РОССИЙСКАЯ АКАДЕМИЯ НАУК

ПИСЬМА

B

ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

том 113

Выпуск 9 10 мая 2021

Журнал издается под руководством Отделения физических наук РАН

Главный редактор В. М. Пудалов

Заместители главного редактора Г. Е. Воловик, В. П. Пастухов

Зав. редакцией И.В.Подыниглазова

Адрес редакции	119334 Москва, ул. Косыгина 2
тел./факс	(499)-137-75-89
e-mail	letters@kapitza.ras.ru
Web-страница	http://www.jetpletters.ru

Интернет-версия английского издания http://www.springerlink.com/content/1090-6487

[©] Российская академия наук, 2021

[©] Редколлегия журнала "Письма в ЖЭТФ" (составитель), 2021

О передаче поляризации от начального к конечному протону в упругом процессе $e\vec{p} \to e\vec{p}$

M. B. Галынский¹⁾

Объединенный институт энергетических и ядерных исследований – Сосны НАНБ, 220109 Минск, Беларусь

Поступила в редакцию 25 декабря 2020 г. После переработки 19 марта 2021 г. Принята к публикации 26 марта 2021 г.

Исходя из результатов JLab-поляризационных экспериментов по измерению отношения формфакторов Сакса в процессе $\vec{ep} \rightarrow e\vec{p}$, проведен численный анализ зависимости от Q^2 отношения сечений без переворота и с переворотом спина протона, а также поляризационной асимметрии в процессе $e\vec{p} \rightarrow e\vec{p}$, в случае, когда начальный (покоящийся) и конечный протоны полностью поляризованы и имеют общую ось квантования спинов, совпадающую с направлением движения конечного протона. В случае, когда начальный протон частично поляризован, проведен расчет переданной протону продольной поляризации в кинематике, использованной коллаборацией SANE в эксперименте [Phys. Rev. C **101**, 035206 (2020)] по измерению двойной спиновой асимметрии в процессе $\vec{ep} \rightarrow ep$. Установлена заметная чувствительность переданной протону поляризации к виду зависимости отношения $\mu_p G_E/G_M$ от Q^2 , что может быть использовано для проведения нового независимого эксперимента по его измерению в процессе $e\vec{p} \rightarrow e\vec{p}$. Предложен критерий оценки достоверности измерений отношения формфакторов Сакса с использованием техники Розенблюта, с помощью которого выполнен анализ двух известных экспериментов.

DOI: 10.31857/S1234567821090019

Введение. Эксперименты по изучению электрического G_E и магнитного G_M формфакторов протона, так называемых формфакторов Сакса (ФФС), ведутся с середины 1950-х гг. прошлого столетия в реакции упругого рассеяния неполяризованных электронов на протоне. При этом все экспериментальные данные о поведении ФФС были получены с применением техники Розенблюта (ТР), основанной на использовании сечения Розенблюта (в приближении однофотонного обмена) для процесса $ep \to ep$ в системе покоя начального протона [1]:

$$\sigma = \frac{d\sigma}{d\Omega_e} = \frac{\alpha^2 E_2 \cos^2(\theta_e/2)}{4E_1^3 \sin^4(\theta_e/2)} \frac{1}{1+\tau_p} \left(G_E^2 + \frac{\tau_p}{\varepsilon} G_M^2 \right).$$
(1)

Здесь $\tau_p = Q^2/4M^2, Q^2 = -q^2 = 4E_1E_2\sin^2(\theta_e/2)$ – квадрат переданного протону импульса; M – масса протона; E_1, E_2, θ_e – соответственно энергии начального и конечного электронов и угол рассеяния электрона; ε – степень линейной поляризации виртуального фотона [2–5] с областью изменений $0 \leq \varepsilon \leq 1$, $\varepsilon = [1+2(1+\tau_p)\tan^2(\theta_e/2)]^{-1}; \alpha = 1/137$ – постоянная тонкой структуры.

При больших значениях Q^2 , как это следует из формулы (1), основной вклад в сечение процесса $ep \to ep$ дает член, пропорциональный G_M^2 , что уже при $Q^2 \ge 1 \Gamma \ni B^2$ приводит к значительным трудностям при извлечении вклада G_E^2 [6, 7]. С помощью ТР была установлена экспериментальная зависимость $\Phi \Phi C$ от Q^2 , которая вплоть до $Q^2 \approx 6 \Gamma \ni B^2$ описывается дипольным приближением, при этом для их отношения

$$R \equiv \mu_p G_E / G_M \tag{2}$$

справедливо приближенное равенство $R \approx 1$, где μ_p – магнитный момент протона, $\mu_p = 2.79$.

В работе Ахиезера и Рекало [3] предложен метод измерения отношения R, основанный на явлении передачи поляризации от начального электрона к конечному протону в процессе $\vec{e}p \rightarrow e\vec{p}$. Прецизионные эксперименты с использованием этого метода, проведенные в Лаборатории им. Т. Джефферсона (JLab, США) [8–10] обнаружили довольно быстрое убывание отношения R с ростом Q^2 , что свидетельствует о нарушении дипольной зависимости (скейлинга) $\Phi\Phi$ С. В интервале 0.4Γ эВ² $\leq Q^2 \leq 5.6 \Gamma$ эВ², как оказалось, это убывание является линейным.

Повторные, более точные измерения отношения R, проведенные в [11–15] в широкой по Q^2 области вплоть до 8.5Γ эВ² с использованием как метода Ахиезера–Рекало [3], так и ТР, лишь подтвердили расхождение результатов.

В [16] экспериментальные значения *R* получены коллаборацией SANE третьим способом путем их из-

¹⁾e-mail: galynski@sosny.bas-net.by

влечений из результатов измерений двойной спиновой асимметрии в процессе $\vec{ep} \rightarrow ep$ в случае, когда электронный пучок и протонная мишень частично поляризованы. При этом степень поляризации протонной мишени P_t была равна $P_t = (70 \pm 5)$ %. Эксперимент проводился при двух энергиях электронного пучка E_1 , 5.895 и 4.725 ГэВ и двух значениях Q^2 , 2.06 и 5.66 ГэВ². Извлеченные значения R в [16] находятся в согласии с результатами предыдущих JLabполяризационных экспериментов [8–14].

В [17] предложен 4-й метод, основанный на передаче поляризации от начального к конечному протону, в котором G_E^2 и G_M^2 могут быть извлечены из результатов прямых измерений сечений без переворота и с переворотом спина протона в упругом процессе

$$e(p_1) + \vec{p}(q_1, s_1) \to e(p_2) + \vec{p}(q_2, s_2)$$
 (3)

в случае, когда начальный (покоящийся) протон полностью поляризован вдоль направления движения конечного протона (детектируемого протона отдачи). Этот метод работает и в приближении двухфотонного обмена (ДФО) и позволяет измерить аналогичным образом квадраты модулей обобщенных ФФС [18].

В настоящей работе, исходя из результатов JLabполяризационных экспериментов по измерению отношения R в процессе $\vec{e}p \rightarrow e\vec{p}$, проведен численный анализ зависимости от Q^2 отношения сечений без переворота и с переворотом спина протона, а также поляризационной асимметрии в процессе $e\vec{p} \rightarrow e\vec{p}$, в случае, когда начальный (покоящийся) и конечный протоны полностью поляризованы и имеют общую ось квантования спинов, совпадающую с направлением движения конечного протона (детектируемого протона отдачи). В случае частично поляризованного начального протона проведен расчет переданной протону продольной поляризации в кинематике эксперимента [16]. Предложен критерий оценки достоверности измерений отношения R с использованием ТР, с помощью которого проведен анализ измерений двух известных экспериментов [15, 19].

Сечение процесса $e\vec{p} \rightarrow e\vec{p}$ в системе покоя начального протона. Рассмотрим спиновые 4векторы s_1 и s_2 начального и конечного протонов с 4-импульсами q_1 и q_2 в процессе (3) в произвольной системе отсчета. Условия ортогональности ($s_iq_i = 0$) и нормировки ($s_i^2 = -1$) позволяют однозначно определить выражения для их временных и пространственных компонент $s_i = (s_{i0}, \mathbf{s}_i)$ через их 4-скорости $v_i = q_i/M$ (i = 1, 2):

$$s_i = (s_{i0}, \mathbf{s}_i), \ s_{i0} = \mathbf{v}_i \, \mathbf{c}_i, \ \mathbf{s}_i = \mathbf{c}_i + \frac{(\mathbf{c}_i \mathbf{v}_i) \, \mathbf{v}_i}{1 + v_{i0}}, \qquad (4)$$

где единичные 3-векторы \mathbf{c}_i ($\mathbf{c}_i^2 = 1$) – оси спиновых проекций (оси квантования спинов).

В лабораторной системе отсчета (ЛСО), где $q_1 = (M, \mathbf{0}), q_2 = (q_{20}, \mathbf{q}_2)$, выберем оси спиновых проекций \mathbf{c}_1 и \mathbf{c}_2 так, чтобы они совпадали с направлением движения конечного протона:

$$\mathbf{c} = \mathbf{c}_1 = \mathbf{c}_2 = \mathbf{n}_2 = \mathbf{q}_2 / |\mathbf{q}_2|. \tag{5}$$

Тогда спиновые 4-векторы начального (s_1) и конечного протонов (s_2) в ЛСО принимают вид

$$s_1 = (0, \mathbf{n}_2), \ s_2 = (|\mathbf{v}_2|, v_{20} \, \mathbf{n}_2), \ \mathbf{n}_2 = \mathbf{q}_2/|\mathbf{q}_2|.$$
 (6)

Метод [17] основан на выражении для дифференциального сечения процесса (3) в ЛСО в случае, когда начальный и конечный протоны поляризованы и имеют общую ось спиновых проекций **с** (5):

$$\frac{d\sigma_{\delta_1,\delta_2}}{d\Omega_e} = \omega_+ \sigma^{\uparrow\uparrow} + \omega_- \sigma^{\downarrow\uparrow},\tag{7}$$

$$\sigma^{\uparrow\uparrow} = \sigma_M \, G_E^2, \ \sigma^{\downarrow\uparrow} = \sigma_M \frac{\tau_p}{\varepsilon} \, G_M^2, \tag{8}$$

$$\sigma_M = \frac{\alpha^2 E_2 \cos^2(\theta_e/2)}{4E_1^3 \sin^4(\theta_e/2)} \frac{1}{1+\tau_p}.$$
(9)

Здесь ω_{\pm} – поляризационные множители

$$\omega_{+} = (1 + \delta_1 \delta_2)/2, \ \omega_{-} = (1 - \delta_1 \delta_2)/2, \tag{10}$$

где $\delta_{1,2}$ – удвоенные значения проекций спина начального и конечного протонов на общую ось спиновых проекций **с** (5). Отметим, что формула (7) справедлива при $-1 \leq \delta_{1,2} \leq 1$.

Соответствующий эксперимент по измерению квадратов $\Phi\Phi C$ в процессах без переворота и с переворотом спина протона может быть реализован следующим образом. Покоящийся начальный протон должен быть полностью поляризован вдоль направления движения конечного протона (детектируемого протона отдачи). Измеряя зависимость дифференциальных сечений $\sigma^{\uparrow\uparrow}$, $\sigma^{\downarrow\uparrow}$ (8) от Q^2 , можно извлечь информацию и о зависимости G_E^2 и G_M^2 от Q^2 и тем самым измерить их.

Отметим, что формула (7), так же, как и (1), разбивается на сумму двух слагаемых, содержащих только G_E^2 и G_M^2 . Усредняя и суммируя выражение (7) по поляризациям начального и конечного протонов, для сечения Розенблюта (1), обозначаемого $\sigma_R = d\sigma/d\Omega_e$, получаем другое представление [17]:

$$\sigma_R = \sigma^{\uparrow\uparrow} + \sigma^{\downarrow\uparrow}. \tag{11}$$

Следовательно, физический смысл разбиения формулы Розенблюта (1) на сумму двух слагаемых, содержащих только G_E^2 и G_M^2 , заключается в том, что

она является суммой сечений без переворота и с переворотом спина протона в случае, когда начальный покоящийся протон полностью поляризован вдоль направления движения конечного протона.

Отметим, что в литературе, в том числе и в пособиях по физике элементарных частиц, часто утверждается, что использование ФФС является просто удобным, так как они придают формуле Розенблюта простой и компактный вид. Поскольку такие формальные соображения об их преимуществах содержатся в том числе и в написанных много лет назад известных монографиях [20, 21], то они не подвергаются сомнениям и воспроизводятся в литературе, например, в [22], вплоть до настоящего времени.

Сечение (7) можно представить в виде

$$d\sigma_{\delta_1,\delta_2}/d\Omega_e = (1 + \delta_2 \delta_f)(\sigma^{\uparrow\uparrow} + \sigma^{\downarrow\uparrow}), \qquad (12)$$

$$\delta_f = \delta_1 (R_\sigma - 1) / (R_\sigma + 1), \tag{13}$$

$$R_{\sigma} = \sigma^{\uparrow\uparrow} / \sigma^{\downarrow\uparrow}, \qquad (14)$$

где δ_f – степень продольной поляризации конечного протона. В случае полностью поляризованного начального протона ($\delta_1 = 1$) δ_f совпадает с обычным определением поляризационной асимметрии

$$A = (R_{\sigma} - 1)/(R_{\sigma} + 1).$$
(15)

Отношение сечений без переворота и с переворотом спина протона R_{σ} (14), как это следует из (8), можно выразить через экспериментально измеряемую величину $R \equiv \mu_p G_E/G_M$:

$$R_{\sigma} = \frac{\sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow}} = \frac{\varepsilon}{\tau_p} \frac{G_E^2}{G_M^2} = \frac{\varepsilon}{\tau_p} \frac{R^2}{\mu_p^2}.$$
 (16)

Выражение в правой части (16) для R_{σ} довольно часто встречается в литературе. Например, в [23] имеются две формулы для редуцированных сечений процесса $ep \rightarrow ep$, в которые входит R_{σ} , однако ее физический смысл авторам, похоже, не известен.

С целью использования стандартных обозначений формулу (13) для степени продольной поляризации конечного протона перепишем в другом виде

$$P_r = P_t (R_\sigma - 1) / (R_\sigma + 1), \tag{17}$$

заменив δ_f на P_r и δ_1 на P_t .

В настоящей работе проведены численные расчеты зависимости от Q^2 поляризационной асимметрии A (15), отношения сечений R_{σ} (16) и переданной протону поляризации P_r (17) как для дипольной зависимости ($R = R_d$), так и при ее нарушении ($R = R_j$):

$$R_d = 1, \tag{18}$$

$$R_j = \frac{1}{1 + 0.1430Q^2 - 0.0086Q^4 + 0.0072Q^6}.$$
 (19)

Письма в ЖЭТФ том 113 вып. 9-10 2021

Выражение для R_j заимствовано из [23], вместо него можно воспользоваться параметризацией Kelly [24].

Результаты численных расчетов и их обсуждение. С целью выяснения общих закономерностей численные расчеты зависимости от Q^2 отношения сечений R_{σ} (16) и поляризационной асимметрии A (15) проведены для энергий электронного пучка $E_1 = 1, 2, ..., 6 \Gamma$ эВ. Их результаты представлены графиками на рис. 1 и 2 соответственно.

Рис. 1. (Цветной онлайн) Зависимость отношения сечений R_{σ} (16) от $x = Q^2$ (ГэВ²) для энергий $E_1 =$ = 1, 2, ...6ГэВ. Линии Rd1(x), Rd2(x),... Rd6(x) и Rj1(x), Rj2(x), ...Rj6(x) соответствуют отношениям $R = R_d$ (18) и $R = R_j$ (19)

При этом линии Rdi(x) и Rji(x) (i = 1, 2, ..., 6) на рис. 1 соответствуют отношению R_{σ} (16) при $R = R_d$ и $R = R_j$. Для линий на рис. 2 использованы аналогичные обозначения Adi(x) и Aji(x) (i = 1, 2, ..., 6), где $x = Q^2$.

Рис. 2. (Цветной онлайн) Зависимость поляризационной асимметрии A (15) от $x = Q^2$ (ГэВ²) для энергий электронного пучка $E_1 = 1, 2, ...6$ ГэВ. Линии Ad1(x), Ad2(x),... Ad6(x) и Aj1(x), Aj2(x), ...Aj6(x) отвечают отношениям $R = R_d$ (18) и $R = R_j$ (19)

Из графиков на рис. 1 следует, что для всех энергий электронного пучка отношения сечений без переворота и с переворотом спина протона R_{σ} (16) убывают с ростом Q^2 . Однако это убывание зависимости при $R = R_j$ является более быстрым по сравнению со случаем дипольной зависимости ($R = R_d$), благодаря наличию знаменателя в выражении для R_J (19). Отметим также, что при малых энергиях электронного пучка разница в поведении отношения R_{σ} (16) для $R = R_d$ и $R = R_j$ является незначительной. Из графиков на рис. 1 так же видно, что зависимость R_{σ} от Q^2 для каждой энергии электронного пучка имеет резкую границу при Q_{\max}^2 , являющимся максимально возможным значением Q^2 , отвечающим рассеянию электрона назад, т.е. на 180°. Значения Q_{\max}^2 для каждой энергии электронного пучка $E_1 = 1, 2, ...6$ ГэВ представлены в табл. 1, из которой следует, что для всех рассмотренных энергий Q_{\max}^2 не превышает 10.45 ГэВ².

Таблица 1. Значения Q^2_{\max} , определяющие границы спектров зависимости R_{σ} от Q^2 и значения $(Q_0)^2_{\{d,j\}}$, при которых $\sigma^{\uparrow\uparrow} = \sigma^{\downarrow\uparrow}$, при этом поляризационная асимметрия A (15) равна нулю

E_1 (ГэВ)	1.0	2.0	3.0	4.0	5.0	6.0
$Q_{\rm max}^2~(\Gamma { m yB}^2)$	1.277	3.040	4.868	6.718	8.578	10.443
$(Q_0^2)_d \ (\Gamma \mathfrak{s} \mathbb{B}^2)$	0.358	0.424	0.435	0.446	0.446	0.446
$(Q_0^2)_j \ (\Gamma \mathfrak{s} \mathbb{B}^2)$	0.336	0.380	0.391	0.402	0.402	0.402

В таблице 1 представлены также значения для $(Q_0^2)_{\{d,j\}}$, соответствующих равенству сечений без переворота и с переворотом спина протона. В этом случае их отношение $R_{\sigma} = 1$, а поляризационная асимметрия равна нулю. В случае дипольной зависимости $(Q_0^2)_d \approx M^2/2$, где M – масса протона. При нарушении дипольной зависимости $(Q_0^2)_j \approx 0.40 \, \Gamma$ эВ², т.е. равенство сечений $\sigma^{\uparrow\uparrow}$ и $\sigma^{\downarrow\uparrow}$ начинается примерно в той же точке, где для отношения R начинается линейное убывание. Таким образом, точки, где $Q^2 = Q_0^2$, являются в некотором смысле особенными.

При $Q^2 > Q_0^2$ сечение с переворотом спина $\sigma^{\downarrow\uparrow}$ превышает сечение без переворота спина $\sigma^{\uparrow\uparrow}$, при этом их отношение $R_{\sigma} < 1$. Вследствие этого спиральность, уносимая протоном отдачи, становится отрицательной. По абсолютному значению она достигает максимальной величины, равной единице, при рассеянии электрона назад, т.е. на 180°.

Расчеты, представленные на рис. 1, позволяют понять, почему возникают трудности при проведении экспериментов по измерению отношения R с использованием ТР при больших Q^2 . Их необходимо проводить в кинематике, в которой относительный вклад слагаемого $\sigma^{\uparrow\uparrow}$ в сечение σ_R (11) превышает точность измерений сечения Розенблюта в данном эксперименте Δ_0

$$\frac{\sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\downarrow\uparrow}} = \frac{R_{\sigma}}{(1 + R_{\sigma})} > \Delta_0.$$
(20)

Отметим, что затрагиваемый вопрос ограничений на кинематику проведения экспериментов при использовании ТР в литературе, в том числе в [25–27], не рассматривался. Тем не менее он представляется важным и заслуживает внимания.

Письма в ЖЭТФ том 113 вып. 9-10 2021

583

Из неравенства (20) следует, что в кинематике проводимого эксперимента должно выполняться соотношение

$$R_{\sigma} > \Delta_0, \tag{21}$$

которое можно рассматривать как необходимое условие для проведения достоверных измерений. При анализе результатов проведенных экспериментов его можно использовать в качестве критерия оценки на достоверность измерений.

Трассируя графики на рис. 1 при $R = R_d$, т.е. линии Rd1(x), Rd2(x),... Rd6(x), составим табл. 2 значений R_{σ} (16) для $E_1 = 1, 2, ..., 6 \Gamma$ эВ и $Q^2 =$ $= 1, 2, ..., 9 \Gamma \Rightarrow B^2$. В ней строки (столбцы) отвечают одному и тому же значению энергии начального пучка электронов E_1 (квадрату переданного протону импульса Q^2). Для всех ячеек в табл. 2 при $Q^2 = 7.0$ и $8.0 \,\Gamma$ эB², кроме одной, со значением $R_{\sigma} = 0.006$, выполняется сотношение $R_{\sigma} \ge 0.020$. С помощью критерия (21) приходим к выводу, что при $Q^2 = 7.0 \, \Gamma \Im B^2$ измерения по ТР должны проводиться с точностью не хуже 1.9%, а измерения при $Q^2 = 8.0 \, \Gamma \Im B^2$ требуют точности на уровне $0.3 \div 0.5 \%$. Таким образом, трудности проведения экспериментов по измерению отношения R с использованием TP при больших Q^2 заключаются в уменьшении относительного вклада слагаемого $\sigma^{\uparrow\uparrow}$ в сечение Розенблюта (11) и необходимостью увеличения точности его измерения. Отметим, что для старых экспериментов с использованием ТР измерение сечений Розенблюта с точностью, превышающей 2%, по многим причинам было нереальной задачей [28].

Анализ на достоверность двух известных экспериментов. В предложенном выше критерии оценки на достоверность (21) не говорится, что понимается под точностью измерений сечения Розенблюта Δ_0 , какие именно погрешности ее определяют: статистические, систематические или нормализационные. Ниже, при анализе на достоверность эксперимента [19], опираясь на результаты [27], будет установлено, что Δ_0 определяется нормализационной погрешностью. После такого выяснения аналогичный подход будет применен для анализа измерений в [15].

Для анализа на достоверность результатов измерений отношения R в эксперименте [19] проведен расчет отношения R_{σ} (16) для всех значений энергий электронного пучка E_1 и квадратов переданных протону импульсов Q^2 , при которых были проведены измерения. Их результаты представлены в табл. 3. При этом значения E_1 приведены в первом столбце, $Q^2 - в$ верхней строке табл. 3. Пустые, незаполненные ячей-

ки в табл. 3 означают, что при соответствующих им значениях измерения не проводились.

Выделенные жирным шрифтом значения в ячейках на диагонали табл. 3 при $Q^2 \ge 5.0 \, \Gamma$ э B^2 отнесены к разряду недостоверных измерений. Чтобы в этом убедиться, обратимся к работе [27], в которой с учетом вклада ДФО проведен реанализ экспериментов [15, 19]. Из рисунка 15b этой работы следует, что измерения при $Q^2 < 5.0 \, \Gamma$ эВ² в [19] с добавленным вкладом ДФО хорошо согласуются с результатами [14], однако при $Q^2 = 5.0 \, \Gamma$ эВ² даже учет Д Φ О не может устранить расхождений. По этой причине нижняя ячейка в столбце для $Q^2 = 5.0 \,\Gamma
m s B^2$ табл. 3 отнесена к разряду недостоверных, т.е. с недостаточной точностью. Из таблицы 3 и критерия (21) следует, что точность измерений в [19] была на уровне 1.7÷2.1%. Этому же интервалу принадлежит нормализационная погрешность измерений сечения Розенблюта, которая при всех Q^2 в [19] была равна 1.77%(см. [19, 26, 28]). Таким образом, точность измерений Δ_0 , которая фигурирует в (21), мы должны отождествить с нормализационной погрешностью. При такой точности (1.77%) для всех ячеек на диагонали в табл. 3 при $Q^2 \ge 5.0 \, \Gamma$ эВ² не выполняется критерий оценки на достоверность (21).

Ячейке при $Q^2 = 8.83 \Gamma \mathfrak{sB}^2$ и $E_1 = 5.507 \Gamma \mathfrak{sB}$ в табл. 3 отвечает значение $R_{\sigma} = 0.006$, что требует точности измерений $0.3 \div 0.5$ %. Но такого уровня точность была достигнута лишь в эксперименте [29] (2010 г.), причем в области, где $Q^2 < 1 \Gamma \mathfrak{sB}^2$. Отметим, что погрешности измерений при $Q^2 = 8.83 \Gamma \mathfrak{sB}^2$ в [19], статистические, систематические и нормализационные, соответственно равны 3.89, 1.12 и 1.77% [26]. Они в разы превосходят требуемую точность измерений при $Q^2 = 8.83 \Gamma \mathfrak{sB}^2$. Отметим также, что для $Q^2 = 8.83 \Gamma \mathfrak{sB}^2$ нарушена процедура измерений по TP, поскольку в таких экспериментах для каждого значения Q^2 должны быть проведены измерения, как минимум, при двух, а еще лучше при трех значениях энергии электронного пучка [30].

