Chem. 2019. Vol. 92. Article no. 103262. doi 10.1016/j. bioorg.2019.103262

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

- Afifi T.H., Riyadh S.M., Deawaly A.A., Naqvi A. // Med. Chem. Res. 2019. Vol. 28. P. 1471. doi 10.1007/s00044-019-02387-5
- Afifi T.H., Okasha R.M., Ahmed H.E.A., Ilaš J., Saleh T., Abd-El-Aziz A.S. // EXCLI J. 2017. Vol. 16. P. 868. doi 10.17179/excli2017-356
- Afifi T.H., Okasha R.M., Alsherif H., Ahmed H.E.A., Abd-El-Aziz A.S. // Curr. Org. Synth. 2017. Vol. 14. N 7. P. 1036. doi 10.2174/1570179414666170519150 520
- Abd-El-Aziz A.S., Alsaggaf A., Assirey E., Naqvi A., Okasha R.M., Afifi T.H., Hagar M. // Int. J. Mol. Sci. 2021. Vol. 22. Article 2807. doi 10.3390/ijms22062807
- Sharma P.K., Bandyopadhyay P., Sharma P., Kumar A. // Med. Chem. Res. 2014. Vol. 23. N 7. P. 3569. doi 10.1007/s00044-014-0938-8
- Anderson R.G., Nickless G. // Analyst. 1967. Vol. 92. N 1093. P. 207. doi 10.1039/AN9679200207
- Иванов В.М. // Усп. хим. 1976. Т. 45. № 3. С. 456; Ivanov V.M. // Russ. Chem. Rev. 1976. Vol. 45. N 3. P. 213. doi 10.1070/RC1976v045n03ABEH002623
- Иванов В.М. // ЖАХ. 2005. Т. 60. № 5. С. 549; Ivanov V.M. // J. Anal. Chem. 2005. Vol. 60. N 5. P. 486. doi 10.1007/s10809-005-0124-8
- 22. Baliza P.X., Ferreira S.L.C., Teixeira L.S.G. // Talanta. 2009. Vol. 79. N 1. P. 2. doi 10.1016/j. talanta.2009.02.055
- 23. *Прохорова Г.В., Иванов В.М.* // Вестн. МГУ. Сер. 2. Хим. 2001. Т. 42. № 4. С. 235.
- Liu T., Li G., Zhang N., Chen Y. // J. Hazard. Mater. 2012. Vol. 201. P. 155. doi 10.1016/j. jhazmat.2011.11.060
- Issarangkura Na Ayutthaya P., Yeerum C., Kesonkan K., Kiwfo K., Grudpan K., Teshima N., Murakami H., Vongboot M. // Molecules. 2021. Vol. 26. N 18. Article no. 5720. doi 10.3390/molecules26185720
- 26. Deng S., Zhang G., Wang P. // ACS Sustain. Chem. Eng. 2018. Vol. 7. N 1. P. 1159. doi 10.1021/ acssuschemeng.8b04760
- Kallithrakas-Kontos N., Foteinis S., Vazgiouraki E.M., Karydas A.G., Osan J., Chatzisymeon E. // Sci. Total Envir. 2019. Vol. 697. Article no. 134099. doi 10.1016/j. scitotenv.2019.134099
- Железнова Т.Ю., Власова И.В., Шилова А.В. // Аналитика и контроль. 2015. Т. 19. № 4. С. 363. doi 10.15826/analitika.2015.19.4.004
- Симонова Т.Н., Гаращенко Н.Н. // Сорбционные и хроматографические процессы. 2019. Т. 19. № 4. С. 498. doi 10.17308/sorpchrom.2019.19/789
- Racheva P.V., Hristov D.G., Gavazov K.B. // Russ. J. Gen. Chem. 2020. Vol. 90. N 7. P. 1351. doi 10.1134/ S1070363220070245

- 31. *Симонова Т.Н., Некрасова Е.А.* // Вестн. ВГУ. Сер. Хим. Биол. Фарм. 2021. № 1. С. 36.
- Divarova V.V., Stojnova K.T., Racheva P.V., Lekova V.D., Dimitrov A.N. // J. Serb. Chem. Soc. 2015. Vol. 80. N 2. C. 179. doi 10.2298/JSC140514102V
- Karmakar A., Singh B. // J. Mol. Liq. 2017. Vol. 236.
 P. 135. doi 10.1016/j.molliq.2017.04.005
- 34. Tahir T., Shahzad M.I., Tabassum R., Rafiq M., Ashfaq M., Hassan M., Kotwica-Mojzych K., Mojzych M. // J. Enzyme Inhib. Med. Chem. 2021. Vol. 36. N 1. P. 1509. doi 10.1080/14756366.2021.1929949
- Bhuvaneswari K., Sivaguru P., Lalitha A. // J. Chin. Chem. Soc. 2020. Vol. 67. N 10. P. 1877. doi 10.1002/ jccs.201900481
- Palchykov V.A., Chabanenko R.M., Konshin V.V., Dotsenko V.V., Krivokolysko S.G., Chigorina E.A., Horak Y.I., Lytvyn R.Z., Vakhula A.A., Obushak M.D., Mazepa A.V. // New J. Chem. 2018. Vol. 42. N 2. P. 1403. doi 10.1039/c7nj03846a
- Доценко В.В., Душенко В.А., Аксенов Н.А., Аксенова И.В., Нетреба Е.Е. // ЖОХ. 2019. Т. 89. № 9.
 С. 1337; Dotsenko V.V., Dushenko V.A., Aksenov N.A., Aksenova I.V., Netreba E.E. // Russ. J. Gen. Chem. 2019.
 Vol. 89. N 9. P. 1752. doi 10.1134/S1070363219090044
- Доценко В.В., Гузь Д.Д., Тебиев Д.Т., Киндоп В.К., Аксенов Н.А., Аксенова И.В., Нетреба Е.Е. // ЖОХ. 2021. Т. 91. № 9. С. 1340; Dotsenko V.V., Guz D.D., Tebiev D.T., Kindop V.K., Aksenov N.A., Aksenova I.V., Netreba E.E. // Russ. J. Gen. Chem. 2021. Vol. 91. N 9. P. 1629. doi 10.1134/S107036322109005X
- Исмиев А.И., Доценко В.В., Аксенов Н.А., Аксенова И.В., Магеррамов А.М. // ЖОХ. 2021. Т. 91.
 № 5. С. 665; Ismiyev A.I., Dotsenko V.V., Aksenov N.A., Aksenova I.V., Magarramov A.M. // Russ. J. Gen. Chem. 2021. Vol. 91. N 5. P. 758. doi 10.1134/ S1070363221050029
- Aminkhani A., Talati M., Sharifi R., Chalabian F., Katouzian F. // J. Heterocycl. Chem. 2019. Vol. 56. N 6. P. 1812. doi 10.1002/jhet.3555
- Pourhasan B., Mohammadi-Nejad A. // J. Chin. Chem. Soc. 2019. Vol. 66. N 10. P. 1356. doi 10.1002/ jccs.201800291
- Kolla S.R., Lee Y.R. // Tetrahedron. 2011. Vol. 67. N 43. P. 8271. doi 10.1016/j.tet.2011.08.086
- Pourmohammad M., Mokhtary M. // C. R. Chimie. 2015. Vol. 18. N 5. P. 554. doi 10.1016/j.crci.2014.09.008
- Park J.H., Lee Y.R., Kim S.H. // Tetrahedron. 2013. Vol. 69. N 46. P. 9682. doi 10.1016/j.tet.2013.09.021

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

ДОЦЕНКО и др.

First Synthesis of 2-Amino-5-hydroxy-4*H*-chromene-3-carbonitriles from 4-(2-Pyridylazo)resorcin

V. V. Dotsenko^{*a,b,**}, E. A. Varzieva^{*a*}, D. S. Buriy^{*a*}, N. A. Aksenov^{*b*}, and I. V. Aksenova^{*b*}

^a Kuban State University, Krasnodar, 350040 Russia
 ^b North Caucasus Federal University, Stavropol, 355009 Russia
 *e-mail: victor_dotsenko_@mail.ru

Received September 6, 2022; revised September 20, 2022; accepted September 22, 2022

4-(2-Pyridylazo)resorcinol (PAR) sodium salt reacts with aromatic aldehydes and malononitrile in aqueous ethanol to form 2-amino-4-aryl-5-hydroxy-6-(2-pyridylazo)-4*H*-chromene-3-carbonitriles.

Keywords: 4-(2-pyridylazo)resorcinol (PAR), malononitrile, 2-amino-4*H*-chromene-3-carbonitriles, 6-(2-pyr-idylazo)chromenes

1718

УДК 547.775

КОНЪЮГАТЫ ТАКРИНА С АМИНОМЕТИЛИДЕНЗАМЕЩЕННЫМИ МАЛОНАТАМИ: СИНТЕЗ И БИОЛОГИЧЕСКАЯ ОЦЕНКА

© 2022 г. М. В. Грищенко^{*a*}, Н. А. Елькина^{*a*}, Г. Ф. Махаева^{*b*}, Я. В. Бургарт^{*a*}, Н. П. Болтнева^{*b*}, Е. В. Рудакова^{*b*}, Е. В. Щегольков^{*a*}, Н. В. Ковалева^{*b*}, О. Г. Серебрякова^{*b*}, В. И. Салоутин^{*a*,*}

^а Институт органического синтеза имени И. Я. Постовского Уральского отделения Российской академии наук, ул. С. Ковалевской/Академическая 22/20, Екатеринбург, 620108 Россия ^b Институт физиологически активных веществ Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук, Черноголовка, 142432 Россия *e-mail: saloutin@ios.uran.ru

> Поступило в редакцию 3 сентября 2022 г. После доработки 15 сентября 2022 г. Принято к печати 22 сентября 2022 г.

Конденсацией аминополиметиленовых производных такрина с диэтил(этоксиметилиден)малонатом получены новые гибридные соединения – конъюгаты, которые являются эффективными ингибиторами ацетилхолинэстеразы (AChE) (IC₅₀ до 0.538 мкМ.) и бутирилхолинэстеразы (IC₅₀ до 0.0314 мкМ.). Они также способны вытеснять пропидий из периферического анионного сайта AChE на уровне референсного соединения донепезила и проявляют слабую антиоксидантную активность. Конъюгаты представляют интерес для дальнейшего расширенного исследования в качестве потенциальных препаратов для лечения болезни Альцеймера.

Ключевые слова: конъюгат, такрин, диэтилмалонат, антихолинэстеразная активность, вытеснение пропидия

DOI: 10.31857/S0044460X22110099, EDN: LOAXIE

Болезнь Альцгеймера признана Всемирной организацией здравоохранения глобальной приоритетной общественной проблемой, поскольку болезнь Альцгеймера является наиболее распространенным нейродегенеративным заболеванием с прогрессирующей потерей памяти и других когнитивных функций. По состоянию на 2020 г. в мире насчитывалось около 50 миллионов человек с болезнью Альцгеймера, и это количество, по мнению ученых, будет неуклонно возрастать [1]. Для решения данной проблемы необходимо создание эффективных лекарственных средств, обладающих не только симптоматическим, но и

1719

болезнь-модифицирующим действием. Основным классом препаратов, используемых в настоящее время для терапии болезнь Альцгеймера, являются ингибиторы холинэстераз, первым из которых был такрин [2, 3]. И хотя такрин в настоящее время не применяется в клинической практике ввиду его гепатотоксичности, он по-прежнему представляет собой значительный фармакотерапевтический ресурс [4], благодаря возможности создания на его основе мультитаргетных лигандов, способных взаимодействовать с несколькими мишенями, ответственными за патогенез болезни Альцгеймера [5–7]. В этой связи особые перспективы имеет

получение гибридных соединений такрина с другими классами биоактивных веществ путем присоединения второго фармакофора через спейсер определенной длины (схема 1) и создания бифункциональных ингибиторов холинэстераз, способных блокировать AChE-индуцируемую агрегацию бета-амилоида. В таких структурах такриновый фрагмент обеспечивает взаимодействие молекулы ингибитора с каталитическим сайтом AChE, а второй фармакофор связывается с периферическим анионным сайтом, не позволяя связываться с ним молекуле бета-амилоида [8, 9].

В качестве второго фармакофора в данной работе мы использовали метилиденовые производные диэтилмалоната. Производные малоновой кислоты обладают широким спектром биологической активности, участвуя в ряде метаболических циклов [10, 11]. В частности, они являются специфическими ингибиторами сериновой рацемазы, катализирующей образование из L-серина ко-агониста NMDA (N-метил-D-аспартат) рецепторов D-серина в нейронах и глиальных клетках [12]. Увеличение содержания сериновой рацемазы и продукта ее ферментативной реакции, D-серина, рассматривают как процесс, предшествующий эксайтотоксичности, а специфическое ингибирование этого фермента – как перспективный нейропротекторный механизм при нейропатологиях, связанных с гиперактивацией NMDA-рецепторов [13, 14].

Производные малоновой кислоты, в частности, малонамиды являются привилегированными химическими структурами при создании лекарств, широко используемыми для получения пептидомиметиков и хелатирующих соединений, противодиабетических средств, агонистов k-опиоидных рецепторов, противоопухолевых препаратов [15]. Недавно на основе малонамида были получены соединения, являющиеся мощными ингибиторами фактора свертывания крови fXa и холинэстераз, позиционированные для углубленного исследования как потенциальные мультитаргетные препараты терапии болезнь Альцгеймера [16].

В настоящей работе нами получены гибридные соединения такрина с потенциально биоактивными метилиденовыми производными диэтилмалоната, связанными через алкиленовый спейсер различной длины. Исследован эстеразный профиль новых конъюгатов – их ингибиторная активность в отношении ацетилхолинэстеразы (AChE), бутирилхолинэстеразы (BChE) и структурно родственного фермента карбоксилэстеразы (CES) [17]; для оценки потенциальной способности конъюгатов блокировать AChE-индуцируемую агрегацию бета-амилоида изучена их способность вытеснять пропидий из периферического анионного сайта AChE [18], а также проведена оценка антиоксидантной активности соединений в тесте ABTS [2,2'-азино-бис(3-этилбензотиазолин-6-сульфоновая кислота)].

Для синтеза конъюгатов первоначально по известной методике [19, 20] циклизацией коммерчески доступных антраниловой кислоты и циклогексанона под действием POCl₃ был получен 9-хлор-1,2,3,4-тетрагидроакридин 1 (схема 2). Введение алкиленового спейсера в гетероцикл 1 проводили по способу [20] путем замещения атома хлора на аминогруппу диаминоалкана 2а-в, содержащего 4, 6 или 8 метиленовых звеньев. Далее взаимодействием синтезированных аминополиметиленсодержащих производных такрина 3а-в с диэтил(этоксиметилиден)малонатом 4 при кипячении в этаноле в течение 6 ч получены целевые конъюгаты 5а-в (схема 2).

Для оценки влияния аминометилиденмалонатного остатка на ингибиторную активность в качестве модельного соединения был получен диэтил-(гексиламинометилиден)малонат 7 конденсацией реагента 4 с гексиламином 6 (схема 3). При этом показано, что использование более мягких усло-

n = 4 (**a**), 6 (**b**), 8 (**b**).

вий – диэтилового эфира и проведение реакции при комнатной температуре – приводит к образованию диэфира 7 с практически количественным выходом.

Строение полученных соединений **5а–в**, **7** подтверждено методами ИК и ЯМР ¹H, ¹³C спектроскопии и элементного анализа. Так, в их ИК спектрах наблюдаются высокочастотные полосы поглощения группы NH при 3380–3280 см⁻¹, а также одна или две характеристичные полосы поглощения сложноэфирной группы при 1650–1640 см⁻¹. Спектры ЯМР ¹H и ¹³C соединений **5а–в**, **7** содержат один набор сигналов. При этом в спек-

трах ЯМР ¹Н наблюдается разделение сигналов протонов этоксильных групп в области 1.29-1.35и 4.18-4.24 м. д., а в спектрах ЯМР ¹³С обнаружено два сигнала атомов углерода карбонильных функций при 166 и 169 м. д., что указывает на образование внутримолекулярной водородной связи между протоном группы NH и атомом кислорода карбонильного фрагмента одной из сложноэфирных групп. Доказательством замещения именно этоксильной группы в метилиденовом фрагменте служит наличие в спектрах ЯМР ¹Н соединений **5а–в**, **7** сигнала протона =СН при 8 м. д. в виде дублета за счет спин-спинового взаимодействия с группой NH.

Соелицение	IC ₅₀ , мкМ.		CES, % (20	Butecheuke montalug $\%$ (20 m/M)
Сосдинение	AChE	BChE	мкМ.)	Бытеснение пропидия, 70 (20 мкм).)
5a	1.93±0.16	1.52±0.05	_	7.5±0.6
56	0.558±0.016	0.231±0.022	9.0±0.8	12.3±0.9
5в	0.538 ± 0.059	0.0314±0.0028	15.4±1.2	10.1±0.7
7	30.3±0.5	23.1±0.9	3.3±0.5	9.9±0.8
Такрин	0.60±0.05	0.029±0.002	_	4.4 ± 0.6
Донепезил	0.040 ± 0.004	19.2±3.0	_	11.9 ± 0.9

Таблица 1. Эстеразный профиль соединений 5а-в, 7 и их способность вытеснять пропидий из периферического анионного сайта *Ee*AChE^a

^а «-» – нет активности. Данные представлены как mean \pm SEM, n = 3.

Для синтезированных конъюгатов **5а–в** и модельного соединения **7** определен эстеразный профиль – ингибиторная активность в отношении трех сериновых эстераз: AChE, BChE и CES. Данные представлены в табл. 1. Анализ эстеразного профиля, позволяет выявить как основной потенциальный фармакологический эффект соединений – в данном случае это ингибирование холинэстераз, так и их возможную перекрестную специфичность со структурно родственным ферментом КЭ, ингибирование которой может приводить к побочным эффектам – лекарственным взаимодействиям с другими препаратами со сложноэфирными группами, принимаемыми пациентом [17].

Как видно из табл. 1, все синтезированные конъюгаты 5а-в являются эффективными ингибиторами AChE и BChE с выраженной селективностью в отношении BChE. Интересно отметить, что увеличение длины спейсера приводит к существенному возрастанию анти-BChE активности: от IC₅₀ 1.52±0.05 мкМ. для соединения 5a со спейсером -(CH₂)₄- до IC₅₀ 0.0314±0.0028 мкМ. для соединения 5в со спейсером -(CH₂)₈-. При этом анти-BChE активность самого активного соединения 5в сопоставима с активностью такрина. В то же время увеличение длины спейсера у конъюгатов 5а-в в меньшей степени влияет на усиление ингибиторной активности соединений в отношении AChE (от IC₅₀ 1.93±0.16 мкМ. для соединения 5а до IC₅₀ 0.538±0.059 мкМ. для соединения 5в). Конъюгаты не ингибируют (соединение 5а) или проявляют очень слабую ингибиторную активность (соединения 56, в) в отношении CES, гидролизующей многочисленные лекарственные препараты со сложноэфирной группой, что позволяет исключить нежелательные лекарственные взаимодействия при их применении в терапии болезни Альцгеймера. Диэтил(гексиламинометилиден) малонат 7 – модельное соединение, позволяющее оценить собственную антиэстеразную активность второго фармакофора конъюгатов **5а**–**в**, довольно слабо ингибирует холинэстеразы и практически не ингибирует CES.

Далее было установлено, что конъюгаты 5а-в в концентрации 20 мкМ. вытесняют пропидий из периферического анионного сайта AChE на уровне чуть ниже или сопоставимым со значениями референсного соединения донепезила (11.9±0.9%) (табл. 1), при этом соединение 56 со спейсером -(CH₂)₆- проявляет максимальную эффективность (12.3±0.9%). Интересно, что диэтил(гексиламинометилиден)малонат 7 также проявляет заметную активность в данном тесте. Полученные результаты свидетельствуют о способности синтезированных конъюгатов связываться с периферическим анионным сайтом AChE и указывают на их потенциальную способность блокировать AChE-индуцируемую агрегацию бета-амилоида, т. е. проявлять болезнь-модифицирующий эффект.

Учитывая важную роль антиоксидантов в терапии болезни Альцгеймера, мы провели оценку собственной антиоксидантной активности синтезированных конъюгатов в тесте ABTS – по степени связывания модельного ABTS⁺⁺ радикал-катиона [21]. Результаты показали, что конъюгаты **5а–в** проявляют слабую активность в тесте ABTS

КОНЪЮГАТЫ ТАКРИНА

Саатинанна	% c	ΤΕΛΟ		
Соединение	200 мкМ.	100 мкМ.	20 мкМ.	TEAC
5a	34.5±1.2	13.8±1.1	1.2±0.2	0.01
56	28.7±1.5	10.3±1.0	_	0.01
5в	31.8±1.6	12.5±1.2	2.3±0.2	0.01
7	_	_	-	-
Тролокс	100	100	53.3±1.6	1.0

Таблица 2. Антирадикальная активность соединений 5а-в, 7 в тесте ABTS^a

^а «--» – нет активности.

⁶ TEAC – Trolox Equivalent Antioxidant Capacity, антиоксидантная способность, выраженная в тролокс-эквивалентах (расчет TEAC приведен в методах); данные представлены как mean \pm SEM, n = 3.

(табл. 2), примерно в 100 раз ниже по сравнению со стандартным антиоксидантом Тролоксом (величины TEAC ≈ 0.01). Радикал-связывающий эффект проявлялся при использовании соединений **5а–в** в достаточно высоких концентрациях (100 и 200 мкМ.). При максимальной исследованной концентрации (200 мкМ.) степень связывания ABTS^{•+} радикала достигала лишь 30%. Соединение **7** в исследуемом диапазоне концентраций не показало способности связывать ABTS^{•+}.

Таким образом, нами предложен простой эффективный способ синтеза новых конъюгатов такрина с аминоалкилиден-связанным диэтилмалонатным фрагментом, основанный на конденсации аминоалкилензамещенных такринов с коммерчески доступным диэтил(этоксиметилиден)малонатом. Синтезированные конъюгаты являются эффективными ингибиторами AChE и BChE, с преимущественным ингибированием BChE, сопоставимым с активностью такрина. При этом конъюгаты способны связываться с периферическим анионным сайтом AChE и вытеснять из него пропидий, что указывает на их потенциальную способность блокировать AChE-индуцируемую агрегацию бета-амилоида. Соединения проявляют слабую радикал-связывающую активность.

В заключение следует отметить, что полученные первые представители ряда оригинальных мультитаргетных конъюгатов представляют интерес для дальнейшего расширенного исследования в качестве потенциальных препаратов для лечения болезни Альцгеймера.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на Фурье-спектрометре PerkinElmer Spectrum Two в интервале 4000-400 см⁻¹ с помощью приставки нарушенного полного внутреннего отражения с алмазным кристаллом. Спектры ЯМР ¹Н регистрировали на спектрометре Bruker Avance^{III} 500 или Bruker DRX-400 (рабочие частоты 500 и 400 МГц соответственно). Спектры ЯМР ¹³С записаны на спектрометре Bruker Avance^{III} 500 (125 МГц). Внутренний стандарт – Ме₄Si. Элементный анализ (С, Н, N) выполняли с помощью элементного анализатора PerkinElmer PE 2400 серия II CHN-O EA 1108. Температуры плавления определяли в открытых капиллярах на аппарате Stuart SMP30. Для колоночной хроматографии использовали силикагель 60 (0.063–0.2 мм, Macherey-Nagel®).

Исходный диэтил(этоксиметилиден)малонат 4 является коммерчески доступным реагентом (Alfa Aesar®). Диаминотетрагидроакридины **3а**–в синтезировали по известным методикам [20].

Общая методика синтеза коньюгатов такрина с диэтилмалонатом 5а-в. Смесь диэтил-2этоксиметилиденмалоната 4 (216 мг, 1 ммоль) и диаминотетрагидроакридина 3а-в (1 ммоль) в этаноле (15 мл) нагревали при 80°С в течение 6 ч, затем охлаждали до комнатной температуры. Отгоняли растворитель. Остаток очищали колоночной хроматографией (элюент – CHCl₃–EtOH, 15:1).

Диэтил-[({4-[(1,2,3,4-тетрагидроакридин-9-ил)амино]бутил}амино)метилиден]малонат (5а). Выход 285 мг (65%), желтое масло. ИК

спектр, v, см⁻¹: 3376, 3281 (NH), 2933 (CH), 1650 (C=O), 1609, 1498, 1420, 1256, 1219, 1219, 1186, 1070 (С=С, NH, С=N, СН). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 1.29 т и 1.35 т (6Н, CH₃, *J* 7.1 Гц), 1.71-1.73 м и 1.87-1.95 м (8Н, СН₂), 2.71-2.73 м (2H, CH₂), 3.06–3.07 м (2H, CH₂), 3.33–3.41 м (2H, CH₂), 3.44–3.53 м (2H, CH₂), 3.89 уш. с (1H, NH), 4.19 к и 4.24 к (4H, CH₂, J 7.1 Гц), 7.35–7.38 м (1Н, Н_{Аг}), 7.55–7.58 м (1Н, Н_{Аг}), 7.91 д (2Н, Н_{Аг}, J 8.6 Гц), 7.99 д (1Н, =СН, Ј 14.1 Гц), 9.24-9.27 м (1H, NH). Спектр ЯМР ¹³С (CDCl₃), δ_{C} , м. д.: 14.3, 14.4, 22.8, 23.0, 24.9, 28.3, 28.7, 34.1, 48.8, 49.4, 59.7, 59.9, 89.8, 116.7, 120.4, 122.5, 123.9, 128.3, 128.9, 147.5, 150.2, 158.7, 159.9, 166.1, 169.5. Найдено, %: С 68.31; Н 7.57; N 9.55. С₂₅Н₃₃N₃O₄. Вычислено, %: С 68.63; Н 7.43; N 9.55.

Диэтил-[({6-[(1,2,3,4-тетрагидроакридин-9-ил)амино]гексил}амино)метилиден]малонат (56). Выход 280 мг (60%), желтое масло. ИК спектр, v, см⁻¹: 3379, 3281 (NH), 2932 (CH), 1650, 1640 (C=O), 1609, 1581, 1498, 1420, 1222, 1070 (C=C, NH, C=N, CH). CREKTP SMP 1 H (CDCl₂), δ , м. д.: 1.29 т и 1.34 т (6Н, СН₃, J7.1 Гц), 1.37–1.46 м, 1.57-1.70 м и 1.89-1.95 м (12Н, СН₂), 2.68-2.75 м и 3.03–3.10 м (4Н, СН₂), 3.32 т (2Н, СН₂, *J* 6.7 Гц), 3.47 т (2H, CH₂, J 7.2 Гц), 3.93 уш. с (1H, NH), 4.18 к и 4.23 к (4H, CH₂, J 7.1 Гц), 7.32–7.38 м (1H, H_{Ar}), 7.52–7.58 м (1Н, Н_{Ar}), 7.90 д и 7.94 д (2Н_{Ar}, J 8.4 Гц), 7.98 д (1H, =CH, J 14.2 Гц), 9.16-9.28 м (1H, NH). Спектр ЯМР ¹³С (CDCl₃), δ_C, м. д.: 14.3, 14.4, 22.8, 23.0, 24.8, 26.3, 26.6, 30.6, 31.6, 34.1, 49.3, 49.6, 59.6, 59.8, 89.4, 116.1, 120.3, 122.7, 123.6, 128.2, 128.8, 147.5, 150.6, 158.5, 160.0, 166.2, 169.5. Найдено, %: С 69.35; Н 7.98; N 8.99. С₂₇Н₃₇N₃O₄. Вычислено, %: С 69.11; Н 8.13; N 9.26.

Диэтил-[({8-[(1,2,3,4-тетрагидроакридин-9-ил)амино]октил}амино)метилиден]малонат (5в). Выход 208 мг (53%), желтое масло. ИК спектр, v, см⁻¹: 3382, 3281 (NH), 2928, 2856 (CH), 1650, 1640 (C=O), 1609, 1498, 1421, 1221, 1070 (C=C, NH, C=N, CH). Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 1.29 т и 1.34 т (6H, CH₃, *J* 7.1 Гц), 1.32–1.40 м (8H, CH₂), 1.54–1.64 м и 1.62–1.69 м (4H, CH₂), 1.90–1.96 м (4H, CH₂), 2.69–2.74 м и 3.03–3.09 м (4H, CH₂), 3.31 к (2H, CH₂, *J* 6.7 Гц), 3.48 т (2H, CH₂, *J* 7.2 Гц), 3.95 уш. с (1H, NH), 4.18 к и 4.23 к (4H, CH₂, *J* 7.1 Гц), 7.32–7.37 м и 7.52–7.58 м (2H_{AT}), 7.90 д и 7.95 д (2 H_{AP} , *J* 8.4 Гц), 7.99 д (1H, =CH, *J* 14.2 Гц), 9.15–9.28 м (1H, NH). Спектр ЯМР ¹³С (CDCl₃), δ_{C} , м. д.: 14.3, 14.4, 22.8, 23.0, 24.8, 26.3, 26.8, 29.0, 29.1, 30.6, 31.7, 34.0, 49.4, 49.7, 59.6, 59.8, 89.3, 115.9, 120.2, 122.8, 123.5, 128.2, 128.7, 147.5, 150.7, 158.4, 160.0, 166.3, 169.5. Найдено, %: С 70.27; H 8.34; N 8.48. С₂₉H₄₁N₃O₄. Вычислено, %: С 70.34; H 8.51; N 8.56.

Диэтил(гексиламинометилиден)малонат (7). Смесь диэтил-2-этоксиметилиденмалоната 4 (610 мг, 2.8 ммоль) и гексиламина 6 (340 мг, 3.4 ммоль) в диэтиловом эфире (10 мл) перемешивали при комнатной температуре в течение 4 ч. Реакционную массу упаривали и сушили. Выход 751 мг (99%), желтое масло. ИК спектр, v, см⁻¹: 3280 (NH), 2931 (CH), 1641 (C=O), 1609, 1426, 1377, 1217, 1192, 1071 (C=C NH, C=N, CH). Спектр ЯМР ¹Н (CDCl₃), δ, м. д.: 0.89 т (3Н, СН₃, *J* 6.9 Гц), 1.29 т и 1.34 т (6H, OCH₂C<u>H₃</u>, *J* 6.9 Гц), 1.27–1.36 м (6H, CH₂), 1.57–1.64 м (2H, CH₂), 3.32 т. д (2H, NHCH₂, J 6.8, 6.6 Гц), 4.20 к и 4.24 к (4H, OCH₂CH₃, J 7.1 Гц), 8.00 д (1H, =CH, J 14.2 Гц), 9.22 уш. с (1H, NH). Спектр ЯМР ¹³С (CDCl₃), δ_{C} , м. д.: 13.2, 14.3, 14.4, 22.4, 26.1, 30.6, 31.3, 49.8, 59.5, 59.7, 89.2, 160.0, 166.2, 169.5. Найдено, %: С 61.97; Н 9.29; N 5.16. С₁₄Н₂₅NO₄. Вычислено, %: С 61.93; Н 9.55; N 5.13.

Биологические исследования. Определение эстеразного профиля соединений. Для определения эстеразного профиля соединений исследовали их ингибиторную активность в отношении коммерческих препаратов ацетилхолинэстеразы эритроцитов человека (КФ 3.1.1.7, AChE), бутирилхолинэстеразы сыворотки лошади (КФ 3.1.1.8, BChE), а также структурно близкого холинэстеразам фермента карбоксилэстеразы печени свиньи (КФ 3.1.1.1, CES) (все ферменты производства «Sigma-Aldrich», США). Активность AChE и BChE определяли методом Эллмана (λ 412 нм) [22] с использованием в качестве субстрата ацетилтиохолина (1 мМ) и бутирилтиохолина (1 мМ.) соответственно, как детально описано в работе [23]. Условия определения: 100 мМ. фосфатный буфер (pH 7.5), 25°С. Активность CES определяли спектрофотометрически (λ 405 нм) по выделению 4-нитрофенола, субстрат – 1 мМ. 4-нитрофенилацетат, как детально описано в [23]. Условия определения: 100 мМ. фосфатный буфер (рН 8.0), 25°С.
Измерения проводили на микропланшетном ридере FLUOStar Optima (LabTech, Германия).

Соединения растворяли в ДМСО, инкубационная смесь содержала 2% растворителя. Первичную оценку ингибиторной активности соединений проводили путем определения степени ингибирования ферментов при концентрации соединения 20 мкМ. Для этого образец соответствующего фермента инкубировали с исследуемым соединением в течение 5 мин, затем определяли остаточную активность фермента. Каждый эксперимент проводили в 3-кратном повторе. Для наиболее активных соединений определяли величины ІС₅₀ концентрации ингибитора, которые требуются для снижения активности фермента на 50%. Для определения IC₅₀ ингибирования AChE и BChE образец соответствующего фермента инкубировали с исследуемым соединением в диапазоне концентраций 1×10⁻¹¹-1×10⁻⁴ М. в течение 5 мин, затем определяли остаточную активность фермента. Каждое измерение проводили в 3-кратном повторе. Вычисление ІС₅₀ проводили с использованием программы Origin 6.1 для Windows (OriginLab, CIIIA).

Определение вытеснения пропидия иодида из периферического анионного сайта AChE. Исследование соединений как потенциальных ингибиторов AChE-индуцируемой агрегации β-амилоида проводили флуоресцентным методом путем определения степени вытеснения селективного лиганда иодида пропидия из периферического анионного сайта AChE [24], ответственного за связывание с бета-амилоидом [25], с небольшими модификациями, как детально описано ранее [23]. В качестве источника фермента использовали AChE из Electrophorus electricus (EeAChE). В качестве референсного соединения использовали донепезил, который показал 82% снижение AChE-индуцируемой агрегации в-амилоида при концентрации 100 мкМ. [25]. Измерения проводили в 3-кратном повторе на микропланшетном ридере FLUOStar Optima (LabTech, Германия).

Исследование антирадикальной активности соединений. Антирадикальную активность соединений определяли по их способности связывать свободные радикалы в ABTS-тесте в соответствии с методом [21] с незначительными модификациями, как детально описано ранее [26]. Исследуемые соединения растворяли в ДМСО, содержание которого в реакционной смеси составляло 4% (об/об), вносили в раствор ABTS^{•+} (конечная концентрация АБТС^{•+} в реакционной смеси составляла 100 мкМ) и тщательно перемешивали. Реакцию проводили при 30°С в темноте, время инкубации – 1 ч. Степень обесцвечивания раствора ABTS^{•+} определяли при длине волны 734 нм на микропланшетном ридере xMark BioRad (Hercules, США). Соединения тестировали в диапазоне концентраций $1 \times 10^{-6} - 2 \times 10^{-4}$ М. Все измерения проводили в 5-кратном повторе для трех независимых экспериментов.

Антирадикальную активность соединений представляли в единицах TEAC (Trolox Equivalent Antioxidant Capacity, антиоксидантная способность, выраженная в тролокс-эквивалентах). Величины TEAC получали как отношение тангенсов углов наклона для зависимостей снижения концентрации ABTS⁺⁺-радикала от концентрации исследуемого соединения и Тролокса. Расчеты проводили с использованием программы Origin 6.1 для Windows (OriginLab). Все результаты представлены как mean±SEM values, рассчитанные с использованием GraphPad Prism version 6.05 for Windows, GraphPad Software.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Грищенко Мария Васильевна, ORCID: https:// orcid.org/0000-0003-4110-2620

Елькина Наталья Андреевна, ORCID: https:// orcid.org/0000-0002-7365-8108

Махаева Галина Файвелевна, ORCID: https:// orcid.org/0000-0002-8136-6906

Бургарт Янина Валерьевна, ORCID: https:// orcid.org/0000-0001-6061-2410

Болтнева Наталья Павловна, ORCID: https:// orcid.org/0000-0002-7171-8832

Рудакова Елена Владимировна, ORCID: https:// orcid.org/0000-0002-4600-7799

Щегольков Евгений Вадимович, ORCID: https:// orcid.org/0000-0001-6611-2855

Ковалева Надежда Владимировна, ORCID: https://orcid.org/0000-0002-4990-5068

Серебрякова Ольга Георгиевна, ORCID: https:// orcid.org/0000-0002-0313-1423

Салоутин Виктор Иванович, ORCID: https:// orcid.org/0000-0003-1976-7861

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-33-90204) с использованием оборудования Центра коллективного пользования «Спектроскопия и анализ органических соединений». Отдельные биологические исследования проведены при поддержке Российского фонда фундаментальных исследований (грант № 19-53-26016) в рамках госзадания Института физиологически активных веществ РАН (FFSN-2021-0005).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Breijyeh Z., Karaman R. // Molecules. 2020. Vol. 25. P. 5789. doi 10.3390/molecules25245789
- Giacobini E. // Neurochem. Int. 1998. Vol. 32. P. 413. doi 10.1016/s0197-0186(97)00124-1
- Knapp M. J. // J. Am. Med. Assoc. 1994. Vol. 271. P. 985. doi 10.1001/jama.1994.03510370037029
- Patil B., Yadav N., Yadav G., Yadav S., Yadav S. // World J. Pharm. Res. 2022. Vol. 11. P. 1954. doi 10.20959/ wjpr20222-22943
- Ramalakshmi N., Remya, R.S., Nalini C.N. // Mini-Rev. Med. Chem. 2021. Vol. 21. P. 2361. doi 10.2174/13895 57521666210405161205
- Tian S., Huang Z., Meng Q., Liu Z. // Mini-Rev. Med. Chem. 2021. Vol. 21. P. 2039. doi 10.2174/138955752 1666210212151127
- Zhang P., Xu S., Zhu Z., Xu J. // Eur. J. Med. Chem. 2019. Vol. 176. P. 228. doi 10.1016/j.ejmech.2019.05.020
- Guzior N., Wieckowska A., Panek D., Malawska B. // Curr. Med. Chem. 2014. Vol. 22. P. 373. doi 10.2174/ 0929867321666141106122628
- Tumiatti V., Minarini A., Bolognesi M.L., Milelli A., Rosini M., Melchiorre C. // Curr. Med. Chem. 2010. Vol. 17. P. 1825. doi 10.2174/092986710791111206
- 10. Beach T.E., Prag H.A., Pala L., Logan A., Huang M.M., Gruszczyk A.V., Martin J.L., Mahbubani K., Hamed M.O.,

Hosgood S.A., Nicholson M.L., James A.M., Hartley R.C., Murphy M.P., Saeb-Parsy K. // Redox Biol. 2020. Vol. 36. P. 101640. doi 10.1016/j.redox.2020.101640

- Zhang Y.-M. Rock C.O. In: Biochemistry of Lipids, Lipoproteins and Membranes / Eds N.D. Ridgway, R.S. McLeod. Boston: Elsevier, 2016. P. 73. doi 10.1016/ b978-0-444-63438-2.00003-1
- Yoshimura T., Goto M. // FEBS J. 2008. Vol. 275. P. 3527. doi 10.1111/j.1742-4658.2008.06516.x
- Mustafa A.K., Ahmad A.S., Zeynalov E., Gazi S.K., Sikka G., Ehmsen J.T., Barrow R.K., Coyle J.T., Snyder S.H., Dore S. // J. Neurosci. 2010. Vol. 30. P. 1413. doi 10.1523/jneurosci.4297-09.2010
- Vorlová B., Nachtigallová D., Jirásková-Vaníčková J., Ajani H., Jansa P., Řezáč J., Fanfrlík J., Otyepka M., Hobza P., Konvalinka J., Lepšík M. // Eur. J. Med. Chem. 2015. Vol. 89. P. 189. doi 10.1016/j.ejmech.2014.10.043
- Aderibigbe A.D., Day D.P. // ChemistrySelect. 2020.
 Vol. 5. P. 15222. doi 10.1002/slct.202004340
- Purgatorio R., Gambacorta N., Samarelli F., Lopopolo G., de Candia M., Catto M., Nicolotti O., Altomare C.D. // Molecules. 2022. Vol. 27. P. 4269. doi 10.3390/molecules27134269
- Махаева Г.Ф., Рудакова Е.В., Ковалева Н.В., Лущекина С.В., Болтнева Н.П., Прошин А.Н., Щегольков Е.В., Бургарт Я.В., Салоутин В.И. // Изв. АН. Сер. хим. 2019. С. 967; Makhaeva G.F., Rudakova E.V., Kovaleva N.V., Lushchekina S.V., Boltneva N.P., Proshin A.N., Shchegolkov E.V., Burgart Y.V., Saloutin V. I. // Russ. Chem. Bull. 2019. Vol. 68. P. 967. doi 10.1007/s11172-019-2507-2
- Inestrosa N.C., Dinamarca M.C., Alvarez A. // FEBS J. 2008. Vol. 275. P. 625. doi 10.1111/j.1742-4658.2007.06238.x
- Xie S.-S., Lan J.-S., Wang X.-B., Jiang N., Dong G., Li Z.-R., Wang K.D.G., Guo P.-P., Kong L.-Y. // Eur. J. Med. Chem. 2015. Vol. 93. P. 42. doi 10.1016/j.ejmech.2015.01.058
- Mao F., Huang L., Luo Z., Liu A., Lu C., Xie Z., Li X. // Bioorg. Med. Chem. 2012. Vol. 20. P. 5884. doi 10.1016/j.bmc.2012.07.045
- Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. // Free Radicals Biol. Med. 1999. Vol. 26. P. 1231. doi 10.1016/s0891-5849(98)00315-3
- Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. // Biochem. Pharmacol. 1961. Vol. 7. P. 88. doi 10.1016/0006-2952(61)90145-9

- Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Radchenko E.V., Palyulin V.A., Bachurin S.O., Richardson R.J. // Bioorg. Chem. 2020. Vol. 94. P. 103387. doi 10.1016/j. bioorg.2019.103387
- Taylor P., Lappi S. // Biochemistry. 1975. Vol. 14.
 P. 1989. doi 10.1021/bi00680a029
- Bartolini M., Bertucci C., Cavrini V., Andrisano V. // Biochem. Pharmacol. 2003. Vol. 65. P. 407. doi 10.1016/ s0006-2952(02)01514-9
- Makhaeva G.F., Elkina N.A., Shchegolkov E.V., Boltneva N.P., Lushchekina S.V., Serebryakova O.G., Rudakova E.V., Kovaleva N.V., Radchenko E.V., Palyulin V.A., Burgart Y.V., Saloutin V.I., Bachurin S.O., Richardson R. J. // Bioorg. Chem. 2019. Vol. 91. P. 103097. doi 10.1016/j.bioorg.2019.103097

Conjugates of Tacrine with Aminomethylidene-Substituted Malonates: Synthesis and Biological Evaluation

M. V. Grishchenko^{*a*}, N. A. Elkina^{*a*}, G. F. Makhaeva^{*b*}, Ya. V. Burgart^{*a*}, N. P. Boltneva^{*b*}, E. V. Rudakova^{*b*}, E. V. Shchegolkov^{*a*}, N. V. Kovaleva^{*b*}, O. G. Serebryakova^{*b*}, and V. I. Saloutin^{*a*,*}

^a Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia ^b Institute of Physiologically Active Compounds of Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry Russian Academy of Sciences, Chernogolovka, 142432 Russia *e-mail: saloutin@ios.uran.ru

Received September 3, 2022; revised September 15, 2022; accepted September 22, 2022

The condensation of tacrine aminopolymethylene derivatives with diethyl (ethoxymethylidene)malonate led to the new hybrid compounds – conjugates, which were the effective inhibitors of acetylcholinesterase (AChE) (IC₅₀ to 0.538 μ M) and butyrylcholinesterase (IC₅₀ to 0.0314 μ M). They can displace propidium iodide from peripherical anionic site of AChE at the level of the reference drug donepezil and demonstrate a weak antioxidant activity. Conjugates are of interest for further extended research as potential drugs for the Alzheimer's disease treatment.

Keywords: conjugate, tacrine, diethylmalonate, anticholinesterase activity, propidium displacement

УДК 547.341;547.787.1

РЕАКЦИИ ТЕТРАМЕТИЛЭТИНИЛДИФОСФОНАТА С ЗАМЕЩЕННЫМИ 2-АМИНОПИРИДИНАМИ

© 2022 г. К. Н. Дакуо^а, А. С. Крылов^а, Н. И. Свинцицкая^{а,*}

^а Санкт-Петербургский государственный технологический институт (технический университет), Московский пр. 26, Санкт-Петербург, 190013 Россия *e-mail: nsvincickava@mail.ru

> Поступило в редакцию 14 июля 2022 г. После доработки 5 августа 2022 г. Принято к печати 7 августа 2022 г.

Изучена реакция гидроаминирования тераметилэтинилдифосфоната замещенными 2-аминопиридинами под действием основания. Реакция протекает стереоселективно с образованием (*E*)-енаминофосфонатов. Получен ряд новых фосфоноенаминов – диметил-[2-(диметоксифосфорил)-2-(пиридин-2-иламино)-винил]фосфонатов.

Ключевые слова: енамины, енаминофосфонаты, алкинилфосфонаты, аминопиридины, вицинальные бисфосфонаты

DOI: 10.31857/S0044460X22110105, EDN: LOIIPL

Органические производные фосфоновой кислоты, представляющие собой группу как синтетических, так и биогенных веществ, характеризующихся наличием групп $C-P(OR)_2$ (R = H, Alk, Ar), – это перспективный класс соединений с широким спектром практического применения [1-7]. Среди них большое внимание в последнее время уделяется бисфосфонатам (см. обзоры [8-10]) и, в частности, их важному подклассу – аминобисфосфонатам. Этот повышенный интерес обусловлен наличием у данных соединений различной биологической активности. Эти соединения действуют как сильные ингибиторы резорбции костной ткани, поэтому могут использоваться в качестве препаратов для лечения остеопороза, скелетных осложнений злокачественных новообразований, болезни Педжета, гиперкальциемии и фиброзной дисплазии [11-13]. Растет интерес к их применению в качестве противоопухолевых и антибактериальных агентов [14-17]. Кроме того, аминобисфосфоновые кислоты имеют важное промышленное значение и, в частности, находят применение в качестве ингибиторов образования накипи и коррозии благодаря их способность к комплексообразованию с ионами металлов [18, 19]. Растущий интерес к биологической активности аминобисфосфонатов стимулировал и разработку методов их синтеза [2, 14, 20, 21].

Наибольшую известность имеют геминальные аминобисфосфонаты - их производные (памидронат, алендронат, этидронатом, ибандронат, золедроновая кислота и др.) зарекомендовали себя в качестве эффективных средств при лечении остеопороза [22]. В отличие от геминальных вицинальные бисфосфонаты (соединения типа Р-С-С-Р), а также соединения, в которых расстояние между фосфорильными группами больше (P–C_n–P, $n \ge 2$) неактивны при нарушениях, связанных с обменом кальция. Тем не менее известны примеры, когда введение потенциальных донорных групп по соседству с фосфонатной приводило к проявлению такой активности за счет возможности образования бидентатных хелатов с переходными металлами и кальцием [23, 24], в связи с чем вицинальные аминобисфосфонаты и разработка методов их синтеза также заслуживают отдельного внимания.

Схема 1.

$$(EtO)_{2}(O)P \longrightarrow P(O)(OEt)_{2} + R^{1}R^{2}NH \xrightarrow{CH_{2}Cl_{2}} (EtO)_{2}(O)P \xrightarrow{P(O)(OEt)_{2}} H \xrightarrow{NR^{1}R^{2}} H$$

$$R^{1} = H, R^{2} = Me, c-Hex, Bn; R^{1}, R^{2} = (CH_{2})_{4}.$$

Схема 2.

R = H(a), 3-Me(б), 4-Me(в), 6-Me(г), 5-Br(д).

Фосфонилированные енамины являются ценными интермедиатами в органической химии. Например, их литиированные производные оказались эффективными замаскированными гомоенолятными анионами карбоновой кислоты, которые могут использоваться в синтезе различных гетероциклических систем [25–27]. С другой стороны, фосфоноенамины, которые можно рассматривать как аналоги дегидроаминокислот, могут быть удобными предшественниками при получении α,β -аминофосфонатов посредством каталитического гидрирования [28–31]. В связи с этим наблюдается интерес к совершенствованию и разработке новых методов синтеза данных соединений (см. обзор [32]).

В продолжение исследований по химии алкинилфосфонатов [33–35] нами предложен подход к синтезу новых енаминобисфосфонатов на основе реакций диметилового эфира этинилдифосфоновой кислоты с замещенными 2-аминопиридинами. На сегодняшний день в литературе представлено всего два примера подобного взаимодействия этинилдифосфонатов с аминами (схема 1) [36, 37]. Авторы указывают, что полученные енамины могут служить предшественниками иминиевых анионов при алкилировании и вреакциях Виттига–Хорнера– Эммонса [37].

В качестве N-нуклеофильных агентов для присоединения по тройной связи алкинилбисфосфоната 1 нами были выбраны 2-аминопиридины, которые являются удобными лигандами для создания различных металлокомплексов, а также универсальными предшественниками для создания молекул с широким спектром биологической активности [38, 39]. Реакцией гидроаминирования тетраметилэтинилдифосфоната 1 2-аминопиридинами 2а-д под действием безводного K₂CO₃ (5 мол%) нами получен ряд новых фосфорилированных енаминов – диметил-[2-(диметоксифосфорил)-2-(пиридин-2-иламино)винил]фосфонатов (схема 2). В отличие от реакций с алифатическими аминами взаимодействие алкинилбисфосфоната 1 с 2-аминопиридинами, более слабыми нуклеофилами, проходит в более жестких условиях: кипячение реакционной массы при 80°С в ацетонитриле в течение 48-72 ч в присутствии безводного K₂CO₃.

Выход целевых диметил-[2-(диметоксифосфорил)-2-(пиридин-2-иламино)винил]фосфонатов **За**-д после очистки методом колоночной хроматографии составил 32–78%. Реакция протекает стреоселективно с образованием исключительно *E*-изомера.

Следует отметить, что в проведение реакции в отсутствие K₂CO₃ или с использованием других катализаторов и растворителей не привело к ожидаемому результату: реакция либо не протекала вовсе, либо требовала более длительного нагревания, при этом конверсия исходного тетраметилэтинилдифосфоната и выход конечного продукта реакции были крайне низкими.

Лучше всего в реакцию вступают 2-аминопиридины, имеющие донорные заместители в кольце. При этом легче всего протекает реакция с 2-аминопиридинами 26-г, содержащими метильную группу в орто-, мета- или пара-положении к аминогруппе. Однако в случае 2-амино-3-гидроксипиридина реакция сопровождается значительным осмолением реакционной смеси, вследствие чего выделить ожидаемый енаминобисфосфонат нам не удалось. Более длительное нагревание требуется при использовании 2-амино-5-бромпиридина 2д. Следует отметить, что в случае менее реакционноспособных 5-хлор-, 4-нитро- и 4-трифторметил-2-аминопиридинов длительное нагревание реакционной смеси приводило к образованию целевого енаминобисфосфоната лишь в следовых количествах, выделить который нам не удалось.

Реакция тетраметилэтинилдифосфоната 1 с аналогами 2-аминопиридина – 2-аминохинолином 4a и 1-аминоизохинолином 4б – требует более длительного нагревания (более 5 сут), однако и это не позволяет довести ее до конца. Соответствующие [2-(изо)хинолиниламино)винил]бисфосфонаты 5а, б были выделены с выходом 15–28%. При этом конверсия исходного этинилдифосфоната 1 не превышала 50% (по данным ЯМР ³¹Р).

Строение полученных соединений подтверждено данными спектроскопии ЯМР ¹H, ¹³C и ³¹P. Так, в спектрах ЯМР ¹Н аминовинилдифосфонатов За-д и 5а, б характерным является сигнал метинового протона РСН=, представленный дублетом дублетов в области 5.08-5.88 м. д. с константами спин-спинового взаимодействия ²J_{HP} 15.2-16.5 и ³*J*_{HP} 18.2–18.3 Гц, что указывает на *транс*-расположение фосфонатных групп. В спектрах ЯМР ¹³С атомы углерода при двойной связи резонируют дублетными сигналами в области 104.15-109.15 м. д. с константами спин-спинового взаимодействия с ядром фосфора ¹*J*_{CP} 187.9–204.1 Гц. Наличие двух дублетных сигналов в спектрах ЯМР ³¹Р алкендифосфонатов **За-д**, **5а**, **б** в области 12.35-22.18 м. д. с константой спин-спинового взаимодействия ³ *J*_{PP} 89.6-92.5 Гц свидетельствует о Е-конфигурации кратной связи. Для сравнения, в случае Z-алкендифосфонатов величина ³*J*_{PP} составляет 27–30 Гц [33, 35, 40].

Таким образом, на основе стереоселективной реакции гидроаминирования тетраметилового

эфира этинилдифосфоновой кислоты замещенными 2-аминопиридинами и амино(изо)хинолинами получен новый ряд (*E*)-енаминобисфосфонатов. Полученные фософоноенамины могут представлять интерес как ценные синтоны для построения фармацевтически активных молекул.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Замещенные 2-аминопиридины, 2-аминохинолин и 1-аминоизохинолин – коммерческие продукты, использовались без дополнительно очистки. Тетраметиловый эфир этинилдифосфоновой кислоты **1** был получен по методике, описанной ранее [41].

Спектры ЯМР ¹H, ¹³С и ³¹Р регистрировали на спектрометре Bruker Avance III HD 400 NanoBay с использованием рабочих частот 400.17 (¹H), 100.62 (¹³С) и 161.98 МГц (³¹Р). Масс-спектры (HMR-ESI) снимали на масс-спектрометре Bruker MicroTOF. Для колоночной хроматографии использовали силикагель 60 (Merck, 0.063–0.100 мм).

Общая методика получения соединений За–д, 5а, б. К раствору 1 ммоль тетраметилэтинилдифосфоната 1 в 5 мл безводного ацетонитрила прибавляли 1 ммоль соответствующего 2-аминопиридина 2а–д или амино(изо)хинолина 4а, б и 1 ммоль безводного K₂CO₃. Полученную смесь перемешивали при 80°C течение 48–72 ч (За–д) или 5 сут (5а, б). Контроль за ходом реакции осуществляли методом ЯМР ³¹Р. После окончания реакции осадок отфильтровывали и промывали хлористым метиленом. Фильтрат упаривали в вакууме. Остаток хроматографировали, элюент – CH₂Cl₂–MeOH (9:1).

Диметиловый эфир (*E*)-2-(диметоксифосфорил)-2-(пиридин-2-иламино)винил]фосфоновой кислоты (3а). Выход 57%, желтое масло. Спектр ЯМР ¹H, δ , м. д.: 3.65 д (6H, CH₃OP, ³J_{HP} 11.3 Гц), 3.81 д (6H, CH₃OP, ³J_{HP} 10.5 Гц), 4.58 уш. с (1H, NH), 5.77 д. д (1H, PCH=, ²J_{HP} 16.5, ³J_{HP} 18.2 Гц), 5.99 т (1H, C⁵H, ³J_{HH} 6.7 Гц), 6.50 д (1H, C³H, ³J_{HH} 8.2 Гц), 6.52 т (1H, C⁴H, ³J_{HH} 6.7 Гц), 8.06 д (1H, C⁶H, ³J_{HH} 6.4 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 53.37 д (CH₃OP, ²J_{CP} 6.2 Гц), 52.08 д (CH₃OP, ²J_{CP} 5.7 Гц), 105.02 (C⁵), 106.49 д (PC=, ¹J_{CP} 189.4 Гц), 107.99 д (PCH=, ¹J_{CP} 187.9 Гц), 108.86 (C³), 136.09 (C⁴), 138.04 (C⁶), 155.53 (C²). Спектр ЯМР ³¹P, $\delta_{\rm PP}$ м. д.: 12.86 д и 19.42 д (${}^{3}J_{\rm PP}$ 91.6 Гц). Массспектр, *m/z*: 359.0517 [*M* + Na]⁺ (вычислено для C₁₁H₁₈N₂NaO₆P₂⁺: 359.0532).

Диметиловый эфир (Е)-[2-(диметоксифосфорил)-2-(3-метилпиридин-2-иламино)винил]фосфоновой кислоты (36). Выход 78%, желтое масло. Спектр ЯМР ¹Н, б, м. д.: 2.15 с (3H, CH₃), 3.53 д (6H, CH₃OP, ³*J*_{HP} 11.2 Гц), 3.59 д (6H, CH₃OP, ³*J*_{HP} 11.2 Гц), 4.45 уш. с (1Н, NН), 5.08 д. д (1Н, РСН=, ²*J*_{HP} 15.2, ³*J*_{HP} 18.3 Гц), 6.23 т (1Н, С⁵Н, ³*J*_{НН} 6.8 Гц), 6.64 т (1Н, С⁴Н, ³*J*_{НН} 5.8 Гц), 7.97 д (1H, C⁶H, ³*J*_{HH} 5.8 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: д 17.12 (CH₃), 53.26 д (CH₃OP, ²*J*_{CP} 5.7 Гц), 53.53 д (CH₃OP, ²*J*_{CP} 6.3 Гц), 105.77 д (PCH=, ¹*J*_{CP} 187.9 Гц), 106.39 д (РС=, ¹*J*_{СР} 204.1 Гц), 108.08 (С³), 114.49 (C⁵), 137.83 (C⁴), 145.49 (C⁶), 156.98 (C²). Спектр ЯМР ³¹Р, б_р, м. д.: 15.20 д и 22.18 д (³*J*_{PP} 92.0 Гц). Масс-спектр, m/z: 373.0649 [M + Na]⁺ (вычислено для C₁₂H₂₀N₂NaO₆P₂⁺: 373.0689).

Диметиловый эфир (*E*)-[2-(диметоксифосфорил)-2-(4-метилпиридин-2-иламино)винил]фосфоновой кислоты (3в). Выход 72%, желтое масло. Спектр ЯМР ¹H, δ , м. д.: 2.01 с (3H, CH₃), 3.65 д (6H, CH₃OP, ³J_{HP} 11.3 Гц), 3.81 д (6H, CH₃OP, ³J_{HP} 10.5 Гц), 4.62 уш. с (1H, NH), 5.69 д. д (1H, PCH=, ²J_{HP} 16.5, ³J_{HP} 18.3 Гц), 6.23 д (1H, C⁵H, ³J_{HH} 8.4 Гц), 6.27 с (1H, C³H), 7.01 д (1H, C⁶H, ³J_{HH} 6.7 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 21.52 (CH₃), 53.28 д (CH₃OP, ²J_{CP} 6.7 Гц), 53.92 д (CH₃OP, ²J_{CP} 5.7 Гц), 104.15 д (PCH=, ¹J_{CP} 190.6 Гц), 105.96 д (PC=, ¹J_{CP} 200.2 Гц), 107.77 (C³), 113.60 (C⁵), 137.27 (C⁴), 147.52 (C⁶), 157.45 (C²). Спектр ЯМР ³¹P, $\delta_{\rm P}$, м. д.: 12.85 д и 19.72 д (³J_{PP} 92.5 Гц).

Диметиловый эфир (*E*)-[2-(диметоксифосфорил)-2-(6-метилпиридин-2-иламино)винил]фосфоновой кислоты (Зг). Выход 57%, желтое масло. Спектр ЯМР ¹H, δ , м. д.: 2.41 с (ЗН, СН₃), 3.53 д (6H, CH₃OP, ³J_{HP} 11.3 Гц), 3.69 д (6H, CH₃OP, ³J_{HP} 10.8 Гц), 4.63 уш. с (1H, NH), 5.73 д. д (1H, PCH=, ²J_{HP} 16.4, ³J_{HP} 18.1 Гц), 6.34 д (1H, C⁵H, ³J_{HH} 8.2 Гц), 6.53 д (1H, C³H, ³J_{HH} 7.8 Гц), 7.36 т (1H, C⁴H, ³J_{HH} 7.8 Гц). Спектр ЯМР ¹³С, δ_{C} , м. д.: 21.13 (CH₃), 52.07 д (CH₃OP, ²J_{CP} 5.7 Гц), 53.32 д (CH₃OP, ²J_{CP} 6.4 Гц), 104.22 д (PCH=, ¹J_{CP} 189.9 Гц), 106.03 д (PC=, ¹J_{CP} 195.8 Гц), 105.51 (C⁵), 106.23 (C³), 138.09 (C⁴), 156.47 (C²), 158.04 (C⁶). Спектр ЯМР ³¹P, δ_{P} , м. д.: 13.07 д и 19.74 д (³J_{PP} 92.2 Гц). Диметиловый эфир (*E*)-[2-(диметоксифосфорил)-2-(5-бромпиридин-2-иламино)винил]фосфоновой кислоты (3д). Выход 32%, оранжевое масло. Спектр ЯМР ¹H, δ , м. д.: 3.78 д (6H, CH₃OP, ³J_{HP} 11.1 Гц), 3.81 д (6H, CH₃OP, ³J_{HP} 11.1 Гц), 4.57 уш. с (1H, NH), 5.80 д. д (1H, PCH=, ²J_{HP} 16.4, ³J_{HP} 18.3 Гц), 7.26 д (1H, C³H, ³J_{HH} 7.2 Гц), 7.50 д (1H, C⁴H, ³J_{HH} 7.2 Гц), 8.11 с (1H, C⁶H). Спектр ЯМР ¹³С, δ_{C} , м. д.: 52.20 д (CH₃OP, ²J_{CP} 5.7 Гц), 53.41 д (CH₃OP, ²J_{CP} 6.2 Гц), 106.44 д (PCH=, ¹J_{CP} 190.3 Гц), 107.99 д (PC=, ¹J_{CP} 197.4 Гц), 117.52 (C³), 138.52 (C⁴), 143.35 (C⁵), 154.02 (C⁶), 157.32 (C²). Спектр ЯМР ³¹Р, δ_{P} , м. д.: 12.37 д и 18.74 д (³J_{PP} 90.0 Гц).

Диметиловый эфир (E)-[2-(диметоксифосфорил)-2-(хинолин-2-иламино)винил|фосфоновой кислоты (5а). Выход 28%, желтое масло. Спектр ЯМР ¹Н, б, м. д.: 3.63 д (6Н, CH₃OP, ³*J*_{HP} 10.7 Гц), 3.69 д (6H, CH₃OP, ³J_{HP} 10.7 Гц), 4.82 с (1H, NH), 5.82 д. д (1H, PCH=, ²J_{HP} 16.2, ³J_{HP} 18.1 Гц), 7.23 д (1Н, С³Н, ³*J*_{НН} 7.2 Гц), 7.55 д (1Н, С⁵Н, ³*J*_{HH} 8.1 Гц), 7.57 т (1Н, С⁶Н, ³*J*_{HH} 8.1 Гц), 7.65 т (1H, C⁷H, ³*J*_{HH} 8.1 Гц), 8.44 д (1H, C⁸H, ³*J*_{HH} 7.2), 8.51 д (1H, C⁴H, ³*J*_{HH} 7.2 Гц). Спектр ЯМР ¹³С, δ_C, м. д.: 52.65 д (CH₃OP, ²*J*_{CP} 5.8 Гц), 54.35 д (CH₃OP, ²*J*_{CP} 6.0 Гц), 106.31 д (РСН=, ¹*J*_{CP} 189.7 Гц), 109.15 д (PC=, ${}^{1}J_{CP}$ 198.4 Гц), 121.58 (C³), 125.11 (C⁶), 128.59 (C⁵), 129.64 (C⁸), 129.80 (C¹⁰), 130.75 (C⁷), 135.49 (С⁴), 140.74 (С⁹), 155.79 (С²). Спектр ЯМР ³¹Р, б_р, м. д.: 12.35 д и 18.77 д (³*J*_{рр} 89.6 Гц). Массспектр, m/z: 409.0632 $[M + Na]^+$ (вычислено для $C_{15}H_{20}N_2NaO_6P_2^+$: 409.0689).

Диметиловый эфир (E)-[2-(диметоксифосфорил)-2-(изохинолин-1-иламино)винил]фосфоновой кислоты (56). Выход 15%, желтое масло. Спектр ЯМР ¹Н, δ, м. д.: 3.75 д (6Н, CH₃OP, ³*J*_{HP} 11.3 Гц), 3.78 д (6Н, CH₃OP, ³J_{HP} 11.3 Гц), 5.02 с (1H, NH), 5.88 д. д (1H, PCH=, ²J_{HP} 16.8, ³J_{HP} 18.5 Гц), 7.55 д (1Н, С⁴Н, ³*J*_{НН} 8.3 Гц), 7.58 т (1Н, C⁷H, ³*J*_{HH} 7.9 Гц), 7.66 т (1H, C⁶H, ³*J*_{HH} 8.1 Гц), 7.84 д (1H, C^5 H, ${}^{3}J_{\text{HH}}$ 8.2 Гц), 8.29 д (1H, C^8 H, ${}^{3}J_{\text{HH}}$ 7.8), 8.53 д (1H, C³H, ³*J*_{HH} 7.2 Гц). Спектр ЯМР ¹³С, δ_C, м. д.: 52.56 д (CH₃OP, ²*J*_{CP} 6.0 Гц), 54.35 д (CH₃OP, ²*J*_{CP} 6.0 Гц), 107.27 д (РСН=, ¹*J*_{CP} 188.4 Гц), 109.86 д (PC=, ¹*J*_{CP} 197.8 Гц), 121.36 (C⁴), 125.88 (C⁹), 126.49 (C^8), 126.69 (C^5), 132.35 (C^6), 132.71 (C^7), 135.22 (С¹⁰), 137.84 (С³), 153.50 (С¹). Спектр ЯМР ³¹Р, б_р, м. д.: 12.12 д и 20.68 д (³*J*_{рр} 90.9 Гц).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Свинцицкая Наталья Иосифовна, ORCID: https://orcid.org/0000-0003-3715-767X

Крылов Александр Сергеевич, ORCID: https:// orcid.org/0000-0003-1773-7802

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 0785.00.Х6019) с использованием оборудования Инжинирингового центра Санкт-Петербургского государственного технологического института (технического университета).

КОНФЛИКТ ИНТЕРЕСОВ

Н.И. Свинцицкая является членом редколлегии Журнала общей химии. Остальные авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Quin L.D.* A guide to organophosphorus chemistry. Toronto: John Wiley & Sons Inc., 2000.
- Gałęzowska J., Gumienna-Kontecka E. // Coord. Chem. Rev. 2012. Vol. 256. N 1–2. P. 105. doi 10.1016/j. ccr.2011.07.002
- Yücesan G., Zorlu Y., Stricker M., Beckmann J. // Coord. Chem. Rev. 2018. Vol. 369. P. 105. doi 10.1016/j. ccr.2018.05.002
- Manghi M.M., Masiol M., Calzavara R., Graziano P.L., Peruzzi E., Pavoni B. // Chemosphere. 2021. Vol. 283. P. 131187. doi 10.1016/j.chemosphere.2021.131187
- Cao H.-Q., Li J.-K., Zhang F.-G., Cahard D., Ma J.-A. // Adv. Synth. Catal. 2021. Vol. 363. N 3. P. 688. doi 10.1002/adsc.202001345
- Maeda K. // Micropor. Mesopor. Mater. 2004. Vol. 73. N 1–2. P. 47. doi 10.1016/j.micromeso.2003.10.018
- Krečmerová M., Majer P., Rais R., Slusher B.S. // Front. Chem. 2022. doi 10.3389/fchem.2022.889737
- Popov K., Oshchepkov M., Tkachenko S., Sergienko V., Oshchepkov A. // J. Mol. Liq. 2022. Vol. 351. P. 118619. doi 10.1016/j.molliq.2022.118619
- Ebetino F.H., Sun S., Cherian P., Roshandel S., Neighbors J.D., Hu E., Dunford J.E., Sedghizadeh P.P., McKenna C.E., Srinivasan V., Boeckman R.K., Russell R.G. // Bone. 2022. Vol. 156. P. 116289. doi 10.1016/j.bone.2021.116289
- Золотухина М.М., Крутиков В.И., Лаврентьев А.Н. // Усп. хим. 1993. Т. 62. № 7. С. 691;

Zolotukhina M.M., Krutikov V.I., Lavrent'ev A.N. // Russ. Chem. Rev. 1993. Vol. 62. N 7. P. 647. doi 10.1070/RC1993v062n07ABEH000038

- Russell R.G. // Bone. 2011. Vol. 49. P. 2. doi 10.1016/j. bone.2011.04.022
- Ebetino F.H., Hogan A.M., Sun S., Tsuompra M.K., Duan X., Triffitt J.T., Kwaasi A.A., Dunford J.E., Barnett B.L., Oppermann U., Lundy M.W., Boyde A., Kashemirov B.A., McKenna C.E., Russell R.G. // Bone. 2011. Vol. 49. P. 20. doi 10.1016/j.bone.2011.03.774
- Maraka S., Kennel K.A. // Br. Med. J. 2015. Vol. 351. P. h3783. doi 10.1136/bmj.h3783
- 14. Kaboudin B., Daliri P., Faghih S., Esfandiari H. // Front. Chem. 2022. doi 10.3389/fchem.2022.890696
- Shi C.G., Zhang Y., Yuan W. // Am. J. Ther. 2016. Vol. 3. P. e894. doi 10.1097/MJT.00000000000236
- Chmielewska E., Kafarski P. // Open Pharm. Sci. J. 2016. Vol. 3. P. 56. doi 10.2174/1874844901603010056
- Demkowicz S., Rachón J., Daśko M., Kozak W. // RSC Adv. 2016. Vol. 6. P. 7101. doi 10.1039/C5RA25446A
- Studnik H., Liebsch S., Forlani G., Wieczorek D., Kafarski P., Lipok J. // New Biotechnol. 2015. Vol. 32. P. 1. doi 10.1016/j.nbt.2014.06.007
- Turhanen P.A., Vepsäläinen J.J., Peräniemi S. // Sci. Rep. 2015. Vol. 5. Article no. 8992.
- Chmielewska E., Kafarski P. // Molecules. 2016.
 Vol. 21. N 11. P. 1474. doi 10.3390/molecules21111474
- Chmielewska E., Kafarski P. // Molecules. 2012. Vol. 17. N 9. P. 10928. doi 10.3390/molecules170910928
- Widler L., Jaeggi K.A., Glatt M., Müller K., Bachmann R., Bisping M., Born A.-R., Cortesi R., Guiglia G., Jeker H., Klein R., Ramseier U., Schmid J., Schreiber G., Seltenmeyer Y., Green J.R. // J. Med. Chem. 2002. Vol. 45. N 17. P. 3721. doi 10.1021/jm020819i
- Van Gelder J.M., Breuer E., Ornoy A., Schlossman A., Patlas N., Golomb G. // Bone. 1995. Vol. 16. P. 511. doi 10.1016/8756-3282(95)00081-N
- Golomb G., Schlossman A., Saadeh H., Levi M., Van Gelder J.M., Breuer E. // Pharm. Res. 1992. Vol. 9. P. 143. doi 10.1023/A:1018956516640
- Palacios F., Ochoa de Retana A.M., Pascual S., López de Munain R., Oyarzabal J., Ezpeleta J.M. // Tetrahedron. 2005. Vol. 61. N 5. P. 1087. doi 10.1016/j. tet.2004.11.061
- Palacios F., Ochoa de Retana A.M., Oyarzabal J. // Tetrahedron. 1999. Vol. 55. N 18. P. 5947. doi 10.1016/ S0040-4020(99)00257-4

- Palacios F., Ochoa de Retana A.M., Oyarzabal J. // Tetrahedron. 1999. Vol. 55. N 10. P. 3091. doi 10.1016/ S0040-4020(99)00068-X
- Zhang Z., Tamura K., Mayama D., Sugiya M., Imamoto T. // J. Org. Chem. 2012. Vol. 77. P. 4184. doi 10.1021/jo300454n
- Zhang J., Li Y., Wang Z., Ding K. // Angew. Chem. Int. Ed. 2011. Vol. 50. P. 11743. doi 10.1002/ ange.201104912
- Wassenaar J., Kuil M., Lutz M., Spek A.L., Reek J.N.H. // Chem. Eur. J. 2010. Vol. 16. P. 6509. doi 10.1002/ chem.200903476
- Zhou M., Xue Z., Cao M., Dong X.-Q., Zhang X. // Org. Biomol. Chem. 2016. Vol. 14. N 20. P. 4582. doi 10.1039/c6ob00540c
- 32. *Adler P., Fadel A., Rabasso N. //* Tetrahedron. 2014. Vol. 70. N 30. P. 4437. doi 10.1016/j.tet.2014.04.086
- Журавлева П.А., Колина А.И., Свинцицкая Н.И., Догадина А.В. // ЖОХ. 2021. Т. 91. № 10. С. 1479; Zhuravleva P.A., Kolina A.I., Svintsitskaya N.I., Dogadina A.V. // Russ. J. Gen. Chem. 2021. Vol. 91. N 10. P. 2031. doi 10.1134/S1070363221100169
- Krylov A.S., Petrosian A.A., Piterskaya J.L., Svintsitskaya N.I., Dogadina A.V. // Beilstein J. Org. Chem. 2019, Vol. 15. P. 1563. doi 10.3762/bjoc.15.159
- Svintsitskaya N.I., Dogadina A.V., Starova G.L., Trifonov R.E. // Tetrahedron Lett. 2014. Vol. 55. N 39. P. 5381. doi 10.1016/j.tetlet.2014.08.018
- Whitesell M.A., Kyba E.P. // Tetrahedron Lett. 1983.
 Vol. 24. N 16. P. 1679. doi 10.1016/S0040-4039(00)81743-8
- Whitesell J.K., Whitesell M.A. // Synthesis. 1983. N 7.
 P. 517. doi 10.1055/s-1983-30409
- Berry J.F., Roy M. // Compr. Coord. Chem. III. 2021.
 P. 406. doi 10.1016/B978-0-08-102688-5.00075-1
- Rao R.N., Chanda K. // Chem. Commun. 2022. Vol. 58.
 N 3. P. 343. doi 10.1039/D1CC04602K
- Шехаде А., Дидковский Н.Г., Догадина А.В., Ионин Б.И. // ЖОХ. 2004. Т. 74. Вып. 10. С. 1750; Shekhade A., Didkovskii N.G., Dogadina A.V., Ionin B.I. // Russ. J. Gen. Chem. 2004. Vol. 74. N 10. P. 1627. doi 10.1007/s11176-005-0071-y
- 41. Ионин Б.И., Петров А.А. // ЖОХ. 1965. Т. 35. С. 1917.

ДАКУО и др.

Reactions of Tetramethyl Ethynyldiphosphonate with Substituted 2-Aminopyridines

K. N. Dakuo^a, A. S. Krylov^a, and N. I. Svintsitskaya^{a,*}

^a St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013 Russia *e-mail: nsvincickaya@mail.ru

Received July 14, 2022; revised August 5, 2022; accepted August 7, 2022

The base-catalyzed hydroamination reaction of teramethyl ethynyldiphosphonate with substituted 2-aminopyridines was studied. The reaction proceeds stereoselectively with the formation of (E)-enaminophosphonates. A series of new phosphonoenamines, namely dimethyl [2-(dimethoxyphosphoryl)-2-(pyridin-2-ylamino)vinyl]phosphonates, was obtained.

Keywords: enamines, enaminophosphonates, alkinylphosphonates, aminopyridines, vicinal bisphosphonates

УДК 546.23;54.057;547-31/39

СИНТЕЗ ПОЛИДЕНТАТНЫХ СЕЛЕНСОДЕРЖАЩИХ ПРОИЗВОДНЫХ БИС(2-ХЛОРЭТИЛОВОГО) ЭФИРА

© 2022 г. В. А. Безбородов^{*a*}, И. А. Бабенко^{*a*,*}, М. В. Быков^{*a*}, Г. В. Ратовский^{*a*}, Н. И. Бородин^{*a*}, И. А. Ушаков^{*b*}, А. И. Вильмс^{*a*}

^а Иркутский государственный университет, ул. К. Маркса 1, Иркутск, 664003 Россия ^b Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук, Иркутск, 664033 Россия *e-mail: legatt112@yandex.ru

> Поступило в редакцию 22 июня 2022 г. После доработки 9 июля 2022 г. Принято к печати 10 июля 2022 г.

Синтезированы селенорганические производные бис(2-хлорэтилового) эфира общей формулы (RSeCH₂CH₂)₂O (R = Me, Et, Pr, *i*-Pr, Bu, *i*-Bu, C₆H₁₃, Cy, Bn, Ph), являющиеся потенциальными электронодонорными полидентатными лигандами для синтеза комплексов переходных металлов и компонентами каталитических систем в реакциях олигомеризации этилена.

Ключевые слова: селен, селеноорганические соединения, полидентатные лиганды, бис(2-хлорэтиловый) эфир

DOI: 10.31857/S0044460X22110117, EDN: LOKSDY

Известны различные подходы к получению полидентатных электронодонорных халькогенсодержащих соединений. В частности, описан синтез этих соединений, имеющих в своем составе такие гетероатомы, как O, S и Se [1-3]. Использование халькогенорганических соединений в качестве лигандов при синтезе комплексов переходных металлов позволяет моделировать активные центры различных ферментов [4-6], получать новые координационные соединения [7, 8], создавать новые виды ионных жидкостей [9], а также управлять их физико-химическими свойствами, что играет важную роль при создании новых катализаторов. Так, имеются сведения о применение лигандов, содержащих гетероатомы P, N, P, O и S в различных сочетаниях, в реакциях олигомеризации этилена. Стоит отметить, что хотя применение серосодержащих электронодонорных лигандов в системах каталитического превращения этилена началось сравнительно недавно, в литературе имеется немало примеров их успешного применения [10-13]. Настоящая работа является продолжением предыдущих исследований [14] и направлена на расширение ряда полидентатных селенсодержащих лигандов SeOSe-типа. Такие соединения были успешно использованы нами при синтезе координационных соединений хрома(III) [15] и в катализе [16]. Расширение ряда лигандов SeOSe-типа обусловлено стремлением к использованию их в реакции каталитического превращения этилена как в индивидуальном виде, так и в составе новых комплексных соединений переходных металлов.

Для получения полидентатных селенсодержащих элементоорганических лигандов SeOSeтипа мы использовали три подхода, основанные на взаимодействии бис(2-хлорэтилового) эфира **1** с соответствующими селенолат-анионами, генерируемыми различными способами. Первая стадия для двух подходов заключается в образовании *in situ* диселенида щелочного металла **2** путем восстановления элементного селена в системе гидразингидрат–основание (схема 1) [1, 14].

$$4\text{Se} + \text{N}_{2}\text{H}_{4} \cdot \text{H}_{2}\text{O} + 4\text{MOH} \xrightarrow{1 \text{ } \text{u}, 90^{\circ}\text{C}} 2\text{M}_{2}\text{Se}_{2} + \text{N}_{2} + 5\text{H}_{2}\text{O}$$

$$2$$

$$n\text{M}_{2}\text{Se}_{2} + n(\text{ClCH}_{2}\text{CH}_{2})_{2}\text{O} \xrightarrow{1 \text{ } \text{u}, 80^{\circ}\text{C}} -(\text{SeCH}_{2}\text{CH}_{2}\text{OCH}_{2}\text{CH}_{2}\text{Se})_{\overline{n}} + 2n\text{MCl}$$

$$2$$

$$1$$

$$3$$

$$M = \text{Na, K.}$$

R = Me (a), Et (δ), Pr (B), *i*-Pr (Γ), Bu (\mathfrak{A}), *i*-Bu (e), C₆H₁₃ (\mathfrak{K}); M = Na, K; X = I, Br.

Схема 3.

$$2R_{2}Se_{2} + N_{2}H_{4} \cdot H_{2}O + 4MOH \xrightarrow{4 \text{ u}, 90^{\circ}C} 4RSeM + N_{2} + 5H_{2}O$$

6a, **6**

$$2RSeM + (ClCH_{2}CH_{2})_{2}O \xrightarrow{2 \text{ u}, 90^{\circ}C} (RSeCH_{2}CH_{2})_{2}O + 2MCl$$

1

$$R = Cy (a), Bn (6); M = Na, K.$$

В рамках первого подхода к реакционной смеси, содержащей диселенид 2, прибавляли эфир 1, в результате чего происходило образование линейного полимера, содержащего диселенидные мостики 3 (схема 1). Образующийся полимер 3 под действием системы гидразингидрат–основание претерпевал восстановительное расщепление по связи Se–Se. Продукты восстановления алкилировали алкилгалогенидами 4а–ж с получением целевых соединений 5а–ж (схема 2).

Второй подход основан на реакции эфира 1 с диорганилдиселенидами, в большинстве случаев являющихся коммерчески доступными. Исключением был дициклогексилдиселенид **6a**, полученный нами по реакции соединения **2** с циклогексилбромидом. Соединения 7а и 76 получены путем взаимодействия продуктов восстановления диселенидов 6а и 66 под действием системы гидразингидрат– основание с эфиром 1, как показано на схеме 3.

Отметим, что изменение маршрута реакции позволяет повысить выходы в 2–2.5 раза по сравнению с реакцией с участием полимера **3**. Это связано с тем, что при взаимодействии соединения **2** с эфиром **1**, кроме целевого полимера **3**, возможно образование более сложных структур, что заметно снижает выход целевых продуктов. Использование второго подхода приводит к уменьшению количества побочных продуктов, но требует выделения и очистки промежуточных соединений, являющихся весьма токсичными веществами.

Схема 4.

$$2PhSeH + 2MOH + (ClCH2CH2)2O \xrightarrow{1 \text{ u}, 80^{\circ}C} (PhSeCH2CH2)2O + 2MCl + 2H2O \xrightarrow{1 \text{ u}, 80^{\circ}C} 8$$

Третий способ является более традиционным и заключается в генерации селенолят-аниона *in situ* в спирто-щелочной среде из соответствующего селенола с последующим его взаимодействием с эфиром **1** в одну стадию с образованием производного **8** по схеме 4. При этом выход целевых продуктов составляет более 70%.

Однако применение этого подхода осложняется использованием селенолов, имеющих низкие температуры кипения и высокую токсичность. Во всех случаях при восстановлении связи Se–Se под действием системы гидразингидрат–основание, или же генерации анионов RSe⁻ или Se²⁻, для повышения скорости реакции использовалась смесь гидроксидов натрия и калия в соотношении 1:1. Возможно использование одного типа щелочи, однако в этом случае время реакции будет значительно зависеть от ее природы, поскольку активность ионов Na⁺ и K⁺ в растворах весьма отличается.

Строение полученных соединений **5а-ж**, **7а**, **б** и **8** доказано методами ИК и ЯМР ¹H, ¹³C и ⁷⁷Se спектроскопии. Выходы, температуры кипения и данные элементного анализа для полученных соединений в табл. 1. В ИК спектрах соединений **5а-ж**, **7а**, **б** и **8** наблюдаются полосы колебаний основной цепи SeCH₂CH₂OCH₂CH₂Se и дополнительные полосы, обусловленные колебаниями заместителей R в боковой цепи.

Таким образом, в данной работе реализованы три различных подхода к получению селенорганических производных бис(2-хлорэтилового) эфира, которые могут быть использованы в качестве лигандов для получения новых координационных соединений переходных металлов, а также в реакциях каталитического превращения этилена.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрометре Simex Infralum FT 801 в тонком слое. Спектры ЯМР ¹H, ¹³C и ⁷⁷Se снимали на спектрометре Bruker DPX-400 с рабочими частотами 400.13 (¹H), 100.61 (¹³C), 76.31 (⁷⁷Se) МГц, растворитель – CDCl₃. Внутренний стандарт – ТМС (¹H, ¹³C) и Me₂Se (⁷⁷Se).

Использовали коммерческие реагенты (Sigma Aldrich): элементный селен, гидразингидрат, алкилгалогениды, диалкилдиселениды, бис(2-хлорэтиловый) эфир и селенофенол. Полимер **3** синтезирован согласно методике, описанной ранее [2, 3].

N⁰	Выход, %	Т. кип., °С (мм рт. ст.)	Найдено, %			.	Вычислено, %		
			С	Н	Se	Формула	C	Н	Se
5a	26	95–97 (1.6)	27.67	5.41	60.64	C ₆ H ₁₄ OSe ₂	27.71	5.43	60.72
5б	28	111-115 (1.5)	33.29	6.25	57.75	C ₈ H ₁₈ OSe ₂	33.35	6.30	54.81
5в	24	128–129 (1.5)	37.92	7.00	49.85	$C_{10}H_{22}OSe_2$	37.99	7.01	49.94
5г	28	99–100 (1.5)	37.94	6.99	49.88	$C_{10}H_{22}OSe_2$	37.99	7.01	49.94
5д	31	134–137 (1.4)	41.83	7.58	45.83	$C_{12}H_{26}OSe_2$	41.87	7.61	45.87
5e	29	130–132 (1.5)	41.84	7.59	45.82	$C_{12}H_{26}OSe_2$	41.87	7.61	45.87
5ж	22	180–182 (1.5)	47.97	8.53	39.37	C ₁₆ H ₃₄ OSe ₂	48.00	8.56	39.44
7a	41	150-152 (1.0)	48.44	7.61	39.78	$C_{16}H_{30}OSe_2$	48.49	7.63	39.84
7б	70	230–234 (1.5)	52.39	5.36	38.23	$C_{18}H_{22}OSe_2$	52.44	5.38	38.30
8	75	191–193 (1.5)	49.98	4.70	40.97	$C_{16}H_{18}OSe_2$	50.02	4.72	41.10

Таблица 1. Выходы, температуры кипения и данные элементного анализа для соединений 5а-ж, 7а, 6 и 8

Общая методика получения соединений 5а-ж. Смесь 20%-ного раствор гидроксида К/Na в гидразингидрате и полимера 3 (мольное соотношение КОН/NaOH:полимер = 5:1) нагревали в течение 4 ч при 90°С. После растворения полимера 3 к реакционной смеси добавляли эквимольное количество алкилгалогенида RX 4а-г и перемешивали при 70°С в течение 1 ч. Продукт реакции экстрагировали диэтиловым эфиром, экстракт промывали водой и сушили безводным хлоридом кальция. Растворитель отгоняли, остаток перегоняли в вакууме.

1-(Метилселанил)-2-[2-(метилселанил)этокси]этан (5а). ИК спектр, v, см⁻¹: 2994, 2970, 2924, 2858, 2825, 1474, 1456, 1424, 1405, 1354, 1292, 1275, 1269, 1221, 1188, 1104, 1088, 1056, 1032, 958, 935, 901, 810, , 747, 686, 665, 593, 571. Спектр ЯМР ¹H, δ, м. д.: 2.02 с (6H, CH₃), 2.70 т (4H, SeCH₂, ³J 7.0 Гц), 3.69 т (4H, OCH₂, ³J 7.1 Гц). Спектр ЯМР ¹³С, δ_C, м. д.: 4.65 (CH₃), 24.31 (SeCH₂), 70.92 (OCH₂). Спектр ЯМР ⁷⁷Se: δ_{Se} 58.58 м. д.

1-(Этилселанил)-2-[2-(этилселанил)этокси]этан (56). ИК спектр, v, см⁻¹: 2973, 2956, 2924, 2865, 1474, 1449, 1423, 1405, 1374, 1354, 1292, 1276, 1235, 1188, 1103, 1088, 1052, 1047, 1032, 1017, 968, 980, 961, 932, 797, 761, 736, 733, 686, 666, 579, 572, 559. Спектр ЯМР ¹H, δ , м. д.: 1.35–1.37 м (6H, CH₃), 2.67–2.72 м (4H, CH₂), 3.09–3.15 м (4H, SeCH₂), 3.62–3.66 м (4H, OCH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 15.56 (CH₃), 17.33 (CH₂), 21.82 (SeCH₂), 70.76 (OCH₂). Спектр ЯМР ⁷⁷Se: $\delta_{\rm Se}$ 176.82 м. д.

1,1'-[Оксибис(этан-2,1-диилселанилдиил)] дипропан (5в). ИК спектр, v, см⁻¹: 2960, 2928, 2869, 2855, 1475, 1462, 1455, 1429, 1418, 1405, 1375, 1353, 1338, 1279, 1207, 1188, 1104, 1088, 1054, 1034, 985, 956, 933, 893, 883, 818, 770, 745, 734, 716, 646, 580, 573, 560, 555. Спектр ЯМР ¹H, δ , м. д.: 0.98 т (6H, CH₃, ³J 7.3 Гц), 1.65–1.70 м (4H, CH₂), 2.57–2.59 м (4H, CH₂), 2.70 т (4H, SeCH₂, ³J 7.3 Гц), 3.65–3.69 м (4H, OCH₂). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 14.56 (CH₃), 22.74 (CH₂), 24.04 (CH₂), 26.79 (SeCH₂), 71.30 (OCH₂). Спектр ЯМР ⁷⁷Se: $\delta_{\rm Se}$ м. д. 136.69.

2,2'-[Оксибис(этан-2,1-диилселанилдиил)]дипропан (5г). ИК спектр, v, см⁻¹: 2968, 2952, 2920, 2893, 2861, 1477, 1457, 1464, 1441, 1425, 1404, 1382, 1366, 1353, 1314, 1292, 1277, 1220, 1188, 1181, 1155, 1102, 1088, 1055, 1030, 985, 955, 934, 926, 879, 745, 686, 667, 571, 553. Спектр ЯМР ¹H, δ, м. д.: 1.33 д [12H, (CH₃)₂, *J* 6.9 Γц], 2.66 т (4H, SeCH₂, ³*J* 7.3 Γц), 3.05–3.14 м (2H, CH), 3.58–3.64 м (4H, OCH₂). Спектр ЯМР ¹³C, $\delta_{\rm C}$, м. д.: 21.60 (CH₃), 24.52 (SeCH₂), 29.12 (CH), 70.20 (OCH₂). Спектр ЯМР ⁷⁷Se: $\delta_{\rm Se}$ 268.63 м. д.

1,1'-[Оксибис(этан-2,1-диилселанилдиил)]дибутан (5д). ИК спектр, v, см⁻¹: 2957, 2927, 2870, 2860, 1477, 1463, 1458, 1429, 1420, 1404, 1378, 1353, 1290, 1276, 1259, 1195, 1106, 1088, 1052, 1031, 986, 956, 933, 899, 870, 776, 738, 717, 646, 687, 666, 571, 567, 561, 552. Спектр ЯМР ¹Н, δ, м. д.: 0.92 т (6H, CH₃, ³*J*7.3 Гц), 1.30–1.66 м (4H, CH₂), 1.37–1.43 м (4H, CH₂), 2.60–2.62 м (4H, CH₂), 2.71 т (4H, SeCH₂, ³*J*7.2 Гц), 3.68 т (4H, OCH₂, ³*J*7.2 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 13.66 (CH₃), 22.76 (CH₂), 23.05 (CH₂), 24.30 (CH₂), 32.86 (SeCH₂), 71.29 (OCH₂). Спектр ЯМР ⁷⁷Se: $\delta_{\rm Se}$ 141.92 м. д.

1,1'-[Оксибис(этан-2,1-диилселанилдиил)]бис(2-метилпропан) (5е). ИК спектр, v, см⁻¹: 2956, 2926, 2892, 2867, 1475, 1462, 1451, 1425, 1416, 1404, 1381, 1364, 1355, 1333, 1316, 1291, 1277, 1218, 1187, 1181, 1105, 1088, 1059, 1032, 986, 956, 942, 922, 838, 808, 794, 771, 745, 686, 665, 653, 613, 582, 573, 560, 552. Спектр ЯМР ¹H, δ , м. д.: 0.98 д (12H, (CH₃)₂, *J* 6.6 Гц), 1.77–1.86 м (2H, CH), 2.50 д (4H, CH₂, *J* 6.5 Гц), 2.68 т (4H, SeCH₂, ³*J* 7.0 Гц), 3.65 т (4H, OCH₂, ³*J* 7.0 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 22.67 (CH₃), 23.38 (CH₂), 29.47 (CH₂), 34.70 (SeCH₂), 71.25 (OCH₂). Спектр ЯМР ⁷⁷Se: $\delta_{\rm Se}$ 114.45 м. д.

1,1'-[Оксибис(этан-2,1-диилселанилдиил)]дигексан (5ж). ИК спектр, v, см⁻¹: 2956, 2926, 2869, 2855, 1475, 1465, 1459, 1429, 1420, 1405, 1378, 1353, 1293, 1276, 1252, 1235, 1106, 1088, 1054, 1032, 987, 956, 934, 913, 890, 850, 796, 778, 748, 725, 715, 647, 687, 672, 665, 571, 565, 560, 553. Спектр ЯМР ¹H, δ, м. д.: 0.86–0.90 м (6H, CH₃), 1.26–1.33 м (8H, CH₂), 1.34–1.38 м (4H, CH₂), 1.58– 1.68 м (4H, CH₂), 2.58 т (4H, CH₂, ³J 7.5 Гц), 2.70 т (4H, SeCH₂, ³J 7.2 Гц), 3.67 т (4H, OCH₂, ³J 7.3 Гц). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 14.08 (CH₃), 22.60 (CH₂), 22.75 (CH₂), 24.63 (CH₂), 29.63 (CH₂), 30.72 (CH₂), 31.41 (SeCH₂), 71.27 (OCH₂). Спектр ЯМР ⁷⁷Se: $\delta_{\rm Se}$ 140.71 м. д.

Дициклогексилдиселенид (6а). К раствору гидроксида К/Na и гидразингидрата при перемешивании в атмосфере аргона порциями прибавляли порошок элементного селена, мольное соотношение реагентов KOH/NaOH:N₂H₄·H₂O:Se = 1:1:1. После полного растворения селена смесь перемешивали 1 ч при 90°С, затем охлаждали и добавляли эквимольное количество циклогексилбромида. Смесь нагревали в течение 5 ч при 80°С, затем охлаждали до комнатной температуры. Продукты реакции экстрагировали диэтиловым эфиром. Экстракт промывали водой и сушили безводным хлоридом кальция. Растворитель удаляли, остаток перегоняли в вакууме. Спектр ЯМР ¹Н, б, м. д.: 1.29-1.35 м, 1.46-1.48 м 1.74-1.79 м, 2.07-2.10 м. Спектр ЯМР ¹³С, δ_С, м. д.: 43.52, 34.69, 27.04, 25.74. Спектр ЯМР ⁷⁷Se: δ_{Se} 367.87 м. д.

Общая методика получения соединений 7а, б. Смесь 20%-ного раствора гидроксида К/Na в гидразингидрате и диорганилдиселенида ба или бб (мольное соотношение реагентов КОН/NaOH: $R_2Se_2 = 5:1$) нагревали при перемешивании 4 ч при 90°C в атмосфере аргона, затем охлаждали до комнатной температуры и по каплям добавляли эквимольное количество эфира 1, после чего снова нагревали в течение 2 ч при 90°C и охлаждали до комнатной температуры. Продукт реакции экстрагировали диэтиловым эфиром. Экстракт промывали водой и сушили безводным хлоридом кальция. Растворитель удаляли, остаток перегоняли в вакууме.

1,1'-[Оксибис(этан-2,1-диилселанилдиил)]дициклогексан (7а). ИК спектр, *v*, см⁻¹: 2970, 2927, 2850, 1474, 1459, 1447, 1459, 1421, 1350, 1338, 1291, 1274, 1257, 1182, 1106, 1087, 1052, 1029, 1009, 993, 915, 986, 957, 934, 884, 863, 852, 780, 746, 810, 696, 660, 684, 672, 665, 573, 566, 558, 555. Спектр ЯМР ¹Н, δ, м. д.: 1.38–1.20–1.27 м (4H), 1.43 м (8H), 1.64–1.69 м (8H), 1.93–1.96 м (2H, Cy), 2.63–2.68 м (4H, SeCH₂), 3.57–3.62 м (4H, OCH₂). Спектр ЯМР ¹³С, δ_C, м. д.: 21.2, 25.75, 26.80, 34.65 (Су), 38.95 (SeCH₂), 71.41 (OCH₂). Спектр ЯМР ⁷⁷Se: δ_{Se} 242.07 м. д.

1,1'-[Оксибис(этан-2,1-диилселанилдиилметандиил)]дибензол (76). ИК спектр, v, см⁻¹: 3099, 3081, 3059, 3025, 3002, 2968, 2928, 2855, 1600, 1583, 1493, 1452, 1472, 1420, 1402, 1353, 1334, 1318, 1293, 1276, 1215, 1180, 1156, 1104, 1087, 1069, 1029, 988, 935, 912, 841, 801, 758, 697, 733, 666, 625, 609, 568, 553. Спектр ЯМР ¹H, δ , м. д.: 2.60 т (4H, SeCH₂, ³*J* 7.0 Гц), 3.69 т (4H, OCH₂, ³*J* 7.1 Гц), 3.79 т (4H, CH₂Ph, ³*J* 7.0 Гц), 7.24–7.29 м (10H, Ph). Спектр ЯМР ¹³С, $\delta_{\rm C}$, м. д.: 22.84 (SeCH₂), 27.47 (CH₂Ph), 70.98 (OCH₂); 139.32, 128.90, 128.51, 126.75 (Ph). Спектр ЯМР ⁷⁷Se: $\delta_{\rm Se}$ 235.93 м. д.

1,1'-[Оксибис(этан-2,1-диилселанилдиил)]дибензол (8). К смеси селенофенола и гидроксида К/Na в 95%-ном этаноле (мольное соотношение реагентов КОН/NaOH:PhSeH = 1.1:1) при перемешивании медленно, в течение 30 мин, прибавляли по каплям эквимольное количество эфира 1 в атмосфере аргона. Полученную смесь нагревали в течение 1 ч при 80°С, затем охлаждали. Продукт реакции экстрагировали диэтиловым эфиром. Экстракт промывали водой и сушили безводным хлоридом кальция. Растворитель удаляли, остаток перегоняли в вакууме. ИК спектр, v, см⁻¹: 3069, 3055, 3032, 3014, 2996, 2979, 2935, 2860, 1578, 1477, 1437, 1458, 1421, 1405, 1354, 1327, 1298, 1274, 1223, 1197, 1180, 1157, 1103, 1088, 1073, 1022, 999, 1056, 1033, 987, 955, 934, 912, 899, 838, 735, 691, 670, 615, 566, 553. Спектр ЯМР ¹Н, б, м. д.: 3.05 т (4H, SeCH₂, ³J 7.1 Гц), 3.69 т (4H, OCH₂, ³J 7.1 Гц), 7.27-7.54 м (10Н, Рh). Спектр ЯМР ¹³С, δ_C, м. д.: 22.84 (SeCH₂), 70.38 (OCH₂); 132.82, 129.85, 129.18, 127.11 (Ph). Спектр ЯМР ⁷⁷Se: δ_{Se} 269.09 м. д.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Безбородов Виктор Александрович, ORCID: https://orcid.org/0000-0002-8363-5698

Бабенко Илья Аркадьевич, ORCID: https://orcid. org/0000-0002-8754-1357

Быков Михаил Валерьевич, ORCID: https:// orcid.org/0000-0003-0899-8760

Вильмс Алексей Иванович, ORCID: https:// orcid.org/0000-0002-1698-1160

БЛАГОДАРНОСТЬ

Исследование выполнено с использованием оборудования Центра коллективного пользования Иркутского государственного университета и Байкальского центра коллективного пользования СО РАН.