На рисунке 15b в [27] представлены также результаты реанализа эксперимента [15] с добавленным вкладом ДФО в виде черных закрашенных ромбиков. Они расположены систематически выше зеленой полоски, отвечающей результатам поляризационных измерений в [14], что, на первый взгляд, позволяет сделать вывод о недостоверности измерений в [15]. Однако это не так. Для анализа достоверности результатов измерений отношения R с использованием TP в эксперименте [15] выполнен расчет отношений R_{σ} (16) для всех значений энергий электронного пучка E_1 и квадратов переданных протону импульсов

$Q^2 \ (\Gamma \mathfrak{s} \mathbb{B}^2)$	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
<i>Rd</i> 6, 6 ГэВ	0.444	0.215	0.136	0.095	0.068	0.049	0.034	0.022	0.012
Rd5, 5ГэВ	0.440	0.209	0.129	0.086	0.057	0.036	0.020	0.006	
Rd4, 4 ГэВ	0.432	0.199	0.115	0.068	0.037	0.013			
<i>Rd</i> 3, 3 ГэВ	0.415	0.175	0.084	0.031					
<i>Rd</i> 2, 2 ГэВ	0.365	0.105							
Rd1, 1 ГэВ	0.114								

Таблица 2. Значения R_{σ} (16) при $R = R_d$ (18) для энергий электронного пучка $E_1 = 1, 2, ..., 6$ ГэВ и $Q^2 = 1, 2, ..., 9$ ГэВ²

Таблица 3. Значения R_{σ} (16) при $R = R_d$ (18) для E_1 и Q^2 , при которых проводились измерения в [19]

$Q^2 (\Gamma \Im B^2)$	1.75	2.50	3.25	4.00	5.00	6.00	7.00	8.83
<i>Rd</i> 9, 9.800 ГэВ				0.107	0.083	0.067	0.055	
Rd8, 5.507ГэВ	0.246	0.165	0.120	0.091	0.064			0.006
Rd7, 4.507 ГэВ				0.079	0.049		0.009	
<i>Rd</i> 6, 3.956 ГэВ		0.157	0.100	0.067	0.035	0.012		
<i>Rd</i> 5, 3.400 ГэВ		0.136	0.085	0.049	0.016			
Rd4, 2.837ГэВ		0.114	0.059	0.022				
<i>Rd</i> 3, 2.407 ГэВ	0.182	0.087	0.029					
<i>Rd</i> 2, 1.968 ГэВ		0.041						
<i>Rd</i> 1, 1.511 ГэВ	0.065							

 Q^2 , при которых эксперимент был проведен. Их результаты представлены в табл. 4. При этом значения E_1 приведены в первом столбце, Q^2 – в верхней строке табл. 4.

Таблица 4. Значения R_{σ} (16) при $R = R_d$ (18) для E_1 и Q^2 , при которых проводились измерения в [15]

Q^2 (ГэВ 2)	2.64	3.20	4.10
$Rd5, E_1 = 4.702$ ГэВ	0.148	0.115	0.078
$Rd4, E_1 = 3.772$ ГэВ	0.134	0.098	0.058
$Rd3, E_1 = 2.842$ ГэВ	0.102	0.063	0.018
$Rd2, E_1 = 2.262$ ГэВ	0.061	0.018	
$Rd1, E_1 = 1.912$ ГэВ	0.020		

Для выделенных жирным шрифтом значений в ячейках на диагонали в табл. 4, требуемая точность измерений, как оказывается, соответствует нормализационной погрешности в [15], равной 1.7 % [28], что позволяет сделать вывод об их достоверности. Этот вывод обусловлен необходимостью применения одинакового подхода для анализа измерений в [15] и [19], при котором Δ_0 определяется нормализационной погрешностью. Поскольку измерения в [15] являются достоверными, то для устранения все еще остающихся расхождений между "[15]+ДФО" и [14], обнаруженных в [27], необходимо провести более точный реанализ в [27]. О возможности эксперимента по измерению отношения $\Phi\Phi C$ в процессе $e\vec{p} \rightarrow e\vec{p}$. Предложенный в [17] метод измерения квадратов $\Phi\Phi C$ в процессах без переворота и с переворотом спина протона требует наличия полностью поляризованной протонной мишени, что представляется делом весьма отдаленного будущего. Как уже говорилось выше, в более широком смысле его можно рассматривать как метод, основанный на передаче поляризации от начального к конечному протону.

В общем случае, когда начальный протон частично поляризован, степень продольной поляризации, переданная протону отдачи, определяется формулой (17). В настоящее время эксперимент по ее измерению представляется вполне реальным, поскольку частично поляризованная протонная мишень с высокой степенью поляризации $P_t = (70 \pm 5) \%$ уже использовалась в [16]. Именно по этой причине наиболее целесообразно было бы провести предлагаемый эксперимент на установке, использованной коллаборацией SANE [16], при тех же $P_t = 0.70$, энергиях электронного пучка $E_1 = 4.725$ и 5.895 ГэВ, тех же значениях квадратов переданных протону импульсов $Q^2 = 2.06$ и 5.66 ГэВ². Разница между проведением предлагаемого эксперимента и [16] заключается в том, что электронный пучок должен быть неполяризованным, а детектируемый протон отдачи должен двигаться строго вдоль направления оси квантования спина протонной мишени. Измерения степени продольной и поперечной поляризации конечного протона проводились в работах [8–14]. В предлагаемом эксперименте необходимо измерять только степень продольной поляризации протона отдачи, что является преимуществом по сравнению с методом [3].

Результаты расчетов зависимости от Q^2 переданной конечному протону поляризации P_r (17) в кинематике эксперимента [16] представлены графиками на рис. 3, на котором линии Pd5, Pd4 (сплошные)

Рис. 3. (Цветной онлайн) Степень продольной поляризации протона отдачи P_r (17) как функция от квадрата переданного протону импульса Q^2 (ГэВ²) для E_1 и P_t , использованных в [16]. Линии Pd5, Pd4 (сплошные) и Pj5, Pj4 (штриховые) соответствуют отношениям $R = R_d$ (18) и $R = R_j$ (19)

и Pj5, Pj4 (штриховые) соответствуют отношениям $R = R_d$ (18) и $R = R_j$ (19). При этом красные линии Pd5, Pj5 отвечают энергии электронного пучка $E_1 = 5.895 \,\Gamma$ эВ, синие линии Pd4, Pj4 соответствуют $E_1 = 4.725 \,\Gamma$ эВ. Для всех линий на рис. 3 степень поляризации протонной мишени $P_t = 0.70$.

Из графиков на рис. З следует, что переданная конечному протону поляризация весьма существенно зависит от вида зависимости отношения R от Q^2 . В случае нарушения скейлинга ФФС, т.е. при $R = R_j$, она заметно увеличивается по абсолютному значению по сравнению со случаем, когда $R = R_d$. Количественная оценка этой разницы приведена в табл. 5, в которой представлены значения для степени продольной поляризации протона отдачи Pj5, Pd5, Pj4, Pd4 и их относительной разницы Δ_{dj5} , Δ_{dj4} (выраженной в процентах) при двух энергиях электронного пучка 5.895 и 4.725 ГэВ и двух значениях Q^2 , равных 2.06 и 5.66 ГэВ², где $\Delta_{dj5} = (Pj5 - Pd5)/Pj5$, $\Delta_{dj4} = (Pj4 - Pd4)/Pj4$.

Таблица 5. Степень продольной поляризации протона отдачи P_r (17) при двух энергиях электронного пучка, 5.895 и 4.725 ГэВ и двух значениях Q^2 , равных 2.06 и 5.66 ГэВ²

	1.0		0 / 1			
$Q^2 \ (\Gamma \mathfrak{s} \mathbb{B}^2)$	Pd5	Pj5	Pd4	Pj4	$\Delta_{dj5}, \%$	$\Delta_{dj4}, \%$
2.06	-0.46	-0.55	-0.47	-0.56	16.6	16.1
5.66	-0.63	-0.69	-0.65	-0.69	9.1	6.4

Из таблицы 5 следует, что при $Q^2 = 2.06 \, \Gamma \Rightarrow B^2$ относительная разница между Pj5 и Pd5 составляет 16.6%, между Pj4 и Pd4 - 16.1%. При $Q^2 = 5.66 \, \Gamma \Rightarrow B^2$ эта разница уменьшается и становится равной 9.1 и 6.4% соответственно.

Заключение. В работе, исходя из результатов JLab-поляризационных экспериментов по измерению отношения R в процессе $\vec{e}p \rightarrow e\vec{p}$, проведен численный анализ зависимости отношения сечений без переворота и с переворотом спина протона от квадрата переданного протону импульса, а также поляризационной асимметрии в процессе $e\vec{p} \to e\vec{p}$, в случае, когда начальный (покоящийся) и конечный протоны полностью поляризованы и имеют общую ось квантования спинов, совпадающую с направлением движения детектируемого протона отдачи. В случае, когда начальный протон частично поляризован, проведен расчет переданной протону продольной поляризации в кинематике, использованной коллаборацией SANE [16] при проведении экспериментов по измерению двойной спиновой асимметрии в процессе $\vec{e}\vec{p} \rightarrow ep$. Установлена заметная чувствительность переданной протону поляризации к виду зависимости отношения R от Q^2 , что может быть использовано для проведения нового независимого эксперимента по его измерению в процессе $e\vec{p} \rightarrow e\vec{p}$. Предложен критерий оценки достоверности измерений отношения R с использованием ТР. С его помощью проведен анализ экспериментов [15, 19], который может оказаться полезным для выяснения причин все еще остающихся расхождений, обнаруженных в [27] между результатами измерений [15] с добавленным вкладом ДФО и поляризационных экспериментов [14].

Автор выражает искреннюю благодарность Р. Ледницкому за внимание, интерес к работе и плодотворные обсуждения результатов.

- 1. M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).
- 2. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).
- 3. А.И. Ахиезер, М.П. Рекало, ЭЧАЯ 4, 662 (1973).
- 4. А.И. Ахиезер, М.П. Рекало, Электродинамика адронов, Наукова думка, Киев (1977), 497 с.
- М.В. Галынский, М.И. Левчук, ЯФ 60(11), 2028 (1997).

Письма в ЖЭТФ том 113 вып. 9-10 2021

- S. Pacetti, R. Baldini Ferroli, and E. Tomasi-Gustafsson, Phys. Rep. 550–551, 1 (2015).
- V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, and C.E. Carlson, Eur. Phys. J. A 51, 79 (2015).
- M.K. Jones, K.A. Aniol, F.T. Baker et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 84, 1398 (2000).
- O. Gayou, K. Wijesooriya, A. Afanasev et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. C 64, 038202 (2001).
- O. Gayou, E. J. Brash, M. K. Jones et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 88, 092301 (2002).
- V. Punjabi, C.F. Perdrisat, K.A. Aniol et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. C 71, 055202 (2005).
- A. Puckett, J. Brash, O. Gayou et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. **104**, 242301 (2010).
- A.J.R. Puckett, E.J. Brash, O. Gayou et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. C 85, 045203 (2012).
- A. J. R. Puckett, E. J. Brash et al. (Collaboration), Phys. Rev. C 96, 055203 (2017).
- I.A. Qattan, J. Arrington, R.E. Segel et al. (Collaboration), Phys. Rev. Lett. 94, 142301 (2005).
- A. Liyanage, W. Armstrong, H. Kang et al. (SANE Collaboration), Phys. Rev. C 101, 035206 (2020).

- 17. М.В. Галынский, Письма в ЖЭТФ **109**(1), 3 (2019).
- М. В. Галынский, Р. Е. Герасимов, Письма в ЖЭТФ 110 (10), 699 (2019).
- L. Andivahis, P.E. Bosted, A. Lung et al. (Collaboration), Phys. Rev. D 50, 5491 (1994).
- А.И. Ахиезер, В.Б. Берестецкий, Квантовая электродинамика, Наука, М. (1969), 624 с.
- В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, Квантовая электродинамика, Наука, М. (1989), 724 с.
- 22. A. J. R. Puckett, arXiv: 1508.01456 [nucl-ex].
- 23. I.A. Qattan, J. Arrington, and A. Alsaad, Phys. Rev. C 91, 065203 (2015).
- 24. J. J. Kelly, Phys. Rev. C 70, 068202 (2004).
- E. Tomasi-Gustafsson and S. Pacetti, Few-Body Systems 59, 91 (2018).
- A. V. Gramolin and D. M. Nikolenko, Phys. Rev. C 93, 055201 (2016).
- J. Ahmed, P.G. Blunden, and W. Melnitchouk, Phys. Rev. C 102, 045205 (2020); arXiv: 2006.12543 [nucl-th].
- J. C. Bernauer, M.O. Distler, J. Friedrich et al. (A1 Collaboration), Phys. Rev. C 90, 015206 (2014).
- J. C. Bernauer, P. Achenbach, C. Ayerbe Gayoso et al. (A1 Collaboration), Phys. Rev. Lett. 105, 242001 (2010).
- J. C. Bernauer, http://inspirehep.net/record/1358265/ files/bernauer.pdf.

Using relativistic kinematics to generalize the series solution of Bethe stopping power obtained from Laplace–Adomian Decomposition method

 $A.S.Remigio^{1)}$

Royal Melbourne Institute of Technology University, Melbourne, 3000 Victoria, Australia

Submitted 28 March 2021 Resubmitted 28 March 2021 Accepted 2 April 2021

DOI: 10.31857/S1234567821090020

As the charged particle passes through matter, the charged particle losses kinetic energy due to inelastic Coulomb interactions with target atoms. Energy transferred to orbital electrons may result in excitation or ionization, depending on the relative magnitude of energy transfer to the electron binding energy. Stopping power is a quantity that describes the mean energy loss of a charged particle in multiple inelastic interactions. More generally, stopping power (dE/dx) is related to the differential cross section in terms of energy loss $(d\sigma/dW)$ by:

$$-\frac{dE}{dx} = \rho N_A \frac{Z}{A} \int W \frac{d\sigma}{dW} dW,$$

where ρ is the mass density of the medium, N_A is the Avogadro's constant, Z/A is the atomic number to atomic mass ratio, and W is the energy loss.

The relativistic Bethe stopping power is a formulation of electronic stopping power based on plane-wave analysis under Born approximation. One of the main uses of Bethe stopping power is in radiation dosimetry in various applications such as radiotherapy, and radiation protection. Analytical solution provides certain advantages over numerical solution such as generalization of mathematical behavior. Laplace-Adomian decomposition method (LADM) was used in the study of Gonzalez-Gaxiola et al. to find an analytical series solution to the Bethe stopping power. However, their method presented approximations that are limited to the non-relativistic energy range. In this study, relativistic kinematics was utilized to generalize the Bethe stopping power to all kinetic energies prior to LADM implementation.

The general expression of the Bethe stopping power is given by:

$$-\frac{dE}{dx} = 4\pi\rho r_e^2 m_e c^2 \frac{N_A Z}{A} \frac{z^2}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \beta^2}{I(1-\beta^2)}\right) - \beta^2 \right],$$

Письма в ЖЭТФ том 113 вып. 9-10 2021

where r_e is the classical electron radius, $m_e c^2$ is the electron rest energy, β is the ratio of particle velocity to the speed of light in vacuum (v/c), and I is the mean excitation energy. The general relationship between particle relative velocity β and kinetic energy was found to be:

$$\beta^2 = \frac{E(E+2m_0c^2)}{(E+m_0c^2)^2} = \frac{\tau(\tau+2)}{(\tau+1)^2}$$

where $\tau = E/m_0c^2$, and m_0c^2 is the rest mass of the particle. A change of variable $u = \tau(\tau + 1)$ was introduced, which simplifies the Bethe stopping power into the following:

$$-\frac{du}{dx} = 8\pi\rho r_e^2 \frac{m_e c^2}{m_0 c^2} \frac{N_A Z z^2}{A} \left[\frac{(u+1)^{\frac{3}{2}}}{u} \ln\left(\frac{2m_e c^2 u}{I}\right) - \sqrt{u+1} \right] = N(u).$$

As adopted from the work of Gonzalez–Gaxiola et al., the LADM framework was applied to the Bethe stopping power to yield:

$$u(x) = \sum_{n=0}^{\infty} u_n(x) = u_0 - \mathcal{L}^{-1} \bigg\{ \frac{1}{s} \mathcal{L} \bigg\{ N(u) \bigg\} \bigg\},$$

where \mathcal{L} is the Laplace transform operator and u_0 is the initial condition associated to the variable u. By expanding N(u) as a series of Adomian polynomials, the following recursion relation was obtained:

$$u_{n+1}(x) = -\mathcal{L}^{-1} \bigg\{ \frac{1}{s} \mathcal{L} \bigg\{ A_n(u_0, ..., u_n) \bigg\} \bigg\},$$

where $A_n(u_0, ..., u_n)$ is the Adomian polynomial of order *n*. This results in the derived series solution being a function of both path length *x* and initial energy E_0 associated to u_0 .

The series solution obtained from LADM was compared to numerical solution for different initial energies, absorbing material, and charged particle type. Figure 1 illustrates the series and numerical solutions for a pro-

¹⁾e-mail: adrianremigio21@gmail.com

Fig. 1. (Color online) LADM series solution for $E_0 = 2.5$ GeV initial proton energy in water

ton particle with 5 GeV incident kinetic energy in water. Results showed that the derived series solution agrees with the numerical solution for a relatively large portion of the particle range. As the path length traversed increases, deviation between the two solution also increases due to exclusion of higher order terms in the series solution.

The study also demonstrates that the series solution derived is able to reasonably approximate the numerical solution for different absorbing medium and particle types. This generalization extends to both relativistic and non-relativistic incident kinetic energies. However, inaccuracies of the series solution at the end of the particle range also give rise to differences in continuous slowing down approximation (CSDA) range of the particle compared to that with numerical solution. Depending on the application, the series solution obtained can be utilized with sufficient accuracy. For instance, application to radiation shielding is viable since assumptions that slightly overestimate dose or particle penetrability are imposed.

Full text of the paper is published in JETP Letters journal. DOI: 10.1134/S0021364021090022

Understanding two slopes in the $pp(p\bar{p})$ differential cross sections

Yu. A. $Simonov^{1)}$

National Research Centre "Kurchatov Institute" – ITEP, 117259 Moscow, Russia

Submitted 1 April 2021 Resubmitted 5 April 2021 Accepted 5 April 2021

 ${\rm DOI:}\ 10.31857/S1234567821090032$

Recent experiments have discovered two exponents in the pp elastic differential cross sections with two different slope parameters, of the order $(16-20) \,\mathrm{GeV}^{-2}$ and $(4-4.8) \,\mathrm{GeV^{-2}}$ in the regions $-t \lesssim 0.5 \,\mathrm{GeV^2}$ and $-t \gtrsim 1 \,\mathrm{GeV}^2$, respectively. We suggest a simple model of the pp elastic scattering with two types of particle exchanges : 1) when the exchanged particle transfers the momentum **Q** from a quark of the proton p_1 to one quark in another proton p_2 , producing the slope B_1 ; 2) when the transfer occurs from two quarks in the p_1 to two quarks in the p_2 , giving the exponent with the slope B_2 . The resulting amplitude is proportional to the product of the form factors of two protons, depending on \mathbf{Q} , but with different coefficients in the cases 1) and 2). Using the only parameter – the proton charge radius $r_{ch}^2 = 0.93 \,\text{fm}^2$, one obtains $B_1 = 16 \,\text{GeV}^{-2}$, $B_2 = 4 \,\text{GeV}^{-2}$ with the strict value of the ratio, $\frac{B_1}{B_2} = 4.0$, independent of r_{ch} . These predictions are surprisingly close to the data both in the pp and in the $\bar{p}p$ differential cross sections. Comparison to experimental data reveals that the situation drastically changes from GeV to TeV regions. Indeed, in the TOTEM experiments at E = 2.76 - 13 TeV the first slope is changing from 16.8 to $21.4 \,\text{GeV}^{-2}$ while the second slope is around $4-4.5 \,\mathrm{GeV}^{-2}$. A similar situation

occurs in the $p - \bar{p}$ scattering in the CDF and E710 collaborations, thus supporting the suggested model in both systems. However at the GeV energies the situation is completely different, which may imply multiple hadron exchanges with less definite structures. The present model also provides an understanding of the value of the first dip separating two slopes. From the glueball (pomeron) exchange diagram between two protons one can derive the position of the dip around $0.5 \,\mathrm{GeV^2}$ which is close to the experimental value (0.46– (0.6) GeV². The suggested mechanism opens a possibility of explanation and of new questions in the basic theory of high energy hadron-hadron interaction. In particular, the question of the ratio of the inelastic to the elastic cross sections which is decreasing at high energy is remaining unanswered, but the suggested two-slope mechanism is connected to the overlap integral of the initial and final (highly excited) proton wave functions, which may decrease with higher energy and more distorted excited (inelastic) wave functions. A discussion of the resulting picture in connection with the proposed theoretical models is given.

Full text of the paper is published in JETP Letters journal. DOI: 10.1134/S0021364021090046

Письма в ЖЭТФ том 113 вып. 9-10 2021

¹⁾e-mail: simonov@itep.ru

Адаптивная фантомная оптика

Д. А. Балакин¹⁾, А. В. Белинский¹⁾

Физический факультет МГУ им. М.В. Ломоносова, 119991 Москва, Россия

Поступила в редакцию 11 марта 2021 г. После переработки 26 марта 2021 г. Принята к публикации 26 марта 2021 г.

Рассматривается формирование квантовых фантомных изображений с возможностью динамического управления средствами адаптивной оптики. Исследовано качество фантомных изображений при пространственной модуляции накачки. Предложены варианты его улучшения, что создает новые возможности повышения информативности исследований, связанных с регистрацией фантомных изображений.

DOI: 10.31857/S1234567821090044

Адаптивные оптические системы являются эффективным средством борьбы с различными случайными и регулярными искажениями изображений, сформированых в реальных условиях атмосферной турбулентности или иных аберрационных процессов, см., например, [1, 2]. Другой областью их применения может быть аналоговая оптическая обработка сигналов в реальном времени [3]. При этом, как правило, формируются обычные двумерные изображения. А что, если попытаться сформировать фантомные изображения, которые не только в последнее время вызывают все больший интерес, см., напр., [4–14], с возможностью динамического управления? Ведь просматривая таким образом прозрачные трехмерные объекты, можно было бы, меняя глубину резкости и степень фокусировки, восстанавливать их объемную структуру и одновременно компенсировать искажения изображений, связанные с оптической неоднородностью среды, причем при использовании подходящего параметрического процесса длины волн в объектном и в восстанавливающем канале могут существенно отличаться, см., например, [15], а сам спектр генерируемых фотонов может быть модифицирован во время измерений [16]. Но для этого надо научиться управлять оптической силой входящих в систему элементов. Как это сделать?

Рассмотрим типичную схему формирования квантовых фантомных изображений, показанную на рис. 1.

В нелинейном кристалле фотоны накачки (p)спонтанно распадаются на пары сигнальных (s) и холостых (i) фотонов. В приближении неистощимой накачки при одинаковой частоте сигнальных и хо-

Рис. 1. (Цветной онлайн) Формирование квантового фантомного изображения. NC – нелинейный кристалл, ω_p – луч накачки, ω_s и ω_i – лучи запутанных фотонов (которые расходятся вследствие использования неколлинеарного параметрического рассеяния), O – исследуемый объект, BD – собирающий детектор в объектном канале, L – линза, CCD – матрица датчиков в восстанавливающем канале, C – коррелятор интенсивностей (схема совпадений)

лостых фотонов этот процесс описывается системой уравнений [17]

$$\begin{cases} \frac{\partial}{\partial z} \hat{A}_{s}(\mathbf{r}_{\perp}, z) = g A_{p}(\mathbf{r}_{\perp}, z) \hat{A}_{i}^{\dagger}(\mathbf{r}_{\perp}, z), \\ \frac{\partial}{\partial z} \hat{A}_{i}(\mathbf{r}_{\perp}, z) = g A_{p}(\mathbf{r}_{\perp}, z) \hat{A}_{s}^{\dagger}(\mathbf{r}_{\perp}, z), \end{cases} \quad 0 \le z \le l, \ (1)$$

где $A_{s,i}$ – полевые операторы сигнальных (s) и холостых (i) фотонов, l – толщина кристалла, параметр g определяется оптической нелинейностью среды, $A_{\rm p}(\cdot, \cdot)$ – пространственное распределение амплитуды накачки, k – волновое число рождающихся

¹⁾e-mail: balakin d a@physics.msu.ru; belinsky@inbox.ru

фотонов. Направление оси z совпадает с направлением распространения фотонов, вектор \mathbf{r}_{\perp} перпендикулярен ему. Δ_{\perp} – поперечный лапласиан. Для простоты мы рассматриваем коллинеарный процесс. Обозначим полевые операторы на выходе кристалла $A_{s,i}^{(\text{out})}(\mathbf{r}_{\perp})$.

Далее сигнальные фотоны проходят через объектный канал, в соответствии с названием, содержащий исследуемый объект, после чего регистрируются собирающим детектором. Холостые фотоны проходят через восстанавливающий канал и регистрируются матрицей фотодатчиков. Сигналы собирающего детектора и матрицы фотодатчиков обрабатываются схемой совпадений, сигнал на выходе которой оценивает эмпирическую пространственную корреляционную функцию флуктуаций интенсивности между двумя каналами, по которой восстанавливается изображение объекта.

Как показано в [5], корреляционная функция флуктуаций интенсивности в каналах равна

$$G(\mathbf{r}'_{\perp}, \mathbf{r}_{\perp}) = \left| \int d\mathbf{r}''_{\perp} d\mathbf{r}'''_{\perp} h_1(\mathbf{r}'_{\perp}, \mathbf{r}''_{\perp}) h_2(\mathbf{r}_{\perp}, \mathbf{r}'''_{\perp}) \times \left\langle A_s^{(\text{out})}(\mathbf{r}''_{\perp}) A_i^{(\text{out})}(\mathbf{r}''_{\perp}) \right\rangle \right|^2,$$
(2)

где усреднение выполняется при вакуумном состоянии полей на входе в кристалл, а h_1 и h_2 – передаточные функции каналов. Для получения формируемого изображения функцию (2) далее необходимо проинтегрировать по \mathbf{r}'_{\perp} , поскольку собирающий детектор в объектном канале регистрирует весь световой пучок и не обладает пространственным разрешением.

Пусть в объектном канале объект, описываемый амплитудным коэффициентом пропускания $T(\mathbf{r}_{\perp})$, находится на расстоянии s_s от кристалла, и сразу за ним расположен собирающий детектор, тогда в приближении Френеля [18, п. 32]

$$h_1(\mathbf{r}'_{\perp}, \mathbf{r}''_{\perp}) = \frac{k}{2\pi i} \frac{\exp iks_s}{s_s} T(\mathbf{r}'_{\perp}) \exp\left(\frac{ik(\|\mathbf{r}'_{\perp} - \mathbf{r}''_{\perp}\|^2)}{2s_s}\right)$$
(3)

Если в восстанавливающем канале нет линз, а матрица датчиков расположена на расстоянии *s* от кристалла, то в приближении Френеля

$$h_2(\mathbf{r}_{\perp}, \mathbf{r}_{\perp}^{\prime\prime\prime}) = \frac{k}{2\pi i} \frac{\exp iks}{s} \exp\left(\frac{ik(\|\mathbf{r}_{\perp} - \mathbf{r}_{\perp}^{\prime}\|^2)}{2s}\right), \quad (4)$$

а если в восстанавливающий канал помещена тонкая линза с фокусным расстоянием f (например, f = s/2 и линза находится на расстояниях 2f от матрицы

Письма в ЖЭТФ том 113 вып. 9-10 2021

датчиков и от объекта вдоль осей каналов), что требуется для формирования сфокусированного изображения, то в приближении Френеля [18, п. 35]

$$h_2(\mathbf{r}_{\perp}, \mathbf{r}_{\perp}^{\prime\prime\prime}) = \frac{k}{2\pi i} \frac{\exp iks}{s} \exp\left(\frac{ik(\|\mathbf{r}_{\perp} - \mathbf{r}_{\perp}^{\prime\prime\prime}\|^2)}{2s}\right) \times \\ \times \exp\left(-\frac{ik\|\mathbf{r}_{\perp}^{\prime\prime\prime}\|^2}{2f}\right).$$
(5)

Наконец, последний множитель в подынтегральном выражении в (2) при представлении

$$A_s^{(\text{out})}(\mathbf{r}_\perp) = u(\mathbf{r}_\perp) A_s^{(\text{in})}(\mathbf{r}_\perp) + v(\mathbf{r}_\perp) A_i^{(\text{in})\dagger}(\mathbf{r}_\perp) \quad (6)$$

равен

$$\langle A_s^{(\text{out})}(\mathbf{r}_{\perp}^{\prime\prime}) A_i^{(\text{out})}(\mathbf{r}_{\perp}^{\prime\prime\prime}) \rangle = u(\mathbf{r}_{\perp}^{\prime\prime}) v(\mathbf{r}_{\perp}^{\prime\prime}) \delta(\mathbf{r}_{\perp}^{\prime\prime} - \mathbf{r}_{\perp}^{\prime\prime\prime}).$$
(7)

Если накачка представляет собой волну с плоским волновым фронтом, то в объектном и/или восстанавливающем канале должен быть установлен по крайней мере один оптический объектив, а лучше – два для формирования параллельного хода лучей в кристалле, что обеспечивало бы отсутствие интегральной дефокусировки изображения [19]. Но если освещать кристалл сходящейся волной, то оптическая система приобретает дополнительную оптическую силу, т. е. фантомное изображение можно построить и без дополнительных объективов. Формально это описывается дополнительным фазовым множителем

$$\exp\left(-\frac{ik\|\mathbf{r}_{\perp}\|^2}{2f}\right),\tag{8}$$

отличающим (5) от (4), который может быть получен за счет выбора параметров гауссова пучка накачки или пространственного модулирования фазы накачки в кристалле. Для определения требуемых свойств пучка сравним (8) и комплексную амплитуду гауссова пучка накачки [20, п. 1.2]

$$A_{p}(\mathbf{r}_{\perp}, z) = A_{p0} \exp\left(-\frac{\|\mathbf{r}_{\perp}\|^{2}}{w(z)^{2}}\right) \exp\left(\frac{ik_{p}\|\mathbf{r}_{\perp}\|^{2}}{2\rho(z)}\right),$$
$$w(z)^{2} = w_{0}^{2} \left(1 + \left(\frac{\lambda_{p}z}{\pi w_{0}^{2}}\right)^{2}\right),$$
$$\rho(z) = z \left(1 + \left(\frac{\pi w_{0}^{2}}{\lambda_{p}z}\right)^{2}\right)$$
(9)

с учетом ее зависимости от z. В (9), в отличие от предшествующих формул, за начало отсчета z выбран не вход нелинейного кристалла, а место перетяжки пучка накачки, $\lambda_p = \lambda/2$ и $k_p = 2k$ – длина волны и волновое число накачки соответственно,

 w_0 – параметр ширины пучка. Сравнением (8) и (9) видно, что для бесконечно тонкого кристалла²⁾ для фокусировки должно быть

$$\rho(z) = -s. \tag{10}$$

Этому условию удовлетворяет³⁾

$$z_p = -\frac{s}{2} - \sqrt{\frac{s^2}{4} - \frac{\pi^2 w_0^4}{\lambda_p^2}},$$
 (11)

причем для осуществимости условия требуется

$$\frac{s}{2} > \frac{\pi w_0^2}{\lambda_p},\tag{12}$$

что ограничивает допустимую ширину пучка накачки. Так, при параметрах оптической системы $l = 3 \text{ мм}, k \approx 8.95 \cdot 10^3 \text{ мм}^{-1}$ (соответствует длине волны 702.2 нм), $s = s_s = 500 \text{ мм}$ максимальное значение w_0 близко к 0.1672 мм. Это значительно увеличивает обусловленное дифракцией размытие фантомного изображения.

На рисунке 2 показаны результаты моделирования формирования фантомного изображения при накачке, описываемой (9), т.е. согласно формуле

$$G(\mathbf{r}_{\perp}) =$$

$$= \frac{k^4}{16\pi^4 s^4} \int d\mathbf{r}'_{\perp} |T(\mathbf{r}'_{\perp})|^2 \left| \int d\mathbf{r}''_{\perp} u_{z_p}(\mathbf{r}''_{\perp}) v_{z_p}(\mathbf{r}''_{\perp}) \times \right| \\ \times \exp\left(\frac{ik(\|\mathbf{r}'_{\perp} - \mathbf{r}''_{\perp}\|^2 + \|\mathbf{r}_{\perp} - \mathbf{r}''_{\perp}\|^2)}{2s}\right) \right|^2, \quad (13)$$

где $u_{z_p}(\mathbf{r}''_{\perp})$ и $v_{z_p}(\mathbf{r}''_{\perp})$ – коэффициенты в разложении (6) при смещении кристалла относительно перетяжки накачки z_p , l = 3 мм, $k \approx 8.95 \cdot 10^3$ мм⁻¹ (соответствует длине волны 702.2 нм), $s = s_s = 500$ мм, параметре ширины пучка $w_0 = 0.1414$ мм (сверху) или $w_0 = \sqrt{2} \cdot 3$ мм (снизу).

Выбор положения z_p перетяжки пучка накачки относительно кристалла был определен минимизацией значения $\int d\mathbf{r}_{\perp} G(\mathbf{r}_{\perp}) \|\mathbf{r}_{\perp}\|^2$, когда объектом служил точечный источник.

Рис. 2. Моделирование формирования квантовых фантомных изображений центрального точечного отверстия согласно формуле (13) при виде накачки (9). Размер изображений 6 × 6 мм. Сверху параметр ширины пучка $w_0 = 0.1414$ мм, снизу $w_0 = \sqrt{2} \cdot 3$ мм. В левом столбце распределение прозрачностей объекта $T(\cdot)$, в правом столбце – корреляционная функция $G(\cdot)$

Рассмотрим теперь искусственное создание требуемой кривизны волнового фронта накачки (10), например, при помощи ее фокусирования линзой, фазовой пластиной, сферическими торцевыми поверхностями нелинейного кристалла, перестраиваемой метаповерхностью [21] или иным фазовым модулятором света. В этом случае формирование фантомного изображения описывается формулой

$$G(\mathbf{r}_{\perp}) = \tag{14}$$

$$= \frac{k^4}{16\pi^4 s^4} \int d\mathbf{r}'_{\perp} |T(\mathbf{r}'_{\perp})|^2 \left| \int d\mathbf{r}''_{\perp} \exp\left(-\frac{ik \|\mathbf{r}_{\perp}\|^2}{s}\right) \times \right. \\ \left. \times \exp\left(\frac{ik(\|\mathbf{r}'_{\perp} - \mathbf{r}''_{\perp}\|^2 + \|\mathbf{r}_{\perp} - \mathbf{r}''_{\perp}\|^2)}{2s}\right) u_{z_p}(\mathbf{r}''_{\perp}) v_{z_p}(\mathbf{r}''_{\perp}) \right|^2.$$

При параметре ширины накачки $\sqrt{2} \cdot 3$ мм это приводит к намного меньшему дифракционному размытию, см. рис. 3, где при моделировании $s = s_s = 500$ мм, а кристалл помещен непосредственно у перетяжки и фазовой модуляцией накачки создана кривизна фронта накачки -s. Видно, что полученные результаты моделирования имеют лучшее качество изображения, чем в предыдущем случае (ср. рис. 2 и верхние изображения рис. 3).

Письма в ЖЭТФ том 113 вып. 9-10 2021

²⁾Это приближение использовано здесь для оценки требуемых для фокусировки параметров и в компьютерном моделировании не использовалось.

³⁾Условию (10) удовлетворяет также корень с + перед корнем, но он соответствует большей размытости фантомного изображения. В самом деле, во-первых, меньшее расстояние от кристалла до перетяжки означает меньший диаметр пучка и, следовательно, большее дифракционное размытие. Вовторых, в этой области при изменении z кривизна волнового фронта накачки изменяется быстрее, в силу чего условие (10) нарушается на границах кристалла ненулевой толщины в большей степени.

Рис. 3. Моделирование формирования квантовых фантомных изображений точечного источника и оптических мир согласно формуле (15) при виде накачки (9). Размер изображений 6×6 мм. Расстояния между щелями мир 0.02, 0.03, 0.04, 0.05 мм (25, 16.7, 12.5 и 10 штрихов на миллиметр). В левом столбце распределения прозрачностей объектов $T(\cdot)$, в правом – корреляционные функции $G(\cdot)$

Компьютерное моделирование процесса показывает, что качество фантомного изображения при замене объектива в восстанавливающем канале на фокусировку накачки не страдает, а в случае симметричного расположения объекта и изображения достигается и устранение интегральной дефокусировки [19] за счет параллельного хода лучей в кристалле. Итак, фокусировкой накачки мы достигаем упрощение схемы регистрации и ликвидируем уже не один, а два объектива.

Кроме того, симметрия оптической системы обеспечивает автоматическое устранение нечетных аберраций – комы, особенно губительно сказывающейся на качестве изображения, и дисторсии.

Если же теперь управлять пространственной фазовой структурой накачки, то адаптивной окажется и оптическая сила системы в целом. Если просто изменять кривизну фазового фронта накачки, то можно подбирать оптимальные условия формирования фантомного изображения, не прибегая к механическим перемещениям элементов схемы. Наличие же динамического фазового экрана с отрицательной обратной связью позволит компенсировать фазовые неоднородности в оптических каналах. Все это создает новые возможности повышения информативности исследований, связанных с регистрацией фантомных изображений.

- 1. М. А. Воронцов, В. И. Шмальгаузен, *Принципы адалтивной оптики*, Наука, М. (1985).
- М. А. Воронцов, А. В. Корябин, В. И. Шмальгаузен, Управляемые оптические системы, Наука, М. (1988).
- 3. С.А. Ахманов, Н.Н. Ахмедиев, А.В. Белинский, М.А. Воронцов, Н.И. Желудев, В.Ю. Иванов, А.С. Михайлов, Н.Н. Розанов, В.В. Самарцев, А.С. Чиркин, Л.П. Ярославский, Новые принципы оптической обработки информации, под ред. С.А. Ахманова, М.А. Воронцова, Наука, М. (1990).
- А. В. Белинский, Д. Н. Клышко, ЖЭТФ 105(3), 487 (1994) [A. V. Belinskii and D. N. Klyshko, JETP 78, 259 (1994)].
- А. Гатти, Э. Брамбилла, М. Баке, Л.А. Луджиато, Фантомные изображения, в кн. Квантовое изображение, под ред. М.И. Колобова (ориг.), А.С. Чиркина (пер.), Физматлит, М. (2009) [А. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, *Ghost imaging*, in *Quantum Imaging*, ed. by M. I. Kolobov, Springer (2007)].
- M. G. Basset, F. Setzpfandt, F. Steinlechner, E. Beckert, T. Pertsch, and M. Gräfe, Laser Photonics Rev. 13(10), 1970042 (2019); doi: 10.1002/lpor.201970042.
- J. H. Shapiro and R. W. Boyd, Quantum Inf. Process. 11(4), 949(2012); doi: 10.1007/s11128-011-0356-5.
- B. I. Erkman and J. H. Shapiro, Adv. Opt. Photon. 2(4), 405(2010); doi: 10.1364/aop.2.000405.
- D. Duan, Sh. Du, and Yu. Xia, Phys. Rev. A 88(5), 053842 (2013); doi: 10.1103/physreva.88.053842.
- D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, Phys. Rev. A 92(1), 013823(2015); doi: 10.1103/physreva.92.013823.
- A.S. Chirkin, P.P. Gostev, D.P. Agapov, and S.A. Magnitskiy, Laser Phys. Lett. **15**(11), 115404 (2018); doi: 10.1088/1612-202x/aae4a6.
- А.С. Чиркин, Письма в ЖЭТФ 102(6), 444 (2015)
 [A.S. Chirkin, JETP Lett. 102(6), 404 (2015); doi: 10.1134/S0021364015180046].
- Е. Д. Лопаева, М. В. Чехова, Письма в ЖЭТФ 91(9), 493 (2010) [Е. D. Lopaeva and M. V. Chekhova, JETP Lett. 91, 447 (2010)]; doi: 10.1134/S0021364010090031.
- 14. А.С. Чиркин, Письма в ЖЭТФ 103(4), 309 (2016);
 [A.S. Chirkin, JETP Lett. 103(4), 282 (2015)];
 doi: 10.1134/S0021364016040032.
- В.Д. Султанов, К.А. Кузнецов, А.А. Леонтьев, Г.Х. Китаева, Письма в ЖЭТФ 112(5), 297 (2020); doi: 10.31857/S1234567820170024 [V.D. Sultanov, К.А. Kuznetsov, А.А. Leontyev, and G.Kh. Kitaeva, JETP Lett. 112(5), 269 (2020); doi: 10.1134/S0021364020170099].

- К. Г. Катамадзе, А.В. Патерова, Е.Г. Якимова, К.А. Балыгин, С.П. Кулик, Письма в ЖЭТФ 94(4), 284 (2011) [К.G. Katamadze, A.V. Paterova, E.G. Yakimova, K.A. Balygin, and S.P. Kulik, JETP Lett. 94(4), 262 (2011); doi: 10.1134/S0021364011160089].
- 17. Д.А. Балакин, А.В. Белинский, ЖЭТФ **159**(6) (2021), принята к печати.
- 18. А.Н. Матвеев, *Оптика*, Высшая школа, М. (1985) [A.N. Matveev, *Optics*, Mir Publishers, Moscow (1988)].
- А. В. Белинский, Квантовая электроника **50**(10), 951 (2020) [A. V. Belinsky, Quantum Electronics **50**(10), 951 (2020); doi: 10.1070/qel17330].
- 20. Ю.А. Ананьев, Оптические резонаторы и лазерные пучки, Наука, М. (1990).
- А. А. Комар, Д. Н. Нешев, А. Е. Мирошниченко, Письма в ЖЭТФ **106**(11), 677 (2017); doi: 10.7868/S0370274X17230047 [A. A. Komar, D. N. Neshev, and A. E. Miroshnichenko, JETP Lett. **106**(4), 709 (2017); doi: 10.1134/S0021364017230084].

Роль приповерхностной области объема подложки в двумерном фазовом переходе, приводящем к росту однослойного графена: система Pt-C

Е.В.Рутьков¹⁾, Н.Р.Галль

Физико-технический институт им. А. Ф. Иоффе РАН, 194021 С.-Петербург, Россия

Поступила в редакцию 10 марта 2021 г. После переработки 30 марта 2021 г. Принята к публикации 1 апреля 2021 г.

Предложен и экспериментально проверен новый подход к росту и разрушению графена за счет двумерного фазового перехода 1-го рода типа конденсации на металлах, растворяющих углерод. Показано, что этот процесс невозможно корректно описать, учитывая только собственно поверхностные фазы: графен и хемосорбированный углерод, как это было предложено ранее для иридия – единственного металла, не растворяющего атомы С в объеме. Однако описание становится корректным, если учитывать как атомы углерода на поверхности, так и атомы С, растворенные в объеме металла и находящиеся с поверхностным углеродом в состоянии равновесия. На примере системы "графен–Pt (111)" показана тесная взаимозависимость критической концентрации углерода на поверхности $N_{s cr}$ и в объеме $N_{b cr}$ при фазовом переходе с образованием островков графена. Впервые определены зависимости $N_{s cr}$ и $N_{b cr}$ в широкой области температур; например, при $T = 1770 \text{ K } N_{s cr} = 3.0 \cdot 10^{13} \text{ см}^{-2}$, а $N_{b cr} = 3.5 \cdot 10^{19} \text{ см}^{-3}$.

DOI: 10.31857/S1234567821090056

Процессы на поверхности конденсированных сред играют огромную роль в физической химии, материаловедении и физике твердого тела, так как только через поверхность тела контактируют друг с другом и с окружающей средой. Именно свойства поверхности и тонкого приповерхностного слоя определяют процессы роста и разрушения кристаллов, адсорбционные и адгезионные свойства, коррозионную стойкость и способность к катализу [1, 2]. Особую важность поверхность имеет в наноразмерных системах и в отношении свойств сверхчистых материалов, при росте островков на поверхности [3, 4].

Система металл-углерод интенсивно изучается мировым сообществом с целью создания качественных графеновых пленок, в первую очередь большой площади и на технологически доступных подложках [5–8]. Кроме того, в последнее время активно изучаются процессы интеркалирования графена на металле различными атомами и молекулами с целью управления электрофизическими свойствами создаваемого сэндвича [9–12].

В то же время нет полной ясности с тем, как именно протекает фазовый переход, приводящий к образованию графена на поверхности металлов. Этот двумерный фазовый переход типа конденсаДля других металлов, растворяющих в объеме углерод, в отличие от иридия, физическая картина фазового перехода понята недостаточно, несмотря на интенсивное изучение [14–19]. Определение $N_{s\,cr}(T)$ затрудняется прежде всего тем фактом, что атомы углерода активно растворяются в объеме нагретого металла. В работах [13–15], посвященных физике фазового перехода, предполагалось, что только углерод, располагающийся на поверхности в виде хемосорбированного слоя, участвует в создании потока атомов С на края графеновых островков.

ции в хемосорбированном на поверхности углеродном слое был открыт в работе [12] для системы Ir (111)-углерод и затем подробно изучен [13]. Стабильность графенового островка на металле определяется равновесием потоков атомов С из хемосорбированной фазы на края островков и обратно, с краев графеновых островков в хемосорбированную фазу. В этих процессах ключевую роль играют два фактора: критическая концентрация углерода в хемосорбированной фазе и суммарный периметр островков [14]. Впервые критическая концентрация углерода на поверхности N_{s cr} определена в системе Ir-углерод [13]. Атомы углерода практически не растворяются в объеме иридия даже при высоких температурах $T \approx 2200 \, {\rm K}$ [13], что сильно упрощает эксперимент и интерпретацию полученных результатов.

 $^{^{1)}{\}rm e\text{-mail:}}$ rutkov@ms.ioffe.ru

В настоящей работе использована Pt (111) для изучения двумерного фазового перехода, приводящего к росту или растворению графена. Для платины характерны низкая предельная растворимость углерода, низкая концентрация атомов С в поверхностной хемосорбированной фазе и высокая диффузионная подвижность [13] в сравнении с другими изученными ранее подложками (Rh, Re, Ni...). На первый взгляд кажется, что крайне низкая концентрация углерода на поверхности платины не позволит образовываться графеновым островкам, хотя в эксперименте такие островки наблюдаются даже при очень высоких $T\sim 1800\,{\rm K}.$ Целью настоящей работы является расширение физической картины фазового перехода и определение величины критического покрытия N_{s cr} с учетом роли растворенного в объеме углерода.

Экспериментальное определение критического покрытия $N_{s\,cr}$ для металлов, растворяющих углерод с образованием островков графена, – непростая задача, решение которой требует специальных методов диагностики поверхности и очень высокого уровня чистоты образцов.

Для исследования была выбрана платина, для которой нами ранее определена предельная растворимость $n_{\rm C}$ (ат. %) углерода. Для определения $n_{\rm C}$ использовали абсолютно калиброванный поток атомов углерода, что позволило с хорошей точностью определить температурную зависимость $n_{\rm C}(T)$ [13]. Критерием достижения $n_{\rm C}$ служил момент начала образования на поверхности новой фазы углерода – островков графена.

Экспериментальная техника подробно описана в работах [13, 19]. Отметим лишь главное: работы проводились в сверхвысоком вакууме ($p \approx 10^{-9}$ Topp), применялся метод электронной оже-спектроскопии (ЭОС) с призменным энергоанализатором, что позволило регистрировать оже-сигналы углерода непосредственно с нагретых вплоть до 1900 К платиновых образцов. Это имело принципиальное значение, так как сброс температуры до комнатной для регистрации сигнала приводил к совершенно иным концентрациям углерода на поверхности. В камере имелся специальный модуль, позволяющий измерять термоэлектронную эмиссию и поверхностную ионизацию – метод ТЭПИ [13, 20].

Зондирование поверхности потоком молекул CsCl позволяло не только фиксировать двумерный фазовый переход в углеродном слое, но и с хорошей точностью определять относительную площадь s_0 островков графена [13].

Образцами служили тонкие платиновые ленты размером 50×1 мм, толщиной 30 мкм, которые очищались многочасовым прогревом последовательно в атмосфере кислорода и сверхвысоком вакууме. Поверхность представлена гранью (111) с работой выхода $e\varphi = 5.0$ эВ и высоким уровнем ее однородности.

В данной работе первой задачей, которую необходимо было решить, это определение критического покрытия углеродом $N_{s\,cr}$ в фазе хемосорбированного "газа", при котором происходит фазовый переход и образуются островки графена. Для этого платина вначале насыщалась углеродом – для простоты эксперимента использовали выдержку образца в парах бензола, как это делалось во многих работах [13, 19]. Очистка привела к тому, что в объеме металла не было ни остаточного углерода, ни кислорода, и углероду неоткуда было туда попасть, кроме как в процессе науглероживания. Это позволяет считать систему замкнутой, а полное количество углерода в системе определяется временем экспозиции и давлением бензола.

На рисунке 1а показано изменение термоэлектронного тока I^- и относительной площади s_0 островков графена с изменением температуры образца. Предварительно платину насыщали углеродом при $T = 1770 \,\mathrm{K}$, затем температуру поднимали до $T=1850\,{\rm K}$ и затем понижали. В области $1850{-}1780\,{\rm K}$ термоэлектронная эмиссия уменьшается, работа выхода соответствует чистому металлу с $e\varphi = 5.0 \, \text{sB}$, метод ЭОС регистрирует крайне слабый сигнал углерода, соответствующий хемосорбированному углеродному "газу", поверхность однородна по работе выхода. При T = 1770 К фиксируется фазовый переход в слое углерода: резко растет термоэлектронная эмиссия (рис. 1а, кривая 1), а это значит, что образовались графеновые островки с работой выхода $e\varphi = 4.5 \, \text{эB}$ [19], что значительно меньше, чем у платины. Метод зондирования поверхности потоком молекулами CsCl также фиксирует образование графеновых островков небольшой площади (рис. 1а, кривая 2) – точность определения площади островков данным методом ~1% (рис. 1b). Дальнейшее понижение температуры приводит к росту островков по площади и при $T = 1730 \,\mathrm{K}$ на поверхности формируется сплошной однородный по работе выхода слой графена с $e\varphi = 4.5$ эВ. Данный опыт можно повторять многократно, все параметры хорошо воспроизводятся, потерь углерода не наблюдается. Сплошной слой графена на платине служил надежной калибровкой при использовании метода ЭОС, так как концентрация углерода в слое хорошо известна, N_{Cm} = $= 3.86 \cdot 10^{15} \,\mathrm{cm}^{-2}$ [13].

Рис. 1. (а) – Зависимость термоэлектронного тока I^- (1) и относительной площади s_0 (2) графеновых островков от температуры платины, науглероженной при T = 1770 К. Начальная точка T = 1850 К. (b) – Упрощенная физическая картина фазовых равновесий в системе Pt(111) – углерод: 1 – хемосорбированный углеродный "газ"; 2 – атомы углерода в первом приповерхностном слое; 3 – атомы углерода, растворенные в объеме металла; 4 – островки графена; 5 – краевой атом углерода в островке

Отметим важный момент – все точки на графиках рис. 1а равновесные. При $T > 1770 \,\mathrm{K}$ в равновесии находится хемосорбированный углеродный "газ" и атомы углерода, растворенные в объеме платины. При $T \leq 1770 \,\mathrm{K}$ равновесие более сложное: атомы углерода в островках, атомы углерода на поверхности и атомы углерода, растворенные в объеме металла – эти три фазы находятся в равновесии (рис. 1b). Отметим, что островки графена обмениваются атомами С с хемосорбированной фазой через края островков: "работает" периметр островков [13, 14, 19].

Метод ЭОС позволил непосредственно перед фазовым переходом определить концентрацию $N_{s\,cr}$ атомов углерода в фазе хемосорбированного "газа". Например, при $T = 1770 \,\mathrm{K} \, N_{s\,cr} = 3.0 \cdot 10^{13} \,\mathrm{cm}^{-2}$. Науглероживая платину при других высоких температурах, определяли новое значение $N_{s\,cr}$. На рисунке 2 сплошной линией представлена экспериментально измеренная зависимость $N_{s\,cr} = f(T)$ в области 1800–1900 К. К сожалению, при $T < 1770 \,\mathrm{K}$ поверх-

Рис. 2. Критическая концентрация $N_{s \text{ cr}}$ углерода на поверхности платины, соответствующая двумерному фазовому переходу с образованием островков графена, в зависимости от температуры образца: сплошная линия – эксперимент, пунктир – расчет

ностное покрытие углеродом становится столь малым, что уже не регистрируется методом ЭОС.

Воспользуемся математическим формализмом, развитым в работах [12, 13] для равновесных транспортных процессов с участием атомов углерода между поверхностью и объемом металла. В равновесии поток частиц ν_1 в объем металла с поверхности прежде всего определяется концентрацией N_s и энергией активации растворения E_{s1}, а поток из объема на поверхность ν_2 концентрацией углерода в первом приповерхностном слое N₁ и энергией активации выхода на поверхность E_{1s}. Зная размеры ленты и предельную растворимость n_C углерода в платине, несложно определить N_1 для фазового перехода при любой температуре. Например, при $T = 1770 \text{ K} N_1 = 4 \cdot 10^{11} \text{ cm}^{-2}$, a $N_s \approx 3 \cdot 10^{13} \text{ cm}^{-2}$. Разность в концентрации на два порядка связана с отличием энергий E_{s1} и E_{1s}. Если предположить близость предэкспоненциальных множителей, то из равенства потоков $\nu_1 = \nu_2$ можно найти $\Delta E = E_{s1} - E_{1s} = 0.7$ эВ [13]. Эта разность и определяет большое отличие поверхностной концентрации N_s от концентрации в приповерхностной области N_1 . Зная $\Delta E = 0.7$ эВ и зависимость $N_1(T)$, можно рассчитать критическую концентрацию углерода на поверхности при любой температуре – пунктирная линия на рис. 2. Данный результат типичен для систем металл-углерод.