ФИНАНСОВАЯ ПОДДЕРЖКА

Исследование выполнено в рамках базовой части государственного задания в сфере научной деятельности Министерства образования и науки России (соглашение № 075-03-2020-176/3; код проекта в Парусе 8: FZZE-2020-0022).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Дерягина Э.Н., Руссавская Н.В., Паперная Л.К., Леванова Е.П., Сухомазова Э.Н., Корчевин Н.А. // Изв. АН. Сер. хим. 2005. № 11. С. 2395; Deryagina E.N., Russavskaya N.V., Papernaya L.K., Levanova E.P., Sukhomazova E.N., Korchevin N.A. // Russ. Chem. Bull. 2005. Vol. 54. N 11. P. 2473. doi 10.1007/S11172-006-0143-0
- Корчевни Н.А., Руссавская Н.В., Алекминская О.В., Дерягина Э.Н. // ЖОХ. 2002. Т. 72. № 2. С. 270; Korchevin N.A., Russavskaya N.V., Alekminskaya O.V., Deryagina E.N. // Russ. J. Gen. Chem. 2002. Vol. 72. N 2. P. 240. doi 10.1023/A:1015425702523
- Вшивцев В.Ю., Леванова Е.П., Грабельных В.А., Клыба Л.В., Жанчипова К.Р., Сухомазова Э.Н., Татаринова А.А., Албанов А.М., Руссавская Н.В., Корчевин Н.А. // ЖОрХ. 2008. Т. 44. № 1. С. 50; Vshivtsev V.Yu., Levanova E.P., Grabel'nykh V.A., Klyba L.V., Zhanchipova E.R., Sukhomazova E.N., Tatarinova A.A., Albanov A.I., Russavskaya N.V., Korchevin N.A. // Russ. J. Org. Chem. 2008. Vol. 44. N 1. P. 43. doi 10.1134/S1070428008010053
- Baker P.K., Clark A.I., Coles S.J., Hursthouse M.B., Richards R.L. // J. Organomet. Chem. 1996. Vol. 518. P. 235. doi 10.1016/0022-328X(96)06164-5
- Baker P.K., Clark A.I., Drew M.G.B., Durrant M.C., Richards R.L. // Polyhedron. 1998. Vol. 17. N 9. P. 1407. doi 10.1016/S0277-5387(97)00423-3

- Baker P.K., Clark A.I., Coles S.J., Drew M.G.B., Durrant M.C., Hursthouse M.B., Richards R.L. // J. Chem. Soc. Dalton Trans. 1998. P. 1281. doi 10.1039/ A708648B
- Connolly J., Genge A.R.J., Levason W., Orchard S.D., Popem S.J.A., Reid G. // J. Chem. Soc. Dalton Trans. 1999. P. 2343. doi 10.1039/A902820J
- Siclovan O.P., Angelici R.J. // Inorg. Chem. 1998.
 Vol. 37. N 3. P. 432. doi 10.1021/ic970670e
- Cho S.-Y., Mochida T. // Inorg. Chem. 2020. Vol. 59. N 1. P. 847. doi 10.1021/acs.inorgchem.9b03108
- McGuinness D.S., Wassercaheid P., Keim W., Morgan D., Dixon J.T., Bollmann A., Maumela H., Hess F., Englert U. // J. Am. Chem. Soc. 2003. Vol. 125. N 18. P. 5272. doi 10.1021/ja034752f
- Mohamadnia Z., Ahmadi E., Haghighi M.N., Salehi-Mobarakeh H. // Catal. Lett. 2011. Vol. 141. N 3. P. 474. doi 10.1007/s10562-010-0492-z
- Ahmadi E., Mohamadnia Z., Haghighi M.N. // Catal. Lett. 2011. Vol. 141. N 8. P. 1191. doi 10.1007/s10562-011-0594-2
- 13. Беспалова Н.Б., Чередилин Д.Н., Козлова Г.А., Дудин А.В., Афанасьев В.В. Пат РФ 2470707 (2012).
- Леванова Е.П., Вильмс А.И., Безбородов В.А., Бабенко И.А., Сосновская Н.Г., Истомина Н.В., Албанов А.И., Руссавская Н.В., Розенцвейг И.Б. // ЖОХ. 2017. Т. 87. № 3. С. 387; Levanova E.P., Vilms A.I., Bezborodov V.A., Babenko I.A., Sosnovskaya N.G., Istomina N.V., Albanov A.I., Russavskaya N.V., Rozentsveig I.B. // Russ. J. Gen. Chem. 2017. Vol. 87. N 3. P. 396. doi 10.1134/S1070363217030069
- Bezborodov V., Babenko I., Rozentsveig I., Korchevin N., Levanova E., Smirnov V., Borodina T., Saraev V., Vilms A. // Polyhedron. 2018. Vol. 151. P. 287. doi 10.1016/j.poly.2018.05.053
- Вильмс А.И., Безбородов В.А., Бабенко И.А., Розенцвейг И.Б., Леванова Е.П., Корчевин Н.А., Белов Г.П. Пат РФ 2683565 (2019).

Synthesis of Polydentate Selenium-Containing Derivatives of Bis(2-chloroethyl) Ether

V. A. Bezborodov^{*a*}, I. A. Babenko^{*a*,*}, M. V. Bykov^{*a*}, G. V. Ratovskii^{*a*}, N. I. Borodin^{*a*}, I. A. Ushakov^{*b*}, and A. I. Vilms^{*a*}

^a Irkutsk State University, Irkutsk, 664003 Russia ^b A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033 Russia *e-mail: legatt112@yandex.ru

Received June 22, 2022; revised July 9, 2022; accepted July 10, 2022

Organoselenium derivatives of bis(2-chloroethyl) ether of general formula $(RSeCH_2CH_2)_2O$ (R = Me, Et, Pr, *i*-Pr, Bu, *i*-Bu, C₆H₁₃, Cy, Bn, Ph) were synthesized. The products are potential electron-donating polydentate ligands for the synthesis of transition metal complexes, as well as the components of catalytic systems in the reactions of oligomerization of ethylene.

Keywords: selenium, organoselenium compounds, polydentate ligands, bis(2-chloroethyl) ether

УДК 546.98

ИЗОЦИАНИДФОСФИНОВЫЕ КОМПЛЕКСЫ ДИГАЛОГЕНИДОВ ПАЛЛАДИЯ(II): СИНТЕЗ, СТРУКТУРА И УСТОЙЧИВОСТЬ В РЕАКЦИЯХ ЛИГАНДНОГО ДИСПРОПОРЦИОНИРОВАНИЯ

© 2022 г. Г. А. Гаврилов^{*a*}, М. А. Кинжалов^{*a*,*}

^а Санкт-Петербургский государственный университет, Университетская наб. 7–9, Санкт-Петербург, 190034 Россия *e-mail: m.kinzhalov@spbu.ru

> Поступило в редакцию 10 сентября 2022 г. После доработки 14 октября 2022 г. Принято к печати 16 октября 2022 г.

Изучено строение изоцианидфосфиновых комплексов дигалогенидов палладия(II) $[PdX_2(CNR)(PPh_3)]$ (X = Cl, Br, I; R = ^tBu, Xyl, Mes) в растворе CDCl₃ и твердой фазе, а также их устойчивость в реакциях *цис/транс*-изомеризации и лигандного диспропорционирования. Изоцианидфосфиновые комплексы хлорида, бромида и иодида палладия(II) в кристалле принимают *цис*-конфигурацию. В растворе изоцианидфосфиновые комплексы хлорида и бромида палладия(II) существуют преимущественно в *цис*-конфигурации. Они устойчивы к лигандному диспропорционированию и могут быть получены смешением эквивалентных количеств соответствующих бисизоцианидных и бисфосфиновых комплексов. Напротив, смешанно-лигандные изоцианидфосфиновые комплексы иодида палладия в растворе быстро образуют смесь цис- и транс-изомеров, а также бисизоцианидных и бисфосфиновых комплексов.

Ключевые слова: комплексы палладия, изоцианиды, фосфины

DOI: 10.31857/S0044460X22110129, EDN: LOLLXJ

Изоцианидные комплексы металлов платиновой группы успешно используются в качестве катализаторов процессов тонкого органического синтеза [1–18], при создании люминесцирующих материалов [19–29] и в супрамолекулярной химии [30-35]. Кроме того, изоцианидные комплексы служат прекурсорами в синтезе N-гетероциклических [36, 37], ациклических [38-42] и металло-N-гетероциклических [11, 43-47] аминокарбеновых комплексов. Особый интерес представляют комплексы со смешанным лигандным окружением, содержащие наряду с изоцианидными дополнительные вспомогательные нейтральные лиганды, например, такие как фосфины – в этом случае появляется возможность проводить тонкую настройку электронных и пространственных характеристик по заданным параметрам [48]. В частности, на основе изоцианидфосфиновых комплексов платины(II) предложены каталитические системы реакций гидроарилирования [49] и гидросилилирования [50], а также фотолюминесцентные материалы [50, 51], в то время как изоцианидфосфиновые комплексы палладия(II) использованы в качестве супрамолекулярных синтонов [34].

Ранее мы показали, что соединения типа [PdCl₂(CNR)(PPh₃)] в твердой фазе и в растворе существуют в *цис*-конфигурации и термодинамически устойчивы к лигандному диспропорционированию и изомеризации [34, 52]. В литературе отсутствуют сведения о изоцианидфосфиновых комплексах дибромида и диодида палладия(II), поэтому остаются открытыми вопросы о геометрии таких комплексов в растворе и кристалле и о возможном лигандном диспропорционирований на

R = t-Bu (a), Xyl (6), Mes (B).

бисфосфиновый и бисизоцианидный комплексы. В данной работе мы приводим данные по синтезу изоцианидфосфиновых комплексов дигалогенидов палладия(II) *cis*-[PdX₂(CNR)(PPh₃)] (X = Cl, Br, I; R = ^{*i*}Bu, Xyl, Mes), установлению структуры в растворе (спектроскопия ЯМР ¹H, ¹³C{¹H, ³¹P}, ³¹P{¹H} и корреляционная спектроскопия ЯМР ¹H–¹H NOESY) и твердой фазе (PCA), а также изучению устойчивости в реакциях изомеризации и лигандного диспропорционирования.

Добавление стехиометрического количества изоцианида к суспензии димера [PdCl₂(PPh₃)]₂ в дихлорметане приводит к растворению димера и образованию смешанно-лигандных изоцианидфосфиновых комплексов cis-[PdCl₂(CNR)(PPh₃)] 1а-в, которые выделены с хорошими выходами (92-98%) в качестве единственного продукта (схема 1). Наличие в спектрах ЯМР 1 H, 13 C{ 1 H, 31 P}, 31 P{ 1 H} раствора в $CDCl_3$ ранее не описанного соединения 1в одного набора сигналов свидетельствует о нахождении в растворе только одного изомера и согласуется с данными для других соединений типа cis-[PdCl₂(CNR)(PPh₃)] [34, 52]. Используя метод корреляционной спектроскопии ЯМР ¹Н-¹Н NOESY (подробное обсуждение приведено в следующем разделе), удалось установить, что соединение 1в в растворе существует в цис-конфигурации. В твердой фазе цис-геометрия комплекса 1в установлена методом РСА; иис-конфигурация в кристалле также наблюдается и у ранее описанных соединений [PdCl₂(CNR¹)(PR²₃)] [34, 52–60]. Продолжительное нагревание раствора комплекса **1в** в CDCl₃ (50°C, 20 сут) не приводит к видимым изменениям в спектрах ЯМР ¹H, ¹³C{¹H, ³¹P}, ³¹P{¹H}, что свидетельствует об отсутствии *цис/транс*-изомеризации, характерной для бисизоцианидных [30, 61] и бисфосфиновых [62] комплексов хлорида палладия(II).

Изоцианидфосфиновые комплексы дибромида палладия(II) cis-[PdBr₂(CNR)(PPh₃)] [R = t Bu (**2a**), Xyl (26), Mes (2в)] синтезированы по обменной реакции между комплексами дихлорида палладия(II) и бромидом калия (схема 1). В спектрах ЯМР ¹Н аналитически чистых образцов комплексов 2а-в обнаружены все сигналы, соответствующие предполагаемой структуре, а именно сигналы атомов водорода изоцианидного и трифенилфосфинового лигандов. Используя метод корреляционной спектроскопии ЯМР ¹Н-¹Н NOESY, на примере соединения 2в удалось установить, что сигналы соответствуют смешанно-лигандным комплексам [PdBr₂(CNR)(PPh₃)] в *цис*-конфигурации. В твердой фазе иис-геометрия комплексов 2а-в установлена методом РСА.

Однако помимо интенсивных сигналов, отнесенных к *cis*-[PdBr₂(CNR)(PPh₃)], в спектрах соединений **2а**–в присутствует набор минорных сигналов (интенсивность минорных сигналов со-

ставляет около 5% от интенсивности сигналов cis-[PdBr₂(CNR)(PPh₂)]). Набор сигналов минорного компонента может соответствовать другому геометрическому изомеру или продуктам лигандного диспропроционирования, а именно trans-[PdBr₂(CNR)₂] и trans-[PdBr₂(PPh₃)₂]. Для ответа на этот вопрос произведено сравнение химических сдвигов минорного компонента с данными для trans-[PdBr₂(CNR)₂] и установлено, что минорные сигналы в спектрах комплексов 2а-в не соответствуют сигналам trans-[PdBr₂(CNR)₂]. Таким образом, можно заключить, что минорным компонентом является транс-изомер смешанно-лигандного комплекса дибромида палладия. В спектрах ЯМР ${}^{31}P{}^{1}H{}$ комплексов **2а–в** также присутствуют основной и минорный сигналы (интенсивность минорного сигнала около 5%). Основные сигналы имеют б_р 27 м. д., что является типичной областью для сигналов атомов фосфора в cis-[PdCl₂(CNR) (PPh₃)], поэтому их можно приписать сигналам атомов фосфора в cis-[PdBr₂(CNR)(PPh₃)]. Минорные сигналы с бр 24 м. д. не принадлежат *trans*-[PdBr₂(PPh₃)₂] (б_Р 22 м. д. [63]) и могут быть отнесены к trans-[PdBr₂(CNR)(PPh₃)]. Продолжительное нагревание растворов соединений 2а-в в CDCl₃ (50°C, 5 сут) не приводит к видимым изменениям в спектрах ЯМР ¹H, ${}^{13}C{}^{1}H$, ${}^{31}P{}$, ${}^{31}P{}^{1}H{}$.

Для подтверждения предположения о термодинамическом характере смешанно-лигандных изоцианидфосфиновых комплексов бромида палладия(II) исследовано взаимодействие trans-[PdBr₂(CNMes)₂] **Зв** с *trans*-[PdBr₂(PPh₃)₂]. Взаимодействие эквимолярных количеств комплекса **Зв** с *trans*-[PdBr₂(PPh₃)₂] в CDCl₃ протекает при комнатной температуре в течении суток и, по данным спектроскопии ЯМР ${}^{1}H$, ${}^{31}P{}^{1}H$, приводит к образованию такой же смеси цис- и транс-изомеров 2в, как в случае растворения аналитически чистого комплекса 2в. Соответственно, соединения **2а-в** претерпевают *цис/транс*-изомеризацию в растворе CDCl₃ (равновесная смесь содержит более 95% иис-изомера) и устойчивы к реакции лигандного диспропорционирования.

Геометрическая конфигурация бисизоцианидных и бисфосфиновых комплексов дигалогенидов палладия(II) полностью определяется анионным лигандом и остается неизменной при варьировании заместителей. Изоцианиды и фосфины – лиганды с высоким транс-влиянием, поэтому для их комплексов предпочтительна иис-геометрия [50, 64], которая и наблюдается в случае хлоридных производный. Для соединений с более объемными бромидными лигандами стерические взаимодействия превалируют над электронными эффектами, поэтому комплексы бромида палладия(II) [PdBr₂(CNR)₂] [30–32, 65, 66] и [PdBr₂(PAr₃)₂] [67-69] в твердой фазе находятся в транс-форме. В растворе как бисизоцианидные [PdBr₂(CNR)₂] [30], так и бисфосфиновые [PdBr₂(PAr₃)₂] [70] комплексы бромида палладия(II) почти нацело присутствуют в виде транс-изомера, находящегося в равновесии с небольшим колличеством цис-изомера. В случае смешанно-лигандных изоцианидфосфиновых комплексов бромида палладия(II) объяснить наблюдаемую иис-геометрию можно, анализируя донорные и стерические факторы. С одной стороны, фосфиновые лиганды обладают большей донорной способностью по сравнению с изоцианидными [71], что должно приводить к стабилизации цис-изомера при переходе от бисизоцианидным к смешанолигандным изоцианидфосфиновым комплексам. С другой стороны, изоцианидные лиганды обладают меньшим стерическим объемом по сравнению с фосфиновыми, что должно приводить к стабилизации иис-изомера при переходе от бисфосфиновых к смешанно-лигандным изоцианидфосфиновым комплексам.

Проведение обменной реакции между комплексами 1а-в и иодидом калия приводит к кристаллическому образцу, содержащему несколько типов кристаллов. Исследованием некоторых из них методом РСА показали присутствие в смеси trans-[PdI₂(PPh₃)₂] и trans-[PdI₂(CNR)₂]; в случае комплекса с трет-бутильным заместителем также обнаружено несколько кристаллов смешанно-лигандного комплекса cis-[PdI₂(CN^tBu)(PPh₂)] 4a, пригодного для изучения методом РСА. В спектрах ЯМР ¹Н и ³¹Р{¹H} растворов поликристаллических образцов присутствует несколько наборов сигналов. Часть из наблюдаемых сигналов на основе значений химического сдвига может быть отнесена к trans-[PdI₂(PPh₃)₂] [63, 72, 73] и trans-[PdI₂(CNR)₂], оставшиеся сигналы, вероятно, соответствуют цис- и транс-изомерам смешан-

Рис. 1. Общий вид молекул комплексов **1B** (а) и **2B** (б) в кристалле (молекулы растворителей опущены для большей наглядности изображения).

но-лигандных комплексов [PdI₂(CN^{*t*}Bu)(PPh₃)]. Взаимодействие эквимолярных количеств *trans*-[PdI₂(CNMes)₂] **5**в и *trans*-[PdI₂(PPh₃)₂], растворенных в CDCl₃, приводит к аналогичным спектрам ЯМР ¹Н и ³¹Р {¹H}, как и зарегистрированные для продуктов обменной реакции. Таким образом, смешанно-лигандные комплексы иодида палладия [PdI₂(CNR)(PPh₃)] в растворе CDCl₃ претерпевают как *цис/транс*-изомеризацию, так и лигандное диспропорционирование.

Соединения выделены в виде бледно-желтых (1а–в), желтых (2а–в, 3в) и темно-красных (5в) мелкокристаллических порошков и охарактеризованы с помощью масс-спектрометрии высокого разрешения с электрораспылительной ионизациоей, ИК, ЯМР ¹H, $^{13}C\{^{1}H, ^{31}P\}, ^{31}P\{^{1}H\}$ спектроскопии. Структура комплексов 1в, 2а–в, 3в, 4а и 5в в твердой фазе также дополнительно подтверждена методом РСА.

Масс-спектры комплексов **1в**, **2а–в**, **3в** и **5в** содержат пики, соответствующие иону $[M + Na]^+$, а также продуктам фрагментации с отщеплением галогенид-аниона $[M - X]^+$. Пики имеют характерное изотопное распределение, что указывает на содержание атомов палладия и галогенов в ионах, соответствующее предложенной структуре. В ИК спектрах соединений **1в**, **2а–в**, **3в** и **5в** присутствует только одна полоса v(C=N), максимум поглощения которой расположен в области 2200–2250 см⁻¹. Применение метода спектроскопии ЯМР ¹Н–¹Н NOESY для комплексов **1в** и **2в** позволило установить их пространственную структуру в растворе. В обоих случаях в спектрах ЯМР ¹Н–¹Н NOESY наблюдаются кросс-пики между *орто*-метильными заместителями мезитильных колец изоцианидного лиганда и СН-протонами фенильных колец фосфинового лиганда. Наличие ядерного эффекта Оверхаузера между ними свидетельствует об их близком пространственном расположении, и, следовательно, комплексы **1в** и **2в** имеет *цис*-геометрию в растворе.

В спектрах ЯМР ³¹Р{¹H} комплекса **1в** наблюдается только один сигнал с химическим сдвигом при 28.65 м. д., что свидетельствует о существовании данного комплекса в растворе только в одной форме. Для комплексов **2а–в** в спектрах ЯМР ³¹Р{¹H} наблюдается набор сигналов (основной сигнал лежит в области 26.08–27.05 м. д.), из чего следует, что в растворе изоцианидфосфиновых комплексов бромида паллладия(II) наблюдается устойчивое равновесие с преобладанием *цис*-изомера.

Для доказательства структуры комплексов 1в, 2а-в, 3в, 4а и 5в в твердой фазе использован метод РСА (рис. 1–3). Значения некоторых длин связей и валентных углов в комплексах приведены в табл. 1.

Рис. 2. Общий вид молекулы комплекса 3в в кристалле.

Согласно данным РСА, соединения кристаллизуются в моноклинной $[P2_1/n$ (2a, 3b, 4a, 5b), C2/c (2b)] и триклинной [P-1 (1b, 2б)] сингонии. Элементарная ячейка комплекса 26 содержит 2 кристаллографически независимые молекулы комплекса (нумерация для атомов однотипная, с использованием знака «'» для атомов второй молекулы). Основа кристаллической стуктуры веществ 1b и 2b кроме металлокомплекса содержит также молекулы растворителя CH_2Cl_2 (1b· CH_2Cl_2) и Et_2O (2b· Et_2O).

Координационные многогранники в молекулярных структурах имеют типичную плоскоква-

Рис. 3. Общий вид молекулы комплекса 4а в кристалле.

дратную геометрию, степень искажения которой можно оценить, рассчитав геометрический индекс т [74]:

$$\tau = \frac{360^\circ - (\alpha + \beta)}{141^\circ},$$

где α и β – наибольшие углы в четыехкоодинированном комплексе.

При $\tau = 0$ геометрия будет соотвествовать идеальному плоскому квадрату; при $\tau = 1$ – идеальному тетраэдеру. В структурах **1в**, **2а**–**в**, **3в**, **4а** и **5в** геометрический индекс τ имеет значения в ди-

N⁰	d, Å					Угол, град		_
	Pd–P	Pd–C	C≡N	Pd–X ¹	Pd–X ²	Pd–C≡N	C≡N–C	τ_4
1в	2.2583(5)	1.939(2)	1.146(3)	2.3504(5)	2.3068(5)	171.45(18)	175.0(2)	0.03
2a	2.2672(9)	1.945(4)	1.140(5)	2.4675(4)	2.4432(4)	177.1(3)	175.8(4)	0.02
26 ^a	2.2804(15)	1.943(6)	1.144(8)	2.4662(7)	2.4316(7)	176.8(5)	174.1(6)	0.08
	2.2857(14)	1.957(6)	1.135(8)	2.4712(7)	2.4265(7)	174.5(5)	172.9(6)	0.09
2в	2.2795(6)	1.929(2)	1.154(3)	2.4820(3)	2.4411(3)	179.5(2)	176.8(3)	0.02
4 a	2.2792(11)	1.951(5)	1.138(6)	2.6267(4)	2.6038(4)	176.7(4)	173.0(4)	0.03
3в	_	1.966(4),	1.141(5),	2.4185(4)	2.4185(4)	176.8(3),	176.6(4),	0.02
		1.966(4)	1.141(5)			176.8(3)	176.6(4)	
5в	_	1.959(3),	1.152(4),	1.959(3)	1.959(3)	177.1(3),	175.8(4),	0.00
		1.959(3)	1.152(4)			177.1(3)	175.8(4)	

Таблица 1. Значения геометрического индекса τ_4 и некоторых длин связей и валентных углов в комплексах 2–5

^а Элементарная ячейка комплекса 26 содержит 2 кристаллографически независимые молекулы.

апазоне 0.00–0.09, что указывает на практически неискаженную плоскоквадратную геометрию. Во всех случаях атомы галогенидных лигандов находятся в *цис*-расположении друг к другу.

В комплексах **1в**, **2а–в** и **4а**, связи Pd–Hlg с галогенидными лигандами в *транс*-положении к трифенилфосфину длиннее (2.3504–2.6267 Å), чем с галогенидными лигандами в *транс*-положении к изоцианиду (2.3068–2.6038 Å), что связано с большим *транс*-влиянием фосфинового лиганда по сравнению с изоцианидными [50]. Значения длин связей С≡N являются типичными для изоцианидных комплексов палладия(II) [4, 30, 75–84] (табл. 1).

Таким образом, изучено строение комплексов дигалогенидов палладия(II) в кристалле и расторе. Показано, что изоцианидфосфиновые комплексы галогенидов палладия(II) в кристалле принимают *цис*-конфигурацию. В растворе изоцианидфосфиновые комплексы хлорида и бромида палладия(II) существуют в *цис*-конфигурации и в отличие от смешанно-лигандных изоцианидфосфиновых комплексов иодида палладия устойчивы к лигандному диспропорционированию и могут быть получены из эквивалентной смеси соответствующих бисизоцианидных и бисфосфиновых комплексов.

Обнаруженные данные являются важными для уставновления строения ключевых интемидиатов в металлокатализируемых реакциях с использованием изоцианидов в качестве C1-синтонов. Большинство из имеющихся имеющихся на сегоднешний день каталитических систем тонкого органического синтеза реакций с участием изоцианидов основано на использовании солей палладия(II) и третичного фосфина в качестве со-катализатора [60, 85–93], причем в ряде из них каталитический цикл включает промежуточное образование ациклических диаминокарбеновых комплексов палладия(II) [86]. Выявленные закономерности могут быть использованы в рациональном дизайне новых высокоэффективных катализаторов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали коммерческие реактивы и растворители (Aldrich, Вектон) без дополнительной очистки, кроме CH₂Cl₂, который предварительно осушали перегонкой над P₂O₅. Комплексы [PdCl₂(PPh₃)]₂ [94], [PdCl₂(CNMes)₂] [95], синтезировали по литературным методикам.

Элементный анализ (C,H,N) проведен на элементном анализаторе Euro EA3028-HT. Масс-спектрометрический анализ проведен на спектрометре Bruker micrOTOF (Bruker Daltonics) с ионизацией электрораспылением. Растворитель – метанол. Значения m/z приведены для сигналов изотопологов с наибольшим содержанием. Инфракрасные спектры записаны на ИК Фурье-спектрометре Shimadzu IRAffinity-1 (4000–400 см⁻¹, KBr). Спектры ЯМР ¹H, ¹³С {¹H, ³¹P} и ³¹P {¹H} зарегистрированы на спектрометре Bruker Avance II+ при комнатной температуре, растворитель – CDCl₃.

Рентгеноструктурный анализ комплексов 1в (CCDC 1568480), 2a (CCDC 2212305), 26 (CCDC 2212306), 2B (CCDC 1568481), 3B (CCDC 2212302), 5в (ССDС 2212304) и 4а (ССDС 2212307) выполняли на дифрактометре Xcalibur, Eos. Измерения проводили при 100 К с использованием монохроматического МоК_α-излучения (λ 0.71073 нм) и СиК_а-излучения (λ 1.54184 нм). Структуры расшифрованы прямыми методами и уточнены в анизотропном приближении для всех неводородных атомов с использованием программы SHELX [96]. встроенной в комплекс OLEX2 [97]. Поправка на поглошение введена в программном комплексе CrysAlisPro эмпирически с помощью сферических гармоник, реализованных в алгоритме шкалирования SCALE3 ABSPACK [98]. Атомы водорода уточнены в расчетных позициях.

Общая методика получения комплексов 1а–в. К суспензии $[PdCl_2(PPh_3)]_2$ (46 мг, 0.05 ммоль) в CH_2Cl_2 (2 мл) по каплям добавляли раствор соответствующего изоцианида (0.10 ммоль) в CH_2Cl_2 (2 мл). Полученный желтый раствор фильтровали через складчатый фильтр, фильтрат упаривали досуха при 20–25°С и пониженном давлении. Образовавшийся бледно-желтый порошок 1а–виспользовали без дополнительной очистки. Спектры ЯМР ¹Н и ³¹Р {¹H} соединений 1а [52] и 16 [53] совпадают с литературными данными.

[PdCl₂(CNMes)(PPh₃)] (1в). Выход 56 мг (96%), бледно-желтый мелкокристаллический порошок. ИК спектр, v, см⁻¹: 3047 с, 2925 с (С–Н); 2201 с (С≡N). Спектр ЯМР ¹Н, δ, м. д.: 1.98 с (6H, *o*-CH₃), 2.26 с (3H, *n*-CH₃), 6.76 с (2H, *м*-H, Mes), 7.38–7.46 м (6H, м-H, Ph), 7.47–7.54 м (3H, n-H, Ph), 7.70– 7.80 м (6H, *o*-H, Ph). Спектр ЯМР ¹³С{³¹P, ¹H}, δ_C, м. д.: 18.11 (о-СН₃), 21.25 (л-СН₃), 128.60 (м-СН, Mes), 128.71 (*m*-CH, Ph), 129.26 (C–P, Ph), 131.78 (n-CH, Ph), 134.41 (o-CH, Ph), 135.41 (o-C, Mes), 140.76 (*n*-C, Mes). Сигналы С≡N–С не детектированы. Спектр ЯМР ³¹Р{¹H}: б_Р 28.65 м. д. Массспектр, m/z: 548.0542 [M - Cl]⁺ (вычислено для С₂₈Н₂₆NClPPd⁺: 548.0534). Найдено, %: С 57.36; Н 4.46; N 2.35. С₂₈Н₂₆NCl₂PPd. Вычислено, %: С 57.51; Н 4.48; N 2.40. Параметры рентгеноструктурного анализа: C₂₉H₂₈Cl₄NPPd, *M* 669.69, сингония триклинная, пространственная группа Р-1, а 11.1509(4), b 11.4211(4), c 12.1276(4) Å, a 88.581(3), β 77.082(3), γ 75.036(3)°, V 1453.48(10) Å³, Z 2, *d*_{выч} 1.530 г/см³, µ 1.081 мм⁻¹, размер кристалла 0.2×0.2×0.2 мм, всего отражений – 23601, независимых отражений с $I > 2\sigma(I) - 6661 \ (R_{int} \ 0.0325),$ $R_I(|F_0| \ge 4\sigma_F)/R_1$ (все данные) = 0.0250/0.0315, wR_2 $(|F_{\rm o}| \ge 4\sigma_{\rm F})/wR_2$ (все данные) = 0.0535/0.0573, $\rho_{\rm max}/$ $\rho_{\rm min} = 0.54 / -0.52 \ e/{\rm \AA}^3$.

Общая методика синтеза комплексов 2а–в. К раствору комплекса 1а–в (0.05 ммоль) в ацетоне (5 мл) добавляли твердый КВг (59.5 мг, 0.5 ммоль). Полученную суспензию перемешивали в течение 4 сут, затем упаривали досуха при 20–25°С и пониженном давлении. Продукт экстрагировали CH_2Cl_2 (3×1 мл), затем осаждали паровой диффузией Et_2O в экстракт при комнатной температуре. Образовавшиеся желтые кристаллы отделяли и сушили на воздухе при комнатной температуре.

cis-[PdBr₂(CN^tBu)(PPh₃)] (2a). Выход 25 мг (82%), желтый мелкокристаллический порошок. ИК спектр, v, см⁻¹: 3046 с, 2981 с, 2825 с (С-Н), 2231 с (C≡N). Спектр ЯМР ¹Н, δ, м. д.: 1.19 с (9Н, CH₃, *t*-Bu), 7.47–7.50 м (6H, *м*-H_{AP} Ph), 7.53–7.57 м (3H, *n*-H_{Ar}, Ph), 7.73–7.76 м (6H, *o*-H_{Ar}, Ph). Спектр ЯМР ¹³С{¹H, ³¹P}, б_с, м. д.: 29.30 (СН₃), 128.62 (o-CH, Ph), 131.61 (n-CH, Ph), 134.58 (m-CH, Ph). Сигналы С≡N-С и Р-С не детектированы. Спектр ЯМР ³¹Р{¹H}: б_Р 26.08 м. д. Масс-спектр, *m/z*: 529.9869 [*M*-Br]⁺ (вычислено для C₂₃H₂₄NBrPPd⁺: 529.9864). Найдено, %: С 44.93; Н 3.81; N 2.18. С₂₃Н₂₄NBr₂PPd. Вычислено, %: С 45.16; Н 3.96; N 2.29. Параметры рентгеноструктурного анализа: $C_{23}H_{24}Br_2NPPd$, *M* 611.62, сингония моноклинная, пространственная группа $P2_1/n$, а 9.01460(10), b 16.7083(3), c 16.8148(3) Å, β 92.8410(10)°, V 2529.51(7) Å³, Z 4, $d_{\rm выч}$ 1.606 г/см³, µ 10.269 мм⁻¹, размер кристалла 0.1×0.06×0.04 мм, всего отражений – 16427, независимых отражений с $I > 2\sigma(I)$ – 4845 ($R_{\rm int}$ 0. 0.0377), $R_1(|F_{\rm o}| \ge 4\sigma_{\rm F})/R_1$ (все данные) = 0.0345/0.0371, wR_2 ($|F_{\rm o}| \ge 4\sigma_{\rm F})/wR_2$ (все данные) = 0.0885/0.0901, $\rho_{\rm max}/\rho_{\rm min} = 1.20/-0.93 \ e/Å^3$.

cis-[PdBr₂(CNXyl)(PPh₃)] (26). Выход 25 мг (76%), желтый мелкокристаллический порошок. ИК спектр, v, см⁻¹: 3052, 2924, 2854 (С–Н), 2200 (C≡N). Спектр ЯМР ¹Н, б, м. д. (смесь цис- и транс-изомеров в соотношении 20:1, сигналы относятся к цис-изомеру, если не указано другое): 2.04 c (6H, o-CH₃, Xyl), 2.52 c (6H, o-CH₃, Xyl, транс-изомер), 6.99 д (1Н, м-Н, Хуl, J7.6 Гц), 7.17 т (1H, *n*-H, Xyl, *J* 7.8 Гц), 7.38–7.52 м (9H, *м*-H и *n*-H, Ph), 7.71–7.81 м (6H, *o*-H, Ph). Спектр ЯМР ¹³С{¹H, ³¹P}, δ_с, м. д.: 18.34 (*о*-СН₃, Xyl), 127.91 (*m*-CH, Xyl), 128.66 (*o*-CH, Ph), 131.70 (*n*-CH, Ph), 134.50 (м-CH, Ph), 135.66 (n-CH, Xyl). Сигналы С≡N-С и Р-С не детектированы. Спектр ЯМР ³¹Р{¹H}, б_р, м. д.: 26.93 (*цис*-изомер), 24.10 (*транс*-изомер). Масс-спектр, *т/z*: 579.9861 [*M*-Br]⁺ (вычислено для C₂₇H₂₄NBrPPd⁺: 579.9868). Найдено, %: С 49.43; Н 3.40; N 2.01. С₂₇Н₂₄NBr₂PPd. Вычислено, %: С 49.16; Н 3.67; N 2.12. Параметры рентгеноструктурного анализа: $C_{27}H_{24}Br_2NPPd$, M 659.69, сингония триклинная, пространственная группа *P*-1, *a* 10.6992(2), *b* 12.5454(3), *c* 19.0606(5) Å, α 105.189(2), β 92.980(2), γ 90.576(2)°, V 2464.97(10) Å³, Z 4, d_{выч} 1.778 г/см³, µ 10.596 мм⁻¹, размер кристалла 0.16×0.12×0.1 мм, всего отражений – 35710, независимых отражений с $I > 2\sigma(I)$ $-8876 (R_{int} 0.0607), R_1(|F_0| \ge 4\sigma_F)/R_1$ (все данные) = 0.0447/0.0519, $wR_2(|F_o| \ge 4\sigma_F)/wR_2$ (все данные) = 0.1233/0.1272, $\rho_{\text{max}}/\rho_{\text{min}} = 1.86/-1.03 \ e/\text{Å}^3$.

cis-[PdBr₂(CNMes)(PPh₃)] (2в). Выход 59 мг (72%), желтый мелкокристаллический порошок. ИК спектр, v, см⁻¹: 2973 с (С–Н), 2200 с (С≡N). Спектр ЯМР ¹H, δ, м. д. (смесь *цис*- и *транс*-изо-меров в соотношении 20:1, сигналы относятся к *цис*-изомеру, если не указано другое): 1.98 с (6H, *o*-CH₃, Mes), 2.25 с (3H, *n*-CH₃, Mes), 2.30 с (6H, *o*-CH₃, Mes, *транс*-изомер), 2.46 с (3H, *n*-CH₃, Mes, *транс*-изомер), 6.78 с (2H, *м*-H, Mes), 7.36–7.52 м (9H, *м*-H и *n*-H, Ph), 7.70–7.80 м (6H, *o*-H, Ph). Спектр ЯМР ¹³С{¹H, ³¹P}, δ_C, м. д.: 18.21 (*o*-CH₃,

Mes), 21.25 (n-CH₂, Mes), 128.62 (m-CH, Ph), 128.63 (*m*-CH, Mes), 130.13 (C–P, Ph), 131.66 (*n*-CH, Ph), 134.50 (o-CH, Ph), 135.40 (o-C, Mes), 140.67 (n-C, Mes). Сигналы С≡N–С не детектированы. Спектр ЯМР ${}^{31}P{}^{1}H$, δ_{P} , м. д.: 27.05 (*цис*-изомер), 24.06 (*транс*-изомер). Масс-спектр, *т/z*: 594.0003 [*M*-Br]⁺ (вычислено для C₂₈H₂₆NBrPPd⁺: 594.0025). Найдено, %: С 49.38; Н 3.96; N 2.15. С₂₈Н₂₆NBr₂PPd. Вычислено, %: С 49.92; Н 3.89; N 2.08. Параметры рентгеноструктурного анализа: С₃₂Н₃₆Br₂NOPPd, М 747.83, сингония моноклинная, пространственная группа C2/c, a 34.4404(14), b 8.9180(3), c 18.9627(8) Å, β 102.030(4), V 5696.3(4) Å³, Z 4, *d*_{выч} 1.658 г/см³, µ 3.535 мм⁻¹, размер кристалла 0.2×0.2×0.2 мм, всего отражений - 27358, независимых отражений с $I > 2\sigma(I) - 6551$ (R_{int} 0.0310), $R_1(|F_0| \ge 4\sigma_F)/R_1$ (все данные) = 0.0251/0.0328, $wR_2(|F_0| \ge 4\sigma_F)/wR_2$ (все данные) = 0.0516/0.0542, $\rho_{\text{max}}/\rho_{\text{min}} = 1.79/-0.79 \ e/\text{Å}^3$.

Общая методика синтеза комплексов 3в и 5в. Синтез проводили аналогично синтезу соединений 2а–в, используя в качестве исходного соединения [PdCl₂(CNMes)₂] (23 мг, 0.05 ммоль). В случае комплекса 5в также был использован KI (83 мг, 0.5 ммоль) вместо KBr.

trans-[PdBr₂(CNMes)₂] (3в). Выход 17 мг (76%), желтый мелкокристаллический порошок. ИК спектр, v, см⁻¹: 2953 с, 2920 с (С–Н), 2209 с (C≡N). Спектр ЯМР ¹Н, δ, м. д.: 2.33 с (6H, *n*-CH₃), 2.47 с (12H, *o*-CH₃), 6.94 с (4H, H_{Ar}). Спектр ЯМР ¹³C{¹H}, δ_C, м. д.: 18.58 (CH₃, Mes), 21.38 (CH₃, Mes), 128.86 (CH, Mes), 136.36 (o-C, Mes), 141.2 (*n*-C, Mes). Сигналы С≡N–С не детектированы. Масс-спектр, m/z: 474.9994 $[M - Br]^+$ (вычислено для C₂₀H₂₂N₂BrPd⁺: 474.9996). Параметры рентгеноструктурного анализа: C₂₀H₂₂Br₂N₂Pd, *M* 556.63, сингония моноклинная, пространственная группа $P2_1/n$, a 8.5967(3), b 16.1069(7), c 7.4212(3) Å, β 90.823(3)°, V 1027.49(7) Å³, Z 2, d_{выч} 1.799 г/см³, µ 11.866 мм⁻¹, размер кристалла 0.2×0.2×0.2 мм, всего отражений – 9020, независимых отражений c $I > 2\sigma(I) - 2133$ (R_{int} 0.0688), $R_1(|F_0| \ge 4\sigma_F)/R_1$ (все данные) = 0.0412/0.0435, $wR_2(|F_0| \ge 4\sigma_F)/$ wR_2 (все данные) = 0.1053/0.1075, $\rho_{\text{max}}/\rho_{\text{min}}$ = 1.03/-1.23 e/Å³.

trans-[PdI₂(CNMes)₂] (5в). Выход 23 мг (72%), темно-красный мелкокристаллический порошок.

ИК спектр, v, см⁻¹: 2921 с (С–Н), 2197 с (С≡N). Спектр ЯМР ¹Н, б, м. д.: 2.33 с (6Н, *о*-СН₃), 2.52 с (12H, n-CH₃), 6.94 с (4H, H_{Ar}, Mes). Спектр ЯМР ¹³C{¹H}, δ_C), м. д.: 18.96 (*o*-CH₃, Mes), 21.38 (*n*-CH₃, Mes), 128.89 (CH, Mes), 136.57 (o-C, Mes), 141.05 (*n*-C, Mes). Сигналы С≡N–С не детектированы. Масс-спектр, m/z: 523.7260 $[M - I]^+$ (вычислено для С₂₀Н₂₂N₂IPd⁺: 523.7266). Параметры рентгеноструктурного анализа: С₂₀H₂₂I₂N₂Pd, *M* 649.89, сингония моноклинная, пространственная группа P2₁/n, а 9.2703(2), b 15.6622(4), с 7.5664(2) Å, β 90.918(2)°, V1098.45(15)Å³, Z=2, d_{BUY} 1.967 г/см³, µ 3.660 мм⁻¹, размер кристалла 0.14×0.1×0.05 мм, всего отражений – 9649, независимых отражений c $I > 2\sigma(I) - 2434$ ($R_{int} 0.0286$), $R_1(|F_0| \ge 4\sigma_F)/R_1$ (все данные) = 0.0256/0.0311, $wR_2(|F_0| \ge 4\sigma_F)/wR_2$ (все данные) = 0.0479/0.0498, ρ_{max}/ρ_{min} 0.70/-0.50 e/Å³.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Гаврилов Георгий Александрович, ORCID: https://orcid.org/0000-0001-9126-1713

Кинжалов Михаил Андреевич, ORCID: https:// orcid.org/0000-0001-5055-1212

БЛАГОДАРНОСТЬ

Авторы выражают благодарность А.В. Булдакову (Санкт-Петербургский государственный университет) за проведение тестовых экспериментов на начальных этапах работы.

Работа выполнена с использованием оборудования ресурсных центров «Магнитно-резонансные методы исследований», «Рентгенодифракционные методы исследования», «Методы анализа состава вещества» и «Образовательный центр по направлению химия», «Оптические и лазерные методы исследования вещества» Научного парка Санкт-Петербургского государственного университета.