Отметим, что поверхностная концентрация хемосорбированных атомов С на платине очень мала: меньше, чем на родии, рении или тем более иридии. Хемосорбированные атомы С при используемых температурах находятся в динамическом равновесии с атомами углерода, растворенными в объеме. Возникает закономерный вопрос: правильно ли мы оцениваем количество хемосорбированных атомов, создающих поток на край графенового островка, опираясь на электронно-спектроскопические измерения.

На наш взгляд, в равновесных условиях необходим учет роли атомов углерода, растворенных в приповерхностной области объема. Эти атомы не только создают "резервуар", компенсирующий убыль поверхностного хемосорбированного углерода, при его встраивании в графен, как предполагалось ранее [12– 14], но и участвуют в создании потока углерода на край островка.

Дело в том, что время жизни хемосорбированного атома С на поверхности платины мало $\tau = 10^{-13} \exp(E_{s1}/kT) \approx 10^{-6}$ с для $T = 1770 \,\mathrm{K}$ [13, 19] – он успевает совершить малое количество диффузионных скачков по поверхности и снова уходит в объем. Это означает, что мгновенная концентрация хемосорбированных атомов вблиостровка, которые создают поток углерода зи на его край, выше, чем средняя концентрация по поверхности, фиксируемая методом электронной спектроскопии. Атомы С, располагающиеся в приповерхностной области объема, тоже участвуют в фазовом переходе, но они "невидимы" для поверхностно-чувствительных методов, в частности оже-спектроскопии.

Вклад растворенных атомов С в поток на края островков определяется скоростью их диффузионной доставки из объема образца. Действительно, для $T = 1770 \,\mathrm{K}$ время жизни адатома углерода на краю островка $\tau = 10^{-13} \exp(E_{\rm det}/kT) \approx 10^{-4} \,\mathrm{c}$ [19]. За это время атом углерода за счет диффузии сумеет выйти на поверхность из глубины $x = (2D_0 \exp(-E_{\rm M}/kT) \cdot \tau)^{1/2}$ [21, 22]. Если использовать величины, типичные для систем платиновые металлы-углерод $D_0 \approx 10^{-2} \,\mathrm{cm}^{-2} \cdot \mathrm{c}^{-1}$, $E_{\rm M} \approx 1.5 \,\mathrm{sB}$ [22], то $x \approx 10^{-5} \,\mathrm{cm}$ при $T = 1770 \,\mathrm{K}$ (рис. 1b).

Зная предельную растворимость углерода в платине, нетрудно подсчитать, что за время жизни краевого атома углерода в островке графена при $T = 1770 \,\mathrm{K}$ продиффундируют на $1 \,\mathrm{cm}^2$ поверхности из объема атомы углерода в количестве $N \approx$ $\approx 3 \cdot 10^{14} \,\mathrm{cm}^{-2}$, т.е. существенно больше их количества в хемосорбированной фазе, наблюдаемой экспериментально. Эти оценки показывают, что в обменных процессах с краевыми атомами углерода в островках графена участвуют атомы, растворенные в объеме металла через фазу хемосорбированного на поверхности углерода. В какой-то мере можно сказать, что в равновесии находятся две фазы углерода: атомы углерода на краях островков (фаза двумерных островков) и отдельные атомы углерода (углеродный "газ"), которые могут находиться как на поверхности, так и в объеме металла.

На рисунке 3 представлена зависимость $N_{b\,cr}$ концентрации атомов углерода в объеме образца от тем-

Рис. 3. Температурная зависимость критической концентрации углерода в объеме платины $N_{b\,cr}$, при которой на поверхности платины образуются островки графена

пературы, соответствующая двумерному фазовому переходу с образованием графеновых островков в пересчете на $1 \,\mathrm{cm}^3$ объема подложки с учетом известной величины $n_{\mathrm{C}}(T)$.

Интересно отметить, что развитые представления показывают, что при уменьшении толщины ленты можно прийти к размерным эффектам, при которых физические условия фазового перехода будут меняться с толщиной ленты. Эти условия возникнут, если толщина образца сравняется или станет меньше диффузионной длины для растворенных атомов С за среднее время жизни углеродного атома на краю графенового островка. Ориентировочно, эта критическая величина составит порядка 100–200 нм при T = 1700-1800 К.

Таким образом, показано, что образование графеновых островков на металлах возможно не только за счет хемосорбированных атомов С (как на иридии), но и за счет растворенных атомов, также дающих вклад в поток углерода, приходящий на периметр островков, что позволяет им существовать даже при очень высоких температурах. Важными являются два тесно связанных между собой параметра: критическое покрытие $N_{s\,cr}$ [см⁻²] фазы хемосорбированного углерода и критическая концентрация углерода растворенного в объеме металла $N_{b\,cr}$ [см⁻³] на глубине порядка диффузионной длины при данной T за время жизни атомов С на краю графенового островка. Эта модель, видимо, применима для всех металлов, растворяющих углерод в объеме, на поверхности которых возможно образование графена, хотя относительный вклад хемосорбированного и растворенного углерода может быть различен.

- 1. Г. Г. Владимиров, Физика поверхности твердых тел, Лань, С.-Петербург–Москва–Краснодар (2016).
- I. Badge, A. Y. Stark, E. L. Paoloni, P. H. Niewiarowski, and A. Dhinojwala, Sci. Rep. 4, 6643 (2014).
- A. Chandrasekaran, R. W. E. van de Kruijs, J. M. Sturm, A. A. Zameshin, and F. Bijkerk, ACS Appl. Mater. Interfaces 11, 46311 (2019).
- V.G. Dubrovskii, Y. Berdnikov, D.A. Olyanich, V.V. Mararov, T.V. Utas, A.V. Zotov, and A.A. Saranin, Appl. Surf. Sci. 407, 117 (2017).
- 5. А.К. Гейм, УФН **81**, 1284 (2011).
- 6. А.К. Гейм, УФН **81**, 1299 (2011).
- А.Б. Логинов, И.В. Божьев, С.Н. Бокова-Сирош, Е.Д. Образцова, Р.Р. Исмагилов, Б.А. Логинов, А.Н. Образцов, ЖТФ 11, 1756 (2019).
- Y. Wang, F. Qing, Y. Jia, Y. Duan, C. Shen, Y. Hou, Y. Niu, H. Shi, and X. Li, Chemical Engineering Journal 405, 127014 (2021).
- Н. Р. Галль, Е. В. Рутьков, А. Я. Тонтегоде, Ю. Н. Царев, Письма в ЖЭТФ 71, 671 (2000).
- Н. Р. Галль, Е. В. Рутьков, А. Я. Тонтегоде, Письма в ЖЭТФ 75, 28 (2002).

- L. Meng, R. Wu, H. Zhou, G. Li, Y. Zhang, L. Li, Y. Wang, and H.-J. Gao, Appl. Phys. Lett. **100**, 083101 (2012).
- 12. A.Ya. Tontegode, Prog. Surf. Sci. 38, 201 (1991).
- E. V. Rut'kov and N. R. Gall, *Physics and Applications of Graphene Experiments*, ed. by S. Mikhailov, In Tech, Rijeka, Croatia (2011).
- Е. В. Рутьков, Н. Р. Галль, Письма в ЖЭТФ 110, 683 (2019).
- Е. В. Рутьков, Е. Ю. Афанасьева, Н. Р. Галль, ФТП 54, 552 (2020).
- А. М. Шикин, Формирование, электронная структура и свойства низкоразмерных структур на основе металлов, ВВМ, С.-Петербург (2011).
- Y. Zhou, D.S. Fox, P. Maguire, R. O'Connell, R. Masters, C. Rodenburg, H. Wu, M. Dapor, Y. Chen, and H. Zhang, Sci. Rep. 6, 21045 (2016).
- Н. Р. Галль, Е. В. Рутьков, А. Я. Тонтегоде, Письма в ЖЭТФ 73, 756 (2001).
- Н. Р. Галль, Е. В. Рутьков, Графен и графит на поверхности твердых тел, изд-во Политехнического университета, С.-Петербург (2013).
- Э. Я. Зандберг, Н. И. Ионов, Поверхностная ионизация, Наука, М. (1969).
- M. W. Roberts and C.S. McKee, *Chemistry of the metal-gas interface*, Clarendon Press, Oxford, Oxford University Press, N.Y. (1978).
- Е. Фромм, Е. Гебхардт, Газы и углерод в металлах, Металлургия, М. (1980) [E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen, Springer Verlag, Berlin-Heidelberg-N.Y. (1976)].

Температура сверхпроводящего перехода для очень сильной связи в антиадиабатическом пределе уравнений Элиашберга

М. В. Садовский¹⁾

Институт электрофизики Уральского отделения РАН, 620016 Екатеринбург, Россия

Поступила в редакцию 31 марта 2021 г. После переработки 31 марта 2021 г. Принята к публикации 31 марта 2021 г.

Показано, что известное асимптотическое ограничение Аллена–Дайнса для температуры сверхпроводящего перехода в области очень сильной связи $T_c > \frac{1}{2\pi}\sqrt{\lambda}\Omega_0$ (где $\lambda \gg 1$ – константа электронфононной связи Элиашберга–МакМиллана, а Ω_0 – характерная частота фононов) в антиабатическом пределе уравнений Элиашберга $\Omega_0/D \gg 1$ ($D \sim E_F$ – полуширина зоны проводимости, E_F – энергия Ферми) заменяется на $T_c > (2\pi^4)^{-1/3} (\lambda D \Omega_0^2)^{1/3}$, причем для T_c возникает ограничение сверху вида $T_c < \frac{2}{\pi^2} \lambda D$.

DOI: 10.31857/S1234567821090068

1. Введение. Открытие сверхпроводимости [1] с критической температурой, достигавше
й $T_c=203\,{\rm K}$ в интервале давлений 100-250 ГПа (в алмазных наковальнях), в системе Н₃S вызвало поток работ по экспериментальному изучению высокотемпературной сверхпроводимости гидридов в области мегабарных давлений (см. обзоры [2, 3]). Теоретический анализ немедленно подтвердил, что эти рекордные значения Т_с обеспечиваются традиционным электрон-фононным взаимодействием в пределе достаточно сильной электрон-фононной связи [4, 5]. Более того, подробные расчеты для целого ряда гидридов переходных металлов под давлением [4] привели к предсказанию достаточно большого числа таких систем с рекордными значениями Т_с. В ряде случаев эти предсказания получили блестящее подтверждение, в частности были экспериментально достигнуты рекордные значения $T_c = 160-260\,\mathrm{K}$ в системах LaH_{10} [6, 7], ThH₁₀ [8], YH₆ [9], (La,Y)H₆₋₁₀ [10]. Haконец, совсем недавно был перейден новый психологический рубеж, когда в работе [11] была получена сверхпроводимость с $T_c = 287.7 \pm 1.2 \, {\rm K}$ (т.е. около +15 градусов Цельсия) в системе С-Н-Ѕ при давлени
и $267 \pm 10 \Gamma \Pi a.$

Принципиальное значение этих работ состоит, прежде всего, в том, что они ярко продемонстрировали отсутствие существенных ограничений для T_c , в рамках электрон-фононного механизма куперовского спаривания, где традиционно считалось, что T_c не может превышать 30–40 К. Соответственно, стал еще

более актуальным вопрос о верхней границе значений T_c , которая может быть достигнута за счет этого механизма спаривания.

Со времени появления теории БКШ стало очевидным, что повышение T_c в сверхпроводниках может быть достигнуто повышением частоты фононов, ответственных за куперовское спаривание, а также увеличением эффективного взаимодействия этих фононов с электронами. Эти вопросы неоднократно исследовались разными авторами. Наиболее развитым подходом к описанию сверхпроводимости в системе электронов и фононов остается теория Элиашберга-МакМиллана [5, 12, 13]. Хорошо известно, что эта теория целиком основана на применимости адиабатического приближения и теореме Мигдала [14], позволяющей пренебречь вершинными поправками при расчетах эффектов электронфононного взаимодействия в типичных металлах. Реальный параметр малости теории возмущений при этом имеет вид $\lambda \frac{\Omega_0}{E_F} \ll 1$, где λ – безразмерная константа электрон-фононного взаимодействия, Ω_0 – характерная частота фононов, а E_F – энергия Ферми электронов. В частности, это ведет к выводу о том, что вершинными поправками в этой теории можно пренебречь даже при $\lambda > 1$, благодаря выполнению неравенства $\frac{\Omega_0}{E_F} \ll 1$, характерного для типичных металлов.

В недавних работах [15–17] нами было показано, что в условиях сильной неадиабатичности, когда $\Omega_0 \gg E_F$, в теории возникает новый параметр малости $\lambda_D \sim \lambda \frac{E_F}{\Omega_0} \sim \lambda \frac{D}{\Omega_0} \ll 1$ (D – полуширина электронной зоны), так что поправки к электронному

 $^{^{1)}{\}rm e\text{-}mail:}$ sadovski@iep.uran.ru

спектру становятся несущественными. Вершинными поправками при этом также можно пренебречь, как это было показано ранее в работе [18]. В общем случае, перенормировка электронного спектра (эффективной массы электрона) определяется новой безразмерной константой $\tilde{\lambda}$, которая переходит в обычную λ в адиабатическом пределе, а в сильном антиадиабатическом пределе стремится к λ_D . В то же время, температура сверхпроводящего перехода T_c и в антиадиабатическом пределе определяется спаривательной константой связи Элиашберга–МакМиллана λ , обобщенной с учетом конечности частоты фононов.

Для случая взаимодействия с одним оптическим (эйнштейновским) фононом в работе [15] была получена единая формула для T_c , справедливая как в адиабатическом, так и в антиадиабатическом режимах и имеющая интерполяционный характер в промежуточной области:

$$T_c \sim \frac{D}{1 + \frac{D}{\Omega_0}} \exp\left(-\frac{1 + \tilde{\lambda}}{\lambda}\right),$$
 (1)

где $\tilde{\lambda} = \lambda \frac{D}{\Omega_0 + D}$ плавно изменяется от значения λ при $\Omega_0 \ll D \sim E_F$ к λ_D в пределе $\Omega_0 \gg D \sim E_F$.

Помимо вопросов о возможных пределах T_c в гидридах, где возможно существование небольших "карманов" поверхности Ферми с малыми значениями энергии Ферми [5], интерес к проблеме сверхпрововдимости в сильном антиадиабатическом пределе стимулируется открытием ряда других сверхпроводников, где адиабатическое приближение не может считаться выполненным, а характерные частоты фононов порядка или даже превышают энергию Ферми электронов. Весьма характерными в этом смысле являются интеркалированные системы с монослоями FeSe, а также монослои FeSe на подложках типа Sr(Ba)TiO₃ (FeSe/STO) [19]. Впервые на неадиабатический характер сверхпроводимости, в применении к FeSe/STO, обратил внимание Горьков [20, 21] при обсуждении идеи о возможном механизме повышения температуры сверхпроводящего перехода T_c в системе FeSe/STO за счет взаимодействия с высокоэнергетическими оптическими фононами в SrTiO₃ [19]. Аналогичная ситуация возникает и в старой задаче о сверхпроводимости в легированном SrTiO₃ [22].

2. Ограничения на температуру сверхпроводящего перехода в случае очень сильной электрон-фононной связи. Общие уравнения теории Элиашберга–МакМиллана в мацубаровском представлении, определяющие сверхпроводящую щель $\Delta(\omega_n)$, имеют вид ($\omega_n = (2n+1)\pi T$) [5, 12, 13]:

$$\Delta(\omega_n)Z(\omega_n) = T \sum_{n'} \int_{-D}^{D} d\xi \int_0^{\infty} d\omega \alpha^2(\omega)F(\omega) \times D(\omega_n - \omega_{n'};\omega) \frac{\Delta(\omega'_n)}{\omega_n^{2'_n} + \xi^2 + \Delta^2(\omega_{n'})},$$
(2)

$$Z(\omega_n) = 1 + \frac{\pi T}{\omega_n} \sum_{n'} \int_{-D}^{D} d\xi \int_0^{\infty} d\omega \alpha^2(\omega) F(\omega) \times \\ \times D(\omega_n - \omega_{n'}; \omega) \frac{\omega'_n}{\omega^{2'_n} + \xi^2 + \Delta^2(\omega_{n'})},$$
(3)

где ввели

$$D(\omega_n - \omega_{n'}; \omega) = \frac{2\omega}{(\omega_n - \omega_{n'})^2 + \omega^2}.$$
 (4)

Здесь $\alpha^2(\omega)F(\omega)$ – функция МакМиллана, $F(\omega)$ – плотность состояний фононов, и для простоты мы предполагаем модель полузаполненной электронной зоны конечной ширины 2D ($D \sim E_F$) с постоянной плотностью состояний (двумерие).

При этом мы также пренебрегли эффектами кулоновского отталкивания, ведущими к появлению кулоновского псевдопотенциала μ^* , который обычно мал и достаточно несуществен в области очень сильного электрон-фононного притяжения [5, 12, 13].

Тогда, с учетом:

$$\int_{-D}^{D} d\xi \frac{1}{\omega_{n'}^{2} + \xi^{2} + \Delta^{2}(\omega_{n'})} = \frac{2}{\sqrt{\omega_{n'}^{2} + \Delta^{2}(\omega_{n'})}} \operatorname{arctg} \frac{D}{\sqrt{\omega_{n'}^{2} + \Delta^{2}(\omega_{n'})}} \rightarrow \frac{2}{|\omega_{n'}|} \operatorname{arctg} \frac{D}{|\omega_{n'}|} \operatorname{при} \Delta(\omega_{n'}) \rightarrow 0$$
(5)

линеаризованные уравнения Элиашберга приобретают следующий общий вид:

$$\Delta(\omega_n)Z(\omega_n) = T \sum_{n'} \int_0^\infty d\omega \alpha^2(\omega)F(\omega) \times D(\omega_n - \omega_{n'};\omega) \frac{2\Delta(\omega_{n'})}{|\omega_{n'}|} \operatorname{arctg} \frac{D}{|\omega_{n'}|},$$
(6)

$$Z(\omega_n) = 1 + \frac{T}{\omega_n} \sum_{n'} \int_0^\infty d\omega \alpha^2(\omega) F(\omega) \times D(\omega_n - \omega_{n'}; \omega) \frac{\omega_{n'}}{|\omega_{n'}|} 2 \operatorname{arctg} \frac{D}{|\omega_{n'}|}.$$
 (7)

Рассмотрим уравнение для n = 0, определяющее $\Delta(0) \equiv \Delta(\pi T) = \Delta(-\pi T)$, непосредственно вытекающее из (6), (7):

$$\Delta(0) = T \sum_{n' \neq 0} \int_0^\infty d\omega \alpha^2(\omega) F(\omega) \frac{2\omega}{(\pi T - \omega_{n'})^2 + \omega^2} \times \frac{2\Delta(\omega_{n'})}{|\omega_{n'}|} \operatorname{arctg} \frac{D}{|\omega_{n'}|}.$$
(8)

Оставляя справа только вклад от n' = -1, немедленно получаем *неравенство*:

$$1 > \frac{2}{\pi} \int_0^\infty d\omega \alpha^2(\omega) F(\omega) \frac{2\omega}{(2\pi T)^2 + \omega^2} \operatorname{arctg} \frac{D}{\pi T}, \quad (9)$$

обобщающее аналогичное неравенство, впервые полученное в работе Аллене и Дайнса [23] и определяющее нижснюю границу для T_c . В эйнштейновской модели фононного спектра имеем $F(\omega) = \delta(\omega - \Omega_0)$, так что (9) сводится к

$$1 > \frac{2}{\pi} \lambda \arctan \frac{D}{\pi T} \frac{\Omega_0^2}{(2\pi T)^2 + \Omega_0^2},$$
 (10)

где $\lambda = 2\alpha^2(\Omega_0)/\Omega_0$ – безразмерная спаривательная константа связи. При $D \gg \pi T$ отсюда немедленно следует результат Аллена–Дайнса [23]:

$$T_c > \frac{1}{2\pi} \sqrt{\lambda - 1} \Omega_0 \to 0.16 \sqrt{\lambda} \Omega_0$$
 при $\lambda \gg 1$, (11)

который фактически определяет асимптотику T_c в области очень сильной связи $\lambda \gg 1$. Точное численное решение уравнений Элиашберга [23] дает для T_c результат типа (11) с заменой численного коэффициента 0.16 на 0.18. При этом данная асимптотика очень неплохо аппроксимирует значения T_c уже в области $\lambda > 2$.

В случае фононного спектра общего вида здесь достаточно провести простую замену $\Omega_0 \to \langle \Omega^2 \rangle^{1/2}$, где

$$\langle \Omega^2 \rangle = \frac{2}{\lambda} \int_0^\infty d\omega \alpha^2(\omega) F(\omega) \omega \tag{12}$$

 средний по спектру квадрат частоты фононов, а общее выражение для спаривательной константы связи имеет вид [5, 12, 13]:

$$\lambda = 2 \int_0^\infty \frac{d\omega}{\omega} \alpha^2(\omega) F(\omega). \tag{13}$$

При $D \ll \pi T$ из (10) имеем

$$T > \frac{1}{2\pi} \sqrt{\lambda^*(T) - 1} \Omega_0, \tag{14}$$

где

$$\lambda^*(T) = \frac{2D}{\pi^2 T} \lambda, \tag{15}$$

так что в сильном антиадиабатическом пределе получаем:

$$T_c > (2\pi^4)^{-1/3} (\lambda D\Omega_0^2)^{1/3} \approx 0.17 (\lambda D\Omega_0^2)^{1/3}.$$
 (16)

Из очевидного требования $\lambda^*(T)>0$ возникает условие:

$$T_c < \frac{2}{\pi^2} \lambda D, \tag{17}$$

ограничивающее значения T_c сверху.

Таким образом, должно выполняться неравенство:

$$(2\pi^4)^{-1/3} (\lambda D\Omega_0^2)^{1/3} < T_c < \frac{2}{\pi^2} \lambda D, \qquad (18)$$

что сводится к требованию:

$$\Omega_0 < \frac{4}{\pi} \lambda D \approx 1.27 \lambda D$$
 или $\frac{D}{\Omega_0} > \frac{0.78}{\lambda},$ (19)

так что для самосогласованности нашего рассмотрения фактически требуется выполнение условия:

$$\lambda \gg \frac{\Omega_0}{D} \gg 1. \tag{20}$$

где последнее неравенство соответствует пределу сильной антиадиабатики. Соответственно, все приведенные выше оценки заведомо не работают при $\lambda \sim 1$ и могут описывать только предел очень сильной связи.

На рисунках 1 и 2 приведены результаты численного сравнения границ для T_c , следующих из (10) со значениями температуры перехода в области слабой

Рис. 1. (Цветной онлайн) Температура сверхпроводящего перехода в эйнштейновской модели фононного спектра в единицах $2\pi T_c/\Omega_0$, как функция спаривательной константы λ для разных значений обратного параметра адиабатичности $\frac{D}{\Omega_0}$. Пунктиром показаны соответствующие зависимости для $2\pi T_c/\Omega_0$ в области слабой и промежуточной связи (1) [15]. Черный пунктир – оценка Аллена–Дайнса, справедливая в адиабатическом пределе [23]

и промежуточной связи, следующими из (1), для различных значений параметра адиабатичности Ω_0/D . Ясно, что в окрестности пересечения пунктирных и сплошных линий на этих графиках происходит плавный кроссовер от поведения T_c в области слабой и промежуточной связи к ее асимптотике в области очень сильной связи $\lambda \gg 1$. Видно также, что повышение частоты фононов и переход к антиадиабатическому пределу не ведут, вообще говоря, к повышению T_c по сравнению с адиабатическим случаем.

Рис. 2. (Цветной онлайн) Температура сверхпроводящего перехода в эйнштейновской модели фононного спектра в единицах $2\pi T_c/D$, как функция спаривательной константы λ для разных значений параметра адиабатичности $\frac{\Omega_0}{D}$. Пунктиром показаны соответствующие зависимости для $2\pi T_c/D$ в области слабой и промежуточной связи (1) [15]. Горизонтальная пунктирная – предельное поведение $\frac{2}{\pi^2}\lambda D$

3. Заключение. В данной работе мы рассмотрели очень сильную электрон-фононную связь в теории Элиашберга-МакМиллана, в том числе в антиадиабатической ситуации, когда в системе имеются фононы с достаточно большой частотой (превышающей энергию Ферми E_F). Величина перенормировки массы, в общем случае, определяется константой связи λ [15], которая мала в антиадиабатическом пределе. В то же время величина спаривательного взаимодействия всегда определяется стандартной константой связи λ теории Элиашберга–МакМиллана, соответствующим образом обобщенной с учетом конечности частоты фононов [15]. Однако простейшие оценки [15, 17] показывают, что в антиадиабатической ситуации и эта константа, вообще говоря, достаточно быстро убывает с ростом частоты фононов Ω_0 при $\Omega_0 \gg E_F$. В этом смысле, рассмотренная выше асимптотика T_c в области очень сильной связи может быть достигнута только в исключительных случаях. При этом, как ясно из наших результатов, сам по себе переход в область антиадиабатики не может привести к повышению T_c по сравнению со стандартным адиабатическим случаем.

При всей наглядности и удобстве выражений для T_c через спаривательную константу λ и характерную частоту фононов $\Omega_0 \sim \langle \Omega^2 \rangle^{1/2}$ следует иметь в виду, что эти параметры не являются, вообще говоря, независимыми. Фактически, как это видно из выражений типа (12), (13), они определяются одной и той же функцией Элиашберга–МакМиллана $\alpha^2(\omega)F(\omega)$. Соответственно возникают ограничения на свободное изменение этих параметров при оценках оптимальных (максимальных) значений T_c .

Автор признателен Э.З. Кучинскому за обсуждения и помощь с численными расчетами.

Работа выполнена при частичной поддержке гранта Российского фонда фундаментальных исследований # 20-02-00011.

- A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, and S.I. Shylin, Nature 525, 73 (2015).
- 2. М.И. Еремец, А.П. Дроздов, УФН 186, 1257 (2016).
- C. J. Pickard, I. Errea, and M. I. Eremets, Annu. Rev. Condens. Matter Phys. 11, 57 (2020).
- H. Liu, I. I. Naumov, R. Hoffman, N. W. Ashcroft, and R. J. Hemley, PNAS **114**, 6990 (2018).
- L.P. Gor'kov and V.Z. Kresin, Rev. Mod. Phys. 90, 01001 (2018).
- A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature 569, 528 (2019).
- M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. **122**, 027001 (2019).
- D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V.Y. Fominski, A.V. Sadakov, O.A. Sobolevskiy, V.M. Pudalov, I.A. Troyan, and A. R. Oganov, Mater. Today 33, 36 (2020).
- I.A. Troyan, D.V. Semenok, A.G. Kvashnin et al. (Collaboration), ArXiv:1908.01534; Advanced Materials (2021); https://doi.org/10.1002/adma.202006832.
- D. V. Semenok, I.A. Troyan, A.G. Kvashnin et al. (Collaboration), Mater. Today (2021) (in press); ArXiv:2012.04787.
- E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, and R.P. Dias, Nature 586, 373 (2020).
- D. J. Scalapino, in *Superconductivity*, ed. by R. D. Parks, Marcel Dekker, NY (1969), p. 449.

- P.B. Allen and B. Mitrović, Solid State Physics, ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, NY (1982), v. 37, p. 1.
- 14. А.Б. Мигдал, ЖЭТФ **34**, 1438 (1958) [Sov. Phys. JETP **7**, 996 (1958)].
- М. В. Садовский, ЖЭТФ 155, 527 (2019) [JETP 128, 455 (2019)].
- М. В. Садовский, Письма ЖЭТФ 109, 165 (2019)
 [JETP Lett. 109, 166 (2019)].
- 17. M.V. Sadovskii, Journal of Superconductivity and Novel Magnetism **33**, 19 (2020).
- M. A. Ikeda, A. Ogasawara, and M. Sugihara, Phys. Lett. A 170, 319 (1992).
- 19. М.В. Садовский, УФН **186**, 1035 (2016) [Physics-Uspekhi **59**, 947 (2016)].
- 20. L.P. Gor'kov, Phys. Rev. B ${\bf 93},\,054517$ (2016).
- 21. L.P. Gor'kov, Phys. Rev. B ${\bf 93},\,060507$ (2016).
- 22. L.P. Gor'kov, PNAS **113**, 4646 (2016).
- 23. P.B. Allen and R.C. Dynes, Phys. Rev. 12, 905 (1975).

Влияние мощности излучения на модификацию осцилляций фототока в однобарьерных p-i-n GaAs/AlAs/GaAs гетероструктурах с InAs квантовыми точками

Е. Е. Вдовин¹⁾, Ю. Н. Ханин

Институт проблем технологии микроэлектроники и особо чистых материалов РАН, 142432 Черноголовка, Россия

Поступила в редакцию 10 марта 2021 г. После переработки 2 апреля 2021 г. Принята к публикации 3 апреля 2021 г.

Изучено влияние мощности падающего светового излучения на поведение квантовых осцилляций фототока в однобарьерных p-i-n GaAs/AlAs гетероструктурах с InAs квантовыми точками. Обнаружено резкое подавление начальных осцилляций с ростом мощности, обусловленное деструктивным влиянием случайных флуктуаций потенциала, порождаемых накоплением заряда на дырочных уровнях квантовых точек. Обнаружено критическое влияние рекомбинации в области сильнолегированого p-слоя на относительную величину осцилляций в диапазоне малых мощностей. При большой мощности обнаружена генерация тока аналогичная наблюдавшейся в n-i-n резонансно-туннельных структурах. Предложена новая качественная модель формирования осцилляций, включающая, как основной элемент, диффузионный транспорт фотовозбужденных электронов из p-слоя. Новая модель подтверждена также измерениями осцилляций при разных длинах волн.

DOI: 10.31857/S123456782109007X

Полупроводниковые p-i-n гетероструктуры широко используются в качестве детекторов излучения и имеют множество применений в оптоэлектронике. Поглощение света с энергией больше ширины запрещенной зоны в таких полупроводниковых структурах приводит к генерации электронно-дырочных пар. Пары, созданные в обедненной *i*-области или на расстоянии порядка длины диффузии от *i*-области вглубь легированных *n* и *p* слоев, разделяются электрическим полем и, в результате, во внешней цепи появляется ток. Величина фототока будет определяться дрейфовым током носителей, генерируемых в *i*-области, и диффузионными токами носителей, генерируемых за пределами *i*-области. Применение методов зонной инженерии позволило развить науку и технологию этого типа устройств. При использовании различных комбинаций потенциальных барьеров, квантовых ям (КЯ) и/или слоев квантовых точек (КТ), благодаря эффектам туннелирования и квантования движения носителей в области с собственной проводимостью (*i*-область) гетероструктуры, оказалась возможной тонкая настройка динамики захвата и рекомбинации электронов и дырок. Так InAs KT, выращенные *i*-области p-i-n гетероструктуры, могут быть эффективными ловушками для носителей, поскольку они могут иметь уровни

В работе [6] было исследовано влияние слоя InAs КТ в *i*-области p-i-n диода на спектры фотоотклика и показана эффективность такой гетеросистемы для создания чувствительных фотоприемников. Высокая чувствительность при этом была объяснена рекомбинацией фотогенерированных носителей через состояния КТ. Позднее в подобных однобарьерных GaAs/AlAs гетероструктурах (см. рис. 1) были обнаружены гигантские осцилляции фотока [7–9], которые проявлялись как множественные резонансоподобные особенности на вольт-амперных характе-

в запрещенной зоне полупроводника и служить центрами рекомбинации. Длина *i*-области также может служить параметром управления квантовой эффективностью и предельной частотой прибора, а туннельный барьер, помещенный в і-область, может значительно уменьшить темновой ток [1]. Например, p-i-n гетероструктуры с InAs KT были использованы как в качестве одиночных излучателей фотонов, так и как чувствительные фотоприемники [2–5], в которой один фотовозбужденный носитель локализованный в квантовой яме или на квантовой точке может производить значительные изменения в проводимости устройства. Таким образом поведение фотовозбужденных носителей в этом типе полупроводниковых гетероструктур имеет не только фундаментальный интерес, но и востребована в целом ряде разнообразных практических приложений.

 $^{^{1)}\}text{e-mail: vdov62@yandex.ru}$

ристиках (ВАХ). Амплитуда таких осцилляций при этом составляла порядка 20 % от средней величины фототока, хотя в p-i-n диодах с одиночным туннельным барьером априори невозможно предположить наличие каких-либо резонансов фототока. Эти осцилляции фототока были качественно интерпретированы в [7] как следствие модуляции темпа рекомбинации носителей в моменты совпадения уровней треугольной квантовой ямы, формирующейся в нелегированной прибарьерной *i*-области, с дном зоны проводимости высоколегированного *p*-слоя с изменением электрического поля.

В данной работе изучено влияние мощности падающего светового излучения на поведение квантовых осцилляций фототока в однобарьерных p-i-nGaAs/AlAs гетероструктурах с InAs KT. Обнаружено резкое подавление начальных осцилляций с ростом мощности, обусловленное деструктивным влиянием случайных флуктуаций потенциала, порождаемых накоплением заряда на дырочных уровнях КТ. Обнаружено критическое влияние рекомбинации в области сильнолегированого р-слоя на относительную величину осцилляций в диапазоне малых мощностей. При больших (в масштабе данного эксперимента) значениях мощности обнаружена генерация тока, связанная с модификацией формы осцилляций, аналогичной ВАХ традиционных n-i-n резонанснотуннельных структур, в которых наблюдалась генерация из-за накопления заряда. Для согласованного описания всех представленных экспериментов предложена новая качественная модель формирования оспилляций, включающая, как основной элемент, диффузионный транспорт фотовозбужденных электронов из р-слоя. Новая модель подтверждена также измерениями осцилляций при разных длинах волн.

Исследованные нами образцы были изготовлены на основе p-i-n GaAs/AlAs однобарьерных гетероструктур с нелегированными прибарьерными слоями 60 и 100 нм с р и п областей соответственно, выращенных методом молекулярно-лучевой эпитаксии. В нелегированной *i*-области расположен AlAs 5 нм барьер. В середине барьера встроен слой самоорганизованных InAs KT. Основные электронные, $E_{\rm QD}^e$, и дырочные, $E_{\rm QD}^h$, энергетические уровни KT находились на 105 мэВ выше края зоны проводимости и на 15 мэВ ниже края валентной зоны GaAs, т.е. электронное состояние располагалось выше края зоны проводимости GaAs, а дырочное – внутри запрещенной зоны. Верхний *p*⁺-слой GaAs толщиной 0.5 мкм был легирован до концентрации $2 \cdot 10^{18} \, \mathrm{cm}^{-3}$. Более детально такие структуры описаны в работах [7–9]. Омические контакты изготавливались путем последовательного напыления слоев AuGe/Ni/Au и отжига при T = 400 °C. Для создания оптических мезаструктур диаметром 25-200 мкм применялась стандартная технология химического травления. ВАХ были измерены при уровне шума менее 100 фА и температуре 4.2 К. В качестве источников светового излучения были использованы диодный лазерный модуль с длиной волны λ 650 и УФ светодиод с длиной волны 395 нм. ВАХ образцов измерялись в интервале мощности излучения от 10 нВт до 8 мВт на длине волны 650 нм, и до 85 мкВт на длине волны 395 нм.

Схематическая зонная диаграмма активной области структуры при напряжении менее 1.5 В и слабом освещении показана на рис. 1. Напряжение сме-

Рис. 1. (Цветной онлайн) Схематическая зонная диаграмма экспериментального образца при освещении светом с длиной волны 395 нм. Показаны уровни InAs квантовых точек в AlAs барьере, $E_{\rm QD}^h = 15$ мэВ и $E_{\rm QD}^e = 105$ мэВ. Стрелками показан механизм фотогенерации и туннельный ток через барьер. Штрихпунктирными линиями обозначены уровни размерного квантования E_n в треугольной яме, E_C – край зоны проводимости в p^+ -контактной области, ограничивающий треугольную яму справа

щения $V_b \approx 1.5$ В является критическим для исследуемых p-i-n GaAs/AlAs гетероструктур, поскольку отвечает условию плоских зон в них и интервал $V_b > 1.5$ В актуален для процессов туннелирования основных носителей, а $V_b < 1.5$ В – для фотопроводимости и обсуждаемых здесь осцилляций этой величины. Изменение V_b , начиная приблизительно с 1.5 В, в сторону отрицательных значений, приводит к движению электронных уровней размерного квантования E_n в треугольной яме вверх по энергии относительно ее дна, но вниз относительно края зоны проводимости E_C , ограничивающего эту яму справа, приводя к последовательному вхождению в КЯ все новых уровней с $E_n \sim E_C$ (см. рис. 1). В такие моменты совпадение E_n с E_C происходит резкое изменение фототока. Процесс входа/выхода E_n с ростом/уменьшением V_b при движении E_n относительно E_c происходит в интервале ΔV_b , определяемом шириной уровня ΔE_n и коэффициентом перевода энергии в V_b , и отражается шириной соответствующей осцилляции на ВАХ. После этого уровень E_n погружается вглубь КЯ ("исчезает" из КЯ) и не участвует больше в туннельном транспорте. Как было показано в [7], "период" таких осцилляций фототока от напряжения смещения для малой мощности освещения, P, зависит только от ширины треугольной квантовой ямы, т.е. расстояния между AlAs барьером и p^+ -областью.

На рисунке 2а приведены ВАХ для двух значений P, характеризующие очевидные качественные изменения в образце при изменении интенсивности освещения от 65 нВт до 8 мВт для $\lambda = 650$ нм и $T = 4.2 \,\mathrm{K}$, аналогичные наблюдавшимся нами ранее [7,8]. После достижения $P \approx 100$ мкВт на ВАХ при $T = 4.2 \,\mathrm{K}$ в интервале V_b между ~ 1.2 и 0 В проявляется короткопериодная осциллирующая структура (здесь не показана), а при дальнейшем увеличении Р "длиннопериодные" осцилляции исчезают и остаются только "короткопериодные" (см. зеленую кривую при $P = 8 \,\mathrm{MBt}$). Как показано в [8], появление короткопериодных осцилляций является результатом перераспределения потенциала вдоль ростового направления структуры из-за накопления заряда фотовозбужденных дырок состояниях КТ в барьере. Таким образом, физическая природа осцилляций при увеличении освещения остается прежней, но изменяется, при определенных условиях, энергетический масштаб их проявления на ВАХ. Отметим, что в предыдущих наших работах промежуточный интервал Р от 50 нВт до 100 мкВт детально не изучался и не анализировался, в результате чего была упущена возможность понимания априори неожиданного влияния Р на поведение осцилляций. Из общих соображений резонно ожидать линейного роста величин как неосциллирующей (что наблюдалось нами раннее), так и осциллирующей компонент фототока с ростом Р. Однако неожиданно оказалось, что увеличение Р может приводить к эффекту прямо противоположного знака – резко подавлять осцилляции.

Этот эффект представлен на рис. 2b, где показаны ВАХ нашей структуры, нормированные на величину неосцилирующего фонового тока при $V_b =$ = -3 B, равной 1 нА (P = 65 нВт), 5 нА (P == 325 нВт) и 50 нА (P = 3.25 мкВт). С ростом Pпервые осцилляции быстро исчезают вместе с па-

Рис. 2. (Цветной онлайн) (а) – ВАХ при P = 60 нВт и 8 мВт для $\lambda = 650$ нм и T = 4.2 К. (b) – ВАХ нормированные на величину $I_{\rm fon}$ при $V_b = -3$ В, равной 1 нА (сплошная красная линия, P = 65 нВт), 5 нА (пунктирная оранжевая линия, P = 325 нВт) и 50 нА (точки с линией, P = 3.25 мкВт) при облучении красным светодиодом с $\lambda = 650$ нм. (с) – ВАХ нормированные на величину $I_{\rm fon}$ при $V_b = -3$ В, равной 1.67 нА (сплошная фиолетовая линия, P = 2.25 мкВт) и 62 нА (точки с линией, P = 85 мкВт) при облучении фиолетовым светодиодом с $\lambda = 395$ нм

дением общего фототока. Мы полагаем, что исчезновение первых осцилляций и подавление фототока связано с зарядкой дырочных уровней КТ, лежащих в запрещенной зоне, аналогично [8], порождающей случайные флуктуации потенциала вдоль гетерослоев в области треугольной КТ. Такой случайный потенциал традиционно приводит к размытию и подавлению резонансных особенностей, как наблюдалось, например, в [10], где заряженные КТ подавляют туннелирование через нижний уровень в квантовой яме резонансно-туннельного диода. Отсутствие деструктивного влияния случайного потенциала на остальные осцилляции мы связываем, как и в [8], с увеличением темпа ухода заряда с КТ с ростом электрического поля. Отметим, что поскольку из экспериментов по туннелированию через КТ в AlAs барьере показано, что время жизни на электронных уровнях КТ составляет величину порядка 10 нс, а время рекомбинации через электронные и дырочные состояния КТ порядка 1 пс (см., например, [11–13]), электронные уровни КТ также могут принимать участие в наблюдаемом нами эффекте подавления, приводя к рекомбинации попадающих на них электронов с дырками, захваченными на *p*-уровнях КТ, уменьшая таким образом фототок. Одновременно с этим рекомбинация частично уменьшает величину заряда на дырочных уровнях КТ, не опустошая их полностью, и, таким образом, уменьшает величину случайного потенциала подавляющего осцилляции. Однако на данный момент мы не может сопоставить вклады этих конкурирующих процессов на общий эффект подавления фототока. При увеличении Р более 100 мкВт появляется новый сет короткопериодных осцилляций, где ранее подавленные первые осцилляции снова проявляются на ВАХ, что, по нашему мнению, может означать существенное уменьшение амплитуды случайного потенциала из-за усреднения вдоль плоскости, содержащей KT с ростом накопления заряда на дырочных уровнях КТ.

Аналогично вышеописанному подавление осцилляций с ростом P наблюдалось нами также при освещении ультрафиолетовым светодиодом при уровнях мощности до 85 мкВт на длине волны 395 нм (см. рис. 2с). Однако отметим, что в данном случае в рамках модели из работы [7], где учитывается генерация пар носителей только в *i*-области, существование осциллирующей компоненты совершенно невозможно вследствие того, что коэффициент поглощения света имеет спектральную зависимость и для фиолетового света составляет порядка $\alpha \approx 10^5$ см⁻¹ [14] и большинство фотонов поглощается вблизи поверхности образца, не доходя до КЯ. Таким образом, наблюде-

ние осцилляций, представленных на рис. 2с, уже явно указывает на непригодность модели их происхождения из [7] и необходимость ее пересмотра, и здесь мы предлагаем новую качественную модель, основанную на механизме резонансного усиления прохождения электронов, диффундирующих из глубины р-слоя через уровни в квантовой яме, аналогичному резонансному туннелированию через широкие КЯ [15]. Так как время жизни фотовозбужденных электронов вблизи поверхности мало, то большая их часть рекомбинирует прежде, чем они смогут достичь *i*-области с помощью диффузии и дать вклад в фототок. Но при большой мощности излучения достаточное количество электронов, которые генерируются в p^+ -слое толщиной 0.5 мкм, смогут продиффундировать до *i*-области и при совпадении с уровнем E_n в треугольной КЯ протуннелировать через барьер резонансно, порождая осцилляции фототока. Таким образом, каждый раз, когда с ростом электрического поля новый уровень E_n входит в КЯ и совпадает с E_c , происходит резкое резонансное увеличение темпа туннелирования через барьер электронов, возбужденных в глубине высоколегированного контактного p⁺-слоя и дошедших в результате диффузии и дрейфа до края треугольной ямы, что и приводит к всплеску фототока. При этом амплитуда осцилляций определяется числом электронов, возбужденных светом в p^+ -области и пришедших к краю треугольной квантовой ямы с энергией E_c , а величина неосциллирующей компоненты фототока – аддитивными вкладами токов носителей, возбуждаемых светом определенной длины волны в остальных областях активной части гетероструктур.

Еще одним аргументом в пользу новой модели, учитывающей принципиальную важность диффузии из p^+ -слоя, является изученная нами зависимость отношения вкладов осциллирующей и неосциллирующей компонент фототока $I_{\rm osc}/I_{\rm fon}$ от P, представленная на рис. 3, которая также не может быть описана в рамках модели [7], где соотношение $I_{\rm osc}/I_{\rm fon}$ не зависит от мощности. На рисунке За показаны два сета осцилляций для $P = 2.25\,\mathrm{mkBt}$ (сплошная линия) и $P = 220 \,\mathrm{HBt}$ (линия с точками), нормированные для ясности восприятия величины обсуждаемого эффекта на величину фототока при напряжении $V_b = -3$ B, где осцилляционная компонента практически полностью подавлена, из которой видно, что относительная амплитуда осцилляций увеличивается с ростом Р приблизительно в 3 раза. Рисунок 3b представляет зависимости $I_{\rm osc}/I_{\rm fon}$ от Pдля $\lambda = 650$ нм (красные точки) и 395 нм (фиолетовые звезды), демонстрирующие, что обе зависимо-

Рис. 3. (Цветной онлайн) (а) – ВАХ нормированные на величину $I_{\rm fon}$ при $V_b = -3$ В, равной 1.67 нА (сплошная фиолетовая линия, P = 2.25 мкВт) и 0.16 нА (точки с линией, P = 220 нВт) при облучении фиолетовым светодиодом с $\lambda = 395$ нм. (b) – зависимости отношения $I_{\rm osc}/I_{\rm fon}$ от величины $I_{\rm fon}$ при $V_b = -3$ В (прямо пропорционального мощности излучения P) для $\lambda = 650$ нм (красные точки) и 395 нм (фиолетовые звезды). Величина P для $\lambda = 650$ нм при 100 нА (крайняя правая точка на графике) составляла 0.7 мкВт, а P для $\lambda = 395$ нм при 62 нА (крайняя правая звезда на графике) составляла 85 мкВт

сти имеют одинаковое поведение с ростом P, но разный масштаб изменения $I_{\rm osc}/I_{\rm fon}$ в изучаемом диапазоне P. Поскольку характер поведения обеих зависимостей практически одинаков, а в рамках новой модели основной вклад в $I_{\rm fon}$ дает генерация носителей в *i*-областях, где влияние рекомбинационных процессов на фотопроводимости минимальна, резонно предполагать, что характер этих зависимостей с изменением P преимущественно задается поведением канала диффузионной доставки электронов (одинакового для обеих значений λ) из p^+ -слоя к KЯ, определяющего величину $I_{\rm osc}$, в котором роль рекомбинации весьма значительна. В таком случае начальный резкий рост отношения $I_{\rm osc}/I_{\rm fon}$ с изменением P ла I_{osc}, т.е. увеличением числа электронов, способных достичь КЯ, не прорекомбинировав в процессе движения. Переход от начального резкого роста $I_{\rm osc}/I_{\rm fon}$ к области насыщения обусловлен достижением условий, когда все доступные центры активной рекомбинации в p^+ -области уже задействованы в этом процессе и дальнейший рост Р ведет к сопоставимым изменениям Iosc и Ifon и, таким образом малому изменению их отношения. Иными словами начальный участок обусловлен подавлением диффузионого канала Iosc процессом рекомбинации. Различие величин $I_{\rm osc}/I_{\rm fon}$ для красного и фиолетового света в рамках новой модели объяснимо разницей величин I_{fon} , так как для $\lambda = 650$ нм значительно большая доля падающих фотонов проникает в забарьерную *i*-область, генерируя пары носителей и давая дополнительный вклад в $I_{\rm fon}$.

Этот же эффект изменения вклада генерации пар в разных слоях структуры в неосциллирующую компоненту фототока $I_{\rm fon}$ с изменением λ наблюдался при измерении осцилляций для 5 различных длин волн (см. рис. 4). Изменения интенсивности осцилляций при переходе от $\lambda = 650$ нм к $\lambda = 395$ нм представлены на рис. 4а, а относительные изменения $I_{\rm osc}/I_{\rm fon}$ для нескольких длин волн в данном интервале на рис. 4b. Монотонное изменение $I_{\rm osc}/I_{\rm fon}$ с уменьшением λ также легко объяснимо отмеченным выше ростом $I_{\rm fon}$ из-за все большего проникновения света вглубь структуры и роста числа пар, сгенерированных в *i*-слоях.

Вдобавок при больших значениях Р обнаружена модификация формы осцилляций, характерная для наблюдавшихся ранее в резонансно-туннельных *n*-*i*-*n* гетероструктурах в условиях накопления заряда в КЯ [16] (см. рис. 5а, где более детально показана стационарная ВАХ при *P* = 320 мкВт со ступеньками в области "короткопериодных" осцилляций). Наличие такой ступеньки на обратной ветви стационарной ВАХ *n*-*i*-*n* систем свидетельствует о существовании генерации тока, усредняемой при измерении стационарной ВАХ. Нами также обнаружена генерация фототока в области всех наблюдавшихся ступеней стационарной ВАХ. Частота генерации составляла порядка 6 кГц и, вероятнее всего, была обусловлена электрическими параметрами (емкостью и сопротивлением) экспериментального образца и внешней измерительной цепи [17]). Генерацию фототока невозможно было предположить априори в формально однобарьерных p-i-n структурах, но этот эффект может быть использован при конструировании новых фотооптических приборов. Кроме того, эта обнаруженная аналогия поведения одно-

Рис. 4. (Цветной онлайн) (а) – ВАХ для $\lambda = 395$ нм (фиолетовая сплошная линия) и $\lambda = 650$ нм (красная линия с точками), нормированные на величину $I_{\rm fon}$ при $V_b = -2.5$ В, равной 0.75 нА. (b) – зависимости $I_{\rm osc}/I_{\rm fon}$ седьмого от начала номера осцилляции фототока ($V_b \sim 0.8$ В) от длины волны (измеренные при условии одинаковой величины $I_{\rm fon}$ при $V_b = -2.5$ В равной 0.75 нА) для пяти различных светодиодов с длинами волн 650 нм (красный ромб), 630 нм (оранжевый кружок), 525 нм (зеленый прямоугольник), 470 нм (синий треугольник) и 395 нм (фиолетовая звезда). Зависимости $I_{\rm osc}/I_{\rm fon}$ от λ для других номеров осцилляций имеют похожее поведение

барьерных p-i-n фотодиодов и n-i-n резонанснотунельных диодов дает еще одно подтверждение пригодности нашей модели формирования осцилляций фототока.

Как результат, в данной работе изучено влияние заряда InAs KT на осцилляциий фототока в p-i-nгетероструктурах с изменением мощности освещения. Обнаружено, что с увеличением мощности освещения происходит подавление первых осцилляций фототока из-за случайных флуктуаций потенциала и рекомбинации носителей через состояния KT. При большой мощности обнаружена генерация тока, аналогичная наблюдавшейся в n-i-n резонанснотуннельных структурах. Для согласованного описания всех представленных экспериментов предложена

Рис. 5. (Цветной онлайн) (а) – ВАХ при P = 320 мкBт в области "короткопериодных" осцилляций для $\lambda = 650 \text{ нм}$ и T = 4.2 K. Стрелкой отмечено постоянное напряжение смещения, при котором изменялась генерация фототока. (b) – Генерация фототока, измеренная при постоянном напряжении смещения $V_b = 0.78 \text{ B}$

новая качественная модель формирования осцилляций, включающая, как основной элемент, диффузионный транспорт фотовозбужденных электронов из p^+ -слоя. Новая модель подтверждена также измерениями осцилляций при разных длинах волн. Детальная теоретическая разработка описанной нами модели происхождения осцилляций завершена и готовится к отдельной публикации. Полученные нами результаты, таким образом, показали, что диффузия носителей из высоколегированного слоя может приводить не только к ухудшению частотных характеристик p-i-n фотодиода, но и вызывать сильные резонансные эффекты и генерацию фототока при определенном дизайне гетероструктур.

Автор выражает благодарность М. Хенини (М. Henini, University of Nottingham, UK) за изготовление образцов и С.В. Морозову (ИПТМ) за плодотворные обсуждения и техническое содействие. Работа выполнена в рамках Госзадания # 075-00355-21-00.

 S.M. Sze, *Physics of Semiconductor Devices*, Wiley, N.Y. (1981).