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-13-00008).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kinzhalov M.A., Luzyanin K.V., Boyarskiy V.P., Haukka M., Kukushkin V.Y. // Organometallics. 2013. Vol. 32. P. 5212. doi 10.1021/om4007592
- Timofeeva S.A., Kinzhalov M.A., Valishina E.A., Luzyanin K.V., Boyarskiy V.P., Buslaeva T.M., Haukka M., Kukushkin V.Y. // J. Catal. 2015. Vol. 329. P. 449. doi 10.1016/j.jcat.2015.06.001
- Islamova R.M., Dobrynin M.V., Vlasov A.V., Eremina A.A., Kinzhalov M.A., Kolesnikov I.E., Zolotarev A.A., Masloborodova E.A., Luzyanin K.V. // Catal. Sci. Technol. 2017. Vol. 7. P. 5843. doi 10.1039/ C7CY02013A
- Luzyanin K.V., Tskhovrebov A.G., Carias M.C., Guedes da Silva M.F.C., Pombeiro A.J.L., Kukushkin V.Y. // Organometallics 2009. Vol. 28. P. 6559. doi 10.1021/om900682v
- Mancuso J., Lautens M. // Org. Lett. 2003. Vol. 5. P. 1653. doi 10.1021/ol034284e
- Villemin D., Jullien A., Bar N. // Tetrahedron Lett. 2007. Vol. 48. P. 4191. doi 10.1016/j.tetlet.2007.04.070
- Barnett B.R., Labios L.A., Stauber J.M., Moore C.E., Rheingold A.L., Figueroa J.S. // Organometallics. 2017. Vol. 36. P. 944. doi 10.1021/acs.organomet.7b00035
- Savicheva E.A., Kurandina D.V., Nikiforov V.A., Boyarskiy V.P. // Tetrahedron Lett. 2014. Vol. 55. P. 2101. doi 10.1016/j.tetlet.2014.02.044
- Knorn M., Lutsker E., Reiser O. // Organometallics. 2015. Vol. 34. P. 4515. doi 10.1021/acs. organomet.5b00516
- Chay R.S., Rocha B.G.M., Pombeiro A.J.L., Kukushkin V.Y., Luzyanin K.V. // ACS Omega. 2018. Vol. 3. P. 863. doi 10.1021/acsomega.7b01688
- Gee J.C., Fuller B.A., Lockett H.-M., Sedghi G., Robertson C.M., Luzyanin K.V. // Chem. Commun. 2018. Vol. 54. P. 9450. doi 10.1039/C8CC04287J
- Rocha B.G.M., Valishina E.A., Chay R.S., Guedes da Silva M.F.C., Buslaeva T.M., Pombeiro A.J.L., Kukushkin V.Y., Luzyanin K.V. // J. Catal. 2014. Vol. 309. P. 79. doi 10.1016/j.jcat.2013.09.003
- Hubbert C., Breunig M., Carroll K.J., Rominger F., Hashmi A.S.K. // Aust. J. Chem. 2014. Vol. 67. P. 469. doi 10.1071/CH13546

- Miltsov S.A., Karavan V.S., Boyarsky V.P., Gómezde Pedro S., Alonso-Chamarro J., Puyol M. // Tetrahedron Lett. 2013. Vol. 54. P. 1202. doi 10.1016/j. tetlet.2012.12.060
- Ryabukhin D.S., Sorokoumov V.N., Savicheva E.A., Boyarskiy V.P., Balova I.A., Vasilyev A.V. // Tetrahedron Lett. 2013. Vol. 54. P. 2369. doi 10.1016/j. tetlet.2013.02.086
- Михайлов В.Н., Савичева Е.А., Сорокоумов В.Н., Боярский В.П. // ЖОрХ. 2013. Т. 49. Вып. 4. С. 567; Mikhailov V.N., Savicheva E.A., Sorokoumov V.N., Boyarskii V.P. // Russ. J. Org. Chem. 2013. Vol. 49. P. 551. doi 10.1134/S107042801304009X
- Larsen C.B., Wenger O.S. // Inorg. Chem. 2018. Vol. 57.
 P. 2965. doi 10.1021/acs.inorgchem.7b03258
- Cadierno V., Crochet P., Díez J., García-Garrido S.E., Gimeno J. // Organometallics. 2004. Vol. 23. P. 4836. doi 10.1021/om0400651
- Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Cheranyova A.M., Ivanov D.M., Kukushkin V.Y., Bokach N.A. // ACS Omega. 2022. Vol. 7. P. 34454. doi 10.1021/acsomega.2c04110
- Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. Vol. 9. P. 417. doi 10.1039/ D1QI01288F
- Katkova S.A., Mikherdov A.S., Sokolova E.V., Novikov A.S., Starova G.L., Kinzhalov M.A. // J. Mol. Struct. 2022. Vol. 1253. P. 132230. doi 10.1016/j. molstruc.2021.132230
- Katkova S.A., Luzyanin K.V., Novikov A.S., Kinzhalov M.A. // New J. Chem. 2021. Vol. 45. P. 2948. doi 10.1039/D0NJ05457G
- Eremina A.A., Kinzhalov M.A., Katlenok E.A., Smirnov A.S., Andrusenko E.V., Pidko E.A., Suslonov V.V., Luzyanin K.V. // Inorg. Chem. 2020. Vol. 59. P. 2209. doi 10.1021/acs.inorgchem.9b02833
- 24. Sutton G.D., Olumba M.E., Nguyen Y.H., Teets T.S. // Dalton Trans. 2021. Vol. 50. P. 17851. doi 10.1039/ D1DT03312C
- 25. *Na H., Maity A., Teets T.S.* // Dalton Trans. 2017. Vol. 46. P. 5008. doi 10.1039/C7DT00694B
- Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M., Golbon Haghighi M., Notash B., Fereidoonnezhad M. // New J. Chem. 2017. Vol. 41. P. 15347. doi 10.1039/C7NJ03110F
- Ho P.-Y., Cheng S.-C., Yiu S.-M., Au V.K.-M., Xiang J., Leung C.-F., Ko C.-C. // Inorg. Chem. 2019. Vol. 58. P. 11372. doi 10.1021/acs.inorgchem.9b00560

- Nguyen Y.H., Soares J.V., Nguyen S.H., Wu Y., Wu J.I., Teets T.S. // Inorg. Chem. 2022. Vol. 61. P. 8498. doi 10.1021/acs.inorgchem.2c00510
- Dobrynin M.V., Kasatkina S.O., Baykov S.V., Savko P.Y., Antonov N.S., Mikherdov A.S., Boyarskiy V.P., Islamova R.M. // Dalton Trans. 2021. Vol. 50. P. 14994. doi 10.1039/D1DT02823E
- Kinzhalov M.A., Kashina M.V., Mikherdov A.S., Mozheeva E.A., Novikov A.S., Smirnov A.S., Ivanov D.M., Kryukova M.A., Ivanov A.Y., Smirnov S.N., Kukushkin V.Y., Luzyanin K.V. // Angew. Chem. Int. Ed. 2018. Vol. 57. P. 12785. doi 10.1002/anie.201807642
- Kryukova M.A., Ivanov D.M., Kinzhalov M.A., Novikov A.S., Smirnov A.S., Bokach N.A., Kukushkin V.Y. // Chem. Eur. J. 2019. Vol. 25. P. 13671. doi 10.1002/ chem.201902264
- 32. Kashina M.V., Kinzhalov M.A., Smirnov A.S., Ivanov D.M., Novikov A.S., Kukushkin V.Y. // Chem. Asian J. 2019. Vol. 14. P. 3915. doi 10.1002/ asia.201901127
- Bulatova M., Ivanov D.M., Rautiainen J.M., Kinzhalov M.A., Truong K.-N., Lahtinen M., Haukka M. // Inorg. Chem. 2021. Vol. 60. P. 13200. doi 10.1021/acs. inorgchem.1c01591
- Buldakov A.V., Kinzhalov M.A., Kryukova M.A., Ivanov D.M., Novikov A.S., Smirnov A.S., Starova G.L., Bokach N.A., Kukushkin V.Y. // Cryst. Growth Des. 2020. Vol. 3. P. 1975. doi 10.1021/acs.cgd.9b01631
- Sluch I.M., Miranda A.J., Slaughter L.M. // Cryst. Growth Des. 2009. Vol. 9. P. 1267. doi 10.1021/ cg801116q
- Hopkinson M.N., Richter C., Schedler M., Glorius F. // Nature. 2014. Vol. 510. P. 485. doi 10.1038/nature13384
- Huynh H.V. // Chem. Rev. 2018. Vol. 118. P. 9457. doi 10.1021/acs.chemrev.8b00067
- Кинжалов М.А., Лузянин К.В. // ЖНХ. 2022. Т. 67. Вып. 1. С. С. 54; Kinzhalov М.А., Luzyanin K.V. // Russ. J. Inorg. Chem. 2022. Vol. 67. P. 48. doi 10.1134/ S0036023622010065
- Кинжалов М.А., Боярский В.П. // ЖОХ. 2015. Т. 85. Вып. 10. С. 1681; Kinzhalov М.А., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. Vol. 85. P. 2313. doi 10.1134/ S1070363215100175
- Kinzhalov M.A., Luzyanin K.V. // Coord. Chem. Rev. 2019. Vol. 399. P. 213014. doi 10.1016/j. ccr.2019.213014
- Boyarskiy V.P., Bokach N.A., Luzyanin K.V., Kukushkin V.Y. // Chem. Rev. 2015. Vol. 115. P. 2698. doi 10.1021/cr500380d

- 42. Boyarskiy V.P., Luzyanin K.V., Kukushkin V.Y. // Coord. Chem. Rev. 2012. Vol. 256. P. 2029. doi 10.1016/j. ccr.2012.04.022
- Kashina M.V., Luzyanin K.V., Katlenok E.A., Novikov A.S., Kinzhalov M.A. // Dalton Trans. 2022. Vol. 51. P. 6718. doi 10.1039/D2DT00252C
- 44. Ruiz J., García L., Perandones B.F., Vivanco M. // Angew. Chem. Int. Ed. 2011. Vol. 50. P. 3010. doi 10.1002/anie.201007937
- Ruiz J., Garcia L., Mejuto C., Vivanco M., Diaz M.R., Garcia-Granda S. // Chem. Commun. 2014. Vol. 50. P. 2129. doi 10.1039/C3CC47987K
- Mikherdov A.S., Kinzhalov M.A., Novikov A.S., Boyarskiy V.P., Boyarskaya I.A., Dar'in D.V., Starova G.L., Kukushkin V.Y. // J. Am. Chem. Soc. 2016. Vol. 138. P. 14129. doi 10.1021/jacs.6b09133
- Tskhovrebov A.G., Luzyanin K.V., Dolgushin F.M., Guedes da Silva M.F.C., Pombeiro A.J.L., Kukushkin V.Y. // Organometallics. 2011. Vol. 30. P. 3362. doi 10.1021/om2002574
- 48. Chatt J., Richards, R.H., Royston, G.H.D // Inorg. Chim. Acta 1972. Vol. 6. P. 669. doi
- Vicenzi D., Sgarbossa P., Biffis A., Tubaro C., Basato M., Michelin R.A., Lanza A., Nestola F., Bogialli S., Pastore P., Venzo A. // Organometallics. 2013. Vol. 32. P. 7153. doi 10.1021/om400859q
- Dobrynin M.V., Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Starova G.L., Kukushkin V.Y., Islamova R.M. // ACS Appl. Polym. Mater. 2021. Vol. 3. P. 857. doi 10.1021/acsapm.0c01190
- Fuertes S., Chueca A.J., Arnal L., Martín A., Giovanella U., Botta C., Sicilia V. // Inorg. Chem. 2017. Vol. 56. P. 4829. doi 10.1021/acs.inorgchem.6b02826
- Кинжалов М.А., Булдаков А.В., Петров А.В., Махмудов К.Т., Иванов А.Ю., Суслонов В.В. // ЖОХ. 2017. Т. 87. Вып. 11. С. 1865; Kinzhalov М.А., Buldakov A.V., Petrov A.V., Mahmudov К.Т., Ivanov A.Y., Suslonov V.V. // Russ. J. Gen. Chem. 2017. Vol. 87. P. 2605. doi 10.1134/s1070363217110159
- 53. *Martínez-Martínez A.J., Chicote M.T., Bautista D. //* Inorg. Chim. Acta 2012. Vol. 382. P. 203. doi 10.1016/j. ica.2011.11.038
- Braunstein P., Knorr M., Strampfer M., Dusausoy Y., Bayeul D., DeCian A., Fischer J., Zanello P. // Dalton Trans. 1994. Vol. P. 1533. doi 10.1039/DT9940001533
- Koprowski M., Sebastián R.-M., Maraval V., Zablocka M., Cadierno V., Donnadieu B., Igau A., Caminade A.-M., Majoral J.-P. // Organometallics. 2002. Vol. 21. P. 4680. doi 10.1021/om011076m

- Casellato U., Corain B., Zecca M., Michelin R.A., Mozzon M., Graziani R. // Inorg. Chim. Acta. 1989. Vol. 156. P. 165. doi https://doi.org/10.1016/S0020-1693(00)83492-1
- Cobley C.J., Ellis D.D., Orpen A.G., Pringle P.G. // Dalton Trans. 2000. Vol. P. 1101. doi 10.1039/ A908960H
- De Munno G., Bruno G., Arena C.G., Drommi D., Faraone F. // J. Organomet. Chem. 1993. Vol. 450.
 P. 263. doi https://doi.org/10.1016/0022-328X(93)80165-8
- Cadierno V., Diez J., Garcia-Alvarez J., Gimeno J., Nebra N., Rubio-Garcia J. // Dalton Trans. 2006. Vol. P. 5593. doi 10.1039/B609359K
- Liu Z., Cao S., Wu J., Zanoni G., Sivaguru P., Bi X. // ACS Catal. 2020. Vol. 10. P. 12881. doi 10.1021/ acscatal.0c02867
- Yakimanskiy A., Boyarskaya I., Boyarskiy V. // J. Coord. Chem. 2013. Vol. 66. P. 3592. doi 10.1080/00958972.2013.847185
- Klingenberg M.A., Bogachenkov A.S., Kinzhalov M.A., Vasilyev A.V., Boyarskiy V.P. // New J. Chem. 2016. Vol. 40. P. 3336. doi 10.1039/C5NJ03038B
- Do J.-L., Tan D., Friščić T. // Angew. Chem. Inte. Ed. 2018. Vol. 57. P. 2667. doi 10.1002/anie.201712602
- Gregson M., Lu E., Mills D.P., Tuna F., McInnes E.J.L., Hennig C., Scheinost A.C., McMaster J., Lewis W., Blake A.J., Kerridge A., Liddle S.T. // Nature Commun. 2017. Vol. 8. P. 14137. doi 10.1038/ncomms14137
- Kashina M.V., Ivanov D.M., Kinzhalov M.A. // Crystals. 2021. Vol. 11. P. 799. doi 10.3390/cryst11070799
- Kinzhalov M.A., Luzyanin K.V., Boyarskaya I.A., Starova G.L., Boyarskiy V.P. // J. Mol. Struct. 2014. Vol. 1068. P. 222. doi 10.1016/j.molstruc.2014.04.025
- 67. Kirsten L., Steyl G., Roodt A. // Acta Crystallogr.
 (E). 2009. Vol. 65. P. m1564. doi 10.1107/ S1600536809045401
- Coalter N.L., Concolino T.E., Streib W.E., Hughes C.G., Rheingold A.L., Zaleski J.M. // J. Am. Chem. Soc. 2000. Vol. 122. P. 3112. doi 10.1021/ja9944094
- Lo K.M., Ng S.W. // Acta Crystallogr. (E). 2009. Vol. 65. P. m940. doi 10.1107/S1600536809027408
- 70. Kar G., Privér S.H., Jones L.A., Guo S.-X., Torriero A.A.J., Bond A.M., Bennett M.A., Bhargava S.K. // Dalton Trans. 2015. Vol. 44. P. 3367. doi 10.1039/C4DT03268C
- Reinholdt A., Bendix J. // Inorg. Chem. 2017. Vol. 56.
 P. 12492. doi 10.1021/acs.inorgchem.7b01956

- Eseola A.O., Görls H., Orighomisan Woods J.A., Plass W. // Polyhedron 2020. Vol. 182. P. 114507. doi 10.1016/j.poly.2020.114507
- Theissmann T., Bolte M. // Acta Crystallogr. (E). 2006.
 Vol. 62. P. m1056. doi 10.1107/S1600536806013262
- Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. Vol. P. 955. doi 10.1039/b617136b
- Popov R.A., Mikherdov A.S., Boyarskiy V.P. // Eur. J. Inorg. Chem. 2022. Vol. 2022. P. e202200217. doi 10.1002/ejic.202200217
- Popov R.A., Mikherdov A.S., Novikov A.S., Myznikov L.V., Boyarskiy V.P. // New J. Chem. 2021. Vol. 45. P. 1785. doi 10.1039/D0NJ05386D
- Luzyanin K.V., Pombeiro A.J.L., Haukka M., Kukushkin V.Y. // Organometallics. 2008. Vol. 27. P. 5379. doi 10.1021/om800517c
- Luzyanin K.V., Guedes da Silva M.F.C., Kukushkin V.Y., Pombeiro A.J.L. // Inorg. Chim. Acta. 2009. Vol. 362. P. 833. doi 10.1016/j.ica.2008.02.026
- Chay R.S., Luzyanin K.V., Kukushkin V.Y., Guedes da Silva M.F.C., Pombeiro A.J.L. // Organometallics. 2012. Vol. 31. P. 2379. doi 10.1021/om300020j
- Anisimova T.B., Guedes da Silva M.F.C., Kukushkin V.Y., Pombeiro A.J.L., Luzyanin K.V. // Dalton Trans. 2014. Vol. 43. P. 15861. doi 10.1039/c4dt01917b
- Rassadin V.A., Yakimanskiy A.A., Eliseenkov E.V., Boyarskiy V.P. // Inorg. Chem. Commun. 2015. Vol. 61. P. 21. doi 10.1016/j.inoche.2015.08.008
- Tskhovrebov A.G., Luzyanin K.V., Kuznetsov M.L., Sorokoumov V.N., Balova I.A., Haukka M., Kukushkin V.Y. // Organometallics. 2011. Vol. 30. P. 863. doi 10.1021/om101041g
- Boyarskaya D.V., Bulatov E., Boyarskaya I.A., Chulkova T.G., Rassadin V.A., Tolstopjatova E.G., Kolesnikov I.E., Avdontceva M.S., Panikorovskii T.L., Suslonov V.V., Haukka M. // Organometallics. 2019. Vol. 38. P. 300. doi 10.1021/acs.organomet.8b00725
- Mikhaylov V.N., Sorokoumov V.N., Novikov A.S., Melnik M.V., Tskhovrebov A.G., Balova I.A. // J. Organomet. Chem. 2020. Vol. 912. P. 121174. doi 10.1016/j.jorganchem.2020.121174
- Wu W., Li M., Zheng J., Hu W., Li C., Jiang H. // Chem. Commun. 2018. Vol. 54. P. 6855. doi 10.1039/ C8CC02028K
- Zheng Q., Ding Q., Wang C., Chen W., Peng Y. // Tetrahedron. 2016. Vol. 72. P. 952. doi 10.1016/j. tet.2015.12.060
- Mampuys P., Neumann H., Sergeyev S., Orru R.V.A., Jiao H., Spannenberg A., Maes B.U.W., Beller M. //

ИЗОЦИАНИДФОСФИНОВЫЕ КОМПЛЕКСЫ ДИГАЛОГЕНИДОВ ПАЛЛАДИЯ(II)

ACS Catal. 2017. Vol. 7. P. 5549. doi 10.1021/ acscatal.7b01503

- Vlaar T., Ruijter E., Maes B.U.W., Orru R.V.A. // Angew. Chem., Int. Ed. 2013. Vol. 52. P. 7084. doi 10.1002/ anie.201300942
- Saluste C.G., Whitby R.J., Furber M. // Angew. Chem. Int. Ed. 2000. Vol. 39. P. 4156. doi 10.1002/1521-3773(20001117)39:22<4156::aidanie4156>3.3.co;2-2
- 90. Saluste C.G., Whitby R.J., Furber M. // Tetrahedron Lett. 2001. Vol. 42. P. 6191. doi 10.1016/s0040-4039(01)01201-1
- Zhou F., Ding K., Cai Q. // Chem. Eur. J. 2011. Vol. 17. P. 12268. doi 10.1002/chem.201102459
- 92. *Tobisu M., Imoto S., Ito S., Chatani N.* // J. Org. Chem. 2010. Vol. 75. P. 4835. doi 10.1021/jo1009728

- Liu B., Li Y., Yin M., Wu W., Jiang H. // Chem. Commun. 2012. Vol. 48. P. 11446. doi 10.1039/c2cc35802f
- 94. Noskowska M., Śliwińska E., Duczmal W. // Trans. Met. Chem. 2003. Vol. 28. P. 756. doi 10.1023/a:1026064708867
- 95. Кинжалов М.А., Золотарев А.А., Боярский В.П. // ЖСХ. 2016. Т. 57. № 4. С. 861; Kinzhalov М.А., Zolotarev A.A., Boyarskiy V.P. // J. Struct. Chem. 2016. Vol. 57. P. 822. doi 10.1134/s0022476616040302
- Sheldrick G.M. // Acta Crystallogr. (A). 2008. Vol. 64.
 P. 112. doi 10.1107/S0108767307043930
- 97. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009.
 Vol. 42. P. 339. doi 10.1107/S0021889808042726
- CrysAlisPro A.T., Version 1.171.36.20 (release 27-06-2012).

Isocyanide-Phosphine Complexes of Palladium(II) Dihalides: Synthesis, Structure, and Stability in Ligand Disproportionation Reactions

G. A. Gavrilov^a and M. A. Kinzhalov^{a,*}

^a St. Petersburg State University, St. Petersburg, 190034 Russia *e-mail: m.kinzhalov@spbu.ru

Received September 10, 2022; revised October 14, 2022; accepted October 16, 2022

We studied the structure of isocyanide-phosphine complexes of palladium(II) dihalides $[PdX_2(CNR)(PPh_3)]$ (X = Cl, Br, I; R = t-Bu, Xyl, Mes) in a CDCl₃ solution and solid phase, as well as their stability in *cis/trans*-isomerization and ligands disproportionation. Isocyanide-phosphine complexes of palladium(II) chloride, bromide, and iodide in the crystals assume the *cis*-configuration. In the solution, isocyanide-phosphine complexes of palladium(II) chloride and bromide exist predominantly in the *cis*-configuration. They are resistant to ligands disproportionation and can be prepared by mixing equivalent amounts of the corresponding bisisocyanide and bisphosphine complexes. In contrast, mixed-ligands isocyanide-phosphine complexes of palladium iodide in solution rapidly form a mixture of *cis*- and *trans*-isomers, as well as bisisocyanide and bisphosphine complexes.

Keywords: palladium complex, isocyanide, phosphine

УДК: 542.61 546.65/66

ВЛИЯНИЕ СТРОЕНИЯ ФОСФОРОРГАНИЧЕСКИХ ПОДАНДОВ НА ЭКСТРАКЦИЮ АКТИНИДОВ И ЛАНТАНИДОВ(III) ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ

© 2022 г. А. Н. Туранов^{*a*}, В. К. Карандашев^{*b*}, В. Е. Баулин^{*c*}, Д. В. Баулин^{*d*,*}, Г. В. Костикова^{*d*}, А. М. Федосеев^{*d*}

^а Институт физики твердого тела имени Ю. А. Осипьяна Российской академии наук, Черноголовка, 142432 Россия ^b Институт проблем технологии микроэлектроники и особо чистых материалов Российской академии наук, Черноголовка, 142432 Россия

^с Институт физиологически активных веществ Российской академии наук, Черноголовка, 142432 Россия ^d Институт физической химии и электрохимии имени А. Н. Фрумкина Российской академии наук, Ленинский пр. 31/4, Москва, 119991 Россия *e-mail: badmitriv@gmail. com

> Поступило в редакцию 29 июня 2022 г. После доработки 29 июня 2022 г. Принято к печати 9 июля 2022 г.

Изучена экстракция ионов U(VI), Th(IV), Am(III), лантанидов(III) и HNO₃ из азотнокислых растворов растворами 3-оксапентан-1,5-диилбис(дифенилфосфин)диоксида и его структурных аналогов в 1,2-дихлорэтане. Определена стехиометрия экстрагируемых комплексов. Рассмотрено влияние строения экстрагента и концентрации HNO₃ в водной фазе на эффективность извлечения ионов металлов в органическую фазу. Последовательная замена в молекуле поданда двух метиленовых групп, соединяющих эфирный атом кислорода с группами Ph₂P(O), на *о*-фениленовые группы приводит к увеличению эффективности экстракции Th(IV), Am(III) и Ln(III) из азотнокислых, однако мало влияет на эффективность экстракции U(VI).

Ключевые слова: фосфорилподанды, экстракция, уран(VI), торий(IV), америций(III), лантаниды(III)

DOI: 10.31857/S0044460X22110130, EDN: LPCRUB

Экстракционные методы широко используются для извлечения, концентрирования и разделения актинидов и лантанидов в азотнокислых средах при утилизации отработанного ядерного топлива [1]. Высокой экстракционной способностью по отношению к этим элементам обладают полидентатные нейтральные фосфорорганические соединения [2–7], среди которых наиболее детально изучены диоксиды замещенных алкандиилбис(дифосфинов) [7–9] и оксиды (диалкилкарбамоилметил)диарилфосфинов [10–12].

Экстракционная способность и селективность фосфорорганических подандов, молекула которых

состоит из двух групп Р=О, соединенных фрагментом простого эфира, существенно зависят от длины фрагмета, от конформационной жесткости молекулы, а также от природы заместителей при атомах фосфора [13–16]. Среди известных фосфорорганических подандов производные {2-[(дифенилфосфорил)метокси]фенил}(дифенил)фосфиноксида обладают высокой экстракционной способностью по отношению к ионам актинидов и лантанидов [16], превосходя оксиды (диалкилкарбамоилметил)диарилфосфинов. Замена алкильных радикалов при одном или двух атомах фосфора в молекуле фосфорорганического поданда на

арильные приводит к значительному увеличению экстракции Am(III) и Ln(III) из азотнокислых растворов [14] и к подавлению экстракции HNO₃, что позволяет проводить извлечение актинидов и лантанидов из азотнокислых растворов. Причины такого явления, названного эффектом «аномального арильного упрочнения» экстрагируемых комплексов [17], неоднократно обсуждались [7, 17-20]. Введение этильного заместителя в положение 4 замещенного фенила в молекуле {2-[(дифенилфосфорил)метокси]фенил}(дифенил)фосфиноксида приводит к повышению растворимости реагента в органических растворителях и к снижению перехода экстрагента в водную фазу [21], однако мало влияет на изменение его экстракционной способности по отношению к ионам Ln(III). Влияние природы фрагмента, соединяющего фосфорильную группу и эфирный атом кислорода изучено в значительно меньшей степени [22].

Нами исследовано влияние природы связки между фосфорильной группой и эфирным атомом кислорода в молекулах фосфорорганических подандов на эффективность экстракции актинидов и лантанидов из азотнокислых растворов. Рассмотрено межфазное распределение U(VI), Th(IV), Am(III) и Ln(III) между растворами HNO₃ и органической фазой, включающей соединения **1–3** (схема 1). Эффективность экстракции ионов металлов экстрагентами **1–3** сопоставлена с литературными данными по их экстракции пентан-1,5-диилбис(дифенилфосфин) диоксидом **4** в сопоставимых условиях.

Экстракция ионов металлов из азотнокислых растворов нейтральными фосфорорганическими

соединениями сопровождается взаимодействием HNO_3 с экстрагентом. Предварительно исследована экстракция HNO_3 растворами соединений **1** и **3**. Данные по распределению HNO_3 между водными растворами и растворами этих соединений в дихлорэтане (рис. 1) указывают на то, что при $[HNO_3] > 2$ моль/л отношение концентрации HNO_3 , связанной в комплексы с экстрагентом, к исходной концентрации экстрагента в органической фазе больше 1. В связи с тем, что в органическую фазу, вероятно, переходят комплексы экстрагента (L) с одной и двумя молекулами азотной кислоты, экстракция HNO_3 может быть описана уравнением (1).

$$i (\mathrm{H}^+ + \mathrm{NO}_3^-)_{(\mathrm{B})} + \mathrm{L}_{(\mathrm{o})} \leftrightarrow (\mathrm{HNO}_3)_i \mathrm{L}_{(\mathrm{o})}.$$
 (1)

Символами (в) и (о) обозначены компоненты водной и органической фаз; *i* = 1 и 2 – число моле-кул HNO₃ в экстрагируемом сольвате.

Рис. 1. Экстракция азотной кислоты 0.05 М. растворами соединений 1 (1) и 3 (2) в дихлорэтане.

Эффективные константы экстракции HNO₃ (K_1 и K_2), выражающиеся уравнением (2), рассчитаны нелинейным методом наименьших квадратов с использованием уравнения (3) и приведены в табл. 1.

$$K_i = [(HNO_3)_i L]/([L]a^i),$$
 (2)

$$y/[L]_{(\text{MCX})} = (K_1 a + 2K_2 a^2)/(1 + K_1 a + K_2 a^2).$$
 (3)

Здесь *a* – активность HNO₃ в равновесной водной фазе ($a = [H^+][NO_3^-]\gamma_{\pm}^2$); [L] – равновесная концентрация свободного экстрагента в органической фазе; *y* – общая концентрация комплексов HNO₃ с экстрагентом в органической фазе, [L]_(исх) – исходная концентрация экстрагента.

Для сравнения в табл. 1 приведены константы K_1 и K_2 для соединения **2**. Экстракционная способность исследованных реагентов по отношению к HNO₃ возрастает в ряду соединений **3** < **2** < **1**. В такой же последовательности возрастает липофильность этих соединений. Коэффициенты распределения экстрагентов **3**, **2**, **1** между дихлорэтаном и 3 М. раствором HNO₃ составляют 6760, 2340, 219 соответственно.

Для выяснения влияния структуры соединений 1-4 на эффективность экстракции ионов Ln(III) сопоставлены величины коэффициентов распределения D_{Ln} , определенные при экстракции Ln(III) из раствора нитрата аммония, чтобы исключить влияние совместной экстракции азотной кислоты. Данные для соединений 2-4 взяты из работ [16, 22]. Замена в молекуле пентан-1,5-диилбис-(дифенилфосфин) диоксида 4 метиленовой группы C³H₂ на эфирный атом кислорода приводит к значительному увеличению D_{Ln} в системе с соединением 3. По-видимому, это связано с участием эфирного атома кислорода в комплексообразовании с ионами Ln³⁺, в результате чего образуются устойчивые шестичленные хелатные комплексы. Участие эфирного атома кислорода соединения 1 в комплексообразовании с ионами Ln³⁺ подтверждено данными рентгеноструктурного анализа [23]. Последовательная замена двух метиленовых групп в связке на о-фениленовые фрагменты приводит к увеличению D_{Ln} в ряду соединений 3 < 2 < 1. Это может быть связано как с делокализацией электронной плотности о-фениленовых групп в замыкаемом ионом Ln³⁺ хелатном цикле

Таблица 1. Эффективные константы экстракции HNO₃ растворами соединений 1–3 в дихлорэтане

Соединение	<i>K</i> ₁	<i>K</i> ₂
1	6.12±0.09	0.53±0.007
2 [22]	3.71±0.06	0.38±0.005
3	2.12±0.02	0.23 ± 0.003

[7], так и с увеличение конформационной жесткости молекул экстрагентов 1 и 2, что ведет к упрочнению экстрагируемых комплексов. Подобное увеличение D_{Ln} ранее было отмечено при замене двух метиленовых групп в молекулах поданда Ph₂P(O)CH₂OCH₂CH₂P(O)Ph₂ [14] или диоксида Ph₂P(O)CH₂CH₂P(O)Ph₂ [24] на *о*-фениленовый фрагмент.

При экстракции ионов Ln(III) растворами соединений **1–4** наблюдается тенденция увеличения $D_{\rm Ln}$ с возрастанием атомного номера Z лантанида (рис. 2). Такой характер зависимости $D_{\rm Ln}$ –Z связан с увеличением устойчивости комплексов Ln(III) с жесткими (по Пирсону) лигандами по мере увеличения плотности заряда ионов Ln³⁺ с возрастанием Z [25].

Рассмотрено влияние концентрации HNO₃ на изменение коэффициентов распределения U(VI), Th(IV), Am(III) и Ln(III) между находящимися в равновесии водной фазой и раствором соединения 1 в дихлорэтане (рис. 3). Зависимости коэффициентов распределения от концентрации HNO₃ имеют максимум, обусловленный высаливающим действием ионов NO₃⁻ и связыванием экстрагента азотной кислотой. При постоянной концентрации ионов NO3⁻ в водной фазе увеличение концентрации ионов H^+ сопровождается уменьшением D_{Ln} (рис. 4). При экстракции Ln(III) положение максимума на кривой зависимости lgD_{Ln}-lg[HNO₃] (рис. 3) смещается в область более высокой кислотности водной фазы с возрастанием Z, что связано с увеличением энергии гидратации ионов Ln³⁺ вследствие уменьшения их ионных радиусов. Коэффициент разделения лютеция и лантана $(\beta_{Lu/La} = D_{Lu}/D_{La})$ увеличивается от 83 до 460 с возрастанием концентрации HNO₃ от 0.3 до 5 моль/л. Аналогичный характер зависимостей D_{1 n}-[HNO₃] наблюдался при экстракции Ln(III) соединением

Рис. 2. Коэффициенты распределения Ln(III) при экстракции 0.01 М. растворами соединений **1–4** (*1–4*) в дихлорэтане из 4 М. раствора NH₄NO₃.

Рис. 4. Зависимости коэффициентов распределения Lu(III) (1), Tb(III) (2), Eu(III) (3), Nd(III) (4), Ce(III) (5) и La(III) (6) от концентрации ионов H⁺ в равновесной водной фазе при экстракции 0.05 М. растворами соединения **1** в дихлорэтане. $[NO_3^-] = 4$ моль/л.

3 (рис. 5), а ранее отмечался при экстракции этих ионов растворами соединения **2** в виде координационно-сольватированных нитратов [22].

Соединения **1–3** экстрагируют Am(III) из азотнокислых растворов менее эффективно, чем большинство Ln(III). При экстракции Am(III) и Ln(III) из 3 М. раствора HNO₃ 0.05 М. растворами соединений **1** и **3** в дихлорэтане коэффициенты разделе-

Рис. 3. Зависимости коэффициентов распределения Th(IV) (1), U(VI) (2), Lu(III) (3), Tb(III) (4), Eu(III) (5), Am(III) (6) и Ce(III) (7) от концентрации HNO₃ в равновесной водной фазе при экстракции 0.05 (3–7) и 0.025 (1, 2) М. растворами соединения **1** в дихлорэтане.

Рис. 5. Зависимости коэффициентов распределения Lu(III) (1), Tb(III) (2), Eu(III) (3), Nd(III) (4) и La(III) (5) от концентрации HNO₃ в равновесной водной фазе при экстракции 0.05 М. растворами соединения **3** в дихлорэтане.

ния Eu(III) и Am(III) составляют 7.6 и 5.4. В системе с соединением 1 величина $\beta_{Ln/Am}$ возрастает в ряду Ln(III) с увеличением Z от 0.4 (La/Am) до 93 (Lu/Am).

Стехиометрическое соотношение металл-экстрагент в экстрагируемых комплексах определяли методом сдвига равновесия. Для экстракции ионов U(VI), Th(IV), Ln(III) и Am(III) соединением

Рис. 6. Зависимости коэффициентов распределения Th(IV) (1), U(VI) (2), Lu(III) (3), Tb(III) (4), Eu(III) (5), Sm(III) (6), Nd(III) (7) и Am(III) (8) от концентрации соединения 1 в дихлорэтане при экстракции из 3 М. раствора HNO₃.

1 угловой наклон зависимостей lgD–lg[L] равен 1.43±0.05, 1.97±0.05, 1.91±0.05 и 1.41±0.05 соответственно (рис. 6), что указывает на экстракцию U(VI) и Am(III) из азотнокислых растворов соединением 1 в виде смеси моно- и дисольватов, а Th(IV) и Ln(III) – в виде дисольватов. Комплексы этих ионов такой же стехиометрии экстрагируются растворами соединения 2 в дихлорэтане [22]. Аналогичным образом определено стехиометрическое соотношение Ln(III)–3 и Am(III)–3 (рис. 7). Am(III) экстрагируется соединением 3 из азотнокислых растворов в виде смеси моно- и дисольватов, а Ln(III) – в виде дисольватов. U(VI) экстрагируется соединением 3 в виде смеси монои дисольватов, а Th(IV) – в виде дисольватов [26].

На основании полученных данных экстракция ионов Ln(III) из растворов HNO₃ соединениями **1** и **3** может быть описана уравнением (4). Эффективные константы экстракции Ln(III) (K_2^{Ln}) рассчитаны нелинейным методом наименьших квадратов с использованием уравнения (5) (табл. 2).

$$Ln^{3+}_{(B)} + 3NO^{-}_{3(B)} + 2L_{(0)} \leftrightarrow LnL_2(NO_3)_{3(0)}, K^{Ln}_2,$$
(4)

$$D_{\rm Ln} = K_2^{\rm Ln} [\rm NO_3^-]^3 \, \gamma_{\pm}^{\rm 4} [\rm L]_{\rm \tiny MCx}^2 f^{-2}). \tag{5}$$

Здесь γ_{\pm} – коэффициент активности соответствующего нитрата Ln(III) [27], f – поправка на связы-

Рис. 7. Зависимости коэффициентов распределения Lu(III) (1), Ho(III) (2), Tb(III) (3), Eu(III) (4) и Nd(III) (5) от концентрации соединения **3** в дихлорэтане при экстракции из 3 М. раствора HNO₃.

вание экстрагента азотной кислотой ($f = 1 + K_1 a + K_2 a^2$).

В табл. 2 для сравнения приведены значения K_2^{Ln} для соединения **2**. Экстракционная способность по отношению к ионам Ln(III) в азотнокислых средах возрастает в ряду соединений **3** < **2** < **1**.

Соединения 1-3 экстрагируют U(VI) и Th(IV) значительно более эффективно, чем Ln(III) и Ат(III). Для сравнения экстракционной способности соединений 1-4 по отношению к U(VI) и Th(IV) в табл. 3 представлены данные по экстракции U(VI) и Th(IV) из азотнокислых растворов. Замена в молекуле соединения 4 метиленовой группы С³H₂ на эфирный атом кислорода приводит к повышению $D_{\rm Th}$ в системе с соединением **3**, но мало влияет на изменение $D_{\rm U}$. По-видимому, в случае экстракции U(VI) участие всех трех донорных центров молекулы поданда 3 затруднено из-за линейного строения катиона UO₂²⁺. Последовательная замена двух метиленовых групп на о-фениленовые фрагменты приводит к увеличению D_{Th} в ряду соединений **3** < **2** < **1**. Соединения 1-3 и экстрагируют Th(IV) более эффективно, чем U(VI), тогда как при экстракции диоксидом 4 $D_{\rm U} > D_{\rm Th} [26].$

Полученные данные показали, что последовательная замена диметиленовых фрагментов, сое-

Ln(III)	$K_2^{\operatorname{Ln}}(1)$	$K_{2}^{\mathrm{Ln}}(2)$ [22]	$K_2^{\operatorname{Ln}}(3)$
La(III)	5.61±0.05	5.27±0.05	4.60±0.05
Ce(III)	6.24±0.05	5.74±0.05	4.98±0.05
Pr(III)	6.48±0.05	5.95±0.05	5.19±0.05
Nd(III)	6.60±0.06	6.05±0.06	5.32±0.06
Sm(III)	7.05±0.06	6.43±0.06	5.69 ± 0.06
Eu(III)	7.18±0.05	6.47±0.05	5.79±0.05
Gd(III)	7.05±0.06	6.38±0.06	5.69 ± 0.06
Tb(III)	7.36±0.05	6.72±0.05	6.02±0.05
Dy(III)	7.44±0.06	6.80±0.06	6.06 ± 0.06
Ho(III)	7.44±0.05	6.81±0.05	6.05 ± 0.05
Er(III)	7.40±0.07	6.77±0.07	6.03±0.07
Tm(III)	7.34±0.05	6.71±0.05	6.02±0.05
Yb(III)	7.30±0.06	6.71±0.06	5.97±0.06
Lu(III)	7.24±0.05	6.64±0.05	5.95 ± 0.05

Таблица 2. Эффективные константы экстракции РЗЭ(III) из растворов HNO₃ растворами соединений 1–3 в дихлорэтане

диняющих эфирный атом кислорода с группами $Ph_2P(O)$, на *о*-фениленоые группы приводит к увеличению эффективности экстракции Th(IV) Am(III) и Ln(III) из азотнокислых растворов в ряду соединений 3 < 2 < 1, однако мало влияет на эффективность экстракции U(VI).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оксидифенил-2,2'-бис(дифенилфосфин)диоксид **1** [т. пл. 279–280°С (этанол)] получен окислением оксидифенил-2,2'-бис(дифенилфосфина) (Aldrich) пероксидом водорода по методике [23]. Синтез соединения **3** описан ранее [29]. В качестве органического растворителя использовали 1,2-дихлорэтан марки ХЧ (Вектон). Растворы экстрагентов готовили по точным навескам.

Таблица 3. Коэффициенты распределения U(VI) и Th(IV) при их экстракции из 2 М. раствора HNO₃ 0.01 М. растворами экстрагентов в дихлорэтане

Экстрагент	$\lg D_{\mathrm{Th}}$	$\lg D_{\mathrm{U}}$
1	1.76	1.05
2 [22]	1.40	1.02
3 [26]	1.13	0.75
4 [28]	0.49	0.70

Распределение Ln(III), кроме Pm, U(VI) и Th(IV) в экстракционных системах изучали на модельных 0.1-7.0 M. растворах HNO₃. Исходные водные растворы с концентрацией каждого элемента 2×10^{-6} моль/л готовили растворением соответствующих нитратов в воде с последующим добавлением HNO₃ до требуемой концентрации. Реактивы соответствовали марке XЧ.

Опыты по экстракции проводили в пробирках с притертыми пробками при 21±1°С при соотношении объемов органической и водной фаз 1:1. Фазы перемешивали 1 ч на роторном аппарате со скоростью 60 об/мин. По данным предварительного опыта, этого времени достаточно для установления постоянных значений коэффициентов распределения.

Концентрации Ln(III), U(VI) и Th(IV) в исходных и в равновесных водных растворах определяли методом масс-спектрометрии с ионизацией пробы в индуктивно связанной плазме с использованием масс-спектрометра XSeries II (Thermo Scientific, США). Концентрацию элементов в органической фазе определяли по разнице концентраций в водном растворе до и после экстракции. Коэффициенты распределения элементов рассчитывали по отношению их концентраций в равновесных фазах. Погрешность определения коэффициентов распределения не превышала 10%. Коэффициенты распределения ²⁴¹Am(III) определяли по отношению γ-активности аликвот равновесных органической и водной фазах. Концентрацию HNO₃ в равновесных водных фазах определяли потенциометрическим титрованием раствором NaOH. Концентрацию HNO₃ в равновесной органической фазе определяли таким же образом после реэкстракции HNO₃ в органической фазе после экстракции HNO₃ в органической фазе после экстракции кислоты чистым дихлорэтаном (холостой опыт). Результаты холостого опыта учитывали при расчете общей концентрации комплексов HNO₃ в органической фазе с экстрагентом.

Концентрацию экстрагентов в равновесных водных фазах определяли атомно-эмиссионным методом с ионизацией пробы в индуктивно связанной плазме с использованием спектрометра iCAP-6500 Duo (Thermo Scientific, США).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Туранов Александр Николаевич, ORCID: https://orcid.org/0000-0002-5064-191X

Карандашев Василий Константинович, ORCID: https://orcid.org/0000-0003-0684-272X

Баулин Владимир Евгеньевич, ORCID: https:// orcid.org/0000-0002-5956-2601

Баулин Дмитрий Владимирович, ORCID: https://orcid.org/0000-0001-5414-3494

Костикова Галина Валерьевна, ORCID: https:// orcid.org/0000-0001-5740-0038

Федосеев Александр Михайлович, ORCID: https://orcid.org/0000-0003-3615-4063

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственного задания Института физики твердого тела им. Ю.А. Осипьяна РАН, Института проблем технологии микроэлектроники и особо чистых материалов РАН, Института физиологически активных веществ РАН и Института физической химии и электрохимии им. А.Н. Фрумкина РАН на 2022 г.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Myasoedov B.F., Kalmykov S.N., Kulyako Yu.M., Vinokurov, S.E. // Geochem. Int. 2016. Vol. 54. N 13. P. 1156. doi 10.1134/S0016702916130115
- Аляпишев М.Ю., Бабаин В.А., Устынюк Ю. // Усп. хим. 2016. Т. 85. № 9. С. 943.; Alyapychev М.Yu., Babain V.A., Ustynyuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. N 9. P. 943. doi 10.1070/RCR4588
- Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229. doi 10.1039/C7CS00574A
- Wilson A.M., Bailey P.J., Tasker P.A. // Chem. Soc. Rev. 2014. Vol. 43. P. 123. doi 10.1039/C3CS60275C
- Werner E.J., Biros S.M. // Org. Chem. Front. 2019. Vol. 6. P. 2067. doi 10.1039/C9QO00242A
- Bhattacharyya A., Mohapatra P.K. // Radiochim. Acta. 2019. Vol. 107. P. 931. doi 10.1515/ract-2018-3064
- 7. *Розен А.М., Крупнов Б.В.* // Усп. хим. 1996. Т. 65. № 11. С.1052; *Rozen A.M., Krupnov B.V.* // Rus. Chem. Rev. 1996. Vol. 65. N 11. P. 973. doi 10.1070/ RC1996v065n11ABEH000241
- Siddall T.H. // J. Inorg. Nucl. Chem. 1963. Vol. 25. P. 883. doi 10.1016/0022-1902(63)80376-0
- Mrochek J.E., Banks V.C.// J. Inorg. Nucl. Chem. 1965.
 Vol. 27. P. 589. doi 10.1016/0022-1902(65)80265-2
- Myasoedov B.F., Chmutova M.K., Kochetkova N.E., Koiro O.E., Pribylova G.A., Nesterova N.P., Medved T.Y., Kabachnik M.I. // Solvent Extr. Ion Exch. 1986. Vol. 4. N 1. P. 61. doi 10.1080/07366298608917853
- Horwitz E.P., Martin K.A., Diamond H., Kaplan L. // Solv. Extr. Ion Exch. 1986. Vol. 4. N 3. P. 449. doi 10.1080/07366298608917877
- Чмутова М.К., Литвина М.Н., Прибылова Г.А., Иванова Л.А., Смирнов И.В., Шадрин А.Ю, Мясоедов Б.Ф. // Радиохимия. 1999. Т. 41. № 4. С. 331.
- Смирнов И.В., Ефремова Т.П., Шадрин А.Ю., Баулин В.Е., Цветков Е.Н. // Радиохимия. 1993. Т. 35. № 1. С. 56.
- Туранов А.Н., Карандашев В.К., Евсеева Н.К., Баулин В.Е., Ушакова А.П. // Радиохимия. 1999. Т. 41. № 3. С. 219.
- Turanov A.N., Karandashev V.K., Baulin V.E. // Solvent Extr. Ion Exch. 1999. Vol. 17. P. 1423. doi 10.1080/07366299908934656
- Turanov A.N., Karandashev V.K., Baulin V.E., Yarkevich A.N., Safronova Z.V. // Solvent. Extr. Ion Exch. 2009. Vol. 27. P. 551. doi 10.1080/07366290903044683
- 17. Розен А.М., Николотова З.И., Карташева Н.А., Юдина К.С. // Докл. АН СССР. 1975. Т. 222. № 5. С. 1151.
- Кабачник М.И., Мясоедов Б.Ф., Мастрюкова Т.А., Поликарпов Ю.М., Чмутова М.К., Нестерова Н.П. // Изв. АН. Сер. хим. 1996. № 11. С. 2624.
- 19. Цветков Е.Н., Евреинов В.И., Бондаренко Н.А., Сафронова З.В. // ЖОХ. 1996. Т. 66. Вып. 7. С. 1081.
- Сударушкин С.К., Моргалюк В.П., Тананаев И.Г., Грибов Л.А., Мясоедов Б.Ф. // Изв. АН. Сер. хим. 2006. № 4. С. 609; Sudarushkin S.K., Morgalyuk V.P., Tananaev I.G., Gribov L.A., Myasoedov B.F. // Russ. Chem. Bull. 2006.Vol. 55. Р. 632. doi 10.1007/s11172-006-0304-1
- Демин С.В., Жилов В.И., Нефедов С.Е., Баулин В.Е., Цивадзе А.Ю. // ЖНХ. 2012. Т. 57. № 6. С. 970; Demin S.V., Nefedov S.E., Zhilov V.I. Baulin V.E., Tsivadze A.Y. // Russ. J. Inorg. Chem. 2012. Vol. 57. N 6. P. 897. doi 10.1134/S0036023612060095
- Туранов А.Н., Карандашев В.К., Баулин Д.В., Баулин В.Е. // ЖОХ. 2020. Т. 90. Вып. 6. С. 919; Turanov A.N., Karandashev V.K., Baulin D.V., Baulin V.E. // Russ. J. Gen. Chem. 2020. Vol. 90. N 6. P. 1012. doi 10.1016/j.poly.2004.09.006

- Fawcett J., Platt A.W.G., Vickers S., Ward M.D. // Polyhedron. 2004. Vol. 23. P. 2561. doi 10.1016/j. poly.2004.09.006
- Туранов А.Н., Карандашев В.К., Артюшин О.И., Костикова Г.В., Федосеев А.М., Брель В.К. // ЖОХ.
 2022. Т. 92. № 8. С. 1289; Turanov A.N., Karandashev V.K., Artyushin O.I., Kostikova G.V., Fedoseev A.M., Brel V.K. // Russ. J. Gen. Chem. 2022. Vol. 92. N 8. P. 1479. doi 10.1134/S1070363222080163
- Nash K.L., Jensen M.P. // Sep. Sci. Technol. 2001.
 Vol. 36. N 5–6. P. 1257. doi 10.1081/SS-100103649
- 26. *Туранов А.Н., Карандашев В.К., Баулин В.Е.* // Радиохимия. 1998. Т. 40. № 1. С. 36.
- 27. Власов В.С., Розен А.М. // Радиохимия. 1988. Т. 30. № 1. С. 146.
- Туранов А.Н., Карандашев В.К., Харитонов А.В., Сафронова З.В., Яркевич А.Н. // Радиохимия. 2000. Т. 42. № 4. С. 349.
- 29. Евреинов В.И., Баулин В.Е., Вострокнутова З.Н., Цветков Е.Н. // Изв. АН. Сер. хим. 1993. № 8. С. 518.

Effect of the Structure of Phosphoryl-Containing Podands on the Extraction of Actinides and Lanthanides(III) from Nitric Acid Solutions

A. N. Turanov^{*a*}, V. K. Karandashev^{*b*}, V. E. Baulin^{*c*}, D. V. Baulin^{*d*,*}, G. V. Kostikova^{*d*}, and A. M. Fedoseev^{*d*}

^a Yu. A. Ossipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Russia ^b Institute for Problems of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences,

Chernogolovka, 142432 Russia

^c Institute of Physiologically Active Substances of the Russian Academy of Sciences, Chernogolovka, 142432 Russia ^d A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow, 119991

Russia

*e-mail: badmitriy@gmail. com

Received June 29, 2022; revised June 29, 2022; accepted July 9, 2022

The extraction of HNO₃ and U(VI), Th(IV), Am(III), and lanthanide(III) ions from nitric acid solutions with solutions of 3-oxapentane-1,5-diylbis(diphenylphosphine)dioxide and its structural analogues in 1,2 -dichloroethane was performed. The stoichiometry of the extractable complexes was determined. The influence of the structure of the extractant and the concentration of HNO₃ in the aqueous phase on the efficiency of the extraction of metal ions into the organic phase is considered. It has been established that the successive replacement of dimethylene fragments in the podand molecule, connecting the ether oxygen atom with $Ph_2P(O)$ -groups, by *o*-phenylene groups leads to an increase in the efficiency of extraction of Th(IV) Am(III) and Ln(III) from nitric acids, however little effect on the change in the efficiency of U(VI) extraction.

Keywords: phosphorylpodands, extraction, uranium(VI), thorium(IV), americium(III), lanthanides(III)

УДК 547.458.88

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ МАРГАНЦА(II) С ЯБЛОЧНЫМ ПЕКТИНОМ, МОДИФИЦИРОВАННЫМ АМИНОКИСЛОТАМИ (L-ФЕНИЛАЛАНИНОМ, L-ГИСТИДИНОМ И L-ТРИПТОФАНОМ)

© 2022 г. Р. Х. Мударисова^{*a*,*}, О. С. Куковинец^{*b*}, С. В. Колесов^{*a*}

^а Уфимский институт химии Уфимского федерального исследовательского центра Российской академии наук, np. Октября 71, Уфа, 450054 Россия ^b Башкирский государственный университет, Уфа, 450014 Россия *e-mail: mudarisova@anrb.ru

> Поступило в редакцию 30 июня 2022 г. После доработки 19 июля 2022 г. Принято к печати 21 июля 2022 г.

На основе яблочного пектина, модифицированного аминокислотами (L-гистидином, L-фенилаланином и L-триптофаном), получены новые полимерные комплексы марганца(II). Спектрофотометрическими методами определены константы устойчивости комплексов пектин–катион марганца(II) (2:1) и стандартные термодинамические характеристики комплексообразования (ΔH° , ΔG° , ΔS°). Модификация пектина аминокислотами повышает устойчивость полимерных комплексов марганца по сравнению с комплексом на основе нативного пектина и увеличивается в ряду Phe < His < Trp. Выявлены особенности термического поведения комплексов марганца(II) с пектиновыми лигандами. Стабильность комплексов подтверждена тестированием в среде, моделирующей желудочный сок.

Ключевые слова: марганец(II), яблочный пектин, химическая модификация, аминокислоты, комплексообразование, константы устойчивости

DOI: 10.31857/S0044460X22110142, EDN: LPNAKX

Комплексные соединения биогенных металлов (Cu, Co, Mn, Mo, Fe, Zn) с полисахаридами проявляют различные виды биологической активности [1–6]. Работы в этом направлении приобретают большое значение в связи с тем, что комплексы с полисахаридами характеризуются свойствами, которые отсутствуют у металлокомплексов с низкомолекулярными лигандами. Наименее изучены среди *d*-металлов комплексы на основе полисахаридов с катионами марганца(II) [7–9]. Марганец – важнейший микроэлемент, входящий в состав ферментов, необходимых для формирования соединительной ткани и костей, роста организма, выполнения функций репродуктивной, центральной нервной и эндокринной систем. В биологических системах марганец присутствует в виде комплексных соединений Mn(II) с различными биолигандами (белками, нуклеиновыми кислотами, аминокислотами). Несмотря на то, что биокомплексы Mn(II) малоустойчивы, они выполняют важные биохимические функции: активизируют большое число ферментов, участвуют в синтезе РНК и белка, стабилизируют конформацию нуклеиновых кислот [10, 11].

Предварительная модификация полисахаридов биологически активными низкомолекулярными соединениями, в частности аминокислотами, позволяет повысить устойчивость металлокомплек-

Рис. 1. Электронные спектры поглощения водных растворов $Mn^{2+}(1)$, $HL^5(2)$, $HL^5-Mn^{2+}(3)$. $c_{HL}5 \, 10^{-4}$ моль/л, $c_{Mn}^{2+} 10^{-4}$ моль/л, 298 К, $l \, 1$ см, растворитель – вода.

сов на их основе [12–14]. В качестве полимерной матрицы перспективно использовать пектиновые полисахариды, обладающие разнообразной биологической активностью и способностью к образованию комплексов как с органическими, так и с неорганическими соединениями [15–19]. Получены модифицированные аминокислотами пектины, способные образовать комплексные соединения с металлами за счет карбоксильных, гидроксильных и аминогрупп полимерной матрицы [20]. Введение в полисахарид функциональных групп модифицирующего агента, например, имидазольной, индольной и фенильной, может влиять на устойчивость образующихся комплексов.

Учитывая актуальность данного направления, мы исследовали комплексообразование яблочного пектина, модифицированного L-фенилаланином (Phe), L-гистидином (His), L-триптофаном (Trp), с катионами марганца(II). Синтез гомолигандных металлокомплексов на основе нативного яблочного пектина (HL^1), индивидуальных Phe (HL^2), His (HL^3) и Trp (HL^4) проводили в водной среде в одну стадию при взаимодействии с хлоридом марганца(II). Гетеролигандные металлокомплексы модифицированных пектинов получали в две стадии. На первой стадии в реакции пектина с аминокислотой получены модифицированные пектиновые лиганды (HL⁵–HL⁷). На второй стадии действием гетеролигандов на хлорид марганца(II) получали металлокомплексы модифицированных пектинов $(HL^{5}-Mn^{2+}-HL^{7}-Mn^{2+}).$

Рис. 2. Электронные спектры поглощения водных растворов $Mn^{2+}(1)$, $HL^{6}(2)$, $HL^{6}-Mn^{2+}(3)$. $c_{HL}6 10^{-4}$ моль/л, $c_{Mn}2+10^{-4}$ моль/л, 298 К, l 1 см, растворитель – вода.

На рис. 1–3 представлены спектры водных растворов систем на основе гетеролигандов HL^5-HL^7 с катионами Mn^{2+} при pH 7. Согласно спектральной картине, типичной для исследуемых аминокислотных производных пектина [20], можно с большой долей вероятности отнести наблюдаемые изменения оптической плотности к образованию металлокомплексов. По сравнению с исходными гетеролигандами максимумы полос поглощения систем $HL^{5-7}-Mn^{2+}$ незначительно смещены в коротковолновую область с одновременным увеличением интенсивности.

Варьируя кислотность среды, мы определили оптимальные интервалы рН комплексообразо-

Рис. 3. Электронные спектры поглощения водных растворов $Mn^{2+}(I)$, $HL^7(2)$, $HL^7-Mn^{2+}(3)$. $c_{HL}7 10^{-4}$ моль/л, $c_{Mn}2^+ 10^{-4}$ моль/л, 298 К, I 1 см, растворитель – вода.

Комплекс	v(NH ₂)	ν(CH)	v _{as} (COO⁻)	ν _s (COO⁻)	Δ(COO [_])	v(C-O-C)
HL ¹ -Mn ²⁺	_	2934	1562	1409	153	1020, 1099
HL^2-Mn^{2+}	3392	3003	1583	1462	121	_
HL^3-Mn^{2+}	3125	2930	1616	1463	153	_
$HL^{4}-Mn^{2+}$	3446	2923	1606	1498	108	_
HL ⁵ –Mn ²⁺	3372	2930	1615	1423	192	1018, 1103
$HL^{6}-Mn^{2+}$	3115	2908	1610	1494	116	1043, 1097
$HL^{7}-Mn^{2+}$	3406	2929	1610	1415	195	1008, 1099

Таблица 1. Волновые числа (см⁻¹) максимумов полос поглощения металлокомплексов

Таблица 2. Константы устойчивости и термодинамические характеристики металлокомплексов

Комплекс	$lg\beta_{\kappa}$	ΔH° , кДж/моль	ΔS° , Дж/(моль·К)	ΔG° , кДж/моль
HL ¹ -Mn ²⁺	2.6±0.2	-7.6±0.1	26.5±0.3	-15.4±0.1
HL^2-Mn^{2+}	2.5±0.1	-12.2±0.1	6.5±0.1	-14.1±0.1
HL^3-Mn^{2+}	2.9±0.2	-14.0±0.1	8.6±0.1	-16.5±0.1
HL^4 – Mn^{2+}	3.5±0.2	-9.1±0.1	35.6±0.2	-19.8±0.1
HL^5-Mn^{2+}	2.7±0.1	-12.3±0.2	9.5±0.1	-15.1±0.1
HL^6-Mn^{2+}	3.2±0.3	-12.5±0.1	17.5±0.1	-17.7±0.2
HL ⁷ -Mn ²⁺	4.1±0.3	-19.5±0.2	9.3±0.1	-22.2±0.3

вания: 6.0–6.6 (HL¹–Mn²⁺), 7.3–8.2 (HL⁵–Mn²⁺), 7.9–8.3 (HL⁶–Mn²⁺), 6.2–7.8 (HL⁷–Mn²), при которых оптическая плотность металлокомплексов достигает наибольшего значения. Дальнейшее увеличение pH приводит к гидролизу образующегося комплекса и выпадению осадка гидроксида марганца(II).

Молярные соотношения Mn²⁺–HL в комплексных соединениях определяли спектрофотометрическими методами насыщения и изомолярных серий. Во всех случаях образуются координационные соединения MnL₂.

Образование комплексных соединений подтверждается данными ИК спектроскопии (табл. 1). Интерпретацию ИК спектров поглощения проводили на основании литературных данных по отнесению частот в спектрах исходных и аналогичных соединений [21–23]. В ИК спектрах комплексов HL–Mn²⁺ по сравнению со спектральными характеристиками исходных лигандов полосы поглощении $v_{as}(COO^{-})$, $v_s(COO^{-})$ проявляются в области 1615–1562 и 1498–1409 см⁻¹ соответственно. Так как разность частот поглощения валентных асимметричных и симметричных колебаний ионизированных карбоксильных групп менее 200 см⁻¹, можно говорить о бидентантной координации карбоксильных групп лиганда с катионом Mn²⁺ [24]. Кроме того, в полимерных комплексах HL¹–Mn²⁺, $HL^{5}-Mn^{2+}$, $HL^{6}-Mn^{2+}$ и $HL^{7}-Mn^{2+}$ наблюдается высокочастотное смещение полос вторичных гидроксильных групп полимерного лиганда из-за ослабления водородных связей за счет координации катионов марганца(II) к кислородным атомам гидроксильных групп при C². Смещение полос поглощения v(С-О, С-С) пиранозного цикла полимерного лиганда в длинноволновую область может быть обусловлено образованием связи ионов Mn²⁺ с кольцевым кислородным атомом пиранозного цикла, что характерно для мономерных уроновых кислот [25].

Для определения констант устойчивости металлокомплексов был выбран метод мольных отношений, который широко применяется при изучении комплексных соединений на основе гетеролигандов [26, 27]. Результаты определения условных констант комплексообразования приведены в табл. 2. Устойчивость полимерных комплексных соединений Mn²⁺ увеличивается в ряду HL⁵–Mn²⁺ <

Ofnoodu	Найдено, %				Формина	Вычислено, %			
Ооразец	С	Н	N	Mn ²⁺	Формула	С	Н	N	Mn ²⁺
HL^1-Mn^{2+}	36.33	4.66	_	11.99	$[Mn(C_{13}H_{17}O_{12})_2]_n$	37.14	4.04	_	13.10
$HL^{2}-Mn^{2+}$	55.52	5.27	7.09	14.56	$Mn(C_9H_{10}NO_2)_2$	56.40	5.22	7.31	14.36
HL^3-Mn^{2+}	38.87	4.12	21.88	14.7	$Mn(C_6H_8N_3O_2)_2$	39.67	4.41	23.15	15.15
HL^4 – Mn^{2+}	54.42	4.61	12.20	11.05	$Mn(C_{11}H_{11}N_2O_2)_2$	57.27	4.77	12.15	11.93
HL^5-Mn^{2+}	48.10	5.93	3.29	6.82	$[Mn(C_{13}H_{18}O_{12} \cdot 2C_9H_{10}NO_2)_2]_n$	49.67	5.07	3.73	7.34
HL^6-Mn^{2+}	40.85	5.12	10.44	7.02	$[Mn(C_{13}H_{18}O_{12} \cdot 2C_6H_8N_3O_2)_2]_n$	41.15	4.66	11.52	7.55
$HL^{7}-Mn^{2+}$	49.77	4.98	5.97	6.12	$[\mathrm{Mn}(\mathrm{C}_{13}\mathrm{H}_{18}\mathrm{O}_{12}\cdot 2\mathrm{C}_{11}\mathrm{H}_{11}\mathrm{N}_{2}\mathrm{O}_{2})_{2}]_{n}$	50.79	4.84	6.77	6.65

Таблица 3. Элементный состав металлокомплексов

 $HL^{6}-Mn^{2+} < HL^{7}-Mn^{2+}$, коррелирует с зависимостью, полученной для комплексов марганца основе индивидуальных аминокислот HL²-Mn²⁺ < $HL^{3}-Mn^{2+} < HL^{4}-Mn^{2+}$ и согласуется с литературными данными [28]. Введение аминокислоты в пектин значительно увеличивает устойчивость металлокомплексов (табл. 2), что можно объяснить, во-первых, высокой комплексообразующей способностью аминокислоты, связанной с пектином и, во-вторых, ее влиянием на надмолекулярную структуру полимерной матрицы [20]. Наибольшим сродством к ионам Mn²⁺ обладает лиганд HL⁷, по-видимому, из-за его большей донорной способности и гидрофобности. Константы устойчивости комплексов HL⁵-Mn²⁺ и HL¹-Mn²⁺ практически одинаковы, несмотря на то что лиганд HL⁵ может координироваться с катионом Mn²⁺ не только по карбоксильной группе, но и за счет дополнительного слабого взаимодействия с π-электронной системой Phe (так называемая back-координация) [29].

Ионы Mn²⁺ образуют более устойчивые соединения с гетеролигандами, чем с индивидуальными аминокислотами (табл. 2), так как полигидроксильные лиганды в водных растворах выступают в роли стабилизаторов. Стабилизация тем сильнее, чем больше гидроксильных групп в лиганде, поскольку катионы марганца сильнее координируются с гидроксильной группой, чем с карбоксильной в соответствии с принципом ЖКМО [30].

Комплексообразование всех исследуемых систем характеризуются отрицательными значениями энтальпии и положительными значениями энтропии ($\Delta H^{\circ} < 0$, $\Delta S^{\circ} > 0$) (табл. 3). Энтальпия в реакции образования металлокомплексов складывается, в основном, из инкрементов разрыва связей центрального иона с молекулами воды, вытеснения некоторого количества молекул воды из гидратных оболочек лиганда и образования связей между центральным ионом и лигандом [31]. Экзотермичность комплексообразования показывает, что образование связей между центральным ионом и лигандом энтальпийно выгодно, величина ΔH° компенсирует затраты тепла на дегидратацию центрального атома и лиганда. Таким образом, комплексообразование сопровождается частичным разрушением сольватных оболочек реагентов, в результате чего большое количество воды высвобождается и переходит в растворитель, т. е. дегидратация вносит определяющий вклад в термодинамику комплексообразования.

Опираясь на информацию о структуре формирующихся комплексов, полученную из данных ИК спектроскопии, и на термодинамические характеристики комплексообразования, можно предположить одинаковый механизм комплексообразования ионов Mn^{2+} с гетеролигандами, имеющими в своем составе амино-, гидрокси- и карбоксильные группы, которые способствуют образованию хелатных структур в комплексах HL^5-Mn^{2+} (**A**), HL^6-Mn^{2+} (**Б**), HL^7-Mn^{2+} (**B**, схема 1).

Термическая стабильность металлокомплексов на основе биологически активных компонентов – важная характеристика, определяющая условия их хранения. Термическое разложение большинства исследованных соединений состоит их двух стадий деструкции (рис. 4). На первой стадии убыль массы комплексов (от 5 до 15%) в интервале тем-

Схема 1.

 $R = CH_3, H.$

Рис. 4. Кривые ТГА металлокомплексов: $HL^1-Mn^{2+}(1)$, $HL^5-Mn^{2+}(2)$, $HL^7-Mn^{2+}(3)$, $HL^6-Mn^{2+}(4)$.

ператур от 30 до 100°С связана с потерей адсорбционной воды. Затем металлокомплексы достаточно медленно распадаются в области 160–240°С с потерей массы от 4 до 23% (происходит декарбоксилирование и деструкция гликозидных связей). В области 300–500°С наблюдается значительная потеря массы от 20 до 45%, связанная с дальнейшим разложением органической части образцов. Наиболее термически стабилен комплекс HL^6 – Mn^{2+} , который сравнительно устойчив до 300°С.

Все аминокислоты, как высокоэффективные лиганды, крайне важны для транспорта минеральных веществ из кишечника в клетки слизистой оболочки [32, 33]. Комплексы металлов с аминокислотами обладают более высокой эффективностью всасывания, транспорта и метаболизма в организме, чем соли металлов [34, 35]. Ионы металлов в координационных соединениях с аминокислотами в среде желудочного сока могут транспортироваться без значительного разложения в кишечник [36].

В плане практического применения было важно определить, как влияет природа лиганда на стабильность гомо- и гетеролигандных металлокомплексов в среде, моделирующей желудочный сок. Из УФ спектров комплекса HL^7 – Mn^{2+} в зависимо-

Рис. 5. Электронные спектры поглощения комплекса HL^7 – Mn^{2+} в зависимости от времени контакта с раствором, моделирующим желудочный сок, мин: 5 (*1*), 30 (*2*), 60 (*3*), 120 (*4*), 180 (*5*). *с* 10⁻⁴ моль/л, 37°С, *l* 1 см.

сти от времени контакта с раствором, моделирующим желудочный сок, следует, что интенсивность полос поглощения HL^7 постепенно увеличивается в течение 180 мин, что свидетельствует о медленном растворении комплекса (рис. 5).

Гомолигандные металлокомплексы разлагаются на 80–95% в зависимости от природы аминокислоты, тогда как гетеролигандные комплексы – на 30–60% (рис. 6). По стабильности в растворе, моделирующем желудочный сок, гетеролигандные комплексы располагаются в ряд HL^7 – Mn^{2+} > HL^6 – Mn^{2+} > HL^5 – Mn^{2+} , который коррелирует с их константами устойчивости (табл. 2).

Рис. 6. Массовая доля металлокомплексов после контакта с раствором, моделирующим желудочный сок: $HL^4-Mn^{2+}(1)$, $HL^7-Mn^{2+}(2)$, $HL^3-Mn^{2+}(3)$, $HL^6-Mn^{2+}(4)$, $HL^2-Mn^{2+}(5)$, $HL^5-Mn^{2+}(6)$. 37°С, время контакта – 180 мин.

Таким образом, ионы марганца(II) образуют в водном растворе комплексы с яблочным пектином, модифицированным L-фенилаланином, L-гистидином и L-триптофаном. Все координационные соединения имеют стехиометрический состав $[Mn^{2+}]$:[HL] = 1:2. При формировании комплексов координация с ионом марганца(II) осуществляется не только за счет карбоксильных групп модифицирующей пектин аминокислоты, но и посредством водородных связей с гидроксигруппами пектина, которые способствуют стабилизации металлокомплексов и увеличению их устойчивости по сравнению с комплексами на основе индивидуальных аминокислот. Модификация пектина аминокислотами приводит к существенному увеличению устойчивости металлокомплексов, что позволяет использовать пектин в качестве эффективного сорбента ионов марганца(II). Металлокомплексы на основе модифицированных пектиновых лигандов имеют более высокую термическую устойчивость по сравнению с комплексом на основе нативного пектина. Гетеролигандные металлокомплексы по сравнению с гомолигандными, не зависимо от природы модифицирующего агента, на порядок стабильнее в желудочной жидкости, и их можно рекомендовать для применения в производстве минерально-аминокислотных пищевых добавок для человека и животных.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В экспериментах использовали пектин товарной марки UnipectineXPP 240 с молекулярной массой 26000 Да и степенью этерифицирования 66%. L-Phe, L-Trp, L-His (XЧ) использовали без дополнительной очистки и перед взятием навесок высушивали при 60°С в вакуумном шкафу до постоянной массы. MnCl₂·4H₂O (XЧ) дополнительно очищали перекристаллизацией из водного раствора с последующим высушиванием до постоянной массы.

ИК спектры записывали на спектрометре Shimadzu IR-Prestige-21 (3600–700 см⁻¹, KBr). Величину удельного вращения измеряли на поляриметре PerkinElmer (модель 141). УФ спектры водных растворов снимали в кварцевых кюветах (l 1 см) на спектрофотометре UV-VIS SPECORD M-40. Все измерения проводили при трех температурах (0, 25, 40°С, термостатирование). Кислотность растворов контролировали на pH-метре АНИОН 4100. Необходимую кислотность раствора создавали растворами HCl и NaOH. Для изучения термического разложения образцов измерения проводили на приборе синхронного термического анализа TГА–ДСК (Mettler Toledo) на воздухе при скорости нагревания 5 град/мин в интервале температур от 298 до 773 К. Для измерений использовали образцы соединений массой 5–8 мг, применяли тигли из оксида алюминия объемом 70 мкл.

Состав соединений, образующихся при взаимодействии пектина с катионами марганца(II), определяли спектрофотометрическими методами изомолярных серий и мольных отношений [37]. Суммарная концентрация компонентов в изомолярной серии 1.0×10⁻⁴ моль/л. В сериях растворов с постоянной концентрацией лиганда (с 5.0× 10⁻⁴ моль/л), концентрацию катиона марганца(II) изменяли от 2.5×10⁻⁵ до 5×10⁻³ моль/л. Постоянство ионной силы поддерживали 0.1 М. раствором NaCl (XЧ). По методу мольных отношений [37] спектральные изменения для раствора лиганда (HL) описываются уравнением (1). Из графика зависимости $[HL]_0/(A - A_0)$ от $1/[Mn^{2+}]$ по тангенсу угла наклона находили константу устойчивости комплексов.

$$[\text{HL}]_0/(A - A_0) = 1/(\varepsilon - \varepsilon_0) + 1/\{(\varepsilon - \varepsilon_0)\beta_{\kappa}\cdot[\text{Mn}^{2+}]\}.$$
(1)

Здесь A и A_0 – оптические плотности растворов в присутствии и в отсутствие Mn^{2+} ; $[HL]_0$ – начальная концентрация соответствующего лиганда; є и ε_0 – молярные экстинкции соответствующего состава; $\beta_{\rm K}$ – константа устойчивости; $[Mn^{2+}]$ – концентрация металла.

Тепловые эффекты реакции образования комплексов вычисляли по уравнению Вант-Гоффа в интегральной форме [37] (2), изменение энтропии – по формуле (3).

$$\Delta H^{\circ} = 4.575 (\lg \beta_{\kappa}^2 / \beta_{\kappa}^1) / (1/T_1 - 1/T_2), \qquad (2)$$

$$\Delta S^{\circ} = (\Delta H^{\circ} - \Delta G^{\circ}/T).$$
(3)

Здесь $\Delta G^{\circ} = -RT \ln \beta_k$, ΔH° – тепловой эффект реакции, ΔS° – энтропия реакции, ΔG° – изменение свободной энергии, T – средняя температура, β_k – константа устойчивости.

Пектин (HL¹). $\alpha_D^{20}(H_2O)$ 228.0. ИК спектр, v, см⁻¹: 3388 (O–H), 1741(C=O), 1149, 1024 (С–O–С). УФ спектр (вода), λ_{max} , нм: 210. Найдено, %: С 40.25; H 5.49. (С₁₃H₁₇O₁₂)_n. Вычислено, % С 42.11; H 4.86.

L-Фенилаланин (HL²). α_D^{20} (H₂O) –57.0. ИК спектр, v, см⁻¹: 3087–3031 (N–H), 2929 (С–Н), 2717, 2551, 2170 (NH₃⁺), 1619, 1458 (С=О, СОО⁻), 1587 (С=С_{Ar}). УФ спектр (вода), λ_{max} , нм: 249, 255, 262, 267.

L-Гистидин (HL³). α_D^{20} (H₂O) –59.8. ИК спектр, v, см⁻¹: 3126–3004 (N–H), 2711, 2017 (NH₃⁺), 1634, 1413 (C=O, COO⁻), 1588–1570 (N=CH). УФ спектр (вода), λ_{max} , нм: 211.

L-Триптофан (**HL**⁴). α_D^{20} (H₂O) –68.8. ИК спектр, v, см⁻¹: 3055 (C–H_{Ar}), 3402 (N–H_{инд}), 1663 (C=O, COO⁻), 1582 [δ (N–H)]. УФ спектр, λ_{max} , нм: 222, 280.

Общая методика синтеза лигандов HL^5- HL⁷. 1 г (5.68 ммоль) пектина (HL¹) растворяли в 20 мл воды, pH 7–7.1. 5.68 ммоль аминокислоты HL²–HL⁴ суспендировали в 20 мл воды, pH раствора доводили до 7–7.1. К раствору полисахарида, интенсивно перемешивая, прибавляли по каплям раствор аминокислоты при 25°С. Полученную смесь перемешивали 4 ч. Продукт реакции осаждали этиловым спиртом, переосаждали из водного раствора в спирт, осадок отделяли и промывали 3 раза спиртом, затем диэтиловым эфиром и сушили в вакууме.

Комплекс пектина с L-фенилаланином (HL⁵). α_D^{20} (H₂O) 144. ИК спектр, v, см⁻¹: 3050–2400 (O–H), 3390, 3337 (N–H), 3049–3028 (C–H_{Ar}), 1605 [δ (N–H)], 1582 (С=O, СОО⁻), 1144–1019 (С–О, С–С). УФ спектр, λ_{max} , нм: 249, 254, 260, 266. Найдено, %: С 52.13; Н 5.81; N 5.01. (С₁₃H₁₈O₁₂·2C₉H₁₀NO₂)_n. Вычислено, %: С 53.45; Н 5.75; N 4.02.

Комплекс пектина с L-гистидином (HL⁶). α_D^{20} (H₂O) 99. ИК спектр, v, см⁻¹: 3127–3560 (OH), 1634 (C=O, COO⁻), 1593–1568 (N=CH), 1148–1018 (C–O,C–C), 1085 [δ (N–H)]. УФ спектр, λ_{max} , нм: 206. Найдено, %: С 42.83; Н 5.23; N 11.25. (C₁₃H₁₈O₁₂·2C₆H₈N₃O₂)_n. Вычислено, %: С 44.38; Н 5.33; N 11.40.

Комплекс пектина с L-триптофаном (HL⁷). α_D^{20} (H₂O) 44±1. ИК спектр, v, см⁻¹: 3079 (C–H_{Ar}), 3404 (N-H_{инд}), 1667 (C=O, COO⁻), 1591 [δ(N-H)], 1147–1008 (C–O, C–C). УФ спектр, λ_{max}, нм: 218, 278. Найдено, %: С 51.43; Н 4.91; N 7.29. (C₁₃H₁₈O₁₂·2C₁₁H₁₁N₂O₂)_n. Вычислено, %: С 53.68; Н 5.26; N 7.37.

Комплексы Mn(II) с лигандами HL¹–HL⁷. К 20 мл раствора лиганда HL¹–HL⁷ прибавляли при 50°С при перемешивании в течение 1.0-1.5 ч 0.1 М. раствор NaOH в дистиллированной воде (0.1 г щелочи на 0.2 г лиганда), затем добавляли раствор хлорида марганца(II), *с* 0.01 моль/л. Через 30 мин комплекс осаждали ацетоном, центрифугировали, осадок промывали этиловым спиртом, затем диэтиловым эфиром и сушили при 50°С в вакууме. Полученные вещества анализировали на марганец [38], углерод, азот и водород на анализаторе EUKOEA-3000 (табл. 3).

Для исследования стабильности металлокомплекса спектрофотометрическим методом точное количество образца добавляли к 10 мл раствора, моделирующего желудочный сок, при непрерывном перемешивании и постоянной температуре 37.0°С. Затем в течение от 0 до 3 ч регистрировали оптическую плотность раствора металлокомплекса. Для приготовления раствора, моделирующего желудочный сок, 2 г NaCl и 3.2 г пепсина растворяли в 100 мл дистиллированной воды, затем добавляли 7 мл конц. HCl и доводили объем до 1 л дистиллированной водой [39].

Количество неразложившегося образца металлокомплекса в растворе, моделирующем желудочный сок, определяли гравиметрически. 0.1 г соответствующего комплекса помещали в пробирку и добавляли 10 мл раствора, перемешивали 3 ч при 37°С, затем центрифугировали, удаляли надосадочную жидкость, осадок комплекса промывали 3 раза дистиллированной водой и сушили в вакуумном шкафу при 60°С до постоянной массы.

Степень этерификации пектина определяли по методике [40]. К 0.1 г пектина прибавляли 10 мл дистиллированной воды, затем прибавляли 1 каплю индикатора Хинтона (желтый раствор). Титровали 0.1 н. раствором NaOH до красного окрашивания. Учитывали объем (V_1) израсходованного раствора NaOH. Затем к пробе добавляли 1 мл 0.5 н. раствора NaOH и оставляли на 2 ч, прибавляли 1 мл 0.5 н. раствора HCl и вновь титровали раствором NaOH. Учитывали объем (V_2), пошедший на титрование

Степень этерификации в процентах вычисляли по формуле (4).

$$E = \frac{V_2}{V_1 + V_2} \times 100.$$
 (4)

Массовую концентрацию гетеролигандов оценивали с учетом их влажности. Для определения влажности 1.0 г образца сушили при 80–85°С в вакуумном сушильном шкафу до достижения постоянной массы. Расчет влажности (*B*) производили по формуле (5).

$$B = \frac{(P - P_1)}{P_2} \times 100,$$
 (5)

где B – влажность, %; P – вес влажного образца, г; P_1 – масса высушенного образца, г.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Мударисова Роза Ханифовна, ORCID: https:// orcid.org/0000-0002-6597-3124

Колесов Сергей Викторович, ORCID: https:// orcid.org/0000-0001-5790-3452

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий на 2022–2024 г.г. (госзадание «Развитие фундаментальных основ управления структурой полимеров и кинетикой процесса в каталитической полимеризации, направленной модификации синтетических и биогенных полимеров и получение полимерных систем для биомедицинских приложений» № 1021062311391-0-1.4.4) с использованием оборудования Центра коллективного пользования «Химия» Уфимского института химии РАН и Регионального центра коллективного пользования «Агидель» Уфимского федерального исследовательского центра РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Сибикина О.В., Иозеп А.А., Москвин А.В. // Хим.фарм. ж. 2009. Т. 43. № 6. С. 35; Sibikina O.V., Iozep A.A., Moskvin A.V. // Pharm. Chem. J. 2009. Vol. 43. N 6. Р. 341. doi 10.1007/s11094-009-0292-1
- Петрова Ю.С., Неудачина Л.К. // ЖНХ. 2014. Т. 59. № 8. С.1133; Petrova Yu.S., Neudachina L.K. // Russ. J. Inorg. Chem. 2014. Vol. 59. N 8. P. 907. doi 10.1134/ S0036023614080166
- Miyada T., Nakajima A., Ebihara K. // Brit. J. Nutr. 2011. Vol. 106. P. 73. doi 10.1017/S0007114510005842
- Кайшева Н.Ш., Кайшев А.Ш. Фармакохимические основы применения пектинов и альгинатов. Пятигорск: РИА-КМВ, 2016. 260 с.
- Минзанова С.Т., Миронов В.Ф., Миронова Л.Г., Немтарев А.В., Выштакалюк А.Б., Холин К.В., Низамеева Г.Р., Милюков В.А. // Изв. АН. Сер. хим. 2019. Т. 68. № 1. С. 48; Minzanova S.T., Mironov V.F., Mironova L.G., Nemtarev A.V., Vyshtakalyuk A.B., Kholin K.V., Nizameeva G.R., Milyukov V.A. // Russ. Chem. Bull. 2019. Vol. 68. N 1. P. 48. doi 10.1007/ s11172-019-2414-6
- Demetgül C. // Carbohydr. Polym. 2012. Vol. 89. P. 354. doi 10.1016/j.carbpol.2012.03.013
- Xu C., Cao L., Bilal M., Cao C., Zhao P., Zhang H., Huang Q. // Carbohydr. Polym. 2021. Vol. 262. P. 117933. doi 10.1016/j.carbpol.2021.117933
- Minzanova S.T., Mironov V.F., Vyshtakalyuk A.B., Tsepaeva O.V., Mironova L.G., Mindubaev A.Z., Nizameev I.R., Kholin K.V., Milyukov V.A. // Carbohydr. Polym. 2015. Vol. 134. P. 524. doi 10.1016/j. carbpol.2015.07.034
- Мударисова Р.Х., Сагитова А.Ф., Куковинец О.С. // Хим. раст. сырья. 2020. № 1. С. 25. doi 10.14258/ jcprm.2020015161
- Сычев А.Я., Исаак В.Г. // Усп. хим. 1993. Т. 62. № 3. С. 303.
- Ярополов А.И., Гиндилис А.Л. // Биофиз. 1990. Т. 35. №. 4. С. 689.
- Николаева Л.С., Белов Г.В., Рулев Ю.А., Семенов А.Н. // ЖФХ. 2013. Т. 87. № 3. С. 457; Nikolaeva L.S., Belov G.V., Rulev Yu.A., Semenov A.N. // Russ. J. Phys. Chem. (A). 2013. Vol. 87. N 3. P. 437. doi 10.1134/S0036024413030187
- Сливкин Д.А., Лапенко В.Л., Сафонова О.А., Суслина С.Н., Беленова А.С. // Вестн. ВГУ. Сер. Химия. Биология. Фармация. 2011. № 2. С. 214.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

1770

- Феофанова М.А., Францева Ю.В., Журавлев Е.В., Рясенский С.С., Баранова Н.В. // ЖФХ. 2013. Т. 87.
 № 8. С. 1432; Feofanova M.A., Frantseva Y.V., Zhuravlev E.V., Ryasensky S.S., Baranova N.V. // Russ. J. Phys. Chem. (A). 2013. Vol. 87. N 8. P. 1417. doi 10.1134/S0036024413080116
- Bernardo Bayon B., Bucala V., Castro G. // Materials. 2016. Vol. 226. P. 71. doi 10.1016/j. micromeso.2015.12.041
- Sanja S., Pavle S., Vesna P., Dobrzynska-Mizera M., Immirzi B., Stevanovic J., Popovic I. // Int. J. Biol. Macromol. 2018. Vol. 113. P. 924. doi 10.1016/j. ijbiomac.2018.03.006
- Bermudez-Oriaa A., Rodriguez-Gutierreza G., Rodriguez-Juana E., Gonzalez-Benjumeab A., Fernandez-Bolanosa J. // Carbohydr. Polym. 2018. Vol. 197. P. 260. doi 10.1016/j.carbpol.2018.05.089
- Mudarisova R., Kukovinets O., Sagitova A., Novoselov I. // Biointerface Res. Appl. Chem. 2020. Vol. 10. N 4. P. 5724. doi 10.33263/BRIAC104.724732
- Kothandaraman G. P., Ravichandran V., Christian B., Loiseau P. M., Jayakrishnan A. // J. Drug Deliv. Sci. Technol. 2017. Vol. 39. P. 1. doi 10.1016/j. jddst.2017.02.010
- Мударисова Р.Х., Куковинец О.С., Колесов С.В., Новоселов И.В. // ЖФХ. 2021. Т. 95. № 9. С. 1379; Mudarisova R., Kukovinets O., Kolesov S.V., Novoselov I.V. // Russ. J. Phys. Chem. (A). 2021. Vol. 95. N 9. C. 1835. doi 10.1134/S003602442109017X
- Беллами Л. Новые данные по инфракрасным спектрам сложных молекул. М.; Л.: ИЛ, 1963. С. 334.
- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1966. 441 с.
- Большаков Г.Ф., Глебовская Е.А., Каплан З.Г. Инфракрасные спектры и рентгенограммы гетероорганических соединений. Л.: Химия, 1967. 168 с.
- 24. Chu D.Q., Xu J.Q., Duan L.M., Wang T.G., Tang A.Q., Ye L. // Eur. J. Inorg. Chem. 2001. Vol. 5. P. 1135. doi 10.1002/1099-0682(200105)2001:5<1135::AID-EJIC1135>3.0.CO;2-G
- 25. Алексеев Ю.Е., Гарновский А.Д., Жданов Ю.А. // Усп. хим. 1998. Т. 67. № 8. С. 723; Alekseev Yu.E., Garnovskii A.D., Zhdanov Yu.A. // Russ. Chem. Rev. 1998. Vol. 67. N 8. P. 649. doi 10.1070/ RC1998v067n08ABEH000343

- 26. Бектуров Е.А, Бимендина Л.А., Кудайбергенов С. Полимерные комплексы и катализаторы. Алма-Ата.: Наука, 1982. 192 с.
- 27. Россоти Ф., Россоти Х. Определение констант устойчивости и других констант равновесия в растворах. М.: Мир, 1965. 564 с.
- 28. Pettit L.D. // Pure Appl. Chem. 1984. Vol. 56. N 2. P. 247. doi 10.1351/pac198456020247
- Gergely A., Sovago I., Nagypal I., Kiraly R. // Inorg. Chim. Acta. 1972. Vol. 6. N 3. P. 435. doi 10.1016/ S0020-1693(00)91832-2
- Гарновский А.Д., Садименко А.П., Осипов О.А., Цинцадзе Г.В. Жестко-мягкие взаимодействия в координационной химии. Ростов-на-Дону: РГУ, 1986. 271 с.
- 31. Эндрюс Л., Кифер Р. Молекулярные комплексы в органической химии. М.: Мир, 1967. 206 с.
- Abendrot M., Chęcińska L., Kusz J., Lisowska K., Zawadzka K., Felczak A., Kalinowska-Lis U. // Molecules. 2020. Vol. 25. N 4. P. 951 doi 10.3390/ molecules25040951
- Chohan Z.H., Arif M., Akhtar M.A., Supuran C.T. // Bioinorg. Chem. Appl. 2006. P. 1. doi 10.1155/ BCA/2006/83131
- 34. Carpenter C.B., Woodworth J.C., Derouchey J.M., Tokach M.D., Goodband R.D., Dritz, S.S., Wu F., Rambo Z.J. // Transl. Anim. Sci. 2019. Vol. 3. P. 1263. doi 10.1093/tas/txz112
- Caine W.R., Metzler-Zebeli B.U., McFall M., Miller B., Ward T.L., Kirkwood R.N., Mosenthin R. // Res. Vet. Sci. 2009. Vol. 86. P. 453. doi 10.1016/j.rvsc.2008.10.005
- Nga N.T.T., Tran H.V., Dang C.H. // Biointerface Res. Appl. Chem. 2023. Vol. 13. N 1. P. 2. doi 10.33263/ BRIAC131.002
- Булатов И.П., Калинкин М.И. Практическое руководство по фотометрическим методам анализа. Л.: Химия. 1986, 432 с.
- Золотов Ю.А. Основы аналитической химии. М.: ВШ, 2001. 463 с.
- Zhang Y., Cao J., Wang X., Liu H., Shao Y., Chu C., Xue F., Bai J. // Bioactive Mater. 2022. Vol. 7. P. 217. doi 10.1016/j.bioactmat.2021.05.047
- 40. Донченко Л.В. Технология пектинов и пектинопродуктов. М.: ДеЛи, 2000. 256 с.

МУДАРИСОВА и др.

Complex Compounds of Manganese(II) with Apple Pectin Modified with Amino Acids (L-Phenylalanine, L-Histidine, and L-Tryptophan)

R. Kh. Mudarisova^{*a*,*}, O. S. Kukovinets^{*b*}, and S. V. Kolesov^{*a*}

^a Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, 450054 Russia ^b Bashkir State University, Ufa, 450005 Russia *e-mail: mudarisova@anrb.ru

Received June 30, 2022; revised July 19, 2022; accepted July 21, 2022

Based on apple pectin modified with amino acids (L-histidine, L-phenylalanine and L-tryptophan), new polymer complexes of manganese(II) were obtained. Spectrophotometric methods were used to determine the stability constants of metal complexes with the composition ligand–manganese(II) cation 2:1. The standard thermodynamic characteristics (ΔH° , ΔG° , ΔS°) of the complex formation process were determined. It was found that the modification of pectin with amino acids increases the stability of manganese-containing polymer complexes in comparison with the metal complex based on native pectin and increases in the series Phe < His < Trp. Features of the thermal behavior of manganese-containing complexes based on pectin ligands were revealed. The stability of the metal complexes was confirmed by testing in an environment simulating gastric juice.

Keywords: manganese(II), apple pectin, chemical modification, amino acids, complex formation, stability constants

УДК 544.653.1:535.37

СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НОВЫХ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ ТЕРБИЯ(III) И ГАДОЛИНИЯ(III) С 3,5-ДИАЛКОКСИБЕНЗОЙНЫМИ КИСЛОТАМИ

© 2022 г. М. А. Григорян^{*a*}, М. А. Назаренко^{*a*}, А. И. Офлиди^{*a*,*}, Ю. С. Береснева^{*a*}, А. М. Васильев^{*a*}

^а Кубанский государственный университет, ул. Ставропольская 149, Краснодар, 350040 Россия *e-mail: oflidi@mail.ru

> Поступило в редакцию 28 июня 2022 г. После доработки 16 августа 2022 г. Принято к печати 18 августа 2022 г.

Проведен электрохимический синтез новых координационных соединений тербия(III) и гадолиния(III) с некоторыми 3,5-диалкоксибензойными кислотами. Методом термогравиметрии установлено, что соединения тербия(III) термостабильны до 300–330°С. Наибольшим квантовым выходом люминесценции обладает соединение тербия(III) с 3,5-диэтоксибензойной кислотой, а наименьшим временем люминесценции – соединение Tb³⁺ с 4-гидрокси-3,5-диметоксибензойной кислотой.

Ключевые слова: лантаниды, 3,5-диалкоксибензойные кислоты, комплексные соединения, люминесценция

DOI: 10.31857/S0044460X22110154, EDN: LPRBNC

Электролюминесцентные материалы на основе соединений лантанидов используются в различных областях науки и техники [1-4]. Для изготовления светоизлучающих диодов (OLEDs) используются полимерные или металлокомплексные соединения, излучающие свет под действием электрического тока. На молекулярном уровне светоизлучающий материал для электролюминесцентных устройств должен обладать эффективной люминесценцией и иметь хорошую электронную и дырочную проводимость [3, 4]. Существенное влияние на полезные свойства комплексов оказывает природа металла, его координационное окружение и стереохимия металлоцентра, это проявляется в особенностях электронного строения ионов лантанидов и в возбуждении их через органическую часть комплексного соединения, в которой вероятность конверсии энергии лиганда из синглетного в триплетное состояние ($S_1 \rightarrow T_1$ переход) весьма высока [4].

Хорошо изученные в настоящее время β-дикетонатные и пиразолинатные комплексы лантанидов обладают высокими выходами люминесценции, они сравнительно легко получаются, однако обладают рядом недостатков, главные из которых – низкая термическая устойчивость и заметная деструкция в воздушной среде. Этих недостатков лишены координационные соединения лантанидов с ароматическими карбоновыми кислотами, обладающими более выраженной термо- и фотостабильностью [4]. Они более устойчивы на воздухе, а также имеют характеристичные узкие и интенсивные полосы люминесценции, что позволяет применять их для производства высококачественных люминофоров в различных промышленных изделиях.

Введением различных заместителей в бензольное кольцо можно влиять на физико-химические свойства и получать координационные соединения с люминесцентными свойствами, термически стабильные и устойчивые к различным факторам окружающей среды.

Классическими методами синтеза, основанными на реакциях ионного обмена, не всегда удается получить координационные соединения, полностью удовлетворяющие предъявляемым требованиям, из-за загрязнения продуктами побочных реакций гидролиза, гидратации. Присутствие координированной воды в составе комплексного соединения может приводить к уменьшению квантового выхода люминесценции. Этих недостатков лишен метод электрохимического синтеза, позволяющий проводить синтез в одну стадию, получать безводные координационные соединения, не содержащие посторонних ионов, а также варьировать состав продукта и направление синтеза [5–7].

В электрохимическом синтезе происходит образование координационной сферы комплекса за счет окисления металлов в нулевой валентности в присутствии лигандов [8, 9]. Основное его преимущество – возможность синтеза координационных соединений, которые невозможно получить другими классическими методами, а также проведение синтеза в мягких условиях с относительно высокими выходами [10].

Методом электрохимического синтеза нами получены и охарактеризованы различными физико-химическими методами координационные соединения тербия(III) и гадолиния(III) с 3,5-диэтоксибензойной (3.5-EtOBenzH), 4-гидрокси-3,5-диметоксибензойной (сиреневой) (3,5-МеО-4-бром-3,5-диметоксибензойной 4-HydBenzH), кислотами (3,5-MeO-4-BrBenzH). Изучена люминесценция полученных соединений и влияние на нее различных заместителей в ароматическом кольце. Для сравнения использованы данные исследований безводных координационных соединений тербия(III) и гадолиния(III) с 3,5-диметоксибензойной кислотой (3,5-MeOBenzH) (LnL₃), которые были получены ранее [6].

Электрохимический синтез. Для достижения максимальной эффективности синтеза необходимо было определить оптимальные условия и параметры синтеза: состав электролитной системы, подаваемое напряжение, силу тока, плотность тока, температуру, выход по току.

Выбор ацетонитрила в качестве растворителя обусловлен его электрохимической устойчивостью, слабой координирующей способностью, растворимостью в нем исходных ароматических кислот и фонового электролита, доступностью и легкостью осушки, что удовлетворяет требованиям, предъявляемым при электрохимическом синтезе. Для увеличения электропроводности системы в качестве фонового электролита применяли хорошо растворимый в ацетонитриле перхлорат лития, ионы которого имеют низкую координирующую способность.

Для достижения оптимальной силы тока в ходе синтезов координационных соединений лантанидов с ароматическими кислотами (0.012-0.025 А) на электрохимическую ячейку подавали напряжение в пределах 5-12 В. При более низких значениях силы тока синтез идет медленно, а при более высоких происходит нагревание раствора, что может приводить к протеканию побочных реакций. По этой причине синтез проводили при температуре, не превышающей 25°С. Оптимальная анодная плотность тока в ходе синтеза находилась в пределах 0.005-0.01 А/см². При более высоких значениях плотности тока начинается интенсивная деструкция анода, снижается эффективность синтеза и происходит загрязнение продукта синтеза твердыми частицами, содержащими металл. Концентрацию ароматической кислоты (0.01-0.05 моль/л) определяли исходя из ее растворимости, времени синтеза и оптимальной силы тока.

В результате синтеза получались малорастворимые координационные соединения, и на аноде происходила адгезия образовавшегося комплекса, что приводило к пассивации электрода. Вследствие пассивации плотность тока снижалась почти до нулевого значения, и синтез существенно замедлялся. Из-за высокого электрического сопротивления снижалась общая электропроводность системы. Для устранения данных проблем электрохимическую ячейку подвергали в ходе синтезов ультразвуковой обработке.

Таблица 1. Данные элементного анализа координационных соединений Gd³⁺ и Tb³⁺ с 3,5-диалкоксибензойными кислотами

Coortino	Найдено, %			Domaine	Вычислено, %		
Соединение	С	Н	Ln ³⁺	Формула	С	Н	Ln ³⁺
Tb(3,5-EtOBenz) ₃	50.24	5.33	20.36	C ₃₃ H ₃₉ O ₁₂ Tb	50.39	5.01	20.21
$Gd(3,5-EtOBenz)_3$	50.11	5.39	19.89	$C_{33}H_{39}GdO_{12}$	50.49	5.02	20.04
$Tb(3,5-MeO-4-HydBenz)_3$	43.58	3.25	21.63	$C_{27}H_{27}O_{15}Tb$	43.22	3.63	21.18
Gd(3,5-MeO-4-HydBenz) ₃	43.21	3.50	20.79	C ₂₇ H ₂₇ GdO ₁₅	43.31	3.64	21.00
$Tb(3,5-MeO-4-BrBenz)_3$	34.74	2.35	17.11	$C_{27}H_{24}Br_{3}O_{12}Tb$	34.53	2.58	16.92
$Gd(3,5-MeO-4-BrBenz)_3$	34.43	2.19	17.23	$\mathrm{C}_{27}\mathrm{H}_{24}\mathrm{Br}_{3}\mathrm{GdO}_{21}$	34.59	2.59	16.78

Таблица 2. Характеристичные полосы поглощения (см⁻¹) функциональных групп в ИК спектрах исходных ароматических карбоновых кислот и их координационных соединений с Ln³⁺

Соединение	v(C=O)	v _{as} (COO ⁻)	v _s (COO ⁻)	Δν(COO ⁻)	$v_{as}(C_{ar}$ -O-C $_{alk})$	v(Ln-O)	v(C–Br)	δ(OH)	(OHO)v
3,5-MeOBenzH	1689	_	_	_	1272	_	_	-	2608, 2569, 2509
$Ln(3,5-MeOBenz)_3$	_	1530	1395	135	1251	430	_	-	_
3,5-EtOBenzH	1684	_	_	_	1267	_	_	-	2682, 2570,
									2507
$Ln(3,5-EtOBenz)_3$	_	1519	1378	140	1247	435	_	-	-
3,5-MeO-4-HydBenzH	1693	_	_	_	1265	_	_	-	_
Ln(3,5-MeO-4-HydBenz) ₃	_	1515	1369	146	1247	484	_	-	_
3,5-MeO-4-BrBenz	1681	_	_	_	1270	_	1035	1456	2645, 2582,
									2520
$Ln(3,5-MeO-4-BrBenz)_3$	—	1519	1373	146	1228	472	1039	1456	_

Выходы комплексных соединений (по массе 80–90%, по току 70–85%) довольно высоки, что свидетельствует об эффективности электрохимического анодного синтеза в выбранных оптимальных условиях [5–10]. Из данных элементного анализа и термогравиметрии следует, что нами получены безводные индивидуальные ароматические карбоксилаты лантанидов LnL₃ (табл. 1).

ИК спектроскопия. Сравнение ИК спектров полученных координационных соединений и исходных ароматических карбоновых кислот (табл. 2) показало, что последние в комплексных соединениях находятся в ионизированной форме, так как появляются полосы поглощения асимметричных и симметричных колебаний депротонированной карбоксильной группы в диапазонах 1550–1500 и 1400–1370 см⁻¹ соответственно и исчезают полосы поглощения (1700–1680 см⁻¹), относящиеся к валентным колебаниям связи С=О неионизированной карбоксильной группы. Разница между асимметричными и симметричными валентными колебаниями ионизированной карбоксильной группы Δv (СОО⁻) меньше 220 см⁻¹, что позволяет предположить [11, 12] ее бидентатную координацию с ионом лантанида. Это предположение подтверждается тем, что в диапазоне 920–720 см⁻¹ (деформационные колебания депротонированной карбоксильной группы) в ИК спектрах

ГРИГОРЯН и др.

Соединение	<i>T</i> , см ^{−1}	T ₁ – ⁵ D ₀ , см ⁻¹	$I_{ m oth}{}^{ m a}$	τ, мс
3,5-Диэтоксибензоат тербия(III)	23697	3197	1.5	2.1
3,5-Диметоксибензоат тербия(III)	22522	2022	1.34	1.8
4-Бром-3,5-диметоксибензоат тербия(III)	22124	1624	1.1	1.3
4-Гидрокси-3,5-диметоксибензоат тербия(III)	21978	1478	0.78	0.5

Таблица 3. Люминесцентные характеристики координационных соединений тербия(III) и значения триплетных уровней 3,5-диалкоксибензойных кислот

^а Интегральная интенсивность относительно бензоата тербия(III).

исследуемых соединений число полос меньше трех.

Появление полос поглощения, соответствующих валентным колебаниям связи Ln–O (484–430 см⁻¹) [13], подтверждает образование координационных соединений. В области 3300–3600 см⁻¹ отсутствует широкая полоса поглощения валентного колебания связи O–H координированных молекул воды, что свидетельствует об отсутствии молекул воды в полученных комплексах.

В спектрах ароматических кислот (за исключением сиреневой кислоты) в области 2650– 2500 см⁻¹ наблюдаются отсутствующие у координационных соединений полосы поглощения, предположительно принадлежащие димерам, образованным с участием водородных связей карбоксильных групп [11].

В спектрах координационных соединений у всех анионов алкилоксибензойных кислот происходит симметричное смещение полос поглощения эфирных асимметричных валентных колебаний $v_{as}(C_{Ar}-O-C_{Alk})$, что свидетельствует об отсутствии координации кислорода алкоксигруппы с ионом лантанида(III).

В случае 4-гидрокси-3,5-диметоксибензойной кислоты существует возможность координации с металлом по фенольной гидроксигруппе. Однако интенсивная полоса поглощения при 3363 см⁻¹, соответствующая валентным колебаниям связи О–Н, и полоса при 1456 см⁻¹, соответствующая ее деформационным колебаниям, в спектрах координационных соединений практически не смещаются. Следовательно, фенольная группа в координации не участвует.

В ИК спектрах бромзамещенных диалкоксибензойных кислот характеристические полосы связей бром–углерод расположены в областях 1080–

1000 и 700-500 см⁻¹ (валентные) и 350-250 см⁻¹ (деформационные). В спектре 4-бром-3.5-диметоксибензойной кислоты наблюдается выраженная полоса поглощения в области 1035 см⁻¹, соответствующая валентным колебания связи C-Br. Незначительное смешение данной полосы в спектре координационного соединения до 1039 см⁻¹ $(\Delta v = 4 \text{ см}^{-1})$, а также наличие полос в области 655–528 см⁻¹ в спектре кислоты и 657–639 см⁻¹ в спектре координационого соединения свидетельствуют о неучастии атома брома в координации с ионом лантанида. Обобщая вышесказанное, можно сделать вывод о неучастии заместителей ароматического кольца кислоты (за исключением карбоксильной группы) в координации с ионами лантанидов.

Термогравиметрическое исследование. По данным термогравиметрического анализа, синтезированные координационные соединения тербия(III) термостабильны до 300–330°С и начинают плавиться незадолго до разложения. Это доказывает отсутствие координационной воды и открывает возможность нанесения люминесцентных пленок методом вакуумной возгонки.

Остаточная масса соответствует оксиду тербия Tb₄O₇. В интервале температур 300–600°С присутствуют экзоэффекты, сопровождающиеся резкой потерей массы, что связано с термоокислительной деструкцией соединений.

Люминесценция координационных соединений. Для координационных соединений Gb³⁺ были записаны спектры люминесценции при температуре жидкого азота (77 K) (с целью максимального нивелирования теплового тушения люминесценции), по максимумам полос испускания были определены триплетные уровни диалкоксибензойных кислот (табл. 3) с целью установления их фотофизических свойств и прогнозирования эффективности люминесценции координационных соединений с ионами других лантанидов [14, 15].