- J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynal, P. Atkinson, I. Farrer, and D. A. Ritchie, Phys. Rev. Lett. 94, 067401 (2005).
- O. Makarovsky, E. E. Vdovin, A. Patané, L. Eaves, M. N. Makhonin, A. I. Tartakovskii, and M. Hopkinson, Phys. Rev. Lett. 108, 117402 (2012).
- 4. Q. C. Weng, Z. H. An, D. Y. Xiong, B. Zhang, P. P. Chen, T. X. Li, Z. Q. Zhu, and W. Lu, Appl. Phys. Lett. 105, 031114 (2014).
- W. Wang, Y. Ying, D. Dayuan, N. Ning, and W. Wei, Appl. Phys. Lett. **92**(2), 023508 (2008).
- A. E. Belyaev, S. A. Vitusevich, L. Eaves, P. C. Main, M. Henini, A. Forster, W. Reetz, and S. V. Danylyuk, Nanotechnology 13, 94 (2002).
- E. E. Vdovin, M. Ashdown, A. Patane, L. Eaves, R.P. Campion, Yu.N. Khanin, M. Henini, and O. Makarovsky, Phys. Rev. B 89, 205305 (2014).
- Ю. Н. Ханин, Е. Е. Вдовин, О. Макаровский, М. Хенини, Письма в ЖЭТФ **102**(11), 830 (2015).
- Ю. Н. Ханин, Е. Е. Вдовин, Физика и техника полупроводников 52(6), 591 (2018).
- 10. F. Pulizzi, E. E. Vdovin, K. Takehana, Yu. V. Dubrovskii,

A. Patané, L. Eaves, M. Henini, P.N. Brunkov, and G. Hill, Phys. Rev. B 68, 155315 (2003).

- Т. Ин, А. Торнтон, И.Е. Ицкевич, П.Х. Бетон, П. Мартин, П. Мориарти, Е. Мюллер, А. Ногаре, П.С. Мэйн, Л. Ивс, М. Хенини, УФН 168, 132 (1998).
- A. Patane, A. Polimeni, L. Eaves, P. C. Main, M. Henini, Yu. Y. Dubrovskii, A. E. Belyaev, P. N. Brounkov, E. E. Vdovin, Yu. N. Khanin, and G. Hill, J. Appl. Phys. 88, 2005 (2000).
- S. Marcinkevicius and R. Leon, Phys. Rev. B 59, 4630 (1999).
- H. C. Casey, D. D. Sell, and K. W. Wecht, J. Appl. Phys. 46, 250 (1975).
- M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henini, O. H. Hughes, A. Celeste, J. C. Portal, G. Hill, and M. A. Pate, J. Phys.: Condens. Matter 1, 4865 (1989).
- V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. Lett. 58, 1256 (1987).
- C. Y. Belhadj, K. P. Martin, S. Ben Amor, J. J. L. Rascol, R. J. Higgins, R. C. Potter, H. Hier, and E. Hempfling, Appl. Phys. Lett. 57, 58 (1990).

Ультразвуковой диссипативный солитон в неравновесном парамагнитном кристалле

$C. B. Cазонов^{1)}$

Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

Московский государственный университет им. М.В. Ломоносова, 191991 Москва, Россия

Московский авиационный институт (Национальный исследовательский университет), 125993 Москва, Россия

Поступила в редакцию 5 апреля 2021 г. После переработки 5 апреля 2021 г. Принята к публикации 5 апреля 2021 г.

Исследовано распространение ультразвукового импульса гигагерцового диапазона в низкотемпературном кристалле, содержащем парамагнитные ионы с инверсной населенностью зеемановских подуровней резонансного спин-фононного перехода. В приближении быстрой фазовой релаксации для локальной относительной деформации импульса получено интегро-дифференциальное параболическое уравнение с нелинейным автономным источником и необратимыми потерями. Найдено и детально проанализировано точное аналитическое решение этого уравнения в виде диссипативного солитона с несимметричным временным профилем. Скорость солитона близка к линейной групповой скорости ультразвука. Показано, что такой солитон может сформироваться только при условии, что помимо потерь, обусловленных фазовой релаксацией спин-фононных переходов, присутствуют необратимые потери, которые вызваны процессами, не связанными со спин-фононными переходами.

DOI: 10.31857/S1234567821090081

1. Введение. Развитие нелинейной оптики и физической акустики во многом идет параллельными курсами. Обнаружение нелинейных эффектов в оптике стимулировало поиск соответствующих акустических аналогов [1]. Это касается многих нелинейных и когерентных явлений, включая динамику солитонов оптической и акустической природы [2]. Так, через несколько лет после обнаружения резонансного оптического явления самоиндуцированной прозрачности (СИП) [3] был всесторонне исследован его акустический аналог (АСИП) в парамагнитных кристаллах [4–6]. Явление АСИП для ультразвуковых импульсов гигагерцового диапазона экспериментально наблюдалось в парамагнитном кристалле при температурах жидкого гелия. В работах [7–9] были продемонстрированы как сходства, так и отличия между солитонами СИП и АСИП.

В последнее время большой интерес вызывают исследования оптических диссипативных солитонов [10–19]. Вызвано это как фундаментальными, так и прикладными аспектами.

Для формирования диссипативных солитонов необходимо наличие нелинейного автономного источника энергии и ее диссипации [11]. Взаимная ком-

пенсация притока энергии и ее диссипации способна привести к образованию устойчивой локализованной структуры – диссипативного солитона. Следствием такого механизма является то, что состояние среды после прохождения в ней диссипативного солитона испытывает необратимые изменения [20–23]. Это существенно отличает диссипативные солитоны от консервативных, возвращающих среду к исходному состоянию [3–5, 8, 9]. В отличие от консервативных солитонов диссипативные солитоны не обладают свободными параметрами, определяемыми условиями на входе в нелинейную среду. Из-за диссипации необратимо теряется точная память о входных условиях. Как правило, существуют широкие области входных параметров, приводящих к формированию одних и тех же диссипативных солитонов. Таким образом, зависимость от входных условий является достаточно грубой. Ситуация здесь аналогична предельному циклу в теории автоколебаний, который может формироваться из начальных условий, принадлежащих широким областям фазового пространства.

Устойчивость диссипативных солитонов по отношению к изменениям входных условий наталкивает на мысль о возможности использования данных солитонов в системах передачи, обработки и записи ин-

¹⁾e-mail: sazonov.sergey@gmail.com
формации [11, 16]. Кроме того, они могут оказаться полезными в управлении механическим движением различных микро- и нанообъектов [24–26].

Отмеченная выше оптико-акустическая аналогия дает основания полагать, что исследования акустических диссипативных солитонов могут оказаться столь же важными и плодотворными, как и работы, связанные с диссипативными солитононами оптической природы. Определенный оптимизм в данном направлении вселяют современные разработки по измерению локальных характеристик высокочастотного ультразвука в поликристаллических средах [27].

Необходимый для формирования диссипативных солитонов приток энергии в ультразвуковой сигнал может быть обеспечен за счет индуцированных спинфононных переходов с инверсной населенностью зеемановских подуровней парамагнитных ионов. На этом принципе базируется идея создания фононного мазера – генератора когерентного ультразвука микроволновых частот [28–31].

Настоящая работа посвящена исследованию возможности формирования диссипативных акустических солитонов в твердом теле, содержащем примесные парамагнитные ионы, которые резонансно взаимодействуют с когерентными колебаниями кристаллической решетки.

2. Основные уравнения. Направим оси декартовой системы координат вдоль осей симметрии четвертого порядка кубического кристалла. Пусть ультразвуковой импульс продольной упругой деформации с несущей частотой ω распространяется вдоль одной из осей четвертого порядка, совпадающей с осью x. Вдоль другой оси z четвертого порядка приложено внешнее магнитное поле В, вызывающее зеемановские расщепления квантовых состояний примесных парамагнитных ионов. Будем считать, что парамагнитные ионы обладают эффективным спином S = 1. Известно, что ионы с таким спином наиболее эффективно взаимодействуют с колебаниями кристалла [30]. В качестве примеров можно привести ионы Fe²⁺ или Ni²⁺ в матрице кубического кристалла MgO [4]. Данное спин-фононное взаимодействие осуществляется благодаря механизму Фохта [2]. Акустические волны деформации создают в кристалле градиенты внутреннего электрического поля. За счет этого возникают электрические квадрупольные переходы между квантовыми зеемановскими подуровнями парамагнитных ионов.

Для описания самосогласованной динамики поля деформации и состояний парамагнитных ионов используем полуклассический подход. В этом случае поле описывается классическими уравнениями теории упругости, а эффективные спины парамагнитных ионов – уравнениями квантовой механики.

Гамильтониан эффективного спина S = 1, помещенного в магнитное поле **В** и взаимодействующего с полем упругой продольной деформации, представим следующим образом [4]:

$$\hat{H}_s = \hat{H}_0 + \hat{V},\tag{1}$$

где

$$\hat{H}_0 = \frac{\hbar\omega_0}{2}\hat{S}_z, \quad \hat{V} = G\hat{S}_x^2\frac{\partial u_x}{\partial x},\tag{2}$$

 $\omega_0 = 2g\mu_B B/\hbar$ – характерная частота зеемановского расщепления, μ_B – магнетон Бора, g – фактор Ланде, \hbar – постоянная Планка, G – постоянная спинфононного взаимодействия, u_x – компонента вектора **u** смещения кристаллической решетки из положения равновесия в месте расположения парамагнитного иона; спиновые матрицы имеют вид [31]

$$\hat{S}_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \hat{S}_{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$
 (3)

Дополним спиновый гамильтониан классическим гамильтонианом для поля продольной деформации

$$H_a = \int \left[\frac{p_x^2}{2\rho} + \frac{\rho a^2}{2} \left(\frac{\partial u_x}{\partial x}\right)^2\right] d^3\mathbf{r},\tag{4}$$

где ρ – средняя объемная плотность кристалла, p_x – продольная компонента плотности импульса поля деформации, a – линейная скорость продольного ультразвука.

Интегрирование в (4) ведется по объему всего кристалла.

Элементы $\rho_{\mu\nu}$ матрицы плотности $\hat{\rho}$ эффективного спина подчиняются уравнению фон Неймана $i\hbar\frac{\partial\hat{\rho}}{\partial t} = \left[\hat{H}_s,\hat{\rho}\right] - i\hbar\hat{\Gamma}_r\hat{\rho}$, где $\hat{\Gamma}_r$ – оператор необратимой релаксации. Характерное время T_1 релаксации населенностей квантовых уровней эффективного спина обычно на несколько порядков превышает характерные длительности τ_p задействованных в экспериментах ультразвуковых импульсов [4]. Поэтому везде ниже будем пренебрегать релаксацией диагональных элементов матрицы плотности. Тогда из уравнения фон Неймана, а также из (1)–(3) придем к выводу, что спин-фононные переходы 1 \leftrightarrow 2 и 2 \leftrightarrow 3, при которых изменение ΔS_z проекции эффективного спина на направление магнитного поля равно ±1, в выбранной геометрии запрещены.

Для квантового перехода 1 \leftrightarrow 3, при котором $\Delta S_z=\pm 2,$ имеем систему уравнений

$$\frac{\partial \rho_{13}}{\partial t} = \left(i\omega_0 - \frac{1}{T_2}\right)\rho_{13} - 2i\Omega W,\tag{5}$$

$$\frac{\partial W}{\partial t} = -i\Omega(\rho_{13} - \rho_{13}^*),\tag{6}$$

где $W = (\rho_{33} - \rho_{11})/2$, T_2 – время необратимой фазовой релаксации рассматриваемого перехода,

$$\Omega = \frac{G\varepsilon}{2\hbar},\tag{7}$$

 $\varepsilon\equiv\partial u_x/\partial x$ – локальная относительная деформация, создаваемая ультразвуковым импульсом.

Согласно полуклассическому подходу, для поля упругой деформации используем классические уравнения Гамильтона [32]

$$\frac{\partial p_x}{\partial t} = -\frac{\delta}{\delta u_x} \left(H_a + \langle \hat{V} \rangle \right),
\frac{\partial u_x}{\partial t} = \frac{\delta}{\delta p_x} \left(H_a + \langle \hat{V} \rangle \right).$$
(8)

Здесь квантово-статистическое среднее гамильтониана спин-фононного взаимодействия

$$\langle \hat{V} \rangle \equiv \int_{-\infty}^{+\infty} ng(\Delta) \operatorname{Sp}(\hat{\rho}\hat{V}) d\Delta d^3 \mathbf{r}, \qquad (9)$$

n – концентрация парамагнитных ионов, $g(\Delta)$ – функция распределения (контур) неоднородного уширения для перехода 1 \leftrightarrow 3 по отстройке $\Delta = \omega_0 - \omega_0^{(0)}$ от центральной частоты $\omega_0^{(0)}$ данного контура.

Контур неоднородного уширения спин-фононных квантовых переходов, удовлетворяющий условию нормировки $\int_{-\infty}^{+\infty} g(\Delta) d\Delta = 1$, обычно имеет вид лоренциана

$$g(\Delta) = \frac{1}{\pi} \frac{T_2^*}{1 + (T_2^* \Delta)^2},\tag{10}$$

где T_2^* – характерное время обратимой фазовой релаксации, определяющее ширину данного контура.

Из (2) и (3) с учетом того, что $\text{Sp}\hat{\rho} = 1$, находим $\text{Sp}(\hat{\rho}\hat{V}) = \frac{G}{2}\frac{\partial u_x}{\partial x}(\rho_{13} + \rho_{31} + 1 + \rho_{22})$, где населенность второго уровня остается неизменной: $\rho_{22} = \text{const.}$

Отсюда, а также из (8), (2), (4), (9) и (7) приходим к волновому уравнению

$$\frac{\partial^2 \Omega}{\partial t^2} - a^2 \frac{\partial^2 \Omega}{\partial x^2} - 2qa \frac{\partial^3 \Omega}{\partial t^3} =$$
$$= \frac{G^2 n}{4\hbar\rho} \frac{\partial^2}{\partial x^2} \int_{-\infty}^{+\infty} g(\Delta)(\rho_{13} + \rho_{13}^*) d\Delta.$$
(11)

В левой части (11) добавлено последнее слагаемое, описывающее затухание ультразвука при его взаимодействии с тепловыми колебаниями кристаллической решетки, дефектами, микронеоднородностями и т.п. (собственное затухание) [33, 34], где *q* – эмпирический коэффициент собственного затухания.

Теперь преобразуем самосогласованную систему (5), (6), (11), представив волновую Ω и ρ_{13} материальную ρ_{13} переменные в виде

$$\Omega = \frac{\psi}{2} e^{i\omega(t-x/a)} + \text{c.c.}, \quad \rho_{13} = R e^{i\omega(t-x/a)}, \quad (12)$$

где ψ и R – огибающие, медленно меняющиеся по сравнению с быстро осциллирующей экспонентой $e^{i\omega(t-x/a)}$.

Подставляя (12) в (5), (6) и (11), после пренебрежения слагаемыми, осциллирующими на удвоенной частоте ω и вторыми производными от огибающей ψ получим систему

$$\frac{\partial R}{\partial t} = \left(i\tilde{\Delta} - \frac{1}{T_2}\right)R - i\psi W,\tag{13}$$

$$\frac{\partial W}{\partial t} = \frac{i}{2} \left(\psi R^* - \psi^* R \right), \tag{14}$$

$$\frac{\partial \psi}{\partial t} + \frac{1}{a} \frac{\partial \psi}{\partial t} + \mu \psi = i\beta \int_{-\infty}^{+\infty} g(\Delta) R d\Delta.$$
(15)

Здесь $\beta = \frac{G^2 n \omega}{4 \hbar \rho a^3}, \, \mu = q \omega^2, \, \tilde{\Delta} = \omega_0 - \omega = \Delta + \omega_0^{(0)} - \omega$ – отстройка несущей частоты ультразвукового импульса от выделенного квантового перехода.

При получении уравнения (15) из (11) мы учитывали, что собственное затухание относительно мало. Поэтому мы пренебрегли его вкладом в линейный закон дисперсии, положив приближенно с учетом (12), что $\partial^3\Omega/\partial t^3 \approx -i\omega^3\psi e^{i\omega(t-x/a)} + c.c.$

Учитывая параллель с резонансной оптикой двухуровневых атомов, будем называть систему (13)–(15) акустическими уравнениями Максвелла– Блоха.

3. Интегро-дифференциальное нелинейное параболическое уравнение. Пусть несущая частота ω ультразвукового импульса совпадает с центральной частотой $\omega_0^{(0)}$ контура неоднородного уширения. Тогда отстройки $\tilde{\Delta}$ в (13) и Δ в (15) равны друг другу.

Для исключения материальных переменных R и W из системы (13)–(15) усилим условие $\tau_p \ll T_1$ двойным неравенством, введя приведенное время релаксации T_r :

$$T_r \equiv \frac{T_2 T_2^*}{T_2 + T_2^*} \ll \tau_p \ll T_1.$$
(16)

Левая часть неравенства (16) означает малую спектральную ширину $\delta \omega_p \sim 1/\tau_p$ ультразвукового импульса в сравнении с шириной $\delta \omega_{tr} = 1/T_2 +$ $+1/T_2^* = 1/T_r$ задействованного квантового перехода 1 \leftrightarrow 3. Поэтому взаимодействие спинов с ультразвуковым импульсом при условии (16) является селективным. Следовательно, изменение средней по контуру неоднородного уширения разности населенностей $\bar{W} \equiv \int_{-\infty}^{+\infty} g(\Delta)Wd\Delta$ относительно мало. Данное приближение можно назвать приближением быстрой фазовой релаксации.

Для ионов Ni²⁺ в кристалле MgO при температуре жидкого гелия имеем [4] $T_1 \sim 10^{-3} \,\mathrm{c}, T_2 \sim 10^{-6} \,\mathrm{c}, T_2^* \sim 10^{-8} \,\mathrm{c}.$ Тогда, как видно из (16), $T_r \approx T_2^* \sim \sim 10^{-8} \,\mathrm{c}.$ Следовательно, для рассмотренного примера условие (16) выполняется в широком диапазоне импульсных длительностей $\tau_p \sim 10^{-4} - 10^{-7} \,\mathrm{c}.$ Аналогичные оценки можно привести и для других кристаллов (см. ниже).

Очевидно, справедливы оценки $|\partial R/\partial t| \sim |R|/\tau_p$, $|(i\Delta - 1/T_2)R| \sim |R|/T_r$. Таким образом, левая часть уравнения (13) значительно меньше первого слагаемого в правой части этого уравнения. В нулевом приближении по производной $\partial R/\partial t$ из уравнения (13) имеем $R = \psi W/(\Delta + i/T_2)$. Подставляя теперь это выражение в левую часть уравнения (13), получим приближенное решение в первом приближении. Ограничиваясь вторым приближением, будем иметь

$$R = \frac{\psi W}{\Delta + i/T_2} - \frac{iW_{-\infty}}{(\Delta + i/T_2)^2} \frac{\partial \psi}{\partial t} - \frac{W_{-\infty}}{(\Delta + i/T_2)^3} \frac{\partial^2 \psi}{\partial t^2}.$$
(17)

Данное выражение представляет собой первые три члена разложения Криспа [35].

Так как при условии (16) разность населенностей изменяется незначительно, во втором и третьем слагаемых разложения (17) мы положили $W = W_{-\infty}$, где $W_{-\infty}$ – начальная разность населенностей при $t = -\infty$. По этой же причине при подстановке (17) в (14) мы сохраним только первый член в правой части (17). Тогда после интегрирования (14) получим

$$W = W_{-\infty} \left[1 - \frac{T_2}{1 + (T_2 \Delta)^2} \int_{-\infty}^t |\psi|^2 dt' \right].$$
(18)

Отсюда и из (17) после усреднения по контуру неоднородного уширения (10) будем иметь

$$\int_{-\infty}^{+\infty} g(\Delta) R d\Delta = -i W_{-\infty} \times$$
(19)

Письма в ЖЭТФ том 113 вып. 9-10 2021

$$\times \left(T_r \psi - \frac{T_r}{2} \frac{T_2 + 2T_2^*}{T_2 + T_2^*} \psi \int_{-\infty}^t |\psi|^2 dt' - T_r^2 \frac{\partial \psi}{\partial t} + T_r^2 \frac{\partial^2 \psi}{\partial t^2} \right)$$

Подставляя (19) в (15), получим

$$\frac{\partial \psi}{\partial x} = \gamma \psi - \varepsilon \psi \int_{-\infty}^{\tau} |\psi|^2 d\tau' + \sigma \frac{\partial^2 \psi}{\partial \tau^2}, \qquad (20)$$

где $\tau = t - x/v_0$,

$$\gamma = \Gamma - \mu, \quad \Gamma = w_{-\infty}\beta T_r,$$

$$\varepsilon = \frac{\Gamma}{2}T_2 \frac{T_2 + 2T_2^*}{T_2 + T_2^*}, \quad \sigma = \Gamma T_r^2, \quad (21)$$

а линейная групповая скорость v_0 ультразвука определяется выражением

$$\frac{1}{v_0} = \frac{1}{a} + \Gamma T_r = \frac{1}{a} \left(1 + W_{-\infty} \frac{G^2 n\omega}{\hbar \rho a^2} T_r^2 \right).$$
(22)

Уравнение (20) представляет собой параболическое уравнение диффузионного типа с автономным источником. Диффузия здесь происходит не в пространстве, а во времени (см. третье слагаемое в правой части (20)). Данный диссипативный процесс происходит благодаря обратимой и необратимой фазовой релаксации. Роль автономного источника здесь принадлежит парамагнитным ионам с неравновесной населенностью квантовых состояний перехода $1 \leftrightarrow 3 (W_{-\infty} > 0)$. Усиление импульса за счет этой запасенной энергии должно превалировать над поглощением ультразвука: $\Gamma > \mu$, поэтому $\gamma > 0$. Линейное усиление сменяется стадией его нелинейного насыщения, что описывается вторым интегральным слагаемым в правой части (20).

4. Диссипативный солитон. Будем искать решение уравнения (20) в виде диссипативного солитона.

Учет здесь собственного затухания ультразвука принципиально важен. Действительно, из (14) и (15), как и в случае оптического импульса [36], легко находим

$$\frac{dE}{dx} = 2\beta T_2 \int_{-\infty}^{+\infty} g(\Delta)(W_{-\infty} - W_{+\infty})d\Delta - 2\mu E, \quad (23)$$

где $E = T_2 \int_{-\infty}^{+\infty} |\psi|^2 dt, W_{+\infty} \equiv W_{|t=+\infty}.$

Согласно (18), $W_{-\infty} > W_{+\infty}$. Таким образом, при условии (16) эффективные спины необратимо отдают энергию ультразвуковому импульсу. Поэтому в отсутствие собственного затухания ультразвука $(\mu = 0)$ имеем dE/dx > 0. В этих условиях диссипативный солитон не может сформироваться. Наличие же собственного затухания, как видно из (23), приводит к стабилизации усиления импульса. Это может привести к формированию диссипативного солитона.

Заметим, что в уравнении (20) все коэффициенты являются вещественными. Данное обстоятельство является следствием того, что несущая частота ультразвукового сигнала настроена на центральную частоту неоднородно уширенной линии резонансного перехода. Поэтому искомая переменная ψ также является вещественной. Тогда, умножая (20) на $2T_2\psi$, после интегрирования по "бегущему" времени τ будем иметь

$$\frac{\partial \theta}{\partial z} = 2\gamma \theta - \frac{\varepsilon}{T_2} \theta^2 + \sigma \left[\frac{\partial^2 \theta}{\partial \tau^2} - 2T_2 \int_{-\infty}^{\tau} \left(\frac{\partial \psi}{\partial \tau'} \right)^2 d\tau' \right], \quad (24)$$

где

$$\theta = T_2 \int_{-\infty}^{\tau} \psi^2 d\tau'.$$
 (25)

Если в квадратных скобках (24) отбросить второе интегральное слагаемое, то будем иметь известное уравнение Фишера [37], описывающее диффузионные процессы в активных средах. Однако мы не можем пренебречь данным слагаемым, так как оно по порядку величины сравнимо с первым слагаемым $\partial^2 \theta / \partial \tau^2$ диффузионного типа. Тем не менее нетрудно убедиться в том, что уравнение (24) имеет решение в виде диссипативного солитона, по форме совпадающее с аналогичным решением уравнения Фишера [38], но с другими значениями физических параметров:

$$\theta = \frac{15\gamma}{32\varepsilon} T_2 (1 + \tanh \xi)^2, \qquad (26)$$

где переменная ξ , временная длительность τ_p солитона и его скорость v в лабораторной системе отсчета определяются выражениями

$$\xi = \frac{t - x/v}{\tau_p}, \quad \tau_p = 2\sqrt{\frac{2\sigma}{\gamma}}, \quad \frac{1}{v} = \frac{1}{v_0} - 3\sqrt{\frac{\sigma\gamma}{2}}.$$
 (27)

Из (26), (25) и (27) находим

$$\psi = \psi_0 \operatorname{sech} \xi \sqrt{1 + \tanh \xi}, \qquad (28)$$

где

$$\psi_0 = \left(\frac{15}{32\sqrt{2}}\right)^{1/2} \left(\frac{\gamma^3}{\sigma\varepsilon^2}\right)^{1/4}.$$
 (29)

Диссипативный солитон вида (28), где ξ , а также параметры τ_p , v и ψ_0 определяются выражениями (27) и (29), является точным решением уравнения (20).

Из (7), (12) и (28), будем иметь для относительной деформации

$$\varepsilon = \varepsilon_0 \operatorname{sech} \xi \sqrt{1 + \tanh \xi} \cos[\omega(t - x/a)], \qquad (30)$$

где

$$\varepsilon_0 = 2\hbar\psi_0/G. \tag{31}$$

Используя соотношения (21), (22), (27), (29) и (31), можно выразить зависимости параметров диссипативного солитона через коэффициенты усиления Γ и поглощения μ , постоянную спин-фононной связи, а также через времена релаксации T_2 и T_2^* . При этом заметим, что для спин-фононных переходов в различных кристаллах обычно выполняется неравенство $T_2^* \ll T_2$ [4]. По этой причине с хоропим приближением имеем $T_r = T_2^*$. Тогда

$$\varepsilon_0 = 2.30 \frac{\hbar}{G} \frac{(1 - \mu/\Gamma)^{3/4}}{\sqrt{T_2 T_2^*}}, \quad \tau_p = \frac{2.83 T_2^*}{\sqrt{1 - \mu/\Gamma}},$$
$$\frac{1}{v} = \frac{1}{a} + \Gamma T_2^* \left(1 - 2.12 \sqrt{1 - \frac{\mu}{\Gamma}}\right). \quad (32)$$

Из (18), (24), (25), (21) и (10) в этом же приближении найдем для средней по контуру неоднородного уширения разности населенностей

$$\bar{W} = W_{-\infty} \left[1 - 0.94 \frac{T_2^*}{T_2} \left(1 - \frac{\mu}{\Gamma} \right) (1 + \tanh \xi)^2 \right].$$
(33)

На рисунке 1 изображены огибающая диссипативного солитона (вверху), построенная на основе выражения (28), и сопровождающее распространение солитона изменение разности населенностей резонансного перехода $1 \leftrightarrow 3$. Профиль огибающей солитона несимметричен относительно его максимума: передний относительно крутой фронт сменяется пологим хвостом.