Для того чтобы в координационных соединениях тербия(III) наблюдалась интенсивная люминесценция необходимо, чтобы триплетный уровень кислоты располагался на 1500–4000 см⁻¹ выше резонансного уровня иона Tb³⁺(20500 см⁻¹) [16]. При более высоких значениях перенос энергии становится неэффективным из-за малой вероятности перехода электронов, а при более низких значениях вследствие теплового колебания молекул будет возрастать обратный перенос части энергии на молекулу лиганда.

Взаимное расположение заместителей в бензольном кольце кислоты друг относительно друга, а также относительно карбоксильной группы влияет на структуру координационного узла соединения. Их взаимное расположение может существенным образом изменять геометрию координационного узла, а значит, и эффективность передачи энергии с лиганда на ион лантанида, изменяя интенсивность люминесценции.

Введение в ароматическое кольцо электронодонорных групп способно повышать триплетный уровень лигандов. Положительный мезомерный эффект алкоксигрупп обусловлен смещением неподеленых электронных пар атомов кислорода в сторону кольца, увеличением электронной плотности в кольце и, как следствие, энергии возбужденного триплетного состояния. Удлинение алкильных заместителей без изменения их взаимного расположения приводит к увеличению триплетного уровня (для 3,5-диметоксибензойной кислоты $T = 22522 \text{ см}^{-1}$, для 3,5-диэтоксибензойной кислоты $T = 23697 \text{ см}^{-1}$). Введение в кольцо электроноакцепторных заместителей (галогенов) дает отрицательный прирост энергии триплетного состояния 4-бром-3,5-диметоксибензойной кислоты (для T = 22124 см⁻¹, а для 3,5-диметоксибензойной $T = 22522 \text{ см}^{-1}$). В целом, триплетные уровни диалкоксибензойных кислот расположены оптимально по отношению к излучающему уровню иона Tb³⁺ (20500 см⁻¹), поэтому можно прогнозировать проявление люминесцентных свойств v всех полученных координационных соединений тербия(III), что в итоге было подтверждено экспериментальными данными.

Исследуемые координационные соединения тербия(III) люминесцируют в видимой области (зеленое свечение) при комнатной температуре и имеют полосы испускания, соответствующие энергетическим переходам иона Tb^{3+} : ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ (490 нм, 20500 см⁻¹), ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (543 нм, 18400 см⁻¹), ${}^{5}D_{4} \rightarrow {}^{7}F_{4}$ (585 нм, 17000 см⁻¹), ${}^{5}D_{4} \rightarrow {}^{7}F_{3}$ (620 нм, 16000 см⁻¹). Фосфоресценция органического лиганда отсутствует, что свидетельствует о хорошем перераспределении энергии на ион Tb^{3+} . Это обусловлено оптимальным расположением возбужденных триплетных уровней лигандов и испускающим уровнем иона Tb^{3+} в полученных соединениях.

Оценку эффективности люминесценции полученных координационных соединений тербия(III) проводили по известной методике [15] относительно стандарта – безводного бензоата тербия(III) [5], интегральная интенсивность которого была принята за 1. В качестве стандарта он был выбран по причине достаточной интенсивности люминесценции.

При исследовании люминесцентных свойств полученных соединений обнаружено, что увеличение длины углеводородного радикала алкоксигруппы лиганда повышает интегральную интенсивность люминесценции. Введение в ароматическое кольцо алкоксигрупп в *мета*-положения относительно карбоксильной группы повышает эффективность люминесценции соответствующих координационных соединений тербия (III) по сравнению со стандартом. Среди всех синтезированных соединений наибольшей квантовой эффективностью обладает 3,5-диэтоксибензоат тербия(III) (квантовый выход 1.5).

Зависимость интенсивности люминесценции координационных соединений тербия(III) от времени носит экспоненциальный характер, малые времена люминесценции (от 0.5 до 2.1 мс) свидетельствуют о том, что лимитирующей стадией переноса энергии является ее перенос с триплетного уровня лиганда на излучающий уровень лантанида. Наименьшее время люминесценции у 4-гидрокси-3,5-диметоксибензоата тербия(III) (0.5 мс).

Для впервые синтезированных безводных координационных соединений тербия(III) и гадолиния(III) с 3,5-диэтоксибензойной, 4-гидрокси-3,5-диметоксибензойной и 4-бром-3,5-диметоксибензойной кислотами метолом ИК спектроскопии установлен бидентатный способ координации группы СОО- с ионом металла. Термическая устойчивость координационных соединений (по данным термогравиметрии, до 300-330°С) позволяет рекомендовать их для термического вакуумного напыления с целью получения тонкопленочных материалов. Полученные координационные соединения тербия(III) люминесцируют в видимой области и имеют малые времена люминесценции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Прямой электрохимический синтез координационных соединений лантанидов осуществляли методом растворимого анода [10]. Установка для проведения синтеза включает электрохимическую ячейку для анодного синтеза безводных комплексных соединений [5], источник ультразвука, источник постоянного тока, кулонометр, амперметр, вольтметр. В качестве неводного растворителя использовали безводный ацетонитрил. Время синтеза комплексов определяли исходя из начальной концентрации диалкоксибензойных кислот (0.01-0.05 моль/л) по закону Фарадея (от 2 до 3 ч). Синтез проводили в инертной атмосфере в герметичной системе. После окончания синтеза белый осадок отфильтровывали, промывали ацетонитрилом и сушили в вакуумной печи при 30-50°С. Количество тербия(III) и гадолиния(III) в полученных координационных соединениях определяли методом комплексонометрического титрования. Углерод и водород определяли методом элементного микроанализа на C,H,N,S-анализаторе VARIO MICRO CUBE в токе кислорода при температуре печи 1200°С.

Термический анализ выполняли на синхронном термическом анализаторе NETSCH STA 409 PC/PG в атмосфере воздуха в диапазоне температур от 25 до 1000°С со скоростью нагрева 10 град/мин. ИК спектры координационных соединений и исходных кислот записывали на ИК Фурье-спектрометре VERTEX 70 (Bruker) в области 4000–400 см⁻¹. Для получения спектров твердых образцов использовали приставку нарушенного полного внутреннего отражения с алмазным кристаллом.

Спектры люминесценции регистрировали на спектрофлюориметре Флюорат–02 Панорама (Люмэкс) с использованием оптоволоконной приставки для измерения спектров твердых образцов при параметрах прибора: задержка 20 мкс, длительность 7500 мкс. Для измерения спектров фосфоресценции при 77 К образец с оптоволокном помещали в жидкий азот.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Григорян Милана Александровна, ORCID: https://orcid.org/0000-0001-7629-6205

Назаренко Максим Андреевич, ORCID: https:// orcid.org/0000-0002-3397-2434

Офлиди Алексей Иванович, ORCID: https:// orcid.org/0000-0002-6206-8057

Береснева Юлия Сергеевна, ORCID: https:// orcid.org/0000-0001-5778-7121

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Zolin V.F., Puntus L.N., Tsaryuk V.I., Kudryashova V.A., Legendziewicz J., Gawryszewska P., Szostak R. // Z. Alloys Comp. 2004. Vol. 380. N 1–2. P. 279. doi 10.1016/j.jallcom.2004.03.055
- Wang Z.-M., Van de Burgt L.J., Choppin G.R. // Inorg. Chim. Acta. 1999. Vol. 293. N 2. P. 167.
- Zolin V.F. // Z. Alloys Compd. 2004. Vol. 380. N 1–2. P. 101. doi 10.1016/j.jallcom.2004.03.006
- Каткова М.А., Витухновский А.Г., Бочкарев М.Н. // Усп. хим. 2005. Т. 74. №12. С. 1193; Katkova М.А., Vitukhnovsky A. G., Bochkarev M. N. // Russ. Chem. Rev. 2005. Vol. 74. N 12. Р. 1089. doi 10.1070/ RC2005v074n12ABEH002481
- Назаренко М.А., Офлиди А.И., Колоколов Ф.А., Панюшкин В.Т. // ЖОХ. 2017. Т. 87. № 5. С. 833; Nazarenko М.А., Oflidi A.I., Kolokolov F.A., Panyushkin V.T // Russ. J. Gen. Chem. 2017. Vol. 87. N 5. P. 1022. doi 10.1134/S1070363217050218

- Panyushkin V.T., Kolokolov F.A., Oflidi A.I., Nazarenko M.A. // Handbook of Ecomaterials. 2019. Vol. 3. P. 1615. doi 10.1007/978-3-319-68255-6 42
- Назаренко М.А., Офлиди А.И., Панюшкин В.Т. // ЖОХ. 2019. Т.89. Вып. 3. С. 405; Nazarenko М.А., Oflidi A.I., Panyushkin V.T. // Russ. J. Gen. Chem. 2019. Vol. 89. N 3. P. 434. doi 10.1134/S1070363219030113
- Rodríguez A., García-Vázquez J.A. // Coord. Chem. Rev. 2015. Vol. 303. P. 42. doi 10.1016/j.ccr.2015.05.006
- Direct Synthesis of Metal Complexes / Ed. B. Kharisov. Mexico: Elsevier, 2018. 468 p.
- Фролов В.Ю., Офлиди А.И., Болотин С.Н., Шеставин А.И., Панюшкин В.Т. // ЖПХ. 2008. Т. 81. № 4. С. 602; Frolov V.Yu., Oflidi A.I., Bolotin S.N., Shestavin A.I., Panyushkin V.T. // Russ. J. Appl. Chem. 2008. Vol. 81. N 4. P. 639. doi 10.1134/S1070427208040137

- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- Deacon G.B., Phillips R.J. // Coord. Chem. Rev. 1980.
 Vol. 33. N 3. P. 227. doi 10.1016/S0010-8545(00)80455-5
- Rao G.V.S., Rao C.N.R., Ferraro J.R. // Appl. Spectrosc. 1970. Vol. 24. N 4. P. 436. doi 10.1366/000370270774371426
- Meshkova S.B. // J. Fluoresc. 2000. Vol. 10. N 4. P. 333. doi 10.1023/A:1009418227641
- Hilder M., Junk P.C., Kynast U.H., Lezhnina M.M. // J. Photochem. Photobiol. (A). 2009. Vol. 202. P. 10. doi 10.1016/j.jphotochem.2008.10.026
- Latva M., Takalo H., Mukkala V.-M., Matachescu C., Rodriguez-Ubiz J.C., Kankare J. // J. Lumin. 1997. Vol. 75. N 149. P. 149. doi 10.1016/S0022-2313(97)00113-0

Synthesis and Physicochemical Properties of New Terbium(III) and Gadolinium(III) Coordination Compounds with 3,5-Dialkoxybenzoic Acids

M. A. Grigoryan^a, M. A. Nazarenko^a, A. I. Oflidi^a,*, Yu. S. Beresneva^a, and A. M. Vasiliev^a

^a Kuban State University, Krasnodar, 350040 Russia *e-mail: oflidi@mail.ru

Received June 28, 2022; revised August 16, 2022; accepted August 18, 2022

Electrochemical synthesis of new coordination compounds of terbium(III) and gadolinium(III) with some 3,5-dialkoxybenzoic acids was carried out. It was found by thermogravimetry that terbium(III) compounds are thermally stable up to $300-330^{\circ}$ C. The terbium(III) compound with 3,5-diethoxybenzoic acid has the highest luminescence quantum yield, and the Tb³⁺ compound with 4-hydroxy-3,5-dimethoxybenzoic acid has the shortest luminescence time.

Keywords: lanthanides, 3,5-dialkoxybenzoic acids, complex compounds, luminescence

УДК 544.01

МАЙЕНИТ (ОБЗОР)

© 2022 г. С. Н. Шкерин^{а,*}, А. С. Толкачева^а

^а Институт высокотемпературной электрохимии Уральского отделения Российской академии наук, ул. Академическая 20, Екатеринбург, 620990 Россия *e-mail: shkerin@mail.ru

> Поступило в редакцию 26 мая 2022 г. После доработки 15 июня 2022 г. Принято к печати 16 июня 2022 г.

Данный обзор посвящен истории изучения алюмината кальция Ca₁₂Al₁₄O₃₃, включая его уникальную структуру, которая соответствует нестехиометрическому гранату. Особенности данной структуры обусловливают, в зависимости от дефектности кристаллической решетки, появление целого спектра уникальных свойств. Применение ряда из них также описано в обзоре.

Ключевые слова: алюминат кальция, гранат, нестехиометрия, кислород-ионная проводимость

DOI: 10.31857/S0044460X22110166, EDN: LPZBYC

1. Введение: «прячущийся» алюминат кальция	1780
2. Кэйдж с фиксированной структурой	1783
3. Кэйдж – это	1789
4. Взаимодействие дефектов как общее свойство фаз с высокой дефектностью	1793

1. ВВЕДЕНИЕ: «ПРЯЧУЩИЙСЯ» АЛЮМИНАТ КАЛЬЦИЯ

Область составов между трехкальциевым алюминатом $Ca_3Al_2O_6$ (C3A) и шпинелью $CaAl_2O_4$ (CA) на фазовой диаграмме оксидов кальция и алюминия, по результатам работы [1], характеризуется наличием эвтектики (рис. 1). Несмотря на ряд публикаций, где авторы наблюдают только эту эвтектику [2–4], начиная с 1915 г. [5] появлялись работы, свидетельствующие о наличии химического соединения в обозначенной области фазовой диаграммы (табл. 1). Соединению присвоена условная формула 12CaO·7Al_2O₃ (C12A7). Исходя из работ [6, 7] было принято считать, что наличие кристаллизационной воды в составе препятствовало внесению этого состава в двойную фазовую диаграмму. На рис. 2 представлен фрагмент фазовой диаграммы в области существования C12A7. Из рисунка видно, что как соотношение катионов алюминия-кальция в этом соединении, так и его температура плавления существенно отличаются у разных авторов [6, 8, 9, 12, 13]. В работе [14] диаграмма изучена при разных активностях кислорода (рис. 2, 1, 2). Выявленное отличие диаграмм позволяет утверждать, что именно активность кислорода, а не концентрация паров воды в атмосфере, критично влияет на свойства системы.

Рентгенографические исследования, проведенные при комнатной температуре, показывают, что материал, синтезированный в окислительной или слабовосстановительной атмосфере, кристаллизуется в кубической сингонии с группой симметрии *I*43*d* (табл. 2). При охлаждении (закалке) матери-

Рис. 1. Оптимизированная фазовая диаграмма системы оксид кальция-оксид алюминия [1].

ала из восстановительных условий наблюдаются различные структуры, приведенные в табл. 2. Там же представлены данные для СА и СЗА. В ряде случаев отмечается низкая симметрия или анизотропия полученной в восстановительных усло-

Таблица 1. Условия равновесия фаз СЗА, СА и С12А7 [8]

 $G^{C12A7} = G_{Ca0}^{\text{solid}} + 7G_{A1_2O_3}^{\alpha - A1_2O_3} - 71530 - 334.7T + 15.8T \ln T$

Равновесие	<i>Т</i> , К	Ссылка
Ж + C3A + C12A7 (эвтектика)	1708	[8]
	1633	[6]
	1668	[5]
	1663	[9]
	1673	[10]
	1668	[11]
Ж + CA2 + C12A7 (эвтектика)	1718	[8]
	1633	[6]
	1673	[5]
	1673	[9]
	1668	[10]
	1673	[11]
Температура плавления С12А7	1722	[8]
	1665	[6]
	1728	[5]
	1688	[9]
	1728	[11]
CaO + C3A + C12A7	779	[8]
CaO + CA + C12A7	601	[8]

Рис. 2. Диаграмма состояния CaO-Al₂O₂ в области существования майенита. 1, 2 – Удалова [14], а-е – данные работ [6, 8, 9, 12, 13] соответственно.

виях структуры, которая при отжиге переходит в кубическую [15].

Кубическая структура для С12А7 имеет параметр решетки порядка 12 Å и сложный базис [16, 7], ее расшифровка в 1936 г. требовала непомерно больших усилий, а целесообразности в этой работе не было. Ситуация изменилась в начале 60-х годов. В 1962 г. была решена структура синтезированного С12А7 [17]. В 1964 г. был описан минерал, обнаруженный вблизи города Майен в Германии [18]. К 1970 г. была определена структура этого минерала [19]. Оказалось, что он был уже известен ранее в материаловедении цементов как С12А7, а по месту обнаружения получил название майенит.

У майенита есть ряд особенностей. Одну описали еще в 1970 г.: в структуре есть три различные позиции кислорода. Степень заполнения двух из них равна единице, а степень заполнения третьей (О₃) мала, и составляет порядка 1/6, что позволяет считать кислород, распределенный между этими позициями, подвижным или слабосвязанным. В конце 80-х годов появилась серия работ о кислородной проводимости майенита [22-26]. Проводимость оказалась преимущественно кислород-ионной, что было исходно показано наличием ЭДС Нернста [23], а много позднее и изотопным обменом кислорода [27-29]. Транспортные характеристики оказались ниже, чем у классического

Формула	Аббревиатура	Параметры решетки, Å	Группа симметрии	Ссылка
Ca ₂ Al ₂ O ₅	C2A	a 5.41	Ibm2, Z 4	[20]
		<i>b</i> 14.45	ромоическая	
		c 5.23		
$\mathrm{Ca}_{12}\mathrm{Al}_{14}\mathrm{O}_{33}$	C12A7	a 11.983	<i>I</i> 43 <i>d</i> , <i>Z</i> 2 кубическая	
Ca ₅ Al ₆ O ₁₄	C5A3	a 11.253	<i>Стс</i> 2 ₁ , <i>Z</i> 4 ромбическая	
		<i>b</i> 10.966	1	
		c 10.290		
$Ca_{11} Al_{14}O_{32} Al_{14}O_{32}$	a			[21]
$Ca_4Al_6O_{13}$	C4A3	a 8.876	<i>P</i> 43 <i>n</i> , <i>Z</i> 1 типа содалита, кубическая	[20]
CaAl ₂ O ₄	CA	a 8.7	P2 ₁ / <i>n</i> , Z 12 моноклинная псевлогексагональная	[20]
		<i>b</i> 8.092		
		c 15.191		
		β 90.3°		
$Ca_3Al_2O_6$	C3A	a 15.263	<i>Рт</i> 3 <i>m</i> , <i>Z</i> 24	[17]
CaAl ₂ O ₄ Ca ₃ Al ₂ O ₆	СА	<i>a</i> 8.7 <i>b</i> 8.092 <i>c</i> 15.191 β 90.3° <i>a</i> 15.263	<i>P2</i> ₁ / <i>n</i> , <i>Z</i> 12 моноклинная псевдогексагональная <i>Pm</i> 3 <i>m</i> , <i>Z</i> 24 кубическая	[2

Таблица 2. Известные структуры алюминатов кальция в области составов между трехкальциевым (Ca₃Al₂O₆) и однокальциевым (CaAl₂O₄) алюминатами и их обозначение

^а Восстановленный майенит.

электролита на основе допированного диоксида циркония. К тому же проводимость не стабильна во времени [30], и на десятилетия интерес к транспортным свойствам майенита был утерян.

Другое направление работ – замещение слабосвязанного кислорода другими анионами. Это было обусловлено желанием упорядочить несколько разупорядоченную по кальцию структуру майенита, которая вызывала трудности в материаловедении (например, согласно работе [31], при температуре выше 1373 К в вакууме майенит разлагается на Ca₃Al₂O₆ и Ca₅Al₆O₁₄). Внедрение же анионов F⁻, Cl⁻, OH⁻, S²⁻ стабилизирует структуру, и она остается кубической до температуры плавления [31]. Было показано, что устойчивость анион-замещенных майенитов уменьшается в ряду F⁻> Cl⁻> OH⁻> O²⁻> e^- > H⁻> Br⁻ [9, 31–36]. Самый устойчивый из допированных по анионной подрешетке майенитов – $Ca_{12}Al_{14}O_{32}F_2$, он плавится при температуре 1850 К [31]. Диаграмма состояния системы CaO–CaF₂–Al₂O₃ приведена в работе [9], а в работе [37] уточнена для фрагмента CaO– CaAl₂O₄–Ca₁₂Al₁₄O₃₂F₂. Кроме того, авторами этих работ изучены и стекла в этой системе [38].

Именно алюминатно-кальциевыми стеклами вблизи этих составов еще с 1987 г. занимались авторы работ [39, 40]. Их привлекло образование центров окраски в материалах под действием ионизирующего излучения. Активность этой группы исследователей в данном направлении в последующие десятилетия (более ста статей и патентов) привела к обнаружению еще одной особенности структуры майенита – это полые структурные элементы, называемые кэйджами (рис. 3). Долгое время эту структуру рассматривали, как аналог цеолитов. Этому способствовало то, что в начале

Рис. 3. Положительно заряженный каркас С12А7 [44].

2000-х годов активно рассматривались ажурные, фуллереноподобные структуры на основе алюминия и кислорода [41, 42]. Кроме того, близкий по составу $Ca_4Al_6O_{13}$ имеет структуру содалита, одного из хорошо известных цеолитов. Однако в отличие от цеолитов, где каркас заряжен отрицательно и присутствуют слабосвязанные катионы, здесь каркас положительно заряжен, а слабо связаны анионы. Это породило термин «антицеолит» при описании майенита как ($Ca_{12}Al_{14}O_{32}$)О.

Понимание совокупности этих двух особенностей материала, наличия кэйджевой структуры и слабосвязанных анионов, позволяет описать целый ряд его уникальных свойств. Некоторые из них уже были обсуждены в работе [43], другие мы рассмотрим впервые.

2. КЭЙДЖ С ФИКСИРОВАННОЙ СТРУКТУРОЙ

2.1. Синтез. Синтез однофазного майенита керамическим способом осложнено тем, что соседние фазы по диаграмме (рис. 1) являются более тугоплавкими, т. е. более прочными. Если в ходе синтеза, за счет неоднородности состава шихты, образовались трекальциевый или однокальциевый алюминаты, то для «растворения» их следовых количеств в основном материале может потребоваться длительное время [45], это привело к активному использованию растворных методик [46–50]. Од-

нако спечь из мелкодисперсного порошка беспористую керамику не удается. Величина открытой пористости около 50%. Причину этого легко понять при рассмотрении задачи прессования «шариков для пинг-понга» – кэйджей. Решить эту проблему удалось за счет прессования прекурсоров, которые не имеют кэйджевой структуры, а синтез и спекание керамики совмещены в одной технологической операции [45].

До появления этой защищенной патентом [51] технологии беспористые материалы получали плавлением. Кальций-алюминатный расплав очень реакционноспособен, и самый устойчивый материал тигля – это иридий. Но даже иридий, пусть и не так сильно как другие платиноиды, но растворяется, что фиксируется по оптическим свойствам полученных монокристаллов [52]. Только метод бестигельной зонной плавки керамики [29, 53–60] позволил выращивать монокристаллы майенита, как альтернативу беспористой керамики. Плавление может происходить в заданной атмосфере.

2.2 Натекание гелия. Оказалось [61], что натекание газов через керамику майенита происходит селективно. Натекание неизмеримо мало, т. е. определяется уровнем натекания собственно измерительной системы при натекании из атмосфер воздуха, аргона, метана или водорода; но оно несопоставимо выше при натекании из атмосферы гелия (рис. 4). Наличие собственной наноразмерной пористости, обусловленной кэйджами, является причиной такой прозрачности материала для гелия. Величина газопроницаемости составляет 16.5·10⁻³ см²/с·атм [61]. Это очень высокое значение, характерное обычно для бумаги или кожи. Данное свойство майенита является основой технологии [62] для извлечения гелия из природного газа. Она не требует охлаждения газов до низких температур, т. е. потребляет мало энергии, что делает рентабельным извлечение гелия даже из тех скважин, где его добыча не рентабельна в рамках существующих технологий.

2.3. Стабильный пероксид-ион. Позиция для кислорода внутри кэйджа обладает особыми свойствами по отношению ко всем другим позициям кислорода. За счет сферического окружения кэйджем повышается прочность связанных состояний электронных носителей, в окисленном состоянии

Рис. 4. Коэффициент Дарси, характеризующий натекание газов сквозь образцы **1** и **2** с разным уровнем шероховатости поверхности, что заметно для гелия и водорода. Горизонтальная линия показывает уровень натекания измерительной системы. Для метана, воздуха и аргона (последние два не показаны) различия в натекании между образцами с разной шероховатостью поверхности не наблюдается.

Рис. 5. Изменение массы образца майенита при нагревании (1): вблизи 800°С теряет кислород, связанный за счет «дырок в кэйдже» (2), в области температур вблизи 300°С образец теряет воду (3), связанную с пероксидными ионами [64].

это дырки. Обычно электронная дырка в оксидах в отсутствие катионов переменной валентности или других особенностей – это ее связанное состояние с анионом кислорода (1).

$$O^{2-} + h = O^{-}.$$
 (1)

Повышение прочности такого связанного состояния, при его локализации во внутрикэйджевой позиции приводит к тому, что таких прочных кэйджевых дырок будет больше, чем стандартных.

В силу процесса уравновешивания с газовой фазой получаем выражение (2).

$$1/2O_2(ras) + V_0 = 2h + O^x,$$
 (2),

где V_0 и О^x обозначают кислородную вакансию и кислород в своей позиции соответственно.

Количество поглощенного майенитом кислорода тем больше, чем больше в нем дырок. Напомним, что количество кислородных вакансий за счет малой заселенности O₍₃₎ позиции очень велико. При 1268 К наблюдается фазовый переход между двумя кубическими структурами [63]. При его протекании теряется устойчивость связанных

состояний «дырка в кэйжде», причины этого рассмотрим позже отдельно. Отличительной особенностью этого фазового перехода является выделение большого количества газа при нагревании, определяемого как кислород методами синхронного термического анализа и термогравиметрии (СТА и ТГ) (рис. 5) [57, 64]. Стехиометрический индекс кислорода, измеренный разными авторами, колеблется около величины 33 ат. ед. [21, 64, 65]. Очевидно, что эта величина зависит от предыстории образца, активности кислорода, температуры и времени выдержки в данной газовой фазе.

Когда концентрация дырок достигает критического значения, они отталкиваются, что повышает внутреннюю энергию системы. Ее минимизация происходит по механизму «конденсации» дырок с образованием пероксид-иона (3) и даже супероксид-иона (4).

$$2O^{-} = (O - O)^{2-}, \tag{3}$$

$$O^{-} + (O - O)^{2-} = (O - O)^{-} + O^{x} (=2-),$$
 (4).

Экспериментальная верификация наличия этих ионов неоднократно поводилась как методом ЭПР,

Рис. 6. Зависимость температуры перегиба дилатометрических кривых от скорости изменения температуры их получения [64].

так и вибрационной спектроскопией [32, 44, 63, 65-82].

Связанное состояние дырок устойчиво до температуры порядка 922 К, где происходит фазовый переход, отражающий выражение (3). Именно эти пероксидные и супероксидные ионы (рис. 6) ответственны за поглощение материалом существенно объема воды с образованием гидроксидных групп. Кроме того, они обеспечивают уникальные свойства материала, ряд из применений которых мы рассмотрим.

Пушка атомарного кислорода. После фиксирования приоритета двумя патентами [83, 84] и публикации двух обзоров на японском языке [85, 86] в 2002 г. в широко доступной литературе начали появляться описания удивительных свойств майенита [31, 87–94]. На рис. 7 представлена схема установки для реализации стационарного потока анионов в вакууме. Слой майенита, нанесенный на газоплотную керамику кислород-ионного электролита на основе диоксида циркония, находится в ва-

Рис. 7. Эмиссия ионов O⁻ из C12A7. (а) Типичный времяпролетный масс-спектр ионного тока C12A7 (l – нагреватель, 2 – катод C12A7, 3 – анод, 4 – вакуумная камера); (б) зависимость ионного тока (преимущественно O⁻) между двумя электродами от температуры образца при постоянном напряжении 375 В; (в) зависимость ионного тока с диска C12A7 площадью 2 см² от приложенного постоянного напряжения при 432°C [95].

куумной камере. На внутреннюю сторону пробирки из электролита нанесен электрод из манганита лантана-стронция, находящийся в кислородсодержащей атмосфере. При наложении постоянного напряжения между манганитовым электродом и электродом в вакууме через эту (отчасти электрохимическую) систему протекает ток анионов кислорода.

Наиболее актуальное применение такой пушки атомарного кислорода нашлось в изготовлении полупроводниковых приборов. До 2004 г. окисление кремния проводили за счет напуска в вакуумную камеру кислорода и выдержки монокристаллического кремния при повышенных температурах. Высокотемпературная экспозиция полупроводников приводит к диффузионному размытию концентрационных профилей допирующих компонентов. При использовании устройств на основе майенита окисление кремния происходит при 130°С без ухудшения вакуума в камере, что позволило существенно уменьшить характерный размер транзистора на чипе из-за отсутствия размытия концентрационного профиля допантов. Кроме того удалось исключить стадию напыления защитных слоев, предохраняющих отдельные участки кремния от окисления, так как при использовании пушки атомарного кислорода окисляемые участки формируются непосредственно трафаретом.

Майенит при замещении подвижного аниона можно использовать как источник ионов ОН- [96], фтора [97] и хлора [98]. Однако в отличие от анионов кислорода, для этих анионов не оказалось стабильного твердого электролита.

Пероксид-ион, как инструмент. Высокая реакционная способность пероксидного и супероксидного ионов в совокупности с возможностью применять их при повышенных температурах открывают ряд новых возможностей:

- дожигания угарного газа до СО₂ и воды [99–105]

- предотвращение зауглероживания металлических катализаторов в процессе парциального окисления метана [69, 106-110]

- аналогичные процессы парциального окисления по «вскрытию» тяжелых насыщенных углеводородов и превращению их в ненасыщенные [111-114]

- стерилизация в молекулярной биологии и медицине [115–117]

- связывание соединений серы, начиная от H₂S: окисление соединений до оксидов и связывание их в гипс с разложением майенита [118, 119].

Отдельно хочется остановится на неравновесном процессе (5), который рассматривается для снабжения водородом носимых зарядных устройств.

$$3H_2O + C_2H_5OH \rightarrow 6H_2 + 2CO_2.$$
 (5).

Обычно этот процесс протекает на медном катализаторе при добавлении перекиси водорода в исходную смесь воды и спирта. Такая смесь не подлежит долгому хранению. А вот при пространственном разделении пероксидных ионов и водно-спиртовой смеси подобное устройство становится реализуемым [120]. Отметим, что майенит играет важную роль в создании обратимых сорбентов углекислого газа, о чем мы поговорим несколько ниже.

Стабильный комплекс электрона и внутрикэйджевой кислородной вакансии. Аналогично тому, как позиция для кислорода внутри кэйджа обладает особыми свойствами по отношению ко всем другим позициям кислорода, позиция кислородной вакансии также обладает особыми свойствами по отношению к кислородным вакансиям в других позициях. За счет сферического окружения кэйджем, и отчасти участия кэйджа в обобщении электрона, повышается прочность связанного состояния электрона, локализованного на внутрикэйджевой кислородной вакансии. Первые работы по наличию центров окраски в алюминате кальция относятся еще к 1989 г. [15]. В 2002 г. появилась работа о высокой электронной проводимости у частично восстановленного осушенным водородом алюмината кальция под действием ультрафиолетового излучения [67]. Механизм появления электронной проводимости проиллюстрирован на рис. 8. Он состоит в разложении гидрид-иона на два электрона и создании группы ОН⁻ в паре с ближайшим анионом кислорода. Сам факт существования гидрид-иона был доказан спектрами ЭПР [34, 74, 121-127].

Всего через год появилось сообщение об «электронных анионах» в майените [128]. Оказалось,

1786

Рис. 8. Диаграмма потенциального барьера реакции $H^{-}(c) + O^{2-}(c) + null(c) \leftrightarrow 2e^{-}(c) + OH^{-}(c)$. Зарядовое состояние водорода принято за координату реакции [121].

что электроны ведут себя как локализованные анионы [129]. Для таких объектов уже существует термин «электрид» [130]. Для создания такой степени восстановления алюмината кальция использовали металлический кальций [131], титан [131, 132] или СО [133]. Полученный электрид не окисляется (устойчив) на воздухе до температур порядка 150°C. Температурная зависимость проводимости в области температур от 2 до 300 К показана на рис. 9. При малых концентрациях электронного допирования проводимость может быть описана аррениусовской зависимостью с энергией активации порядка 3.5 эВ, а при повышенных степенях восстановления – зависимостью в степени –1/4, что указывает на смену механизма переноса электронов (рис. 10).

Среди особенностей электрида внимание исследователей привлекла возможность создания существенных потоков электронов, создаваемых при наложении поля и относительно малая работа выхода электронов [134, 135], что стало основой для целого ряда устройств, таких как инжекторы ламп и даже электронных микроскопов.

Особый интерес вызвала возможность перехода этих материалов в сверхпроводящее состояние и ожидалось, что он будет происходить при достаточно высоких температурах. Такой переход действительно существует, но реализуется он при температурах ниже 1 К [136–144].

У электрида есть еще ряд неожиданных свойств, но они не могут быть описаны с позиции свойств кэйджа с фиксированной структурой, и будут рассмотрены отдельно.

Введение допирующих катионов в матрицу майенита. Механистические представления о

Рис. 9. Температурная зависимость электропроводности монокристаллов C12A7 после термообработки с металлическим кальцием [131].

Рис. 10. Электропроводность C12A7 в зависимости от концентрации F+-центров ($N_{\text{F+}}$), определена методом ЭПР при 300 К для керамики, полученной плавлением (1), и монокристаллического электрида (2) [131].

кэйдже привели к появлению работ типа [145], где показана возможность изоляции изотопа технеция для хранения внутри кэйджа. С точки зрения физики, такое описание весьма далеко от истины, но сам метод капсулирования радиоактивных отходов безусловно работает. Более того, майенит действительно имеет ряд преимуществ:

 высокая собственная дефектность делает его структуру мало чувствительной к наведенным радиационным дефектам;

 материал, как рассмотрено в разделе 2.2, прозрачен для выделения во внешнюю среду гелия, который образуется внутри керамики при торможении альфа частиц, что исключает механические напряжения, обусловленные газообразованием;

 – он обладает заметной величиной теплопроводности [146], устойчив в нейтральной и щелочной среде, но легко разрушается в кислотах.

Введение катионов редкоземельных металлов в матрицы широкозонных оксидов систематически изучают в интересах люминесцентных свойств. Не избежали этого и алюминаты: алюминат со структурой шпинели легировали европием [147, 148] и тербием [149], трехкальциевый алюминат легировали европием и церием [150], а вот матрица майенита вызвала особый интерес

Рис. 11. Схемы энергетических переходов в майените, допированном иттербием и тулием [173].

[151–170]. Такой интерес обусловлен, с одной стороны, возможностью мягко менять спектр люминесценции за счет изменения редокс-потенциала и анионного легирования материала. С другой стороны, майенит дает возможность в одном материале локализовано друг от друга разместить несколько сортов катионов редкоземельных металлов и/или сделать материал проводящим [60, 160, 161, 166].

Наличие электронной проводимости материала позволяет вызывать люминесценцию за счет пропускания тока, а не облучения от источника электромагнитного излучения с большей энергией квантов. Более того, при определенном подборе катионов редкоземельных металлов оказывается возможной «восходящая конверсия» - ситуация когда в результате поглощения нескольких квантов меньшей энергии излучается квант с более высокой энергией [48, 171–176]. Пример такой ситуации представлен на рис. 11. Как видно, используя излучение в ИК (980 нм) области удается получить синий (477 нм) свет. Подобные эффекты чрезвычайно актуальны для фотоэлектрических преобразователей или в процессах получения водорода в результате фотостимулированного электролиза воды, так как красный край этих процессов проходит по зеленой части видимого спектра.

Атом	Позиция	<i>x, y, z</i>	g	$B_{\rm eq}$, Å ²
		PCA ^a		
Ca1/Ca ²⁺	24 <i>d</i>	0.141528(42); 0; 1/4	1	0.684(10)
A11/A1 ³⁺	16 <i>c</i>	0.017333(41); <i>x</i> ; <i>x</i>	1	0.398(18)
$A12/A1^{3+}$	12 <i>b</i>	7/8; 0; 1/4	1	0.135(20)
O1/O ²⁻	48 <i>e</i>	0.149301(81); 0.963910(77); 0.055868(93)	1	0.539(24)
O2/O ²⁻	16 <i>c</i>	0,935557(98); x; x	1	0.448(48)
		Нейтронография ⁶		
Ca1/Ca	24 <i>d</i>		1	0.697(27)
Al1/Al	16 <i>c</i>		1	0.210(54)
Al2/Al	12 <i>b</i>		1	0.558(62)
O1/O	48 <i>e</i>		1	0.583(18)
O2/O ²⁻	16 <i>c</i>		1	0.905(33)

Таблица 3. Структурные параметры электрида C12A7 по данным порошкового рентгено-структурного анализа и нейтронографии, полученные методом Ритвельда [178]

^a a 11.998560(13) Å.

⁶ a 12.00472(24) Å.

Менее известным примером восходящей конверсии является преобразование электридом падающего на него электромагнитного излучения терагерцевого диапазона в видимый свет [177]. По-видимому, на настоящий момент до конца еще не раскрыта роль энергетических уровней, присущих собственно кэйджу. Кроме того, накопилось много экспериментального материала, который не может быть описан с позиции свойств кэйджа фиксированной структуры. Именно это мы и рассмотрим в следующем разделе.

3. КЭЙДЖ – ЭТО ...

3.1. Мультивариантность кэйджа. В работе [16] решетка майенита описана как имеющая базис, состоящий из одной позиции кальция, двух позиций алюминия и трех позиций кислорода:

 $\begin{array}{c} {\rm Ca}_{(1)}(0;\,0.25;\,0.1397)\\ {\rm Al}_{(1)}(0.0187;\,x;\,x)\\ {\rm Al}_{(2)}(-0.125;\,0;\,0.25)\\ {\rm O}_{(1)}(0.151;\,-0.037;\,0.057)\\ {\rm O}_{(2)}(-0.064;\,x;\,x)\\ {\rm O}_{(3)}(0.337;\,0;\,0.25). \end{array}$

Решетка кубическая, пространственная группа *I*43*d* параметр решетки *a* 11.989(1) Å. Как мы уже говорили, кислород O₍₃₎ имеет малую степень заполнения и рассматривается как слабосвязанный.

В табл. 3 представлено сравнение результатов определения структуры восстановленного майенита (электрида) методом дифракции рентгеновских лучей и нейтронографии. Пусть не существенно, но они отличаются. Это обусловлено двумя факторами. И кальций, и алюминий – легкие катионы, вызывающие слабое рассеяние рентгеновских лучей на их электронных оболочках. Необходимо применение особых условий для получения качественных диффрактограмм с малым вкладом фона. В случае электрида вклад в дифракцию рентгеновского излучения может давать электронная плотность анионов-электронов. Именно поэтому применение нейтронографии для изучения таких объектов оказывается более предпочтительным. Например, нейтронография позволяет обнаружить малую концентрацию примести трехкальциевого алюмината в этом случае [178], что невозможно сделать при использовании метода рентгеновской дифракции.

Начиная с 2007 г. появляется все больше работ, где вместо одной позиции кальция, двух позиций алюминия и двух позиций кислорода со степенями заполнения равными единице, используются

Рис. 12. Температурная зависимость коэффициентов диффузии кальция, определенная изотопным методом, E_a 1.93(4) эВ [200]. $I - D_{Ca}^{2+}(1), 2 - D_{Ca}^{2+}(2), 3 - D_{O}$ [68].

более сложные базисы [179–185]. Так, количество различных позиций кальция может достигать четырех. В рамках такой мультивариантности уже не кажется удивительным сосуществование двух кубических структур майенита, несколько отличающихся по величине параметра решетки [186]. Отметим, что они по-разному ведут себя при высокотемпературных обработках при разных активностях кислорода.

Как мы видели в предыдущем разделе, в матрицу майенита удается вводить катионы без разрушения структуры. Это указывает на существование твердых растворов на основе майенита, что предполагает наличие области твердых растворов в самом майените [187].

3.2. Успешное решение прикладной задачи, поставившее много вопросов. Обратимая сорбция углекислого газа – важная задача для повышения экологичности энергетики. Доступный сорбент CO_2 – оксид кальция. Однако при протекании процесса образования карбоната кальция и его разложения, свойства сорбента меняются: существенно уменьшается поверхность. Процесс не удается сделать цикличным. Поисковые работы по выбору материала-носителя оксида кальция привели к выводу, что именно майенит успешно решает эту задачу [188–199]. Тем не менее, в литературе наблюдается отсутствие понимания причин хорошей циклируемости майенита. Процесс сорбции CO_2 происходит обычно при температурах порядка 700°С, а процесс десорбции – при 850°С или выше. В связи с этим целесообразно оттенить результаты по коэффициенту диффузии кальция, полученные методом «меченых атомов» (рис. 12). Оказывается, коэффициент диффузии совсем не мал. Таким образом, можно ожидать, что именно подвижность кальция в структуре майенита при высоких температурах и есть тот фактор, который делает майенит выгодным носителем оксида кальция как обратимого сорбента углекислого газа.

В свете этого иначе воспринимаются результаты работы [201], где авторы получали аморфные прекурсоры, соответствующие составу различных алюминатов кальция и быстро нагревали их. Они смогли получить материал со структурой майенита только после длительной выдержки при высокой температуре, т. е. когда, как мы сейчас понимаем, катионы кальция добрались до локальных минимумов энергии в этой структуре. Такие представления хорошо согласуются с результатами по синтезу майенита (раздел 2.1): выдержка порядка 2 сут необходима для получения однофазного материала.

Особенности взаимодействия майенита с водой при высоких температурах также можно понять только исходя из высокой подвижности кальция. Влияние влажности на электропроводность майнита имеет два разных механизма, сильно отличающихся по скорости [202, 203]. С одной стороны, повышение влажности в условиях большого запаса кислородных вакансий создает новые носители заряда. Это достаточно быстрый механизм, и он приводит к увеличению проводимости при повышении влажности. И есть медленный механизм, который приводит к заметному понижению проводимости. Детали такого взаимодействия изучены в работах [200, 204, 205]. Термодинамические характеристики данного медленного процесса гидратации майенита хорошо совпадают с параметрами реакции (6).

$$CaO + H_2O = Ca(OH)_2.$$
 (6)

Также высокой подвижностью кальция объясняется процесс диспропорционирования [184]

МАЙЕНИТ

Рис. 13. Сравнение структуры молибдата цезия-цинка и алюмината кальция (рисунок предоставлен С.Ф. Солодовниковым).

восстановленного майенита на трехкальциевый алюминат и C5A6 (7).

$$\operatorname{Ca}_{12}\operatorname{Al}_{14}\operatorname{O}_{33} \to \operatorname{Ca}_{5}\operatorname{Al}_{6}\operatorname{O}_{14} + \operatorname{Ca}_{3}\operatorname{Al}_{2}\operatorname{O}_{6}.$$
 (7)

Мы видим, что простые представления о кэйдже, как антицеолитном каркасе с фиксированной структурой (рис. 3) трансформируются в «структуру стекла с несколькими стабильными состояниями». В связи с этим представляет интерес рассмотреть, что известно о других материалах со структурой, имеющих группу симметрии *I*43*d*.

3.3. Другие фазы с группой симметрии *I*43*d*. *3.3.1.* Cs₆Zn_{5□1} (MoO₄)₈. В 1987 г. независимо друг от друга две группы исследователей [206, 207] сообщили о структуре нового соединения. Оно сразу рассматривалось как некий аналог майенита, имеющий кэйджевую структуру (рис. 13). Ключевой особенностью молибдата цезия-цинка является наличие катионных вакансий в подрешетке цинка.

Известна природная модификация, соответствующая молибдату цезия-цинка. Это эвлитит (в материаловедческой литературе) или эвлитин (в геологической литературе), силикат висмута $Bi_4(SiO_4)_3$. Его структура описана еще в 1966 г. [208]. Материалы со структурой эвлитина активно изучали в начале 2000-х годов [209–213]. Интерес к ним был обусловлен протонной проводимостью кислых солей [214] и перспективами катионной проводимости легких щелочных металлов, замещающих цезий [215, 216]. В последние годы появилось много публикаций о допировании матрицы эвлитина катионами редкоземельных металлов в целях создания фотоактивных материалов. Отметим, что не все материалы со структурой эвлитина имеют катионные вакансии, как молибдат цезияцинка. Соответственно, они не имеют кэйджевой структуры.

Другим примером материала без кэйджевой структуры, но характеризующегося решеткой с группой симметрии $I\bar{4}3d$, являются бор-силикаты тяжелых щелочных металлов [217]. Они являются производными минерала $Cs_{12}Na_4Al_{16}Si_{32}O_{96} \cdot 4H_2O$ [218], имеющего кубическую структуру с группой симметрии $Ia\bar{3}d$. Интерес представляет фазовый переход между структурами с группами симметрии $Ia\bar{3}d$ в зависимости от соотношения долей катионов цезия и рубидия, отличающихся размерами (рис. 14). При повышении температуры структура с группой симметрии $I\bar{4}3d$ повышает симметрию и превращается в структуру с группой симметрии $Ia\bar{3}d$.

Близость решеток с группами симметрии *Ia3d* и *I*43*d* подробно обсуждена в работе [219] на примере арсенатов натрия-цинка. Согласно представлениям авторов этой работы, в майените катионы алюминия присутствуют только в координацион-

Рис. 14. Температурная зависимость параметра решетки твердого раствора $Rb_{1-x}Cs_xBSi_2O_6$ (x = 0, 0.2, 0.4, 0.8, 1) при атмосферном давлении [216].

ном окружении 4. Это не соответствует действительности, наличие октаэдров AlO_6 в структуре майенита доказывалось неоднократно [45, 63, 220]. В свете этого мы рассмотрим ванадатные гранаты, для которых известны как материалы с группой симметрии $Ia\bar{3}d$, так и материалы с группой симметрии $I\bar{4}3d$.

3.3.2. Гранат. С точки зрения кристаллохимии, структуру оксидного граната описывают как кубическую, с группой симметрии $Ia\bar{3}d$ $A_3B_2C_3O_{12}$, где катионы А имеют КЧ 8, B - 6 и C - 4. Среди ванадатных гранатов стандартной структуры, например таких как $Ca_3Mg_2V_3O_{12}$, характеризующихся симметрией $Ia\bar{3}d$, существуют и «нестехиометрические» или «дефектные» гранаты, по аналогии с $Ca_{2.5\square 0.5}Mg_2V_3O_{12-\delta}$.

Впервые о дефектных гранатах в 1973 г. заговорили на основании поведения параметра решетки [221]. То, что такие материалы имеют группу симметрии *I*43*d*, после получения монокристаллов показано в работе [222]. Позднее их систематизировали и объединили в отдельной седьмой группе ванадатных гранатов [223]. Получение таких материалов очень сложная задача, так как система всегда имеет возможность двигаться в сторону Са(Mg)₃Mg(V)₂V₃O₁₂ просто за счет обмена кислорода с газовой фазой и перераспределения ка-

Рис. 15. Фрагмент высокотемпературной дифрактограммы майенита на воздухе (цветные линии) и в аргоне (черные линии) [224].

тионов по позициям, что приводит и к изменению наблюдаемой группы симметрии. Мы считаем, что именно аналогичная ситуация характерна и для майенита: $(Ca_{3-x\square x})(Ca,Al)_2Al_3O_{12-x}$.

3.3.3. Действительно гранат. На рис. 15 представлены фрагменты дифрактограмм алюмината кальция при высоких температурах в атмосферах воздуха и аргона. Это часть результатов исследований, опубликованых в работе [63]. Ранее мы обсуждали, что высокотемпературный фазовый переход, описанный в этой работе, приводит к изменению параметра кубической решетки без изменения ее структуры. Это была наша неточность, обусловленная сложностью достоверно описать исчезновение единичного рефлекса малой интенсивности. При высоких температурах майенит в атмосфере воздуха имеет симметрию $Ia\bar{3}d$, т. е. является классическим гранатом. При понижении температуры он проявляет симметрию І43d. Отчетливо показать это удается только в противопоставлении дифракционных кривых при различном парциальном давлении кислорода (рис. 15).

На «родственный характер» структур граната и майенита указывают и геологи [225]. Автор рассмотрел взаимоотношение структур минералов: гроссуляра $Ca_{12}^{VI}Al_8^{IV}Si_{12}O_{48}$ [широко известный гранат, аналог пиропа Mg₃Al₂(SiO₄)₃], катоита Са₁₂^{VI}Al₈^{IV} 12(OH)₄₈ (менее известный гидрогранат, характерный тем, что в качестве катиона C, позиция которого формально вакантна, выступает тетраэдр H₄, каждый из элементов которого расположен в средине стороны тетраэдра O₄) и майенита. Майенит он трактует как {Ca₁₂^{IV}Al₈^{IV}(Al₆) O₃₂}O, где восемь катионов в позиции В изменили координационное число с 6 на 4, и половина позиций катионов C вакантна. В итоге это приводит к такому же результату, как и представления C.Ф. Солодовникова, приведенные на рис. 13. Такие представления широко представлены в геологической литературе [226–229], хотя противоречат неоднократно подтвержденному факту наличия октаэдров AlO₆ в майените [45, 63, 223]

Как из рассмотрения геологов для майенита, так и из рассмотрения структуры для молибдата цезия-цинка следует появление кэйджевой структуры только при наличии вакансий в катионной подрешетке. Аналогия структуры майенита с ванадатными гранатами, на которой мы настаиваем, также связывает появление кэйджа с катионной вакансией, но только в подрешетке А. В условиях высокой подвижности кислорода [29, 223] и кальция (рис. 12) при повышенных температурах кэйдж приходится рассматривать как ассоциат дефектов. Именно разбору взаимодействия между дефектами и вызываемым этим взаимодействием эффектам будет посвящен следующий раздел.

4. ВЗАИМОДЕЙСТВИЕ ДЕФЕКТОВ КАК ОБЩЕЕ СВОЙСТВО ФАЗ С ВЫСОКОЙ ДЕФЕКТНОСТЬЮ

Среди твердых электролитов с кислород-ионной проводимостью наиболее известны и изучены кубические гранецентрированные твердые растворы на основе диоксидов циркония, тория, церия и гафния [230–239]. Их допирование катионом с зарядовым числом меньше 4 приводит к возникновению кислородных вакансий и кислород-ионной проводимости. В первом приближении кислородные вакансии рассматриваются как свободные. На самом деле это не соответствует действительности. Энергия взаимодействия точечных дефектов не мала, и они образуют ассоциаты. Это ярко проявляется в поведении температурной и временной зависимости электропроводности [240–245], а также в особенностях теплопроводности в результате фононного рассеяния на этих ассоциатах [246, 247]. Энергия взаимодействия дефектов тем больше, чем больше область когерентного рассеяния (область идеальной решетки). Для совершенных монокристаллов с размером области когерентного рассеяния порядка 15 мм это приводит к возникновению поверх кубического материала слоя с низко симметричной структурой [248]. Толщина этого слоя зависит от размеров области когерентного рассеяния. Если в случае совершенных монокристаллов большого размера она достигает 100 мкм и хорошо обнаруживается рентгеновским излучением, то для керамики с размером зерна прядка полутора микрон, это единицы нанометров [249, 250]. Наличие и свойства этого приповерхностного слоя чрезвычайно важны для протекания электродных процессов на этих материалах [251].

Для кубических гранецентрированных материалов с анионной проводимостью установлено еще одно уникальное свойство: межкристаллитная граница, которая является областью с повышенной дефектностью, характеризуется не повышенными, а пониженными транспортными характеристиками. Однако для растворов на основе диоксида циркония эффект элиминируется при размере кристаллитов менее 270 нм [252, 253]. Таким образом, и межкристаллитную границу тоже можно рассматривать, как область, возникшую в результате взаимодействия дефектов, которая исчезает, если энергия для ее образования недостаточна в связи с малостью области когерентного рассеяния.

Поскольку мы предлагаем рассматривать майенит как нестехиометрический гранат с высокой дефектностью, то можно было бы ожидать и в этом случае проявление особенностей, описанных для кубических гранецентрированных анионных электролитов. Это действительно так. Проводимость монокристалла [30] измеренная двух- и четырехзондовыми методами различается. При учете временной зависимости проводимости показано наличие ступеньки на ее температурной зависимости, обусловленное формированием приповерхностного слоя [187]. Сложный характер спектров импеданса может быть описан в рамках представлений об объеме и поверхностном слое [254]. Изотопными методами показано наличие высокой подвижности кислорода в объеме и малой – в приповерхностном слое [27–29]. Дифракционные эксперименты при использовании синхротронного излучения, обладающего чрезвычайно узкой шириной линии, показывают сосуществование двух кубических структур – объемной и поверхностной [224].

При рассмотрении удивительных свойств алюмината кальция, мы вынужденно пришли к пониманию, что он обладает структурой граната, причем существенно нестехиометричной. Дефекты взаимодействуют, и при понижении температуры образуют ассоциаты, которые принято описывать в литературе как кэйджи.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Шкерин Сергей Николаевич, ORCID: https:// orcid.org/0000-0003-4064-0670

ФИНАНСОВАЯ ПОДДЕРЖКА

Исследование выполнено в рамках бюджетного финансирования по программе ААА-А-А19-119020190044-1.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Eriksson G., Pelton A.D. // Metal. Mater. Trans. (B). 1993. Vol. 24. N 5 P. 807. doi 10.1007/BF02663141
- Zaitsev A.I., Korolyov N.V., Mogutnov B.M. // J Mater Sci. 1991. Vol. 26. P. 1588. doi 10.1007/BF00544668
- Zaitsev A.I., Korolev N.V., Mogutnov B.M. // High Temp. Sci. 1989. Vol. 28. P. 351.
- 4. *Nurse R.W., Welch J.H., Majumdar A.J. //* Trans. Br. Ceram. Soc. 1965. Vol. 64. N 9. P. 409.
- Rankin G.A., Wright F.E. // Am. J. Sci. 1915. Vol. 39. P. 1.
- Nurse R.W. // Trans. Br. Ceram. Soc. 1965. Vol. 64. P. 323.
- Wells L.S., Carlson E.T. // J. Res. Natl. Bur. Stand. 1956. Vol. 57. N 6. P. 335.
- Hallstedt B. // J. Am. Ceram. Soc. 1990. Vol. 73. N 1. P. 15. doi 10.1111/j.1151-2916.1990.tb05083.x
- Chatterjee A.K., Zhmoidin G.I. // J. Mater. Sci. 1972. N 7. P. 93. doi 10.1007/BF00549555

- Imlach J.A., Glasser F.P. // Trans. Br. Ceram. Soc. 1968. Vol. 67. P. 581.
- Muan A., Osborn E.F. Phase Equilibria Among Oxides in Steelmaking. Boston: Addison-Wesley Publishing Company, 1965. 236 p.
- 12. Жеберцов Д.А., Арчугов С.А., Михайлов Г.Г. // Расплавы. 1999. Т. 2. С. 63.
- Pytel K.A., Ciembronowicz E.M. // Metal. Foundry Eng. 1999. Vol. 25. N 2. P. 93.
- Чемекова Т.Ю., Удалов Ю.П. // Неорг. матер. 1974. Т. 10. № 12. С. 2191.
- Derdacka-Grzymek A., Konik Z., Iwanciw J., Stok A. // J. Mater. Sci. 1989. Vol. 24. P. 355. doi 10.1007/ BF00660980
- Büssem W., Eitel A. // Zeit. Kristallogr. 1936. Vol. 95. P. 175.
- 17. Jeevaratnam J., Glasser L.S.D., Glasser F.P. // Nature. 1962. Vol. 194. N 4830. P. 764. doi 10.1038/194764b0
- 18. Hentschel G. // Neues Jahrb. Mineral. Mh. 1964. P. 22.
- Bartl H., Scheller T. // Neues Jahrb. Mineral. Mh. 1970. Vol. 35. P. 547.
- 20. *Welch J.H.* Chemistry of cements. London: Academic Press, 2004. P. 465.
- Christensen A.N., Sandström M., Maartmann-Moe K., Maberg O., Scheie A., Louër D. // Acta Chem. Scand.
 (A). 1987. Vol. 41. N 2. P. 110. doi 10.3891/acta.chem. scand.41a-0110
- 22. Lacerda M., Irvine J.T.S., Glasser F.P., West A.R. // Nature. 1988. Vol. 332. N 7. P. 525. doi 10.1038/332525a0
- Irvine J.T.S., Lacerda M., West A.R. // Mater. Res. Bull. 1988. Vol. 23. N 7. P. 1033. doi 10.1016/0025-5408(88)90059-1
- Irvine J.T.S., West A.R. // J. Appl. Electrochem. 1989 Vol. 19. N 3. P. 410. doi 10.1007/BF01015244
- Irvine J.T.S., West A.R. // Solid State Ion. 1990.
 Vol. 40-41. N 2. P. 896. doi 10.1016/0167-2738(90)90147-J
- Lacerda M., West A.R., Irvine J.T.S. // Solid State Ion. 1993 Vol. 59. N 3–4. P. 257. doi 10.1016/0167-2738(93)90059-C
- Kilo M., Swaroop S., Lerch M. // Defect Diffus Forum. 2009. Vol. 289–292. P. 511. doi 10.4028/www.scientific. net/DDF.289-292.511
- Teusner M., De Souza R.A., Krause H., Ebbinghaus S.G., Belghoul B., Martin M. // J. Phys. Chem. (C). 2015. Vol. 119. N 18. P. 9721. doi 10.1021/ jp512863u
- 29. Tolkacheva A.S., Shkerin S.N., Porotnikova N.M., Kuznetsov M.V., Naumov S.V., Telegin S.V., Khodimchuk A.V., Farlenkov A.S., Ananyev M.V. // Phys. Chem.

Chem. Phys. 2019. Vol. 21. P. 24740. doi 10.1039/ C9CP04936C

- Lee D.K., Kogel L., Ebbinghaus S.G., Valov I., Wiemhoefer H.D., Lerch M., Janek J. // J. Korean Ceram. Soc. 2010. Vol. 47. N 2. P. 99. doi 10.1039/ B818474G
- Li J., Hayashi K., Hirano M., Hosono H. // Solid State Ion. 2009. Vol. 180. N 17–19. P. 1113. doi 10.1016/j. ssi.2009.04.018
- Trofymluk O., Toda Y., Hosono H., Navrotsky A. // Chem. Mater. 2005. Vol. 17. P. 5574. doi 10.1002/ CHIN.200603014
- Matsuishi S., Nomura T., Hirano M., Kodama K., Shamoto S., Hosono H. // Chem. Mater. 2009. Vol. 21. N 13. P. 2589. doi 10.1021/cm9007987
- Hayashi K., Sushko P.V., Shluger A.L., Hirano M., Hosono H. // J. Phys. Chem. (B). 2005. Vol. 109. P. 23836. doi 10.1021/jp053990p
- Jeevaratnam J., Glasser F.P., Glasser L.S.D. // J. Am. Ceram. Soc. 1964. Vol. 47. N 2. P. 105. doi 10.1111/ j.1151-2916.1964.tb15669.x
- Strandbakke R., Kongshaug C., Haugsrud R., Norby T. // J. Phys. Chem. (C). 2009. Vol. 113. P. 8938. doi 10.1021/jp9009299
- Smirnov G.S., Chatterjee A.K., Zhmoidin G.I. // J. Mater. Sci. 1973. Vol. 8. P. 1278. doi 10.1007/BF00549342
- Chatterjee A.K., Zhmoidin G.I. // J. Mater. Sci. 1974.
 Vol. 9. N 7. P. 1073. doi 10.1007/bf00552820
- Hosono H., Abe Y. // J. Non Cryst. Solids. 1987. Vol. 95–96. P. 717. doi 10.1016/S0022-3093(87)80673-7
- Hosono H., Abe Y. // Mat. Res. Bull. 1988. Vol. 23. N 2. P. 171. doi 10.1016/0025-5408(88)90093-1
- Mellenne B., Boudin S., Retoux R., Hervieu M., Raveau B. // Mat. Res. Bull. 2005. Vol. 40. P. 1388. doi 10.1016/j.materresbull.2005.03.032
- Retoux R., Mellenne B., Boudin S., Hervieu M., Raveau B. // Solid State Sci. 2005. Vol. 7. P. 736. doi 10.1016/j.solidstatesciences.2004.11.019
- Hosono H. // Sci. Technol. Adv. Mater. 2004. Vol. 5. P. 409. doi 10.1016/j.stam.2004.01.012
- 44. Yang S., Kondo J.N., Hayashi K., Hirano M., Domen K., Hosono H. // Chem. Mater. 2004. Vol. 16. P. 104. doi 10.1021/cm034755r
- Толкачева А.С., Шкерин С.Н., Плаксин С.В., Вовкотруб Э.Г, Буланин К.М., Кочедыков В.А., Ординарцев Д.П, Гырдасова О.И, Молчанова Н.Г. // ЖПХ. Т. 84. Вып. 6. С. 881; Tolkacheva A.S., Shkerin S.N., Plaksin S.V., Vovkotrub E.G., Bulanin К.М., Kochedykov V.A., Ordinartsev D.P., Gyrdasova O.I., Molchanova N.G. // Russ. J. Appl. Chem. 2011. Vol. 84. P. 907. doi 10.1134/S1070427211060012

- Tas A.C. // J Am. Ceram. Soc. 1998. Vol. 81. P. 2853. doi 10.1111/j.1151-2916.1998.tb02706.x
- Zhu H, Liu Y, Yan D, Yan X, Liu C, Xu C. // J. Nanosci. Nanotechnol. 2011. Vol. 11. N 11. P. 9958. doi 10.1166/ jnn.2011.5291
- Joshi C., Kumar K., Rai S.B. // J. Appl. Phys. 2009. Vol. 105. P. 123103. doi 10.1063/1.3148294
- Chavhan P.M., Sharma A., Sharma R.K., Singh G., Kaushik N.K. // Thin Solid Films. 2010. Vol. 519. P. 18. doi 10.1016/j.tsf.2010.07.014
- Bian H., Zhu H., Liu C., Xu C., Liu Y., Zhang H., Wang X. // J Mater. Chem. (C). 2013. Vol. 1. P. 7896. doi 10.1039/C3TC31446D
- 51. Шкерин С.Н., Толкачева А.С. Пат. RU № 2459781. (2012).
- Kurashige K., Ueda S., Miyakawa M., Toda Y., Matsuishi S., Kim S., Hirano M., Hosono H. // Thin Solid Films. 2008. Vol. 516. P. 5772. doi 10.1016/j. tsf.2007.10.027
- Watauchi S., Tanaka I., Hayashi K., Hirano M., Hosono H. // J. Cryst. Growth. 2002. Vol. 237–239. P. 801. doi 10.1016/S0022-0248(01)02038-3
- 54. Hosono H., Hirano M., Hayashi K., Tanaka I., Watauchi S. Pat. JP 2003040697A (2006). Japan.
- Kurashige K., Toda Y., Matstuishi S., Hayashi K., Hirano M., Hosono H. // Cryst. Growth Des. 2006. Vol. 6. N 7. P. 1602. doi 10.1021/cg0600290
- 56. Kurashige Kazuo., Hosono H., Hirano M., Hayashi K. Pat. JP 2007137684A (2007). Japan.
- Yoon S.G., Kim S.W., Hirano M., Yoon D.H., Hosono H. // Cryst. Growth Des. 2008. Vol. 8. N 4. P. 1271. doi 10.1021/cg700996x
- Liu L., Kagamitani Y., Ehrentraut D., Yokoyama C., Fukuda T. // J. Cryst. Growth. 2009. Vol. 311. P. 518. doi 10.1016/j.jcrysgro.2008.09.032
- Sun J.C., Xu Y.L., Wang R., Liu X.R., Qu Y.F. // Cryst. Res. Technol. 2013. Vol. 48. N 8. P. 505. doi 10.1002/ crat.201300080
- Ali M.M., Nagao M., Watauchi S., Tanaka I. // ACS Omega. 2016. Vol. 1. P. 1157. doi 10.1021/ acsomega.6b00409
- Толкачева А.С., Шкерин С.Н., Калинина Е.Г., Филатов И.Е., Сафронов А.П. // ЖПХ. 2014. Т. 87. Вып. 4. С. 536. Tolkacheva A.S., Shkerin S.N., Kalinina E.G., Filatov I.E., Safronov A.P. // Russ. J. Appl. Chem. 2014. Vol. 87. N 4. P. 536. doi 10.1134/ S1070427214040235
- 62. Шкерин С.Н., Толкачева А.С., Калинина Е.Г., Филатов И.Е., Сафронов А.П. Пат. RU 2492914 (2013).
- 63. Shkerin S.N., Tolkacheva A.S., Korzun I.V., Plaksin S.V., Vovkotrub E.G., Zabolotskaya E.V. // J. Therm. Anal.

Calorim. 2016. Vol. 124. P. 1209. doi 10.1007/s10973-016-5282-4

- 64. Толкачева А.С., Шкерин С.Н., Корзун И.В., Плаксин С.В., Хрустов В.Р., Ординарцев Д.П. // ЖНХ. 2012. Т. 57. № 7. С. 1089; Tolkacheva A.S., Shkerin S.N., Korzun I.V., Plaksin S.V., Khrustov V.R., Ordinartsev D.P. // Russ. J. Inorg. Chem. 2012. Vol. 57. P. 1014. doi 10.1134/S0036023612070182
- Hayashi K., Hirano M., Hosono H. // Chem. Lett. 2005.
 Vol. 34. N 4. P. 586. doi 10.1246/cl.2005.586
- Hosono H., Abe Y. // Inorg. Chem. 1987. Vol. 26. P. 1192. doi 10.1021/ic00255a003
- Hayashi K., Matsuishi S., Kamiya T., Hirano M., Hosono H. // Nature. 2002. Vol. 419. N 3. P. 462. doi 10.1038/nature01053
- Hayashi K., Hirano M., Matsuishi S., Hosono H. // J Am. Chem. Soc. 2002. Vol. 124. N 5. 738. doi 10.1021/ ja016112n
- Fujita S., Suzuki K., Ohkawa M., Mori T., Iida Y., Miwa Y., Masuda H., Shimada S. // Chem. Mater. 2003. Vol. 15. P. 255. doi 10.1021/cm0204122
- Fujita S., Ohkawa M., Suzuki K., Nakano H., Mori T., Masuda H. // Chem. Mater. 2003. Vol. 15. N 26. P. 4879. doi 10.1021/cm030562s
- 71. Hosono H., Kato T., Hayashi K., Hirano M. Pat. JP 2005288571A. Japan.
- 72. Hayashi K., Ueda N., Hirano M., Hosono H. // Solid State Ion. 2004. Vol. 173. P. 89. doi 10.1016/j. ssi.2004.07.057
- Matsuishi S., Hayashi K., Hirano M., Tanaka I., Hosono H. // J Phys. Chem. (B). 2004. Vol. 108. P. 18557. doi 10.1021/jp046963s
- Matsuishi S., Hayashi K., Hirano M., Hosono H. // J. Am. Chem. Soc. 2005. Vol. 127. P. 12454. doi 10.1021/ ja053568m
- Sato K., Iritani J., Miyamoto R., Fujita S., Suzuki K., Ohkawa M., Mori T. // Stud. Surf. Sci. Catal. (B). 2005.
 Vol. 158. P. 2001. doi 10.1016/S0167-2991(05)80566-X
- Kohama Y., Tojo T., Kawaji H., Atake T., Matsuishi S., Hosono H. // Chem. Phys. Lett. 2006. Vol. 421. N 4–6. P. 558. doi 10.1016/j.cplett.2006.02.016
- Hayashi K., Ueda N., Matsuishi S., Hirano M., Kamiya T., Hosono H. // Chem. Mater. 2008. Vol. 20. P. 5987. doi 10.1021/cm800666p
- Maurelli S., Ruszak M., Witkowski S., Pietrzyk P., Chiesa M., Sojka Z. // Phys. Chem. Chem. Phys. 2010. Vol. 12. P. 10933. doi 10.1039/c0cp00084a
- Shen J., Gong L., Li Q.X. // Chinese J. Inorg. Chem. 2011. Vol. 27. N 2. P. 353.
- Dong Y., Hosono H., Hayashi K. // RSC Adv. 2013. Vol. 3. N 40. P. 18311. doi 10.1039/c3ra42521e

- Sobanska K., Krasowska A., Mazur T., Podolska-Serafin K., Pietrzyk P., Sojka Z. // Top. Catal. 2015. Vol. 58. N 12–13. P. 796. doi 10.1007/s11244-015-0420-y
- Ruszak M., Witkowski S., Sojka Z. // Res. Chem. Intermed. 2007. Vol. 33. N 8–9. P. 689. doi 10.1163/156856707782169435
- 83. Sadakata M., Hosono H., Nishioka M., Hayashi K., Hirano M. Pat. WO 2004016549A1 (2004). Japan.
- Agawa Y., Oba M., Terasawa T., Yuyama J., Nakajima M., Kawasaki T., Torimoto Y., Hosono H., Sadakata M., Nishioka M. Pat. JP 2005089847A (2005). Japan.
- 85. *Hayashi K., Hirano M., Hosono H. //* Eco Industry. 2002. Vol. 7. N 7. P. 5.
- Hosono H., Hayashi K., Matsuichi S., Hirano M. // From Seramikkusu. 2002. Vol. 37. N 12. P. 968.
- Li Q.X., Hayashi K., Nishioka M., Kashiwagi H., Hirano M., Torimoto Y., Hosono H., Sadakata M. // Jpn. J. Appl. Phys. Part 2: Letters. 2002. Vol. 41. N 5A. P. L530. doi 10.1143/JJAP.41.L530
- Li Q.X., Hayashi K., Nishioka M., Kashiwagi H., Hirano M., Torimoto Y., Hosono H., Sadakata M. // Appl. Phys. Lett. 2002. Vol. 80. N 22. P. 4259. doi 10.1063/1.1476958
- Li Q.X., Hosono H., Hirano M., Hayashi K., Nishioka M., Kashiwagi H., Torimoto Y., Sadakata M. // Surf. Sci. 2003. Vol. 527. N 1–3. P. 100. doi 10.1016/S0039-6028(02)02575-X
- Hayashi K., Matsuishi S., Hirano M., Hosono H. // J. Phys. Chem. (B). 2004. Vol. 108. N 26. P. 8920. doi 10.1021/jp037916n
- Nishioka M., Nanjyo H., Hamakawa S., Kobayashi K., Sato K., Inoue T., Mizukami F., Sadakata M. // Solid State Ion. 2006. Vol. 177. P. 2235. doi 10.1016/j. ssi.2006.08.007
- 92. Li J., Hayashi K., Hirano M., Hosono H. // J Electrochem. Soc. 2009. Vol. 156. N 1. P. G1. doi 10.1149/1.2999055
- Ning S., Yuan L.X., Shen J., Li X.L., Lin Q.X. // Chinese J. Inorg. Chem. 2011. Vol. 27. N 5. P. 963.
- 94. Ning S., Shen J., Li X.L., Xu Y., Li Q.X. // Acta Phys. Chim. Sin. 2011. Vol. 27. N 4. P. 983. doi 10.3866/PKU. WHXB20110410
- Hosono H., Hayashi K., Hirano M. // J. Mater. Sci. 2007. Vol. 42. P. 1872. doi 10.1007/s10853-006-1316-9
- 96. Li J., Huang F., Wang L., Yu S.Q., Torimoto Y., Sadakata M., Li Q.X. // Chem. Mater. 2005. Vol. 17. P. 2771. doi 10.1021/cm0500354
- Song C., Sun J., Li J., Ning S., Yamamoto M., Tu J., Torimoto Y., Li Q. // J. Phys. Chem. (C). 2008. Vol. 112. P. 19061. doi 10.1021/jp805681q
- 98. Sun J.Q., Song C.F., Ning S., Lin S.B., Li Q.X. // Acta Phys. Chim. Sin. 2009. Vol. 25. N 9. P. 1713. doi 10.3866/PKU.WHXB20090828
- 99. Hosono H., Hayashi K., Hirano M., Isozaki H., Tanaka S., Fukumoto T., Komori K., Abe K. Pat. JP 2003190787A (2003). Japan.
- 100. Sato K., Yamaguchi M., Fujita S., Suzuki K., Mori T. // Catal. Commun. 2006. Vol. 7. P. 132. doi 10.1016/j. catcom.2005.09.005
- 101. Cucciniello R., Intiso A., Castiglione S., Genga A., Proto A., Rossi F. // Appl. Catal. (B). 2017. Vol. 204.
 P. 167. doi 10.1016/j.apcatb.2016.11.035
- 102. Intiso A., Cucciniello R., Castiglione S., Proto A., Rossi F. Advances in Bionanomaterials. Lecture Notes in Bioengineering. Cham: Springer, 2018. doi 10.1007/978-3-319-62027-5_12
- 103. Intiso A., Martinez-Triguero J., Cucciniello R., Rossi F., Palomares A.E. // Sci. Rep. 2019. Vol. 9. P. 425. doi 10.1038/s41598-018-36708-2
- 104. Intiso A., Martinez-Triguero J., Cucciniello R., Proto A., Palomares A.E., Rossi F. // Catalysts. 2019. Vol. 9. N 1. P. 27. doi 10.3390/catal9010027
- 105. Cucciniello R., Intiso A., Siciliano T., Palomares A.E., Martínez-Triguero J., Cerrillo J.L., Proto A., Rossi F. // Catalysts. 2019. Vol. 9. N 9. P. 747. doi 10.3390/ catal9090747
- 106. Yang S., Kondo J.N., Hayashi K., Hirano M., Domen K., Hosono H. // Appl. Catal. A-Gen. 2004. Vol. 277. N 1–2. P. 239. doi 10.1016/j.apcata.2004.09.030
- Martavaltzi C.S., Lemonidou A.A. // Chem. Eng. Sci. 2010. Vol. 65. P. 4134. doi 10.1016/j.ces.2010.04.038
- 108. Martavaltzi C.S., Pefkos T.D., Lemonidou A.A. // Ind. Eng. Chem. Res. 2011. Vol. 50. P. 539. doi 10.1021/ ie1002284
- Li C., Hirabayashi D., Suzuki K. // Appl. Catal. (B).
 2009. Vol. 88. P. 351. doi 10.1016/j.apcatb.2008.11.004
- 110. Ranjbar A., Rezaei M. // J. Nat. Gas Chem. 2012.
 Vol. 21. N 2. P. 178. doi 10.1016/S1003-9953(11)60351-4
- Campos-Molina M.J., Santamaria-González J., Merida-Robles J., Moreno-Tost R., Albuquerque M.C.G., Bruque-Gámez S., Rodriguez-Castellon E., Jimenez-Lopez A., Maireles-Torres P. // Energy Fuels. 2010. Vol. 24. P. 979. doi 10.1021/ef9009394
- 112. Sharma M., Khan A.A., Dohhen K.C., Christopher J., Puri S.K., Tuli D.K., Sarin R. // J. Am. Oil Chem.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 92 № 11 2022

Soc. 2012. Vol. 89. P. 1545. doi 10.1007/s11746-012-2033-y

- 113. Wang B., Li S., Tian S., Feng R., Meng Y. // Fuel. 2013.
 Vol. 104. P. 698. doi 10.1016/j.fuel.2012.08.034
- Wang Z., Pan Y., Dong T., Zhu X., Kan T., Yuan L., Torimoto Y., Sadakata M., Li Q. // Appl. Catal. (A). 2007. Vol. 320. P. 24. doi 10.1016/j.apcata.2006.12.003
- Wang L., Song C.F., Sun J.Q., Torimoto Y., Sadakata M., Li Q.X. // Progr. Biochem. Biophys. 2007. Vol. 34. N 12. P. 1288.
- Gong L., Shen J., Li Q.X. // Chem. J. Chin. Univ. 2010.
 Vol. 31. N 10. P. 1919.
- 117. Phrompet C., Sriwong C., Srepusharawoot P., Maensiri S., Chindaprasirt P., Ruttanapun C. // Heliyon. 2019. Vol. 5. N 5. P. e01808. doi 10.1016/j. heliyon.2019.e01808
- 118. Chen Q., Yoshida K., Yamamoto H., Uchida M., Sadakata M. // Energy Fuels. 2007. Vol. 21. P. 3264. doi 10.1021/ef700268v
- Pacciani R., Muller C.R., Davidson J.F., Dennis J.S., Hayhurst A.N. // Ind. Eng. Chem. Res. 2009. Vol. 48. P. 7016. doi 10.1021/ie900181y
- 120. Миронова Е.Ю., Ермилова М.М., Орехова Н.В., Толкачева А.С., Шкерин С.Н., Ярославцев А.Б. // Рос. нанотехнол. 2017. Т. 12. № 11–12. С. 23; Mironova E.Yu., Ermilova М.М., Orekhova N.V., Tolkacheva A.S., Shkerin S.N., Yaroslavtsev A.B. // Nanotechnologies in Russia. 2017. Vol. 12. N 11–12. P. 597. doi 10.1134/s1995078017060064
- 121. Hayashi K. // J Phys. Chem. (C). 2011. Vol. 115. N 22.
 P. 11003. doi 10.1021/jp202428s
- Ingram B.J., Gonzalez G.B., Kammler D.R., Bertoni M.I., Mason T.O. // J. Electroceramics. 2004. Vol. 13. P. 167. doi 10.1063/1.2735280
- Kamiya T., Hosono H. // Japan J. Appl. Phys. 2005.
 Vol. 44. 774. doi 10.1143/Jjap.44.774
- 124. Hayashi K. // J. Solid State Chem. 2011. Vol. 184.
 P. 1428. doi 10.1016/j.jssc.2011.04.008
- 125. Yoshizumi T., Kobayashi Y., Kageyama H., Hayashi K. // J. Phys. Chem. (C). 2012. Vol. 116. P. 8747. doi 10.1021/jp2106742
- 126. Hayashi K., Sushko P., Hashimoto Y., Shluger A.L., Hosono H. // Nat. Commun. 2014. Vol. 5. P. 3515. doi 10.1038/ncomms4515
- 127. *Matsuishi S., Muramatsu H., Hosono H. //* Chem. Lett. 2014. Vol. 43. P. 1371. doi 10.1246/cl.140423

- 128. Matsuishi S., Toda Y., Miyakawa M., Hayashi K., Kamiya T., Hirano M., Tanaka I., Hosono H. // Science. 2003. Vol. 301. N 5633. P. 626. doi 10.1126/science.1083842
- 129. Sushko P.V., Shluger A.L., Hayashi K., Hirano M., Hosono H. // Phys. Rev. Lett. 2003. Vol. 91. N 12. P. 126401/1. doi 10.1103/PhysRevLett.91.126401
- Wernette D.P., Ichimura A.S., Urbin S.A., Dye J.L. // Chem. Mater. 2003. Vol. 15. N 7. P. 1441. doi 10.1021/ cm020906z
- Kim S.W., Matsuishi S., Miyakawa M., Hayashi K., Hirano M., Hosono H. // J. Mater. Sci. Mater. Electron. 2007. Vol. 18. S5. doi 10.1007/s10854-007-9183-y
- 132. Miyakawa M., Hirano M., Kamiya T., Hosono H.
 // Appl. Phys. Lett. 2007. Vol. 90. P. 182105-1. doi 10.1063/1.2735280
- 133. Kim S.W., Hayashi K., Hirano M., Hosono H., Tanaka I. // J. Am. Ceram. Soc. 2006. Vol. 89. N 10. P. 3294. doi 10.1111/j.1551-2916.2006.01213.x
- 134. Toda Y., Matsuishi S., Hayashi K., Ueda K., Kamiya T., Hirano M., Hosono H. // Adv. Mater. 2004. Vol. 16. N 8. P. 685. doi 10.1002/adma.200306484
- 135. Toda Y., Kim S.W., Hayashi K., Hirano M., Kamiya T., Hosono H., Haraguchi T., Yasuda H. // Appl. Phys. Lett. 2005. Vol. 87. N 25. P. 254103/1. doi 10.1063/1.2149989
- 136. *Miyagawa H., Kim S., Hosono H., Hirano M.* Pat. JP 2008195583A (2008) Japan.
- 137. Miyagawa H., Kim S., Hosono H., Hirano M., Kohama Y., Atake T., Kawaji H. Pat. JP 2008195582A. (2008) Japan.
- 138. *Hirano M., Miyakawa M., Kim S.W., Hosono H. //* Kino Zairyo. 2007. Vol. 28. N 1. P. 63.
- Miyakawa M., Kim S.W., Hirano M., Kohama Y., Kawaji H., Atake T., Ikegami H., Kono K., Hosono H. // J. Am. Chem. Soc. 2007. Vol. 129. N 23. P. 7270. doi 10.1021/ja0724644
- 140. Kohama Y., Kim S.W., Tojo T., Kawaji H., Atake T., Matsuishi S., Hosono H. // Phys. Rev. (B). 2008.
 Vol. 77. N 9. P. 092505/1. doi 10.1103/Phys-RevB.77.092505
- 141. Kim S.W., Miyakawa M., Hirano M., Kohama Y., Kawaji H., Atake T., Ikegami H., Kono K., Hosono H. // Mater. Trans. 2008. Vol. 49. N 8. P. 1748. doi 10.2320/ matertrans.MBW200717
- 142. Hosono H. // Phys. (C). 2009. Vol. 469. N 9–12. P. 314. doi 10.1016/j.physc.2009.03.014

- 143. Tanaka S., Kato T., Miyake A., Kagayama T., Shimizu K., Kim S.W., Matsuishi S., Hosono H. // J. Korean Phys. Soc. 2013. Vol. 63. N 3. P. 477. doi 10.3938/ jkps.63.477
- 144. Hosono H., Kim S.W., Matsuishi S., Tanaka S., Miyake A., Kagayama T., Shimizu K. // Phil. Trans. R. Soc. (A). 2015. Vol. 373. P. 20140450. doi 10.1098/ rsta.2014.0450.
- 145. *Kuganathan N., Chroneos A.* // Nanomaterials. 2019.
 Vol. 9. N 6. P. 816. doi 10.3390/nano9060816
- 146. Толкачева А.С., Попов П.А., Шкерин С.Н., Наумов С.В., Хавлюк П.Д., Круговых А.А., Телегин С.В. // ЖПХ. 2020. Т. 93. Вып. 3. С. 319; Tolkacheva A.S., Popov P.A., Shkerin S.N., Naumov S.V., Khavlyuk P.D., Krugovykh A.A., Telegin S.V. // Russ. J. Appl. Chem. 2020. Vol. 93. P. 325. doi 10.1134/ S1070427220030027
- Janáková S., Salavcová L., Renaudin G., Filinchuk Y., Boyer D., Boutinaud P. // J. Phys. Chem. Solids. 2007. Vol. 68. P. 1147. doi 10.1016/j.jpcs.2006.12.034
- 148. Engelsen D., Fern G.R., Ireland T.G., Silver J. // ECS J. Solid State Sci. Technol. 2020. Vol. 9. N 2. P. 026001 doi 10.1149/ 2162-8777/ab682c
- Fu C.B., Dong H.J., Liu C.Y., Wang Y.P. // Optoelectron. Adv. Mater. Rapid Commun. 2010. Vol. 4. P. 73.
- 150. Gedekar K.A., Wankhede S.P., Moharil S.V., Belekar R.M. // J. Mater. Sci. 2018. Vol. 29. P. 6260. doi 10.1007/s10854-018-8603-5
- 151. Zhang J., Zhang Z., Wang T., Hao W. // Mater. Lett. 2003. Vol. 57. P. 4315. doi 10.1016/S0167-577X(03)00309-4
- 152. *Wang D., Liu Y., Xu C., Liu Y., Wang G., Li X.* // J. Rare Earths. 2008. Vol. 26. N 3. P. 433.
- 153. Kirm M., Avarmaa T., Denks V., Feldbach E., Kunnus K., Liblik P., Maaroos A., Tõldsepp E. // ECS Trans. 2009. Vol. 25. N 9. P. 45. doi 10.1149/1.3211162
- 154. Tõldsepp E., Avarmaa T., Denks V., Feldbach E., Kirm M., Maaroos A., Mändar H., Vielhauer S. // Opt. Mater. 2010. Vol. 32. P. 784. doi 10.1016/j.optmat.2009.11.014
- 155. Joshi C., Kumar K., Rai, S.B. // J. Fluoresc. 2010. Vol. 20. P. 953. doi 10.1007/s10895-010-0641-1
- 156. Domínguez M., Pérez-Bernal M.E., Ruano-Casero R.J., Barriga C., Rives V., Ferreira R.A.S., Carlos L.D., Rocha J. // Chem. Mater. 2011. Vol. 23. N 7. P. 1993. doi 10.1021/cm200408x

- Liu X.L., Liu Y.X., Yan D.T., Zhu H.C., Liu C.G., Xu C.S. // J. Nanosci. Nanotechnol. 2011. Vol. 11. N 11. P. 9953. doi 10.1166/jnn.2011.5289.
- 158. Zhu H., Liu Y., Yan D., Yan X., Liu C., Xu C. // J. Nanosci. Nanotechnol. 2011. Vol. 11. N 11. P. 9958. doi 10.1166/jnn.2011.5291
- Mao Y.Q., Pu Y.P., Wei J.F. // Mater. Res. Innov. 2011.
 Vol. 15. N 4. P. 260. doi 10.1179/143307511X13085
 642037781
- Liu X., Liu Y., Yan D., Zhu H., Liu C., Xu C., Liu Y., Wang X.J. // J. Mater. Chem. 2012. Vol. 22. N 33. P. 16839. doi 10.1039/C2JM32741D
- Liu X., Liu Y., Yan D., Zhu H., Liu C., Liu W., Xu C., Liu Y., Zhang H., Wang X. // Dalton Trans. 2013. Vol. 42. P. 16311. doi 10.1039/c3dt51958a.
- 162. Lv W., Lü W., Guo N., Jia Y., Zhao Q., Jiao M., Shao B., You H. // RSC Adv. 2013. Vol. 3. N 36. P. 16034. doi 10.1039/c3ra41662c
- Montes P.J.R., Valerio M.E.G., Rezende M.V.S. // J. Electron Spectrosc. Relat. Phenom. 2013. Vol. 189. P. 39. doi 10.1016/j.elspec.2013.06.011
- 164. Zhu H., Liu Y., Yan D., Bian H., Wang X. // Opt. Mater. 2014. Vol. 36. N 11. P. 1771. doi 10.1016/j.optmat.2014.04.023
- 165. Rashad M.M., Mostafa A.G., Rayan D.A. // J. Mater. Sci. Mater. Electron. 2016. Vol. 27. P. 2614. doi 10.1007/s10854-015-4067-z
- 166. Zhang X., Liu Y., Zhang M., Yang J., Zhu H., Yan D., Liu C., Xu C. // Mat. Res. Bull. 2017. Vol. 86. P. 51. doi 10.1016/J.MATERRESBULL.2016.10.003
- 167. Li S., Liu C., Zhu H., Yan D., Xu C., Liu Y. // Mat. Res. Bull. 2017. Vol. 94. P. 140. doi 10.1016/j.materresbull.2017.05.063
- 168. Wang Y., Wang R., Jiang J., Yang H., Guo X. // J. Alloys Compd. 2020. Vol. 818. N 25. P. 152820. doi 10.1016/j.jallcom.2019.152820
- 169. Rashad M.M., Mostafa A.G., Mwakikunga B.W., Rayan D.A. // Appl. Phys. (A). 2017. Vol. 123. 42 doi 10.1007/s00339-016-0654-y
- Bian H., Liu Y., Yan D., Zhu H., Liu C., Xu C., Wang X., Zhang H. // J. Am. Ceram. Soc. 2017. Vol. 100. P. 3467. doi 10.1111/jace.14866
- 171. Wang R., Zhang Y., Sun J., Liu L., Xu Y. // J. Rare Earths. 2011. Vol. 29. N 9. P. 826. doi 10.1016/S1002-0721(10)60550-9

- 172. Verma R.K., Singh S.K., Rai S.B. // Curr. Appl. Phys. 2012. Vol. 12. N 6. P. 1481. doi 10.1016/j. cap.2012.04.018
- 173. Wang R., Liu L., Sun J., Qian Y., Zhang Y., Xu Y. // Opt. Commun. 2012. Vol. 285. N 6. P. 957. doi 10.1016/j. optcom.2011.11.062
- 174. Liao S.Y., Yao R., Liu Y.C., Chen X.Y., Hu X.Y., Zheng F. // J. Alloys Compd. 2015. Vol. 642. N 5. P. 7. doi 10.1016/j.jallcom.2015.04.100
- 175. Liao S.Y., Yao R., Chen X.Y., Wang G.R., Zheng F. // Mater. Des. 2016. Vol. 108. N 15. P. 93. doi 10.1016/j. matdes.2016.06.079
- 176. Zhu H., Liu Y., Zhao D., Zhang M., Yang J., Yan D., Liu C., Xu C., Layfield C., Ma L., Wang X. // Opt. Mater. 2016. Vol. 59. P. 55. doi 10.1016/j.optmat.2016.02.001
- Toda Y., Ishiyama S., Khutoryan E., Idehara T., Matsuishi S., Sushko P.V., Hosono H. // ACS Nano. 2017. Vol. 11. P. 12358. doi 10.1021/acsnano.7b06277
- Matsuishi S., Nomura T., Hirano M., Kodama K., Shamoto S., Hosono H. // Chem. Mater. 2009. Vol. 21. N 13. P. 2589. doi 10.1021/cm9007987
- 179. Boysen H., Lerch M., Stys A., Senyshyn A. // Acta Crystallogr. (B). 2007. Vol. 63. P. 675. doi 10.1107/ S0108768107030005
- Nomura T., Hayashi K., Kubota Y., Kamiya T., Hirano M., Takata M., Hosono H. // Cryst. Chem. Lett. 2007. Vol. 36. P. 902. doi 10.1246/cl.2007.902
- 181. Palacios L., Cabeza A., Bruque S., Garcia-Granda S., Aranda M.A.G. // Inorg. Chem. 2008. Vol. 47. P. 2661. doi 10.1021/ic7021193
- Sakakura T., Tanaka K., Takenaka Y., Matsuishi S., Hosono H., Kishimoto S. // Acta Crystallogr. (B). 2011.
 Vol. 67. P. 193. doi 10.1107/S0108768111005179
- 183. R. Kiyanagi, Richardson J.W., Sakamoto N., Yoshimura M. // Solid State Ion. 2008. Vol. 179. N 40. P. 2365. doi 10.1016/j.ssi.2008.09.026
- 184. Palacios L., Torre Á.G., Bruque S., García-Muñoz J.L., García-Granda S., Sheptyakov D., Aranda M.A.G. // Inorg. Chem. 2007. Vol. 46. N 10. P. 4167. doi 10.1021/ic0700497
- 185. Castel E., Shin T.I., Fourcade S., Decourt R., Maglione M., García-Víllora E., Shimamura K. // J. Appl. Phys. 2012. Vol. 111. P. 054107. doi 10.1063/1.3693305
- 186. Sakamoto N., Maneyama S., Toyoda Y., Suzuki S., Ohno T., Kawaguchi T., Matsuda T., Wakiya N.,

Suzuki H. // J. Soc. Powder Technol. 2017. Vol. 54. N 1. P. 4. doi 10.4164/sptj.54.4

- 187. Shkerin S.N., Tolkacheva A.S. // Ionics. 2022. Vol. 28.
 P. 2233. doi 10.1007/s11581-022-04512-8
- Li Z., Cai N., Huang Y., Han H. // Energy Fuels. 2005.
 Vol. 19. P. 1447. doi 10.1021/ef0496799
- 189. Li Z., Cai N // Energy Fuels. 2007. Vol. 21. P. 2909. doi 10.1021/ef070112c
- 190. Pacciani R., Müller C.R., Davidson J.F., Dennis J.S., Hayhurst A.N. // AIChE J. 2008. Vol. 54. N 12. P. 3308. doi 10.1002/aic.11611
- 191. Wu S.F., Li Q.H., Kim J.N., Yi K.B. // Ind. Eng. Chem. Res. 2008. Vol. 47. P. 180. doi 10.1021/ie0704748
- 192. Martavaltzi C.S., Lemonidou A.A. // Ind. Eng. Chem. Res. 2008. Vol. 47. P. 9537. doi 10.1021/ie800882d
- 193. Wang K., Guo X., Zhao P., Zheng C. // Appl. Clay Sci. 2010. Vol. 50. P. 41. doi 10.1016/j.clay.2010.06.021
- 194. Wu S.F., Jiang M.Z. // Ind. Eng. Chem. Res. 2010. Vol. 49. P. 12269. doi 10.1021/ie901561e
- 195. *Qin C., Yin J., An H. //* Energy Fuels. 2012. Vol. 26.
 P. 154. doi 10.1021/ef201141z
- 196. Yu F., Phalak N., Sun Z. // Ind. Eng. Chem. Res. 2012.
 Vol. 51. P. 2133. doi 10.1021/ie200802y
- 197. Zhou Z., Qi Y., Xie M., Cheng Z., Yuan W. // Chem. Eng. Sci. 2012. Vol. 74. P. 172. doi 10.1016/j. ces.2012.02.042
- 198. Li Z., Liu Y., Cai N // Chem. Eng. Sci. 2013. Vol. 89.
 P. 235. doi 10.1016/j.ces.2012.12.006
- Stendardo S., Andersen L.K., Herce C. // Chem. Eng. J. 2013. Vol. 220. P. 383. doi 10.1016/j.cej.2013.01.045
- 200. Belghoul B. Thesis RWTH. Aachen University, 2011.
- 201. Douy A., Gervais M. // J. Am. Ceram. Soc. 2000.
 Vol. 83. N 1. P. 70. doi 10.1111/j.1151-2916.2000.
 tb01150.x
- 202. Eufinger J.P., Schmidt A., Lerch M., Janek J. // Phys. Chem. Chem. Phys. 2015. Vol. 17. P. 6844. doi 10.1039/C4CP05442C
- 203. Шкерин С.Н., Толкачева А.С. // Заметки ученого. 2015. Вып. 5. С. 179.
- 204. Hayashi K., Hirano M., Hosono H. // J. Phys. Chem.
 (B). 2005. Vol. 109. P. 11900. doi 10.1021/jp050807j
- 205. Strandbakke R., Kongshaug C., Haugsrud R., Norby T. // J. Phys. Chem. (C). 2009. Vol. 113. P. 8938. doi 10.1021/jp9009299
- 206. Mueller M., Hildmann B.O., Hahn Th. // Acta Crystallogr. (C). 1987. Vol. 43. P. 184. doi 10.1107/ S0108270187096501

- 207. Солодовников С.Ф., Клевцов П.В., Глинская Л.А., Клевцова Р.Ф. // Кристаллография. 1987. Т. 32. Вып. 3. С. 184.
- 208. Segal D.J., Santoro B.P., Newnham R.E. // Z. Kristallogr. Cryst. Mater. 1966. Vol. 123. N 1–6. P. 73. doi 10.1524/zkri.1966.123.16.73
- 209. Arbib H., Chaminade J.P., Darriet J., Elouadi B. // Solid State Sci. 2000. Vol. 2. N 2. P. 243. doi 10.1016/ S1293-2558(00)00132-1
- 210. Arbib H., Elouadi B., Chaminade J.P., Darriet J. // Mater. Res. Bull. 2000. Vol. 35. N 5. P. 761. doi 10.1016/S0025-5408(00)00270-1
- 211. Solodovnikova Z.A., Solodovnikov S.F., Zolotova E.S. // Acta Crystallogr. (C). 2006. Vol. 62. P. i6. doi 10.1107/ S0108270105037121
- 212. Zhang W.L., Lin X.S., Zhang H., Wang J.Y., Lin C.S., He Z.Z., Cheng W.D. // Dalton Trans. 2010. Vol. 39.
 P. 1546. doi 10.1039/B916893A
- 213. Wang Z., Xia Z., Molokeev M.S., Atuchin V.V., Liu Q.L. // Dalton Trans. 2014. Vol. 43. P. 16800. doi 10.1039/ C4DT02319F
- 214. Chisholm C., Haile S.M. Pat. US 7255962B2 (2005).
- 215. *Кадырова Ю.М.* Автореф. дис. ...канд. хим. наук. Иркутск, 2010. 24 с.
- 216. *Гудкова И.А.* Автореф. дис. ...канд. хим. наук. Новосибирск, 2014. 23 с.
- 217. Krzhizhanovskaya M.G., Bubnova R.S., Filatov S.K., Meyer D.C., Paufler P. // Cryst. Res. Technol. 2006. Vol. 41. N 3. P. 285. doi 10.1002/crat.200510575
- 218. Beger R.M., Buerger M.J. // Proc. Natl. Acad. Sci. 1967. Vol. 58. N 3. P. 853. doi 10.1073/pnas.58.3.853
- 219. Grey I.E., Madsen I.C., Jones D.J., Smith P.W. // J. Solid State Chem. 1989. Vol. 82. N 1. P. 52. doi 10.1016/0022-4596(89)90221-1
- 220. Srodek D., Dulski M., Galuskina I. // Sci. Rep. 2018.
 Vol. 8. P. 13593. doi 10.1038/s41598-018-31809-4
- 221. *Роннигер Г., Милль Б. В. //* Кристаллография. 1973. Т. 18. С. 303.
- 222. Müller-Buschbaum Hk., Postel M. // Z. anorg. allg. Chem. 1992. Vol. 615. P. 101. doi 10.1002/ ZAAC.19926150920
- 223. *Iishi K., Ikuta Y. //* Neues Jahrb. Mineral. Abhandlungen. 2006. Vol. 182. N 2. P. 157. doi 10.1127/0077-7757/2006/0038
- 224. Shkerin S.N., Ulyanova E.S., Naumov S.V., Shmakov A.N., Tolkacheva A.S. // Phys. Chem. Chem. Phys. 2020. Vol. 22. P. 27818 doi 10.1039/d0cp05107a

- 225. *Gfeller F.* Highlights in Mineralogical Crystallography. Berlin; Boston: Walter de Gruyter GmbH, 2016. P. 168.
- 226. Galuskin E.V., Gfeller F., Galuskina I.O., Armbruster T., Bailau R., Sharygin V.V. // Eur. J Mineral. 2015. Vol. 27. N 1. P. 99. doi 10.1127/ejm/2015/0027-2418
- 227. Galuskin E.V., Galuskina I.O., Kusz J., Gfeller F., Armbruster T., Bailau R., Dulski M., Gazeev V.M., Pertsev N.N., Zadov A.E., Dzierżanowski P. // Eur. J. Mineral. 2015. Vol. 27. N 1. P. 113. doi 10.1127/ ejm/2015/0027-2419
- 228. Galuskin E.V., Gfeller F., Armbruster T., Galuskina I.O., Vapnik Y., Dulski M., Murashko M., Dzierzanowski P., Sharygin V.V., Krivovichev S.V., Wirth R. // Eur. J Mineral. 2015. Vol. 27. N 1. P. 123. doi 10.1127/ ejm/2015/0027-2420
- 229. Gfeller F., Srodek D., Kusz J., Dulski M., Gazeev V., Galuskina I., Galuskin E., Armbruster T. // Eur. J. Mineral. 2015. Vol. 27. N 1. P. 137. doi 10.1127/ ejm/2015/0027-2421
- 230. Чеботин В.Н., Перфильев М.В. Электрохимия твердых электролитов. М.: Химия, 1978. 312 с.
- 231. Перфильев М.В., Демин А.К., Кузин Б.Л., Липилин А.С. Высокотемпературный электролиз газов. М.: Наука, 1988. 232 с.
- 232. Чеботин В.Н. Химическая диффузия в твердых телах. М.: Наука, 1989. 208 с.
- 233. Balkanski M., Takahashi T., Tuller H.L. Solid State Ionics. Amsterdam: Elsevier, 1992. 345 p.
- 234. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. СПб: СПбГУ, 2000. Т. 1. 616 с.
- 235. *Singhal S.C., Kendall K.* High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. New York: Elsevier, 2003. 429 p.
- Maier J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids. New York: Wiley, 2004. 539 p.
- 237. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. СПб: СПбГУ, 2010. Т. 2. 1000 с.
- Ramadhani F., Hussain M.A., Mokhlis H., Hajimolana S. // Renew. Sustain. Energy Rev. 2017. Vol. 76. P. 460. doi 10.1016/j.rser.2017.03.052
- Liu T., Zhang X., Wang X., Yu J., Li L. // Ionics. 2016.
 Vol. 22. P. 2249. doi 10.1007/s11581-016-1880-1
- 240. *Власов А.Н.* // Электрохимия. 1989. Т. 25. Вып. 10. С. 1313.
- 241. Власов А.Н., Шулик И.Г. // Электрохимия. 1990. Т. 26. Вып. 7. С. 909.
- 242. *Власов А.Н. //* Электрохимия. 1983. Т. 19. Вып. 2. С. 1624.
- 243. Власов А.Н., Иноземцев М.В. // Электрохимия. 1985. Т. 21. Вып. 6. С. 764.