Следует заметить, что такие несимметричные солитоны были получены на основе численных экспериментов с оптической системой Максвелла–Блоха [39, 40]. Отметим также, что совсем недавно оптические диссипативные солитоны с несимметричным профилем интенсивности наблюдались экспериментально в микрорезонаторе полупроводникового лазера [41].

Приведем некоторые численные оценки, касающиеся параметров диссипативного солитона и условий его обнаружения в экспериментальных условиях.

Рис. 1. Профиль нормированной огибающей относительной деформации диссипативного солитона (вверху) и сопровождающий профиль нормированной разности населенностей зеемановских подуровней резонансного спин-фононного перехода (внизу); $T_2^*/T_2 = 0.1, \ \mu/\Gamma = 0.9$

Для того, чтобы удовлетворить левой части неравенства (16) $\tau_p \gg T_2^*$, должно выполняться условие $1 - \mu/\Gamma \ll 1$ (см. второе равенство (32)). Это равносильно условию слабой надкритичности: коэффициент усиления ультразвука за счет парамагнитных ионов в неравновесных состояниях должен лишь незначительно превосходить коэффициент собственного затухания ультразвука.

Взяв для ионов Ni²⁺ в кристаллической матрице MgO при температурах жидкого гелия [4] $G \sim 10^{-15}$ эрг, $n \sim 10^{17}$ см⁻³, $\omega = \omega_0^{(0)} \sim 10^{11}$ с⁻¹, $\rho \approx 5 \, \Gamma/\text{см}^3$, $a \approx 5 \cdot 10^5 \, \text{см/c}$, $T_2^* \sim 10^{-8}$ с, $W_{-\infty} \sim 0.1 - 0.5$, найдем из (21) $\Gamma \sim 0.01 - 0.1 \, \text{см}^{-1}$. При этих же температурах коэффициент собственного затухания ультразвука на гигагерцовых частотах $\mu \approx 0.25 \, \text{дБ/см} \approx 0.3 \, \text{см}^{-1}$ [42]. Отсюда видно, что условию слабой надкритичности $1 - \mu/\Gamma \ll 1$ можно вполне удовлетворить, изменяя, например, цен-

тральную частоту $\omega_0^{(0)}$ резонансного перехода. Этого, в свою очередь, можно добиться изменением внешнего магнитного поля.

Для приведенных выше параметров имеем $\Gamma T_2^* \sim 10^{-10} - 10^{-9} \,\mathrm{c/cm}$. Тогда, как видно из последнего выражения (32), скорость диссипативного солитона практически не отличается от линейной скорости звука в кристалле. Из первых двух соотношений (32) находим $\varepsilon_0 \sim 10^{-6}$, $\tau_p \sim 10T_2^* \sim 0.1 \,\mathrm{mkc}$. Для пиковой интенсивности солитона имеем $I \sim \rho a^3 \varepsilon_0^2 \sim 10^{-3} - 10^{-2} \,\mathrm{Br/cm^2}$.

Таким образом, есть основания надеяться, что ультразвуковые диссипативные солитоны вполне могут быть обнаружены в условиях реального эксперимента.

5. Заключение. Исследование, проведенное в настоящей работе, выявляет принципиальную возможность формирования диссипативных ультразвуковых солитонов гигагерцового диапазона в неравновесных парамагнитных кристаллах.

Описанный здесь диссипативный солитон (27)– (29) с несимметричным профилем огибающей является точным решением уравнения (20), выведенного в приближении быстрой фазовой релаксации (16).

Роль активной среды играют парамагнитные ионы с инверсной населенностью зеемановских подуровней во внешнем магнитном поле. В качестве конкретного примера рассмотрены примесные ионы Ni²⁺ в матрице кубического кристалла MgO при температуре жидкого гелия. По всей вероятности, возможны и другие варианты обнаружения акустических диссипативных солитонов. В том числе, при более высоких температурах.

Один из принципиальных выводов заключается в том, что для формирования ультразвукового диссипативного солитона необходимо наличие необратимых потерь, обусловленных процессами, не связанными с парамагнитными ионами. В рассмотренном нами случае данные потери вызваны собственным затуханием ультразвука за счет его поглощения тепловыми колебаниями кристаллической решетки, рассеяниями на дефектах и т.п.

Упругие волны в твердых телах могут быть как продольными, так и поперечными. Это выгодно отличает их от сугубо поперечных оптических сигналов. Данное обстоятельство было учтено в работах [43–48], где исследовались консервативные продольно-поперечные солитоны акустической природы. Отсюда естественным образом возникает потребность в исследованиях диссипативных акустических солитонов, обладающих продольно-поперечной структурой. Акустические импульсы, в отличие от оптических, способны распространяться в металлах. По этой причине актуальным становится поиск диссипативных акустических солитонов в сильнопроводящих средах, включая металлы. Здесь немаловажными представляются как фундаментальные, так и прикладные исследования.

Работа выполнена при финансовой поддержке Российского научного фонда (проект # 17-11-01157).

- Ф. В. Бункин, Ю. А. Кравцов, Г. А. Ляхов, УФН 149, 391 (1986) [F. V. Bunkin, Yu. A. Kravtsov, and G. A. Lyakhov, Soviet Phys.-Uspekhi 29, 607 (1986)].
- В. А. Голенищев-Кутузов, В. В. Самарцев, Н. К. Соловаров, Б. М. Хабибуллин, Магнитная квантовая акустика, Наука, М. (1977).
- S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).
- 4. N.S. Shiren, Phys. Rev. B 2, 2471 (1970).
- Г. А. Денисенко, ЖЭТФ 60, 2270 (1971)
 [G. A. Denisenko, JETP 33, 1220 (1971)].
- В. В. Самарцев, Б. П. Смоляков, Р. З. Шарипов, Письма в ЖЭТФ **20**, 644 (1974) [V. V. Samartsev, B. P. Smolyakov, and R. Z. Sharipov, JETP Lett. **20**, 296 (1974)].
- А. А. Заболотский, Письма в ЖЭТФ 77, 558 (2003)
 [А. А. Zabolotskii, JETP Lett. 77, 464 (2003)].
- С.В. Сазонов, ЖЭТФ 136, 67 (2009) [S.V. Sazonov, JETP 109, 57 (2009)].
- S. V. Sazonov and N. V. Ustinov, Romanian Reports in Physics 72, 508 (2020).
- N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, and Ph. Grelu, International Journal of Bifurcation and Chaos 19, 2621 (2009).
- Н. Н. Розанов, Диссипативные оптические солитоны. От микро- к нано- и атто-, Физматлит, М. (2011).
- N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, Appl. Phys. Lett. B 81, 937 (2005).
- C. H. Tsang, B. A. Malomed, and K. W. Chow, Phys. Rev. E 84, 066609 (2011).
- N.A. Veretenov, N.N. Rosanov, and S.V. Fedorov, Phys. Rev. Lett. **117**, 183901 (2016).
- С.В. Федоров, Н.Н. Розанов, Н.А. Веретенов, Письма в ЖЭТФ 107, 342 (2018) [S.V. Fedorov, N.N. Rosanov, and N.A. Veretenov, JETP Lett. 107, 327 (2018)].
- С.К. Турицын, Н.Н. Розанов, И.Я. Яруткина, А.Е. Беднякова, С.В. Федоров, О.В. Штырина, М.П. Федорук, УФН 186, 713 (2016) [S.K. Turitsyn, N.N. Rosanov, I.A. Yarutkina, A.E. Bednyakova, S. V. Fedorov, O. V. Shtyrina, and M. P. Fedoruk, Phys.-Uspekhi 59, 642 (2016)].

- V. E. Lobanov, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Opt. Lett. 36, 85 (2011).
- S. Yanchuk, S. Ruschel, J. Sieber, and M. Wolfrum, Phys. Rev. Lett. **123**, 053901 (2019).
- T. Mayteevarunyoo, B. A. Malomed, and D. V. Skryabin, Opt. Express 27, 037364 (2019).
- С.В. Сазонов, Письма в ЖЭТФ 53, 400 (1991)
 [S.V. Sazonov, JETP Lett. 53, 420 (1991)].
- 21. S.V. Sazonov, J. Phys: Condens. Matter 7, 175 (1995).
- А. Ю. Пархоменко, С. В. Сазонов, ЖЭТФ 114, 1595 (1998) [A. Yu. Parkhomenko and S. V. Sazonov, JETP 87, 864 (1998)].
- С. В. Сазонов, УФН 171, 663 (2001) [S. V. Sazonov, Phys.-Uspekhi 44, 631 (2001)].
- D. A. Dolinina, A. S. Shalin, and A. V. Yulin, Письма в ЖЭТФ 110, 755 (2019) [D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. 110, 744 (2019)].
- D. A. Dolinina, A. S. Shalin, and A. V. Yulin, Письма в ЖЭТФ 111, 303 (2020) [D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. 111, 268 (2020)].
- 26. D. A. Dolinina, A. S. Shalin, and A. V. Yulin, Письма в ЖЭТФ **112**, 79 (2020) [D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. **112**, 71 (2020)].
- В. М. Левин, Е. С. Мороков, К. А. Валуев, Письма в ЖЭТФ 113, 68 (2021) [V. М. Levin, Е. S. Morokov, and K. A. Valuev, JETP Lett. 113, 61 (2021)].
- У.Х. Копвиллем, В.Д. Корепанов, ЖЭТФ 41, 211 (1961) [U.Kh. Kopvillem and V.D. Korepanov, JETP 41, 211 (1961)].
- 29. C. Kittel, Phys. Rev. Lett. 6, 449 (1961).
- 30. E.B. Tucker, Phys. Rev. Lett. 6, 547 (1961).
- Дж. Такер, В. Рэмптон, Гиперзвук в физике твердого тела, Мир, М. (1975) [J.W. Tucker and V.W. Rampton, Microwave Ultrasonics in Solid State Physics, North-Holland Publishing Company, Amsterdam (1972)].
- С. В. Сазонов, ЖЭТФ 118, 20 (2000) [S. V. Sazonov, JETP 91, 16 (2000)].
- К. Н. Баранский, Физическая акустика кристаллов, МГУ, М. (1991).
- В. А. Красильников, В. В. Крылов, Введение в физическую акустику, Наука, М. (1984).
- 35. M. D. Crisp, Phys. Rev. A 8, 2128 (1973).
- П. Г. Крюков, В. С. Летохов, УФН 99, 169 (1969)
 [P. G. Kryukov and V. S. Letokhov, Phys.-Uspekhi 12, 641 (1970)].
- 37. R. A. Fisher, Ann. Eugen. 7, 355 (1937).
- M. J. Ablowitz and A. Zeppetella, Bull. Math. Biol. 41, 835 (1979).
- H. H. Розанов, С. В. Федоров, Оптика и спектроскопия 72, 1394 (1992) [N. N. Rozanov and S. V. Fedorov, Optics and Spectroscopy 72, 782 (1992)].
- Н. Н. Розанов, С. В. Федоров, Оптика и спектроскопия 84, 849 (1998) [N. N. Rozanov and S. V. Fedorov, Optics and Spectroscopy 84, 767 (1998)].

Письма в ЖЭТФ том 113 вып. 9-10 2021

618

- M. M. Pieczarka, D. Poletti, C. Schneider, S. Höfling, E. A. Ostrovskaya, G. Sek, and M. Syperek, APL Photonics 5, 086103 (2020).
- 42. J. de Klerk, Phys. Rev. 139, A1635 (1965).
- С.В. Воронков, С.В. Сазонов, ЖЭТФ 120, 269 (2001) [S.V. Voronkov and S.V. Sazonov, JETP 93, 236 (2001)].
- 44. А.А. Заболотский, Письма в ЖЭТФ **76**, 709 (2002) [A.A. Zabolotskii, JETP Lett. **76**, 607 (2002)].
- 45. A.A. Zabolotskii, Phys. Rev. E 67, 066606 (2003).
- A. V. Gulakov and S. V. Sazonov, J. Phys.: Condens. Matter 16, 1733 (2004).
- 47. S.V. Sazonov and N.V. Ustinov, Phys. Rev. E 73, 056614 (2006).
- С. В. Сазонов, Н. В. Устинов, ТМФ 151, 228 (2007)
 [S. V. Sazonov and N. V. Ustinov, Theor. Math. Phys. 151, 632 (2007)].

О неаддитивной анизотропной релятивистской гидродинамике

 $A. B. Леонидов^{1)}$

Физический институт им. П. Н. Лебедева, 119991 Москва, Россия Поступила в редакцию 22 февраля 2021 г. После переработки 5 апреля 2021 г. Принята к публикации 5 апреля 2021 г.

Описано неаддитивное обобщение релятивистской анизотропной гидродинамики. Для частного случая 0 + 1 буст-инвариантной гидродинамики вычислен вклад неаддитивности в производство энтропии.

DOI: 10.31857/S1234567821090093

Разработка самосогласованной физической картины ультрарелятивистских соударений тяжелых ионов по-прежнему представляет собой чрезвычайно трудную задачу, см., например, четкое описание некоторых важнейших ее аспектов в [1]. Целью настоящей работы является построение теоретического описания рождающейся в таких соударениях анизотропной сильновзаимодействующей материи, основанного на соответствующем обобщении релятивистской гидродинамики.

Фундаментальной причиной сильной импульсной анизотропии материи, рождающейся на ранней и промежуточной стадиях соударений тяжелых ионов при высоких энергиях, считается сильная анизотропия глазмы [2] – плотной глюонной среды, рождающейся на их ранней стадии. Физическим механизмом, отвечающим за рождение глазмы, является формирование хромомагнитных токовых трубок. Как следствие, продольное P_L и поперечное P_T давления сильно разбаланисированы, причем $P_T > P_L$. Простейшим способом учета этой импульсной анизотропии является обращение к анизотропной гидродинамике, см., например, недавний обзор [3]. Идея подхода состоит в том, чтобы перевыразить импульсную анизотропию в терминах анизотропии давления и построить гидродинамическое описание, используя соответствующую модификацию тензора энергии импульса. Для рассматриваемого ниже случая 0 + 1 гидродинамики симметрийные соображения приводят к следующему выражению для тензора энергии импульса:

$$T^{\mu\nu} = (\epsilon + P_T)u^{\mu}u^{\nu} - P_T g^{\mu\nu} + (P_L - P_T)z^{\mu}z^{\nu}, \quad (1)$$

где ϵ – плотность энергии, u^{μ} – 4-вектор скорости и, при оси соударений, направленной вдоль $z, z^{\mu} = (0,0,0,1)$. В изотропном случае $P_L = P_T$ и тензор энергии-импульса (1) принимает знакомую из релятивистской гидродинамики форму. Отметим, что наличие анизотропии давления приводит к новым интересным эффектам, таким как, например, модификация конуса Maxa [4].

Ниже мы будем придерживаться подхода к конструированию такой анизотропной гидродинамики, основанном на кинетической теории [5, 6]²⁾. Идея подхода состоит в явном выводе выражения для тензора энергии – импульса с использованием анизотропной функции распределения и последующем выводе уравнений гидродинамики в рамках стандартной для статистической физики процедуры, связывающей кинатическую теорию и гидродинамику.

Второе существенное для настоящего анализа обстоятельство состоит в том, что обсуждаемая материя является плотной и сильновзаимодействующей. Стандартная формулировка статистической физики основана на предположении об аддитивности энергий и энтропий физически малых объемов. Следствием этого являются, в частности, больцмановское распределение по энергиям этих объемов в каноническом формализме и аддитивность их энергий и энтропий. Фундаментом такого предположение является предположение о том, что энергия взаимодействия материи в соседних объемах вблизи поверхности, которая их разделяет, пренебрежимо мала что, в свою очередь, отвечает предположению о наличии режима слабой связи. С фундаментальной точки зрения можно ожидать, что для сильновзаимодействующих систем энергия и энтропия не могут быть аддитивными, что требует для их описания построения соответствующей модификации статистической физики. Одно из таких возможных обобщений, которое привлекло большое внимание, - это неаддитивная формулировка статистической механики, разра-

¹⁾e-mail: leonidovav@lebedev.ru

²⁾Подробное обсуждение можно найти в [7].

ботанная Тсаллисом, см. книгу [8] и ссылки в ней³⁾. Следствия применения такого формализма к множественному рождению частиц в соударениях тяжелых ионов, в частности – для описания спектров по поперечным импульсам, обсуждаются, в частности, в [10–13]. Неаддитивное обобщение гидродинамик, основанное на соответствующем обобщении кинетического уравнения Больцмана [14], было построено в [15, 16]⁴⁾.

Поскольку целью настоящей работы является одновременный учет импульсной анизотропии и неаддитивности, для построения неаддитивной анизоторпной гидродинамики нам необходимо рассмотреть неаддитивное уравнение Больцмана для анизотропной по импульсам функции распределения. В используемом ниже приближении времени релаксации соответствующее кинетическое уравнение имеет вид

$$p^{\mu}\partial_{\mu}\left[f(x,p)^{q}\right] = -\frac{p^{\mu}u_{\mu}}{\tau_{\rm eq}}\left[f^{q}(x,p,\xi|\Lambda) - f^{q}_{\rm eq}(x,p|\Lambda_{\rm eq})\right],\tag{2}$$

где q – параметр распределения Тсаллиса, контролирущий степень неаддитивности (см. ниже уравнение (5)), $\tau_{\rm eq}$ – время релаксации и предполагается анзац Ромашке–Стрикланда [19] для анизотропной функции распределения $f(x, p, \xi | \Lambda)$

$$f(x, p, \xi | \Lambda) = f_{\rm iso} \left(\frac{\mathbf{p}^2 + \xi p_z^2}{\Lambda^2} \right), \tag{3}$$

где, в свою очередь, $\xi(t)$ и $\Lambda(t)$ – зависящие от времени параметры, контролирующие степень импульсной анизотропии и импульсный масштаб соответственно, и мы предположили, что функция распределения анизотропна только в продольном направлении. Функция

$$f_{\rm eq}(x, p, |\Lambda_{\rm eq}) = f_{\rm iso} \left(\mathbf{p}^2 / \Lambda_{\rm eq}^2 \right)$$
 (4)

отвечает стационарному изотропному состоянию, характеризующемуся эффективной импульсной шкалой $\Lambda_{\rm eq}$. В стандартной статистической физике распределение (4) – это распределение Больцмана и $\Lambda_{\rm eq}$ – это температура. Для рассматриваемого неаддитивного кинетического формализма предполагается, что стационарное распределение $f_{\rm eq}(x, p | \Lambda_{\rm eq})$ имеет тсаллисовскую форму

$$f_{\rm eq}(x,p) = \left[1 - (1-q)\mathbf{p}^2/\Lambda_{\rm eq}^2\right]^{1/(1-q)}.$$
 (5)

В пределе $q \to 1$ восстанавливается обычное распределение Больцмана, использовавшееся в [5, 6]. Ключевыми величинами для построения неаддитивной гидродинамики с использованием кинетического формализма являются обобщенные ток частиц N^{μ} , тензор энергии-импульса $T^{\mu\nu}$ и ток энтропии S^{μ} :

$$N^{\mu} = \int \frac{d^3p}{(2\pi)^3 p^0} p^{\mu} f(x,p)^q, \tag{6}$$

$$T^{\mu\nu} = \int \frac{d^3p}{(2\pi)^3 p^0} p^{\mu} p^{\nu} f(x,p)^q, \tag{7}$$

$$S^{\mu} = -\int \frac{d^3p}{(2\pi)^3 p^0} p^{\mu} \left[f(x,p)^q \ln_q f(x,p) - f(x,p) \right], \,(8)$$

где

$$\ln_q(x) = \frac{x^{1-q} - 1}{1-q}.$$
(9)

Отметим, что в литературе [14–16] можно встретить различные предположения относительно тока энтропии. Выражение в (8) отвечает выбору, сделанному в [15, 16].

Чтобы обеспечить сохранение энергии-имульса, мы будем использовать нормировочное условие Ландау (см., например, [3, 15, 16]) для энергии $\epsilon = T^{00}$

$$\epsilon(\xi, \Lambda) = \epsilon_{\rm eq}(\Lambda_{\rm eq}), \tag{10}$$

где вычисления в левой и правый частях (10) делаются с использованием функций распределения (3) и (4) соответственно. В результате получаем следующее нормировочное условие на $\Lambda_{\rm eq}$ и Λ :

$$\Lambda_{\rm eq} = \mathcal{R}(\xi)^{1/4}\Lambda, \quad \mathcal{R}(\xi) = \frac{1}{2} \left(\frac{1}{1+\xi} + \frac{\arctan\sqrt{\xi}}{\sqrt{\xi}} \right). \tag{11}$$

В этой работе, следуя [15, 16], мы рассмотрим буст-инвариантную 0 + 1-мерную гидродинамику, в которой все величины зависят только от собственного времени τ для милновских координат (τ, η) , определенных соотношениями

$$t = \tau \cosh \eta, \quad z = \tau \sinh \eta.$$
 (12)

Уравнениям гидродинамики отвечают уравнения Больцмана для двух низших моментов, отвечающих токам частиц и энергии – импульса (6), (7). Легко проверить, что вычисления для неаддитивного случая аналогичны вычислениям в [5] и приводят к тем же уравнениям эволюции для Λ и ξ :

$$\partial_{\tau}\xi = \frac{2(1+\xi)}{\tau} - \frac{4(1+\xi)}{\tau_{eq}} \mathcal{R}(\xi)\mathcal{G}(\xi),$$
$$\partial_{\tau}\Lambda = \frac{1+\xi}{\tau_{eq}} \mathcal{R}'(\xi)\mathcal{G}(\xi)\Lambda, \tag{13}$$

где

$$\mathcal{G}(\xi) = \frac{\mathcal{R}^{3/4}(\xi)\sqrt{1+\xi-1}}{2\mathcal{R}(\xi)+3(1+\xi)\mathcal{R}'(\xi)}.$$
 (14)

³⁾Недавнее обсуждение можно найти в [9].

⁴⁾Альтернативная конструкция была предложена в [17, 18].

(15)

Подчеркнием, что выражения для плотности частиц (6) и тензора энергии – импульса (7) в неаддитивном случае, разумеется, отличаются от их аддитивных аналогов.

Обратимся теперь к анализу эволюции плотности энтропии $S \equiv S^0$. При выполнении вычислений удобно явно выделить зависимость от параметра анизотропии $S(\xi, \Lambda) = \frac{1}{\sqrt{1+\xi}} S_{\rm iso}(\Lambda),$

где

$$S_{\rm iso}(\Lambda) = \frac{\Lambda^3}{(2\pi)^2} \int dw \; w^{1/2} \left[f_{\rm iso}^q(w) \ln_q f_{\rm iso}(w) - f_{\rm iso}(w) \right]$$
(16)

и $w = p^2/\Lambda^2$. Перепишем уравнение для $\partial_{\tau}S$ в следующем виде:

$$\partial_{\tau}S = \Delta_0(\tau) + (q-1)\Delta_q(\tau), \qquad (17)$$

где мы разделили аддитивный $\Delta_0(\tau)$ и неаддитивный $(q-1)\Delta_1(\tau)$ вклады, так что в аддитивном пределе $q \rightarrow 1$ остается только первый из них. В результате вычислений получаем

$$\Delta_0(\tau) = -\left[\frac{1}{2}\frac{1}{1+\xi}(\partial_\tau\xi) - \frac{3}{\Lambda}(\partial_\tau\Lambda)\right]S,$$

$$\Delta_q(\tau) = \frac{1}{\sqrt{1+\xi}}\frac{2}{\Lambda}\partial_\tau\Lambda\int dw \ w^{1/2} \operatorname{Ln}_q f_{\mathrm{iso}}(w), \quad (18)$$

где

$$Ln_q f_{iso}(w) \equiv q \frac{f_{iso}^q(w) - 1}{q - 1}.$$
(19)

Используя (13), окончательно получаем

$$\Delta_0(\tau) = \frac{1}{\tau_{\rm eq}} \left[\mathcal{R}^{3/4}(\xi) \sqrt{1+\xi} - 1 \right] S, \tag{20}$$

$$\Delta_q(\tau) = \sqrt{1+\xi} \frac{1}{\tau_{\rm eq}} \mathcal{R}'(\xi) \mathcal{G}(\xi) \int dw \, w^{1/2} \, \mathrm{Ln}_q f_{\rm iso}(w).(21)$$

Уравнения (20), (21) составляют главный результат настоящей работы: учет неаддитивности при описании коллективных свойств анизотропной гидродинамики приводит к наличию дополнительного источника производства энтропии (21) относительно ранее известного [5] вклада (20), обусловленного только наличием импульсной анизотропии. Для количественной оценки значения нового источника энтропии в процессах множественного рождения частиц в ультрарелятивистских соударениях тяжелых ионов потребуются детальные численные вычисления. Этот анализ является важной задачей для дальнейшей работы.

Работа была поддержана грантом Российского фонда фундаментальных исследований # 18-02-40131.