- 244. Vlasov A.N., Perfiliev M.V. // Solid State Ion. 1987. Vol. 25. P. 245. doi 10.1016/0167-2738(87)90188-3
- 245. *Власов А.Н. //* Электрохимия. 1991. Т. 27. Вып. 11. С. 1479.
- 246. Борик М.А., Кулебякин А.В., Курицына И.Е., Ломонова Е.Е., Мызина В.А., Попов П.А., Милович Ф.О., Табачкова Н.Ю. // Физика твердого тела. 2019. Т. 61. Вып. 12. С. 2390. doi 10.21883/ FTT.2019.12.48560.08ks; Borik М.А., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Myzina V.A., Popov P.A., Milovich F.O., Tabachkova N.Yu. // Phys. Solid State. 2019. Vol. 61 N 12. P. 2397. doi 10.1134/ S1063783419120060
- 247. Агарков Д.А., Борик М.А., Кораблева Г.М., Кулебякин А.В., Курицына И.Е., Ломонова Е.Е., Милович Ф.О., Мызина В.А., Попов П.А., Рябочкина П.А., Табачкова Н.Ю. // Физика твердого тела. 2020. Т. 62. Вып. 12. С. 2093. doi 10.21883/ FTT.2020.12.50213.160; Agarkov D.A., Borik М.А., Korableva G.M., Kulebyakin A.V., Kuritsyna I.E., Lomonova E.E., Milovich F.O., Myzina V.A., Popov P.A., Ryabochkina P.A., Tabachkova N.Yu. // Phys. Solid State. 2020. Vol. 62 N 12. P. 2357. doi 10.1134/ S1063783420120021
- 248. Шкерин С.Н. // Изв. АН. Сер. физ. 2002. Т. 66. С. 890.
- 249. de Ridder M., van Welzenis R.G., van der Gon A.W.D., Brongersma H.H., Wulff S., Chu W.-F., Weppner W. // J. Appl. Phys. 2002. Vol. 92. N 6. P. 3056. doi 10.1063/1.1499748
- 250. de Ridder M., van Welzenis R., Brongersma H., Kreissig U. // Solid State Ion. 2003. Vol. 158. N 1–2. P. 67. doi 10.1016/S0167-2738(02)00759-2
- 251. Шкерин С.Н. // Электрохимия. 2005. Т. 41. Вып. 7. С. 787.
- Ivanov V., Shkerin S., Rempel A., Khrustov V., Lipilin A., Nikonov A. // J. Nanosci. Nanotechnol. 2010.
 Vol. 10. N 11. P. 7411. doi 10.1166/jnn.2010.2836
- 253. Иванов В.В., Шкерин С.Н., Липилин А.С., Никонов А.В., Хрустов В.Р., Ремпель А.А. // Электрохимическая энергетика. 2010. Т. 10. Вып. 1. С. 3.
- 254. Shkerin S.N., Tolkacheva A.S., Nikonov A.V., Pavzderin N.B. // Ionics. 2017. Vol. 23. N 8. P. 2153. doi 10.1007/s11581-017-2043-8

ШКЕРИН, ТОЛКАЧЕВА

Mayenite (A Review)

S. N. Shkerin^{*a*,*} and A. S. Tolkacheva^{*a*}

^a Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia *e-mail: shkerin@mail.ru

Received May 26, 2022; revised June 15, 2022; accepted June 16, 2022

This review is devoted to the history of the study of calcium aluminate $Ca_{12}Al_{14}O_{33}$, including its unique structure, which corresponds to a non-stoichiometric garnet. Depending on the imperfection of the crystal lattice, the features of this structure determine the appearance of a whole spectrum of unique properties. The use of a number of them is also described in the review.

Keywords: calcium aluminate, garnet, nonstoichiometry, oxygen-ion conductivity

1802

СИНТЕЗ, СТРОЕНИЕ И ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ СУЛЬФАТ-ФОСФАТА СВИНЦА-МАГНИЯ

© 2022 г. В. И. Петьков^{а,*}, А. И. Боков^а, Е. А. Асабина^а, Е. Ю. Боровикова^b

^а Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского, пр. Гагарина 23, Нижний Новгород, 603950 Россия

^b Московский государственный университет имени М. В. Ломоносова, Москва, 119991 Россия *e-mail: petkov@inbox.ru

> Поступило в редакцию 30 апреля 2022 г. После доработки 31 мая 2022 г. Принято к печати 2 июня 2022 г.

Разработан синтез однофазных сульфат-фосфатов, в котором потери серы предотвращаются ее связыванием в сульфат с высокой температурой разложения. Термически устойчивый сульфат-фосфат $Pb_2Mg_2(PO_4)_2SO_4$ изучен с использованием методов рентгенографии, ИК спектроскопии, ДТА и электронно-зондового микроанализа. По результатам исследования методом Ритвельда, соединение $Pb_2Mg_2(PO_4)_2SO_4$ принадлежит к структурному типу эвлитина (пространственная группа $I\overline{43}d$). При изменении температуры его кристаллы расширяются изотропно, не претерпевая полиморфных переходов.

Ключевые слова: свинец, магний, сульфат-фосфат, структура эвлитина, фазообразование, тепловое расширение

DOI: 10.31857/S0044460X22110178, EDN: LQDJOG

Поиск устойчивых к растворению сульфат-фосфатов со структурой природных минералов, обладающих высокими температурами плавления и разложения, низким тепловым расширением, востребован в связи с перспективой их использования в регенеративной медицине, светодиодной технике, в микроволновых установках [1–6].

В структурном типе минерала эвлитина Ві₄(SiO₄)₃ (пространственная группа $I\bar{4}3d$, *a* 10.300 Å, *Z* 4) кристаллизуются сульфаты, фосфаты, ванадаты, силикаты и германаты с общей формулой M₄(TO₄)₃, где М – металл(ы) в степени окисления от +1 до +4, Т – элементы, образующие тетраэдрические анионы [7–10]. Основа структуры – нейтральный каркас, образованный из связанных ребрами металл-кислородных октаэдров, между которыми находятся тетраэдры, присоединенные к октаэдрам вершинами. Среди фосфатов со структурой эвлитина наиболее распространены соли M¹M¹¹Bi₂(PO₄)₃ и M₃¹¹M¹¹¹(PO₄)₃ (M¹ = Na, K, Rb, Ag; $M^{II} = Cd$, Ca, Sr, Ba, Pb; $M^{III} = Bi$, Ln, Y, In, Sc) [11–13], а также $M_7^{II}M^{IV}(PO_4)_6$ ($M^{II} = Pb$, Sr, Ba; $M^{IV} = Th$, U, Sn, Zr, Hf) [14, 15]. Один из вариантов их использования – получение материалов, способных выдерживать резкие изменения тепловых нагрузок [16]. Имея кубическую симметрию, материалы со структурой эвлитина при повышении температуры равномерно расширяются по всем направлениям.

Значительные различия в температурах получения фосфатов (>800°С) и в термической устойчивости многих сульфатов (<750°С) приводят к сложностям синтеза смешанных сульфат-фосфатов. Проблема заключается в частичной потере серы в виде SO₃ и в нарушении стехиометрии образца. Для получения термически устойчивых сульфат-фосфатов необходимо исключить формирование промежуточных нестойких соединений серы и установить температурный интервал, внутри которого элиминирование серы маловеро-

Рис. 1. Экспериментальная (1), вычисленная (2), разностная (3) рентгенограммы и штрих-диаграмма (4) сульфат-фосфата Pb₂Mg₂(PO₄)₂SO₄.

ятно. Прогнозирование допустимого температурного интервала возможно на основе литературных данных о температурной устойчивости простых сульфатов-интермедиатов, так как максимальная температура фазообразования связана с минимальной температурой разложения сульфата. Для снижения температуры синтеза важно подобрать оптимальные исходные реагенты. При получении сульфат-фосфатов с элементами, склонными к образованию нестойких сульфатов, серу можно удерживать введением в состав соединения одного или нескольких конкурирующих катионов, способных образовать термостойкие сульфаты.

Таблица 1. Условия РСА и результаты уточнения кристаллической структуры Pb₂Mg₂(PO₄)₂SO₄

Параметр	Значение		
Пространственная группа, Z	I43d		
<i>a</i> , Å	10.3755(5)		
<i>V</i> , Å ³	1116.94(9)		
$ρ_{\text{pehtr.}}$, $Γ/cm^3$	4.975(3)		
Интервал углов 20, град	15.00-115.00		
Шаг сканирования	0.02		
Число рефлексов отражение	152		
Число уточняемых параметров	28		
Факторы достоверности:			
R _{wp} , %	5.56		
$R_{\rm p}, \%$	3.41		
S	5.1904		

Нами исследованы синтез, фазообразование, структура и тепловое расширение сульфат-фосфата $Pb_2Mg_2(PO_4)_2SO_4$ 1. При получении соединения 1 наименее устойчивый интермедиат – сульфат MgSO₄ определяет границу синтеза около 1130°С. По данным ДТА и РФА, образец соединения 1 начинает кристаллизоваться в структуре эвлитина при 600°С (экзоэффект), однофазное соединение образуется при 700°С, а при 900°С (эндоэффект) происходит конгруэнтное плавление образца.

По данным электронной микроскопии, размеры зерен сульфат-фосфата колеблются от 1 до 5 мкм. Микрозондовый анализ показал однородность зерен, химический состав отвечал формуле Pb_{1.98(2)}Mg_{2.02(4)}P_{2.03(3)}S_{0.98(2)}O₁₂. ИК спектр соединения по положению и по форме полос поглощения типичен для ортофосфатов со структурой эвлитина, пространственная группа I43d [17]. Так как разница в степенях окисления и атомных массах фосфора и серы небольшая, величины межатомных расстояний Р-О и S-О при одинаковых координационных числах близки, то области частот колебаний этих связей в значительной степени перекрываются. В ИК спектре в области валентных асимметричных колебаний тетраэдрических фосфатного и сульфатного ионов наблюдаются две узкие полосы (1037 и 1081 см⁻¹), расщепленный максимум (989, 978 см⁻¹) и широкое плечо (~1120 см⁻¹). Анализ предсказывает 3 полосы в этой области, увеличение числа максимумов может быть связано с изоморфным замещением атомов фосфора на атомы серы в трети тетраэдрических позиций структуры. В области деформационных асимметричных колебаний иона (P,S)O4 наблюдаются полосы при 648, 621, 587, 575, 553 см⁻¹.

Структуру образца соединения 1 уточняли при комнатной температуре методом Ритвельда (рис. 1). Экспериментальная и вычисленная рентгенограммы фосфата согласуются. Условия съемки, параметры ячейки и основные данные по уточнению структуры приведены в табл. 1, координаты и изотропные тепловые параметры (*B*) атомов – в табл. 2.

При уточнении полагали, что катионы Pb²⁺ и Mg²⁺ совместно заселяют октаэдрически координированную атомами кислорода позицию 16*с* с большой изоморфной емкостью. Атомы серы и

Таблица 2. Координаты, параметры атомных смещений и заселенности (q) базисных атомов в структуре сульфат-фосфата $Pb_2Mg_2(PO_4)_2SO_4$

Атом	Позиция	x	у	Ζ	В _{изо}	q
Pb	16c	0.07278(8)	0.07278(8)	0.07278(8)	1.22(4)	0.5
Mg	16c	0.07278(8)	0.07278(8)	0.07278(8)	1.22(4)	0.5
Р	12a	0.375	0	0.25	1.22(4)	0.6667
S	12a	0.375	0	0.25	1.22(4)	0.3333
0	48e	0.1730(5)	0.2736(5)	0.0923(5)	1.22(4)	1.0

Таблица 3. Длины связей в сульфат-фосфате Pb₂Mg₂(PO₄)₂SO₄

Связь	d, Å
(Pb,Mg)–O (×3)	2.3375(5)
(Pb,Mg)–O (×3)	2.8972(5)
(P,S)–O (×4)	1.6316(5)

фосфора заселяют тетраэдрически координированную позицию 12*a*. Атомы кислорода занимают единственную позицию 48*e*. Рассчитанные длины связей характерны для фосфатов со структурой эвлитина (табл. 3).

Нейтральный каркас структуры соединения 1 (рис. 2) образован сочленением искаженных координационных полиэдров (Pb,Mg)O₆, образующих волнистые цепи и соединенных между собой ребрами. Длины связей катион–кислород (2.338–2.897 Å) в октаэдрах смешанного типа неравноценны. Из-за высокой температуры синтеза соединения 1 возникает неупорядоченное распределение катионов свинца и магния по позициям октаэдра. Тетраэдры анионов (P,S)O₄ присоединяются к октаэдрам катионов вершинами, при этом каждый тетраэдр связан с четырьмя октаэдрами.

Тепловое расширение – важная в практическом отношении характеристика материалов [18]. Оно влияет на средние расстояния между узлами кристаллической решетки, благодаря чему межатомные расстояния в условиях переменной температуры изменяются, изменяется объем кристалла [19]. Методом терморентгенографии в интервале температур от –100 до 200°С определен параметр элементарной ячейки *a*, ее объем *V* и коэффициент теплового расширения сульфат-фосфата **1**. Установлена линейная температурная зависимость параметра кубической ячейки *а* соединения **1** от температуры. Кристалл с кубической симметрией при повышении температуры равномерно расширяется по всем направлениям, что не вызывает сдвиговых деформаций и сводит к минимуму возможность его растрескивания. Коэффициент теплового расширения соединения **1** не зависит ни

Рис. 2. Фрагмент структуры Pb₂Mg₂(PO₄)₂SO₄.

от температуры, ни от направления расширения: $\alpha_a = \alpha_b = \alpha_c = 11.3 \times 10^{-6} \text{ K}^{-1}$, что согласуется с полученными ранее данными [20, 21]. Поскольку сульфат-фосфат **1** со структурой эвлитина расширяется изотропно, коэффициент объемного теплового расширения (α_V) равен утроенному коэффициенту линейного теплового расширения.

Таким образом, на примере синтеза термически устойчивого сульфат-фосфата $Pb_2Mg_2(PO_4)_2SO_4$ показана возможность предотвращения потери серы в процессе фазообразования за счет ее связывания в серосодержащее соединение с высокой температурой разложения. Полученные нами характеристики и известные данные [15, 22] свидетельствуют, что кристаллические материалы со структурой минерала эвлитина обладают повышенной устойчивостью к изменению химического состава, а также химической, термической и радиационной устойчивостью, что делает их пригодными для иммобилизации и хранения сложных по составу отходов ядерных технологий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллический сульфат-фосфат $Pb_2Mg_2(PO_4)_2SO_4$ получен методом совместного осаждения солей из водного раствора с последующей термообработкой. В качестве исходных реагентов использовали реактивы квалификации ХЧ: MgO, Pb(NO₃)₂, H₂SO₄ и NH₄H₂PO₄. Оксид магния предварительно растворяли в азотной кислоте, соль свинца – в дистиллированной воде. Растворы реагентов смешивали в стехиометрических количествах. Осадок сушили при 90-130°С и подвергали ступенчатой термообработке на воздухе при 600-700°С по 20 ч на каждой стадии. После каждого этапа изотермического обжига образец диспергировали и проводили рентгенофазовый анализ. Синтезированный образец Pb2Mg2(PO4)2SO4 представлял собой белый порошок.

Высушенный при 130°С продукт реакции подвергали ДТА в атмосфере аргона с использованием термоанализатора Labsys TG–DTA/DSC в интервале температур 25–1000°С, скорости нагрева и охлаждения – 10 град/мин.

Рентгенографическую съемку образца соединения **1** выполняли на дифрактометре Shimadzu XRD-6000 (фильтрованное CuK_{α} -излучение, λ 1.54178 Å) в диапазоне углов 20 10–60° с шагом сканирования 0.02°. Индицирование дифрактограммы проводили методом структурной аналогии с использованием кристаллографических данных для описанных в литературе соединений. Дифрактограмму образца записывали в интервале углов 20 10°–110° с шагом сканирования 0.02° и с экспозицией в точке 16 с. Обработку дифрактограммы и уточнение структуры проводили методом Ритвельда [23] с использованием программы RIETAN-97 [24]. Профили пиков аппроксимировали согласно модифицированной функции псевдо-Войта (Mod-TCH pV [25]). В качестве базовой модели для уточнения кристаллической структуры использовали $Pb_4(PO_4)_2SO_4$ (пространственная группа *I*43*d*).

Тепловое расширение исследовали на том же дифрактометре с использованием температурной приставки Anton Paar TTK 450 с дискретным режимом изменения температуры в интервале от -100 до 200°С с шагом 50–75°С. Температуру измеряли термометром сопротивления Pt100 RTD. При каждой выбранной температуре интервал углов дифракции 20 10–56°.

Химический состав и однородность полученных фосфатов контролировали с помощью сканирующего электронного микроскопа JEOL JSM-7600F. Микроскоп оснащен системой микроанализа – энергодисперсионным спектрометром OXFORD X-Max 80 (Premium). Погрешность при определении элементного состава образца не более 2 ат%. ИК спектры записывали на ИК Фурье-спектрометре ФСМ-1201 в диапазоне волновых чисел 400–1400 см⁻¹.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Петьков Владимир Ильич, ORCID: https://orcid. org/0000-0003-4106-2534

Асабина Елена Анатольевна, ORCID: https:// orcid.org/0000-0002-4992-8956

Боровикова Елена Юрьевна, ORCID: https:// orcid.org/0000-0002-9003-3695

Боков Артем Игоревич, ORCID: https://orcid. org/0000-0001-8172-549X

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сафронова Т.В. // Неорг. матер. 2021. Т. 57. № 5. С. 467; Safronova T.V. // Inorg. Mater. 2021. Vol. 57. N. 5. P. 443. doi 10.31857/S0002337X21050067
- Alamo J., Roy R. // J. Solid State Chem. 1984. Vol. 51. N 2. P. 270. doi 10.1016/0022-4596(84)90343-8
- Folkerts H.F., Zuidema J., Blasse G. // Chem. Phys. Lett. 1996. Vol. 249. N 1–2. P. 59. doi 10.1016/0009-2614(95)01363-6
- Канунов А.Е., Асабина Е.А., Орлова А.И. // ЖОХ.
 2016. Т. 86. № 1. С. 20; Капипоv А.Е., Asabina Е.А., Orlova А.I. // Russ. J. Gen. Chem. 2016. Vol. 86. N. 1.
 P. 18. doi 10.1134/S1070363216010047
- Петьков В.И., Дмитриенко А.С., Суханов М.В., Ковальский А.Н., Боровикова Е.Ю. // ЖНХ. 2016.
 Т. 61. № 5. С. 654; Pet'kov V.I., Dmitrienko A.S., Sukhanov M.V., Koval'skii А.М., Borovikova E.Yu. // Russ. J. Inorg. Chem. 2016. Vol. 61. N 5. P. 623. doi 10.1134/S0036023616050168
- Сафронова Т.В., Ахмедов М.М., Шаталова Т.Б., Тихонова С.А., Казакова Г.К. // ЖНХ. 2021. Т. 66. № 8. С. 940; Safronova T.V., Akhmedov M.M., Shatalova T.B., Tikhonova S.A, Kazakova G.K. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. P. 1057. doi 10.1134/ S0036023621080246
- Segal D.J., Santoro R.P., Newham R.E. // Z. Kristallogr. 1966. Vol. 123. N 1–6. P. 73. doi 10.1524/ zkri.1966.123.16.73
- McCarthy G.J. Krabbenhoft, Garvey R.G., Roob C. In: The Rare Earths in Modern Science and Technology / Eds G.J. McCarthy, H.B. Silber, J.J. Rhyne, F.M. Kalina. Boston: Springer, 1982. P. 339. doi 10.1007/978-1-4613-3406-4 69
- 9. Shpanchenko R.V., Panin R.V., Hadermann J., Bougerol C., Takayama-Muromachid E., Antipov E.V. // J. Solid State Chem. 2005. Vol. 178. N 12. P. 3715. doi 10.1016/j.jssc.2005.09.045
- Bordun O.M., Kukharskii I.I. // J. Appl. Spectrosc. 2003. Vol. 70. N 2. P. 303. doi 10.1023/A:1023837822910
- Perret R., Damak M. // J. Less-Common Met. 1985.
 Vol. 108. N 1. P. 23. doi 10.1016/0022-5088(85)90428-X

- Barbier J. // J. Solid State Chem. 1992. Vol. 101. N 2. P. 249. doi 10.1016/0022-4596(92)90181-T
- Blasse G. // J. Solid State Chem. 1970. V. 2. N 1. P. 27. doi 10.1016/0022-4596(70)90028-9
- Perret R., Pinson S., Damak M. // J. Less-Common Met. 1986. Vol. 116. N 2. P. L5. doi 10.1016/0022-5088(86)90674-0
- Vats B.G., Phatak R., Krishnan K., Keskar M., Sali S.K., Kannan S. // J. Alloys Compd. 2017. Vol. 690. P. 561. doi 10.1016/j.jallcom.2016.08.122
- Pet'kov V.I., Shipilov A.S., Dmitrienko A.S., Alekseev A.A. // J. Ind. Eng. Chem. 2018. Vol. 57. P. 236. doi 10.1016/j.jiec.2017.08.029
- Петьков В.И., Боков А.И., Асабина Е.А., Боровикова Е.Ю. // ЖНХ. 2021. Т. 66. № 6. С. 707; Pet'kov V.I., Bokov A.I., Asabina E.A., Borovikova E.Y. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 6. Р. 1354. doi 10.1134/ S0036023621060152
- Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. СПб: СПБГУ, 2011. Ч. 1.
- Drebushchak V.A. // J. Therm. Anal. Cal. 2020. Vol. 142. N 2. P. 1097. doi 10.1007/s10973-020-09370-y
- Pet'kov V.I., Dmitrienko A.S., Bokov A.I. // J. Therm. Anal. Cal. 2018. Vol. 133. N 1. P. 199. doi 10.1007/ s10973-017-6676-7
- Петьков В.И., Боков А.И., Асабина Е.А., Лелет М.И., Ковальский А.М. // ЖНХ. 2019. Т. 64. № 11. С. 1166; Pet'kov V.I., Bokov A.I., Asabina E.A., Lelet M.I., Koval'skii A.M. // Russ. J. Inorg. Chem. 2019. Vol. 64. N 11. P. 1354. doi 10.1134/S0036023619110159
- Sugantha M., Kumar N.R.S., Varadaraju U.V. // Waste Manag. 1998. V. 18. N 4. P. 275. doi 10.1016/S0956-053X(98)00026-9
- Rietveld H.M. // Acta Crystallogr. 1967. Vol. 22. N 1. P. 151. doi 10.1107/S0365110X67000234
- Kim Y.I., Izumi F. // J. Ceram. Soc. Japan. 1994.
 Vol. 102. P. 401. doi 10.2109/jcersj.102.401
- Izumi F. // The Rietveld Method / Ed. R.A. Young. New York: Oxford University Press, 1993. Ch. 13.

ПЕТЬКОВ и др.

Synthesis, Structure and Thermal Behavior of Plumbum-Magnesium Phosphate-Sulfate

V. I. Pet'kov^{a,*}, A. I. Bokov^a, E. A. Asabina^a, and E. Y. Borovikova^b

^a Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia ^b Moscow State University, Moscow, 119991 Russia *e-mail: petkov@inbox.ru

Received April 30, 2022; revised May 31, 2022; accepted June 2, 2022

An approach has been developed for the synthesis of single-phase sulfate-phosphates using the example of $Pb_2Mg_2(PO_4)_2SO_4$, in the preparation of which sulfur losses are prevented by its binding into an intermediate sulfur-containing precursor with a high decomposition temperature. The synthesized thermally stable sulfate phosphate $Pb_2Mg_2(PO_4)_2SO_4$ was studied using X-ray diffraction, IR spectroscopy, DTA, and electron probe microanalysis. Structural study of $Pb_2Mg_2(PO_4)_2SO_4$ by the Rietveld method showed that sulfate phosphate belongs to the eulithine structural type (space group *I*43*d*). As the temperature changes, sulfate-phosphate expands isotropically without undergoing polymorphic transitions.

Keywords: plumbum, magnesium, phosphate-sulfate, eulithine structure, phase formation, thermal expansion

УДК 546.714;546.96

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ В СЛОЕ АДСОРБИРОВАННЫХ КАТИОНОВ Mn(II) И МОЛЕКУЛ RuO₄. СИНТЕЗ МЕТОДОМ ИОННОГО НАСЛАИВАНИЯ ОКСИДА МАРГАНЦА, ДОПИРОВАННОГО РУТЕНИЕМ

© 2022 г. М. В. Канева^{*a*}, В. П. Толстой^{*a*,*}

^а Санкт-Петербургский государственный университет, Университетская наб. 7–9, Санкт-Петербург, 199034 Россия *e-mail: v.tolstoy@spbu.ru

> Поступило в редакцию 8 июля 2022 г. После доработки 28 июля 2022 г. Принято к печати 3 августа 2022 г.

Рассмотрены условия синтеза слоев нанокомпозита $Ru_xMnO_y \cdot nH_2O$ методом ионного наслаивания, основанного на последовательном и многократном проведении на поверхности подложек окислительно-восстановительных реакций в слое адсорбированных катионов Mn(II) и молекул RuO_4 . Установлено, что в выбранных условиях синтеза на поверхности никеля образуются слои оксида марганца(IV), допированного рутением, с триклинной кристаллической структурой и состоящие из совокупности нанолистов толщиной около 5 нм и латеральными размерами 20–50 нм. На основе полученных экспериментальных данных рассмотрены особенности химических реакций, протекающих на поверхности подложки при обработке каждым из реагентов. Полученные с использованием данных слоев и пеноникеля электроды суперконденсатора характеризуются в 1 М. растворе Na_2SO_4 при токе заряда-разряда в 1 А/г значением емкости равным 687 Φ/r .

Ключевые слова: ионное наслаивание, оксид рутения(IV), оксид марганца(IV), нанокомпозит, суперконденсатор

DOI: 10.31857/S0044460X2211018X, EDN: LQGBSO

Как известно, оксиды марганца проявляют множество практически важных свойств и находят применение в составе источников тока, сорбентов, катализаторов и электрокатализаторов, активных элементов различных сенсоров и т. д. [1–6]. Среди методов их синтеза особое место занимают методы так называемого послойного синтеза [7] и в том числе метод ионного наслаивания [8, 9], которые дают возможность нанести такие оксиды на поверхность подложек сложной формы и прецизионно задавать их толщину. Следует отметить, что методом ионного наслаивания послойный синтез выполняют, как правило, с использованием окислительно-восстановительных реакций, так ранее были получены нанослои $SnMo_{0.6}O_y \cdot nH_2O$ в результате взаимодействия на поверхности подложки катионов Sn(II) и анионов MoO_4^{2-} [10], двойного гидроксида Fe(III) и Cr(III) при взаимодействии катионов Fe(II) и анионов CrO_4^{2-} , Mn_3O_4 при взаимодействии адсорбированных катионов Mn(II) и кислорода воздуха [11] и др.

Обсуждая возможность использования подобных реакций при получении новых соединений, следует отметить, что их применение при послой-

КАНЕВА, ТОЛСТОЙ

Рис. 1. Электронные микрофотографии, полученные методом СЭМ при различном увеличении, нанослоя $Ru_x MnO_y nH_2O$, синтезированного на поверхности никеля.

ном синтезе имеет определенные ограничения, связанные с тем, что в процессе получения таких слоев должны быть выполнены определенные условия. Так, после каждого цикла ионного наслаивания на поверхности должен образовываться слой, который на стадии обработки в растворе противореагента не только бы не растворялся в данном растворе, но и являлся подложкой для адсорбции следующего реакционноспособного слоя ионов при следующем цикле ионного наслаивания. Как показывает опыт, количество пар ионов, которые удовлетворяют этим условиям довольно ограничено и появление новых реагентов для синтеза методом ионного наслаивания, безусловно, открывает новые возможности при создании практически важных наноматериалов.

Целью настоящей работы являлось изучение особенностей применения при синтезе методом ионного наслаивания водного раствора RuO₄ в котором, как известно, атомы рутения имеют степень окисления +8 и, в принципе, могут выступать в качестве потенциального окислителя по отношению ко многим катионам. Причем при их восстановлении, например, раствором Н₂O₂ образуется труднорастворимый оксид рутения(IV) [12], и это обстоятельство является важным при синтезе по метолике ионного наслаивания. В качестве второго реагента при синтезе был выбран раствор соли марганца(II), как реагент, который, с одной стороны, может адсорбироваться на поверхности большинства оксидных подложек, а, с другой – выступать в качестве восстановителя по отношению к RuO₄. Другой целью работы было изучение электрохимических свойств синтезируемых слоев в составе электродов суперконденсаторов с эффектом псевдоемкости.

Как следует из электронных микрофотографий, полученных методом СЭМ (рис. 1) слой состоит из совокупности произвольно ориентированных нанолистов толщиной около 5 нм и латеральными размерами 20-50 нм. Исследование данных нанолистов методом просвечивающей электронной микроскопии высокого разрешения (ПЭМ-ВР) и электронографии (рис. 2) показало, что они имеют кристаллическую структуру и среди них можно выделить фрагменты дающие дифракционные картины типичные как для монокристаллов (рис. 2а, в), так и поликристаллов (рис. 2б, г), причем межплоскостные расстояния для первых из них составляют 0.33, 0.26 и 0.22 нм, а для вторых -0.21 и 0.16 нм. Исследование синтезированных слоев методом дифракции рентгеновских лучей (на рисунке не показано) также указывает на кристаллическую структуру анализируемого слоя, однако мы не приводим эти дифрактограммы на рисунке из-за слишком малых значений интенсивностей дифракционных пиков вследствие небольшого количества исследуемого вещества на фоне обшего количества атомов полложки-никеля.

Согласно результатам рентгеноспектрального микроанализа (РСМА) (рис. 3а) синтезированный нанослой состоит из атомов Mn, Ru и O. Эти результаты подтверждаются также методом РФЭС при анализе спектров в области энергий уров-

Рис. 2. Электронные микрофотографии, полученные методом ПЭМ-ВР (а, б), и электронограммы (в, г) различных локальных областей нанослоя Ru_xMnO_y·nH₂O, синтезированного на поверхности никеля.

ней Mn 2p, Ru 3d и O1s (рис. 4). В спектре Mn 2p (рис. 4а) можно выделить два основных пика с максимумами при 641.8 (Мп 2p_{3/2}) и 653.8 эВ (Mn $2p_{1/2}$) и разделением по спину и энергии 12 эВ, что указывает на степень окисления Mn⁺⁴ в MnO₂ [13, 14]. Два пика при 282.4 эВ в области Ru 3d_{5/2} и при 286.7 эВ в области Ru 3d_{3/2} соответствуют атомам Ru в гидратированном RuO₂ (рис. 4б) [15–17]. Кроме того, спектр 1*s*-электронов кислорода (рис. 4в) характеризуется одним широким пиком, деконволюция которого приводит к получению двух пиков с максимумами при 530.0 и 531.8 эВ. Принимая во внимание результаты работ [13, 16], можно судить о наличии химических связей Мп-О и Ru-OH в составе синтезированных слоев. Также результаты анализа РФЭС позволяют оценить соотношение атомных концентраций Mn и Ru, которое оказалось равным 2.5.

Состав синтезированных слоев был охарактеризован также методом ИК Фурье-спектроскопии диффузного отражения и было показано, что в спектре имеются интенсивные и широкие полосы поглощения с максимумами при 525 и 3400 см⁻¹ и слабоинтенсивные с максимумами при 1644, 1529, 1413 и 1107 см⁻¹. Очевидно, что интенсивные полосы поглощения обусловлены валентными колебаниями связей, соответственно, М–О (M = Mn, Ru) [18] и О–Н в молекулах воды, а слабоинтенсивные (за исключением полосы поглощения при 1107 см⁻¹) – деформационными колебаниями связей С–О и С=О в составе ацетат-анионов,

КАНЕВА, ТОЛСТОЙ

Рис. 3. Энергодисперсионный рентгеновский спектр (а) и спектр комбинационного рассеяния (б) нанослоя $\operatorname{Ru}_{x}\operatorname{MnO}_{y}$ · $n\operatorname{H}_{2}\operatorname{O}$, синтезированного на поверхности никеля. $1 - \operatorname{Ni-\phionsra}, 2 - \operatorname{слой} \operatorname{Ru}_{x}\operatorname{MnO}_{y}$ · $n\operatorname{H}_{2}\operatorname{O}$ на поверхности никеля.

которые могли адсорбироваться на поверхности образцов на стадии обработки подложки в растворе $Mn(OAc)_2$. Важно отметить, что максимумов полос при 525 и 1107 см⁻¹ позволяет отнести их, в

соответствии с результатами [19], оксиду марганца(IV) с триклинной кристаллической структурой, аналогичной структуре у минерала бирнессита.

Важные выводы об идентификации состава и кристаллической структуры синтезированных слоев могут быть сделаны из их спектров комбинационного рассеяния (рис. 3б). По сравнению со спектром подложки-никеля синтезированный слой характеризуется пиками с максимумами при 500, 573 и 648 см⁻¹. Согласно работе [20], данные пики могут быть обусловлены рассеянием излучения на фононах слоистой триклинной кристаллической решетки MnO₂.

Подобное отнесение подтверждается также результатами ПЭМ-ВР и интерпретации электронограмм, приведенных на рис. 2. Так, согласно работам [19, 21], наблюдаемые межплоскостные расстояния 3.3, 0.26, 0.22, 0.21 и 0.16 нм также соответствуют именно данной кристаллической структуре. Известно, что подобная решетка может быть допирована катионами различных металлов [22]. В этой связи на основе всей совокупности полученных экспериментальных данных можно сделать вывод только об образовании в результате синтеза на поверхности никеля слоев с общей брутто-формулой Ru_{0.4}MnO_y·nH₂O, состоящих из нанокристаллов с морфологией нанолистов.

По-видимому, в результате обработки подложки раствором $Mn(OAc)_2$ и отмывки от его избытка на поверхности формируется слой адсорбированного гидроксида марганца(II).

 $[Ni]-OH + Mn_{aq}^{2+} + H_2O \rightarrow [Ni]-OMnOH + 2H^+.$

Рис. 4. Спектры РФЭ нанослоя $Ru_xMnO_y \cdot nH_2O$, синтезированного на поверхности никеля.

Рис. 5. Вольтамперометрические зависимости (*a*) и кривые заряда-разряда (δ) для электрохимической ячейки, содержащей рабочий электрод из пеноникеля с нанослоем Ru_{0.4}MnO_y nH₂O, синтезированным методом ионного наслаивания. Электрод перед измерениями был прогрет в аргоне при температуре 200°C.

Затем после обработки раствором RuO₄ атомы марганца в составе адсорбированного гидроксида переходят в степень окисления +4 и образуют слой гидратированного оксида марганца(IV), на поверхности которого адсорбируются анионы оксо- и гидроксоформ рутения в степени окисления +6, которые при промывке образца водой частично удаляются с поверхности. На следующем цикле ионного наслаивания при обработке в растворе Mn(OAc)₂ также происходит окислительно-восстановительная реакция и оставшиеся на поверхности атомы рутения переходят в степень окисления +4, а катионы Mn(II) в Mn(IV). Последние также образуют слой оксида марганца MnO₂. Данный оксид, как известно, при значении рН раствора Mn(OAc)₂ имеет отрицательный заряд поверхности и это способствует адсорбции на его поверхности положительно заряженных катионов Mn(II). При последовательном повторении данных циклов обработки на поверхности образуется слой нанокомпозита с толщиной, задаваемой числом циклов ионного наслаивания. При этом важно, что соотношение атомных концентраций атомов марганца и рутения в слое оказалось, как уже отмечалось, равным 2.5, и это является дополнительным доказательством адекватности изложенной модели, характеризующей наблюдаемые на поверхности в процессе синтеза реакции. Действительно, каждый катион марганца(II) при переходе в степень окисления +4 отдает 2 электрона, а каждый атом рутения в степени окисления +8 при переходе в степень окисления +4 должен принять 4 электрона, которые ему должны отдать 2 катиона Mn(II).

Важно, что данные нанолисты находятся в омическом контакте друг с другом, и это определяет их уникальные электрохимические характеристики. Так изучение их электрохимических свойств на примере электрода из пеноникеля с нанесенным на его поверхность слоем $Ru_{0.4}MnO_{v} nH_2O$ показало, что удельная емкость такого электрода при токе 1 А/г составляет 687 Ф/г. (рис. 5). Следует отметить, что это значение является одним из наиболее высоких среди известных в литературе и превышает, например, значение в 556 Ф/г при токе 1 А/г, достигнутое в работе [23] для электрода на основе наностержней MnO₂ с оболочкой из RuO₂, полученных методами радиочастотного магнетронного распыления и последующего электрохимического осаждения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве подложек для синтеза использовали пластины из никелевой фольги (Ni, 99.9) и пено-

никеля PPI 110 толщиной 0.6 мм и размером около 8×15 мм. Перед синтезом все подложки предварительно промывали с использованием ультразвуковой установки ацетоном и далее обрабатывали в течение 15 мин в 3 М. растворе HCl, нагретом до 60°С. В этих условиях происходило удаление с поверхности примесей органических загрязнений и пленки оксида никеля, образовавшейся при контакте образца с атмосферой возлуха. Реагентами для синтеза служили 0.01 М. раствор Mn(OAc)₂ (АО «Вектон») с равновесным значением рН 7.7 и 0.005 М. раствор RuO₄, приготовленный в соответствии с методикой [24] на основе раствора RuOHCl₃ (OAO «Аурат») соответствующей концентрации, в который был добавлен концентрированный раствор NaClO (ООО «НеваРеактив») до концентрации 0.25 М. Растворителем служила деионизованная вода, приготовленная на мембранном деионизаторе ДМЭ-1Б. Образование RuO₄ в таком растворе фиксировали по появлению его светло-желтой окраски, значение рН данного раствора равнялось 11.7. Время обработки подложек в растворах реагентов и воде составляло 30 с. На первой стадии синтеза подложку обрабатывали раствором Mn(OAc)₂, далее промывали водой для удаления избытка раствора и помещали в раствор RuO₄. После выдерживания в нем подложку также отмывали от избытка реагента и продуктов реакций водой. Данная последовательность обработок составляла один цикл ионного наслаивания, который многократно повторяли. Синтез выполняли с помощью управляемой микропроцессором автоматизированной установки, которая позволяет проводить обработку подложки по методике ее погружения по специально заданной программе в химические емкости с растворами реагентов и растворителем. Данная установка находилась в вытяжном шкафу и поэтому токсичные пары RuO₄, которые существуют над поверхностью его водного раствора не попадали в атмосферу лаборатории. В этих условиях были получены серии образцов, синтезированных в результате 10, 20 и 30 циклов ионного наслаивания и выполнено их исследование, причем на рис. 1-5 приведены экспериментальные данные для образцов, полученных в результате 20 циклов ионного наслаивания.

Электронные микрографии получали с помощью сканирующего электронного микроскопа Zeiss Merlin и просвечивающего электронного микроскопа Zeiss Libra 200. Состав синтезированных слоев определяли методом рентгеноспектрального микроанализа с помощью микрозонда Oxford Instruments X-Max 80, входящего в комплект просвечивающего электронного микроскопа. Для получения электронных микрофотографий по методике ПЭМ и дифракционных картин электронов по методике электронографии фрагменты синтезированного слоя нанокомпозита переносили на стандартную медную сеточку и далее закрепляли ее в держателе образцов микроскопа. ИК Фурье-спектры диффузного отражения регистрировали на спектрофотометре ФСМ-2201, снабженном специальной приставкой ПДО. Спектры РФЭ получали с помощью электронного спектрометра ESCALAB 250Xi с использованием Al K_a излучения. Спектры комбинационного рассеяния были зарегистрированы с помощью спектрометра Bruker Senterra при возбуждении лазером с длиной волны 532 нм и мощностью 20 мВт, область фокусировки излучения на образце имела диаметр около 1 мкм.

Электрохимические измерения образцов проводили на потенциостате Elins P-30I с использованием трехэлектродной ячейки, в которой платиновая фольга выступала в качестве вспомогательного электрода, а Ag/AgCl (KCl) – в качестве электрода сравнения в 1 М. электролите Na₂SO₄. Рабочий электрод был приготовлен путем нанесения нанослоев на поверхность пеноникеля в результате 20 циклов ионного наслаивания. Емкостные характеристики исследовали методами циклической вольтамперометрии и гальваностатических зарядно-разрядных функций. Удельная емкость C (Ф/г) при различных плотностях тока была рассчитана по гальваностатическим функциям заряда-разряда по уравнению (1).

$$C = \frac{I}{m\left(\frac{\Delta V}{\Delta t}\right)},\tag{1}$$

где I (мА) – гальваностатический ток, ΔV (мВ) – величина окна потенциала, Δt (с) – время разряда, а m (г) – масса активного материала в пленке электрода. Массу загрузки активного материала на пеноникелевой основе измеряли методом разности масс пеноникелевого электрода с нанесенным электроактивным материалом и чистого пеноникеля с использованием точных весов OHAUS PioneerTM PA54C.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Канева Мария Витальевна, ORCID: https://orcid. org/ 0000-0003-2816-7059

Толстой Валерий Павлович, ORCID: https:// orcid.org/0000-0003-3857-7238

БЛАГОДАРНОСТЬ

Исследования проводили с использованием оборудования Ресурсных центров «Физические методы исследования поверхности», «Нанотехнологии» и «Оптические и лазерные методы исследования вещества» Санкт-Петербургского государственного университета.

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-33-90228\20 – аспиранты).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ivanets A.I., Prozorovich V.G., Kouznetsova T.F., Radkevich A.V., Krivoshapkin P.V., Krivoshapkina E.F., Sillanpää M. // J. Radioanal. Nucl. Chem. 2018. Vol. 316. N 2. P. 673. doi 10.1007/s10967-018-5771-y
- Истомин С.Я., Лысков Н.В., Мазо Г.Н., Антипов Е.В. // Усп. хим. 2021. Т. 90. № 6. С. 644; Istomin S.Ya., Lyskov N.V., Mazo G.N., Antipov E.V. // Russ. Chem. Rev. 2021. Vol. 90. N 6. P. 644. doi 10.1070/RCR4979
- Tolstoy V.P., Vladimirova N.I., Gulina L.B. // Mendeleev Commun. 2019. Vol. 29. N 6. P. 713. doi 10.1016/j. mencom.2019.11.039.
- Блинов А.В., Кравцов А.А., Крандиевский С.О., Тимченко В.П., Гвозденко А.А., Блинова А.А. // ЖОХ. 2020. Т. 90. № 2. С. 315; Blinov A.V., Kravtsova А.А., Krandievskiia S.O., Timchenkoa V.P., Gvozdenkoa А.А., Blinova А.А. // Russ. J. Gen. Chem. 2020. Vol. 90. N 2. P. 283. doi 10.1134/S107036322002019X

 Симоненко Т.Л., Симоненко Н.П., Горобцов Ф.Ю., Пожарницкая В.М., Симоненко Е.П., Глумов О.В., Мельникова Н.А., Севастьянов В.Г., Кузнецов Н.Т. // ЖНХ. 2021. Т. 66. № 9. С. 1326; Simonenko T.L., Simonenko N.P., Gorobtsov Ph.Yu., Pozharnitskaya V.M., Simonenko E.P., Glumov O.V., Melnikova N.A., Sevastyanov V.G., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2021. Vol. 66. P. 1416. doi 10.1134/ S0036023621090138

- Manafi A., MirMoghtadaei G., Falamaki C. // Russ. J. Inorg. Chem. 2021. Vol. 66. P. 684. doi 10.1134/ S0036023621050107
- Zankowski S.P., Hoecke L., Mattelaer F., Raedt M., Richard O., Detavernier C., Vereecken P.M. // Chem. Mater. 2019. Vol. 31. N 13. P. 4805. doi 10.1021/acs. chemmater.9b01219
- Кукло Л.И., Белянинова С.И., Ермаков С.С., Толстой В.П. // Рос. нанотехнол. 2016. Т. 11. № 3-4. С. 18; Kuklo L.I., Belyaninova S.I., Ermakov S.S., Tolstoy V.P. // Nanotechnol. Russ. 2016. Vol. 11. N 3–4. P. 137. doi 10.1134/S1995078016020105
- Kodintsev I., Tolstoy V., Lobinsky A. // Mater. Lett. 2017. Vol. 196. P. 54. doi 10.1016/j.matlet.2017.02.130
- Gulina L.B., Tolstoy V.P. // Thin Solid Films. 2003. Vol. 440. N 1–2. P. 74. doi 10.1016/S0040-6090(03)00684-9
- 11. Shaikh A.A., Waikar M.R., Sonkawade R.G. // Synth. Met. 2019. Vol. 247. P. 1. doi 10.1016/j. synthmet.2018.11.009
- Schweitzer G.K., Pesterfield L.L. The aqueous chemistry of the elements. New York: Oxford University Press, 2010. P. 316.
- Ramírez A., Hillebrand P., Stellmach D., May M.M., Bogdanoff P., Fiechter S. // The J. Phys. Chem. (C). 2014. Vol. 118. N 26. P. 14073. doi 10.1021/jp500939d
- Zhao X., Liu X., Li F., Huang M. // J. Mater. Sci. 2020. Vol. 55. P. 2482. doi 10.1007/s10853-019-04112-4
- Morgan D.J. // Surf. Interface Anal. 2015. Vol. 47. N 11. P. 1072. doi 10.1002/sia.5852
- Wang W., Guo S., Lee I., Ahmed K., Zhong J., Favors Z., Zaera F., Ozkan M., Ozkan C.S. // Sci. Rep. 2014. Vol. 4. N 1. P. 4452. doi 10.1038/srep04452
- Kleiman-Shwarsctein A., Laursen A.B., Cavalca F., Tang W., Dahl S., Chorkendorff I. // Chem. Commun. 2012. Vol. 48. N 7. P. 967. doi10.1039/c1cc16759f
- Gui Z., Gillette E., Duay J., Hu J., Kim N., Lee S.B. // Phys. Chem. Chem. Phys. 2015. Vol. 17. P. 15173. doi 10.1039/C5CP01814E

КАНЕВА, ТОЛСТОЙ

- Liu L., Luo Y., Tan W., Zhang Y., Liu F., Qiu G. // J. Colloid Interface Sci. 2016. Vol. 482. P. 183. doi 10.1016/j.jcis.2016.07.077
- Juliena C., Massot M., Baddour-Hadjean R., Franger S., Bach S., Pereira-Ramos J.P. // Solid State Ion. 2003. Vol. 159. P. 345. doi 10.1016/S0167-2738(03)00035-3
- Tu S., Racz G.J., Goh T.B. // Clays Clay Miner. 1994. Vol. 42. N 3. P. 321.
- 22. *Min S., Kim Y. //* Minerals. 2020. Vol. 10. P. 884. doi 10.3390/min10100884
- Chou J.-C., Chen Y.-L., Yang M.-H., Chen Y.-Z., Lai C.-C., Chiu H.-T. Gan, J.-Y. // J. Mater. Chem. (A). 2013. Vol. 1. N 31. P. 8753. doi 10.1039/c3ta11027c
- 24. Agarwal S., Burgard M., Greiner A., Wendorff J.H. Electrospinning: A Practical Guide to Nanofibers. Berlin: Walter de Gruyter GmbH & Co KG, 2016. P. 71.

Redox Reactions in A Layer of Adsorbed Mn(II) Cations and RuO₄ Molecules. Synthesis of Manganese Oxide Doped with Ruthenium bySuccessive Ionic Layers Deposition

M. V. Kaneva^{*a*} and V. P. Tolstoy^{*a*,*}

^a St. Petersburg State University, St. Petersburg, 199034 Russia *e-mail: v.tolstoy@spbu.ru

Received July 8, 2022; revised July 28, 2022; accepted August 3, 2022

The conditions for the synthesis of layers of the $Ru_xMnO_y \cdot nH_2O$ nanocomposite by the successive ionic layers deposition method based on successive and repeated redox reactions on the substrate surface in a layer of adsorbed Mn(II) cations and RuO₄ molecules were considered. It was found that, under the chosen synthesis conditions, layers of ruthenium-doped manganese(IV) oxide with a triclinic crystal structure and consisting of a set of nanosheets about 5 nm thick and 20–50 nm in lateral dimensions are formed on the nickel surface. On the basis of the experimental data obtained, the features of chemical reactions occurring on the substrate surface upon treatment with each of the reagents were considered. The supercapacitor electrodes obtained using these layers and nickel foam are characterized in 1 M. Na₂SO₄ solution at a charge-discharge current of 1 A/g with a capacitance value of 687 F/g.

Keywords: ion layering, ruthenium(IV) oxide, manganese(IV) oxide, nanocomposite, supercapacitor

1816