- 1. F. Gelis, arXiv:2102.07604 [hep-ph].
- 2. T. Lappi and L. McLerran, Nucl. Phys. A 772, 200 (2006); doi:10.1016/j.nuclphysa.2006.04.001; arXiv:hepph/0602189 [hep-ph].
- 3. M. Alqahtani, M. Nopoush, and M. Strickland, Prog. Part. Nucl. Phys. **101**, 204 (2018); doi:10.1016/j.ppnp.2018.05.004; arXiv:1712.03282 [nucl-th].
- 4. M. Kirakosyan, A. Kovalenko, and A. Leonidov, Eur. Phys. J. C 79(5), 434 (2019); doi:10.1140/epjc/s10052-019-6919-9; arXiv:1810.06122 [hep-ph].
- 5. M. Martinez and M. Strickland, Nucl. Phys. A 848, 183 (2010); doi:10.1016/j.nuclphysa.2010.08.011; arXiv:1007.0889 [nucl-th].
- 6. M. Martinez and M. Strickland, Phys. Rev. C 81, 024906 (2010); doi:10.1103/PhysRevC.81.024906; arXiv:0909.0264 [hep-ph].
- 7. E. Molnar, Η. Niemi, and D. H. Rischke, Phys. Rev. D **93**(11), 114025 (2016);doi:10.1103/PhysRevD.93.114025; arXiv:1602.00573 [nucl-th].
- 8. C. Tsallis, Introduction to nonextensive statistical mechanics: approaching a complex world, Springer Science & Business Media, Berlin/Heidelberg (2009).
- 9. C. Tsallis, Entropy 21, 696 (2019).
- 10. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Tervaev, and D. Worku, Phys. Lett. B 723, 351 (2013); doi:10.1016/j.physletb.2013.05.029; arXiv:1302.1970 [hep-ph].
- 11. J. Cleymans, M. D. Azmi, A.S. Parvan, and O.V. Teryaev, EPJ Web Conf. 137, 11004 (2017); doi:10.1051/epjconf/201713711004.
- 12. K. Shen, G.G. Barnaföldi, and T.S. Biró, Universe **5**(5), 122 (2019);doi:10.3390/universe5050122; arXiv:1905.08402 [hep-ph].
- 13. G. Bíró, G.G. Barnaföldi, and T.S. Biró, J. Phys. G 47(10), 105002 (2020); doi:10.1088/1361-6471/ab8dcb; arXiv:2003.03278 [hep-ph].
- 14. A. Lavagno, Phys. Lett. A **301**, 13 (2002); doi:10.1016/S0375-9601(02)00964-7; arXiv:condmat/0207353 [cond-mat.stat-mech].
- 15. T.S. Biro and E. Molnar, Phys. Rev. C 85, 024905 (2012);doi:10.1103/PhysRevC.85.024905; arXiv:1109.2482 [nucl-th].
- 16. T. S. Biró and E. Molnár, Eur. Phys. J. A 48, 172 (2012); doi:10.1140/epja/i2012-12172-8; arXiv:1205.6079 [nuclthl.
- 17. T. Osada and G. Wilk, Phys. Rev. C 77, 044903 (2008); erratum: Phys. Rev. C 78, 069903 (2008); doi:10.1103/PhysRevC.77.044903; arXiv:0710.1905[nucl-th].

- T. Osada and G. Wilk, Indian J. Phys. 85, 941 (2011); doi:10.1007/s12648-011-0103-x; arXiv:0805.2253 [nucl-th].
- P. Romatschke and M. Strickland, Phys. Rev. D 68, 036004 (2003); doi:10.1103/PhysRevD.68.036004; arXiv:hep-ph/0304092 [hep-ph].

Negative temperature: further extensions

 $G. E. Volovik^{1)}$

Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia

> Submitted 1 April 2021 Resubmitted 1 April 2021 Accepted 1 April 2021

DOI: 10.31857/S123456782109010X

The authors of recent paper [1] suggest that negative absolute temperatures are consistent with equilibrium thermodynamics. All the thermodynamic properties, such as thermometry, thermodynamics of cyclic transformations, ensemble equivalence, fluctuationdissipation relations, response theory and the transport processes, can be reformulated to include the negative temperatures. In [1] the condensed matter systems are discussed, such as the subsystem of nuclear spins with inverse spin population. The states with negative temperature has been experimentally studied in detail [2], and even the magnetic phase transitions occurring at negative temperature have been detected.

The equilibrium thermodynamics at T < 0 is only possible, if the environment also has negative temperature. Otherwise, the heat will be transversed from the negative temperature system to the environment, and the whole system will relax to the conventional state with T > 0. Here we show that the negative temperature states are also possible for the quantum vacuum in the relativistic quantum field theories. And if this vacuum state fills the whole Universe, this vacuum becomes thermodynamically stable in agreement with the conjecture in [1].

The relativistic vacuum with inverse population can be obtained by the PT symmetry operation, where Pand T are space and time reversal transformations correspondingly. When the gravitational tetrads are taken into account, the discrete PT symmetry of spacetime acquires new formulations, since the sign of the tetrad field becomes also important [3–7]. In particular, if the tetrads are composite objects, which are formed as bilinear combinations of the fermionic operators [8–10], the parity P and the time reversal T operations are formed as combinations of the original more fundamental symmetry operators, $P = P_c P_s$ and $T = T_c T_s$. Here P_c and T_c refer to pure coordinate transformations, $P_c \mathbf{r} = -\mathbf{r}$ and $T_c t = -t$, while P_s and T_s refer to the corresponding transformations of Dirac or Weyl spinors [11]. In this approach the Lorentz transformation also represents the combination of the fundamental symmetry operations, $L = L_c L_s$. These symmetries are spontaneously broken to their diagonal subgroup, $L_c \times L_s \to L$, when the gravitational tetrad emerges as the order parameter of the phase transition.

In this paper we consider the extension of the PT symmetry to thermodynamics, where the PT operation also changes the sign of temperature. We apply this extension to the Dirac vacuum.

The Universe with negative temperature is obtained using the Dirac picture of the quantum vacuum. The conventional Dirac vacuum represents an infinite sea of particles with negative energy. Let us note that the infinite energy of the Dirac vacuum does not necessarily produce the huge contribution to the cosmological constant. For example, in the socalled *q*-theory, the relevant vacuum energy, which enters the Einstein equations in the form of the cosmological constant, is determined by the infrared thermodynamics [12, 13], rather than by the ultraviolet cut-off. In the fully equilibrium Minkowski vacuum without matter and without external environment the thermodynamic vacuum energy is nullified without any fine tuning. This follows from the thermodynamic Gibbs–Duhem relation, which is valid for any quantum vacuum state, including the non-relativistic vacua – the ground states in condensed matter. That is why there is no need for the spurious renormalization of the infinite mass of the filled states to zero.

The PT transformation leads to the mirror Dirac vacuum, where all the positive energy states are occupied and the negative energy states are empty [6]. The thermodynamic energy of this vacuum remains zero, but the thermal states in the background of this "false" vacuum with inverse population are characterized by negative temperature. This is similar to what happens in the subsystem of nuclear spins in condensed matter with inverse spin population [1, 2, 14]. In this spin subsystem there is an upper limit to all allowed energy states. On the contrary, in the case of Dirac vacua, the energy is unbounded both from below and from above.

¹⁾e-mail: grigori.volovik@aalto.fi

At first glance the state with the negative temperature is unstable. However, it is unstable only in case if there is the normal environment – the thermal bath with positive temperature. If there is no external environment, i.e. this mirror vacuum occupies the whole universe, this isolated vacuum becomes stable in spite of its negative temperature.

In the relativistic physics, the energy is unbounded. The negative and positive energy branches of fermionic states are symmetric with respect to zero energy. Due to this symmetry the isolated mirror relativistic vacuum, in which all the positive energy states are occupied and the negative energy states are empty, has exactly the same physics as the conventional Dirac vacuum in the "normal" Universe. Though the matter (excitations) in this mirror Universe has negative energy, and the thermodynamic states are characterized by the negative temperature, the inhabitants of the mirror Universe would think that they live in the normal Universe with positive energies for matter and positive temperature. It is only with respect to our Universe their temperature and energies are negative. But with respect to their Universe it is our Universe, which is "false" and which is described by negative temperature.

Recently there was suggestion to extend our Universe beyond the Big Bang (BB) using the analytic continuation of the radiation-dominated epoch across the BB singularity [4, 5]. The same analytic continuation, but which also takes into account the thermodynamics of the matter field, suggests that the temperature on the two sides of the BB has different sign [15]. From the point of view of the pre-BB Universe, our post-BB Universe has negative temperature.

So, in the symmetry transformations, one must take into account not only the vacuum states, but also the thermodynamics in the background of the vacuum. The PT transformation is accompanied by $T \rightarrow -T$. While the energy and temperature of matter change sign, the entropy remains positive, S(E) = S(-E).

There can be another situation: when both the temperature and entropy are negative, while energy remains positive. This takes place for thermodynamics of the white holes. The negative entropy of the white hole has been obtained in three different ways of calculations [16, 17], where the quantum tunneling from the black hole to the white hole with the same mass Mwas exploited. Considering the quantum tunneling as thermodynamic fluctuation, and expressing it in terms of the total change of the entropy in this process, one finds the entropy and temperature of the white hole: $S_{\rm WH}(M) = -S_{\rm BH}(M)$ and $T_{\rm WH}(M) = -T_{\rm BH}(M)$.

In the mirror Universe, the black hole partner is also the black hole. This mirror black hole has negative mass, the negative Hawking temperature, but the positive entropy, $T_{\rm BH}(-M) = -T_{\rm BH}(M)$ and $S_{\rm BH}(-M) =$

= $S_{\rm BH}(M)$. The same is with the white hole. Its mirror partner in the mirror Universe is the white hole with opposite temperature: $T_{\rm WH}(-M) = -T_{\rm WH}(M) = T_{\rm BH}(M)$ and $S_{\rm WH}(-M) = S_{\rm WH}(M) = -S_{\rm BH}(M)$.

In conclusion, the PT symmetry is extended to include the reversal of temperature. The PT operation applied to the Dirac quantum vacuum leads to the mirror Dirac vacuum, where all the positive energy states are occupied and the negative energy states are empty. Such vacuum is thermodynamically stable, while matter in the background of this vacuum is described by negative temperature. The thermodynamics in the two Dirac vacua are equivalent, being (anti)symmetric with respect to the reversal of temperature. The PT symmetry also connects the black hole thermodynamics in the two vacua. This demonstrates that the equilibrium thermodynamics with T < 0 discussed in [1] can be realized in quantum field theory.

I thank M. Baldovin and S. N. Vergeles for discussions.

This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement # 694248).

Full text of the paper is published in JETP Letters journal. DOI: 10.1134/S0021364021090058

- M. Baldovin, S. Iubini, R. Livi, and A. Vulpiani, arXiv:2103.12572.
- A. S. Oja and O. V. Lounasmaa, Rev. Mod. Phys. 69, 1 (1997).
- C. Rovelli, E. Wilson-Ewing, Phys. Rev. D 86, 064002 (2012).
- L. Boyle, K. Finn, and N. Turok, Phys. Rev. Lett. 121, 251301 (2018).
- 5. L. Boyle, K. Finn, and N. Turok, arXiv:1803.08930.
- 6. S. N. Vergeles, Class. Quantum Grav. **38**, 085022 (2021).
- M. A. Zubkov, Pis'ma v ZhETF **113**, 448 (2021); arXiv:2102.00964.
- 8. D. Diakonov, arXiv:1109.0091 (2011).
- A. A. Vladimirov and D. Diakonov, Phys. Rev. D 86, 104019 (2012).
- Y. N. Obukhov and F. W. Hehl, Phys. Lett. B 713, 321 (2012).
- 11. G.E. Volovik, arXiv:2011.06466.
- F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008).
- F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008).
- S. Braun, J. P. Ronzheimer, M. Schreiber, S. S. Hodgman, T. Rom, I. Bloch, and U. Schneider, Science (Washington, DC, U. S.) **339**, 52 (2013).
- G. E. Volovik, Pis'ma v ZhETF **109**, 10 (2019) [JETP Lett. **109**, 8 (2019)].
- G. E. Volovik, MDPI, Universe 6, 133 (2020); arXiv:2003.10331.
- 17. G.E. Volovik, arXiv:2103.10954.

РОССИЙСКАЯ АКАДЕМИЯ НАУК

ПИСЬМА

B

ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

том 113

Выпуск 10 25 мая 2021

Журнал издается под руководством Отделения физических наук РАН

Главный редактор В. М. Пудалов

Заместители главного редактора Г. Е. Воловик, В. П. Пастухов

Зав. редакцией И.В.Подыниглазова

Адрес редакции	119334 Москва, ул. Косыгина 2
тел./факс	(499)-137-75-89
e-mail	letters@kapitza.ras.ru
Web-страница	http://www.jetpletters.ru

Интернет-версия английского издания http://www.springerlink.com/content/1090-6487

[©] Российская академия наук, 2021

[©] Редколлегия журнала "Письма в ЖЭТФ" (составитель), 2021

Самые сильные магнито-индуцированные переходы атомов щелочных металлов

А. Саргсян, А. Тоноян, Д. Саркисян¹⁾

Институт физических исследований НАН Армении, 0203 Аштарак, Армения

Поступила в редакцию 18 марта 2021 г. После переработки 18 марта 2021 г. Принята к публикации 15 апреля 2021 г.

Атомные переходы щелочных металлов, которые в отсутствии внешнего магнитного поля имеют нулевую вероятность, однако, при его наличии имеют большие вероятности, названы магнитоиндуцированными (MI). Интерес к ним обусловлен большими вероятностями, которые, в широком диапазоне магнитных полей превосходят вероятности обычных переходов. MI переходы делятся на два типа: тип-1 (MI1) и тип-2 (MI2) и их общее количество \sim 100. В работе рассмотрены MI2 переходы между нижними F_q и верхними уровнами F_e сверхтонкой структуры с выполнением условия $F_e - F_q = \Delta F = \pm 2$, которые запрецены в нулевом магнитном поле, однако, при его наличии имеют большие вероятности. Вероятности MI2 переходов с $\Delta F = +2$ максимальны при использовании оптического излучения с круговой поляризацией σ^+ ; вероятности МІ переходов с $\Delta F = -2$ максимальны при использовании излучения с поляризацие
й $\sigma^-.$ Это различие было названо магнитно-индуцированным круговым дихроизмом 1-го типа (MICD1). В работе впервые продемонстрировано, что в магнитных полях > 100 Гс при σ^+ излучении вероятность самого сильного MI2 перехода атома 85 Rb, D_2 линии в 2.5 раза больше вероятности самого сильного MI2 перехода при *σ*⁻ излучении. Это различие названо циркулярным дихроизмом 2-го типа (MICD2). Показано, как определяется самый сильный МІ переход для любого атома щелочного металла, что важно для его использования в магнито-оптических процессах. Теоретические кривые хорошо описывают экспериментальные результаты.

DOI: 10.31857/S1234567821100013

Известно, что в сильных магнитных полях может происходить значительная модификация вероятности (интенсивности) атомных переходов щелочных металлов [1, 2]. Ярким примером гигантского возрастания вероятности служит поведение магнитоиндуцированных (MI) переходов в атомах Cs, Rb, К, и др., которые образуют большой класс, состоящий из ~100 атомных переходов с интересными и важными особенностями [3-10]. По правилам отбора МІ переходы запрещены в нулевом магнитном поле, в то время как, во внешнем магнитном поле происходит гигантское возрастание их вероятностей, поэтому, они названы МІ переходы. Существенная модификация вероятностей переходов, в частности, гигантское возрастание вероятностей МІ переходов происходит из-за эффекта "перемешивания" магнитных подуровней для нижнего F_g или верхнего F_e уровней с магнитными подуровнями близлежащего перехода; эффект "перемешивания" индуцируется внешним магнитным полем [3, 4, 7–11]. Интерес к MI переходам обусловлен тем, что в определенных широких интервалах магнитных полей вероятности этих переходов могут значительно превосходить вероятности обычных атомных переходов, разрешенных и в отсутствие магнитного поля. Для количественного определения степени взаимодействия атома с магнитным полем используется характерная величина магнитного поля $B_0 = A_{\rm hfs}/\mu_B$, где $A_{\rm hfs}$ – магнитная дипольная константа основного уровня атома, μ_B – магнетон Бора [12, 13]. Для атомов ⁸⁵Rb и ⁸⁷Rb величина $B_0 = 0.7$ и 2.4 кГс соответственно.

МІ переходы делятся на два типа [14]: тип-1 (МІ1) и тип-2 (МІ2). Используя представление в виде $|F, m_F\rangle$, где F – полный момент атома, а m_F – его проекция, к первому типу МІ1 относятся переходы между нижним F_g и верхним F_e уровнями $|F_g, 0\rangle \rightarrow |F_e = F_g, 0'\rangle$, вероятность которых в нулевом магнитном поле нулевая (штрихом обозначеные верхние возбужденные уровни), однако с увеличением приложенного магнитного поля происходит гигантское увеличение вероятности этих переходов, а при дальнейшем возрастании поля $B \gg B_0$ вероятности этих переходов асимптотически приближаются к постоянному значению [4].

 $^{^{1)}\}mathrm{e\text{-}mail:}$ sarkdav@gmail.com

Ко второму типу MI2 относятся переходы между нижним F_g и верхним F_e уровнями $|F_g, m_F
angle
ightarrow$ $\rightarrow |F_e, m_F'\rangle$, где $F_e = F_g \pm 2$ и $m_F' - m_F = 0, \pm 1.$ В случае переходов MI2 с увеличением приложенного магнитного поля происходит гигантское увеличение вероятности этих переходов, однако при дальнейшем возрастании поля $B \gg B_0$ вероятности этих переходов снова стремятся к нулю. В настоящей работе рассмотрены MI2 переходы атома 85 Rb, D_2 линии. В работах [8–10] для интенсивностей МІ переходов было выявлено правило зависимости интенсивности от поляризации возбуждающего излучения: в случае атомных переходов $F_e - F_g = \Delta F = +2$ интенсивности максимальны при возбуждении излучением с круговой поляризацией σ^+ , когда выполняется условие $m'_F - m_F = +1$, в то время как в случае атомных переходов $F_e - F_g = \Delta F = -2$ интенсивности максимальны при возбуждении излучением с круговой поляризацией σ^- , когда выполняется условие $m'_F - m_F = -1$. Для некоторых MI различие в интенсивности при использовании σ^+ и σ^- излучений может достигать больших величин [9]. Различие отклика атомной системы для таких процессов, как поглощение, флуоресценция, резонансная ионизация атомов и др. в магнитном поле при использовании σ^+ и σ^- излучений в атомной спектроскопии называется магнито-индуцированным циркулярным дихроизмом (MICD) [8,9,15]; вышеотмеченный дихроизм назван 1-го типа (MICD1).

В настоящей работе исследован циркулярный дихроизм, названный нами 2-го типа (MICD2), суть которого в следующем. Сравнение в широком интервале магнитных полей вероятности самого сильного MI2 перехода при услови
и $F_e-F_g=\Delta F=+2$ с использованием σ^+ излучения (для 85 Rb это переход $|2, -2\rangle \rightarrow |4', -1'\rangle)$, с интенсивностью самого сильного MI перехода с использованием σ^- излучения (для $^{85}\mathrm{Rb}$ это переход |3,0
angle
ightarrow |1',-1'
angle) показало, что вероятность перехода для которого выполняется условие $F_e - F_g = \Delta F = +2$ всегда больше. Ранее, в работе [9] было показано, что вероятность MI2 перехода 2 \rightarrow 4' для σ^- излучения (переход под номером 1⁻ в квадрате) в 4 раза меньше вероятности перехода с номером 5 в красном кружке. Другими словами, вероятность наиболее сильного MI2 перехода при использовании σ^+ излучения всегда больше, чем вероятность MI2 перехода при использовании σ^{-} излучения. В работе [10], показано, что в широком интервале магнитных полей вероятность самого сильного МІ-перехода $|3, -3\rangle \rightarrow |5', -2'\rangle$ атома Cs, D_2 линии при использовании σ^+ излучения в 2 раза больше, чем вероятность самого сильного MI перехода $|4,-1\rangle \rightarrow |2',-2'\rangle$ при использовании σ^- излучения.

Теоретические расчеты показывают, что это утверждение верно для MI2 переходов атомов всех щелочных металлов: для D_2 линий атомов ⁸⁷Rb, ³⁹K и Na вероятность самого сильного MI2 перехода $|1, -1\rangle \rightarrow |3', 0'\rangle$ при использовании σ^+ излучения в 4 раза больше самого сильного MI2 перехода $|2, +1\rangle \rightarrow |0', 0'\rangle$, который формируется σ^- излучением. Таким образом, самый сильный MI2 переход формируется σ^+ излучением для перехода с $\Delta F = +2$ и имеет наименьшее значение магнитного подуровня m_F для нижнего уровня F_a .

На рисунке 1а приведена диаграмма уровней ⁸⁵Rb, D_2 линии и переходы при σ^+ излучении, MI2 переходы 2 \rightarrow 4' отмечены 1–5 в красных кружках, также приведены переходы 2 \rightarrow 3', с номерами 1–5; на рис. 1b приведены переходы 3 \rightarrow 1', 2', 3', 4', в

Рис. 1. (Цветной онлайн) ⁸⁵Rb, D_2 линия, переходы при σ^+ излучении, для m_F правила отбора: $m'_F - m_F = +1$. (а) – Показаны переходы $2 \rightarrow 3', 4'$ (штрихами отмечены верхние уровни), в кружках отмечены MI2 переходы $2 \rightarrow 4'$, самую большую вероятность имеет переход под номером 5 в кружке. (b) – Показаны переходы $3 \rightarrow 1', 2', 3', 4'$. В темных кружках отмечены MI2 переходы $3 \rightarrow 1', 2', 3', 4'$. В темных кружках отмечены MI2 переход $3 \rightarrow 4'$, отмеченный как ⁸⁵GT, называется "направляющим" атомным переходом (GT)

630

Другие важные особенности GT переходов приведены в [11]. На рисунке 2a приведена диаграмма

Рис. 2. (Цветной онлайн) ⁸⁵Rb, D_2 линия, переходы при σ^- излучении, для m_F правила отбора $m'_F - m_F = -1$. (а) – Переходы 2 \rightarrow 1', 2', 3', 4', в прямоугольнике под номером 1⁻ показан МІ2 переход 2 \rightarrow 4'; (b) – переходы 3 \rightarrow 1', 2', 3', 4', в красных кружках отмечены МІ2 переходы 1⁻, 2⁻, 3⁻ (в кружке под номером 1⁻ показан переход МІ2, имеющий среди них наибольшую вероятность); переход 3 \rightarrow 4', отмеченный как ⁸⁵GT, является "направляющим" (GT)

уровней и переходы при σ^- излучении. Показаны переходы 2 \rightarrow 1', 2', 3', 4', под номером 1⁻ в квадрате показан единственный MI2 переход 2 \rightarrow 4'. На рисунке 2b показаны переходы 3 \rightarrow 1', 2', 3', 4', MI2 переходы отмечены 1⁻, 2⁻, 3⁻ в красных кружках (под номером 1⁻ в красном кружке показан MI2 переход, имеющий наибольшую вероятность среди них); переход 3 \rightarrow 4', отмеченный как ⁸⁵GT, является "направляющим" (GT). Ниже приведено сравнение самого сильного MI2 перехода при использовании σ^+ излучения под номером 5 в красном круж-

Письма в ЖЭТФ том 113 вып. 9-10 2021

ке, с самым сильным переходом при использовании σ^- поляризованного излучения под номером 1^- в красном кружке, и показано, что переход под номером 5 в красном кружке является самым сильным MI2 переходом D_2 линии. На рисунке 3 при-

Рис. 3. (Цветной онлайн) Схема эксперимента: ECDL – непрерывный диодный лазер, $\lambda = 780$ нм; FI – фарадеевский изолятор; 1 – четвертьволновая пластина; 2 – НЯ с Rb внутри печки; 3 – постоянные магниты PM; 4 – фотоприемник; 5 – узел для формирования реперного спектра; ОЅ – цифровой осциллограф, вставка в левом верхнем углу – фотография НЯ, заполненная Rb; видны интерференционные полосы, образующиеся при отражении света от внутренних поверхностей окон. Область толщиной $L = \lambda/2 = 390$ нм отмечена овалом

ведена схема экспериментальной установки. Использовалось излучение перестраиваемого диодного лазера с внешним резонатором [16], с длиной волны 780 нм и спектральной шириной ~1 МГц. Для регистрации спектра поглощения использовалось наноячейка (HЯ), с парами атомов Rb с толщиной в направлении лазерного излучения, равной половине длины волны ($L = \lambda/2 = 390$ нм) излучения резонансного с частотой D_2 линии. НЯ использовалась для реализации $\lambda/2$ -метода, который обеспечивает сужение атомных переходов (линий) в спектре поглощения $A(\nu)$ НЯ. Для дальнейшего сужения атомных линий, производилось двойное дифференцирование спектра поглощения $A''(\nu)$, что обеспечивало дополнительное значительное сужение атомных линий в спектре второй производной (SD - second derivative) [17]. Это особенно важно для частотого разделения близкорасположенных атомных переходов при наличии их большого числа. НЯ помещалась в печку, в которой имелись отверстия для прохождения лазерного излучения, и нагревалась до 110°C, что обеспечивало плотность (концентрацию) атомов $N \sim 10^{13} \, {\rm cm}^{-3}$ (детали конструкции НЯ приведены в работе [18]). НЯ помещалась между сильными постоянными магнитами (PM), которые формировали сильные продольные магнитные поля, волновой вектор лазерного излучения k направлялся вдоль магнитного поля B [19]. Для формирования частотного репера часть лазерного излучения направлялась на узел, содержаший дополнительную HЯ (5) с толщиной $L = \lambda/2 = 390$ нм, спектр SD поглощения которой служил частотным репером [17]. Оптические излучения регистрировались фотодиодами ФД-24K (4), сигналы с которых подавались на осциллограф Tektronix TDS2014B (OS).

Верхние кривые (Abs.) на рис. 4а-с показывают экспериментальные спектры поглощения переходов $2, 3 \rightarrow 3', 4'$ в продольном магнитном поле B == 800, 900 и 1000 Гс соответственно, полученные $\lambda/2$ методом ($L = \lambda/2 = 390$ нм) при использовании σ^+ поляризованного излучения (переходы смешены в высокочастотную область относительно частот исходных переходов при B = 0). Мощность лазера 50 мкВт. Как видно, в спектре поглощения некоторые переходы частотно перекрываются. Красные кривые показывают спектры SD второй производной кривых поглощения (здесь и далее спектр SD для удобства инвертирован). MI2 переход $|2, -2\rangle \rightarrow |4', -1'\rangle$ с номером 5 в красном кружке – самый сильный в группе MI2 переходов атома 85 Rb при использовании σ^+ излучения. На спектре также приведен "направляющий" переход $GT (^{85}Rb)^+$, применение которого приведено ниже. Синие линии – SD спектры расчетных спектров поглощения атомных переходов с ПШПВ 40 МГц. Была использована теоретическая модель, изложенная в работах [3, 4, 7, 8], описывающая изменение вероятностей и частотных положений атомных переходов в магнитном поле, с использованием матрицы гамильтониана с учетом всех переходов внутри сверхтонкой структуры. Нижние кривые (Reper) на рис. 4а-с – спектры SD поглощения переходов ⁸⁵Rb, $2 \rightarrow 1', 2', 3'$ и ⁸⁷Rb, $1 \rightarrow 0', 1', 2'$ при B = 0.

Поскольку целью являлось сравнение вероятностей в магнитных полях самого сильного MI2 перехода Rb при $\Delta F = +2$ при σ^+ -излучении (переход под номером 5 в красном кружке) с вероятностью наиболее сильного MI2 перехода Rb с $\Delta F = -2$ при σ^- излучении (переход под номером 1⁻ в красном кружке), ниже приведены спектры при возбуждении излучением с поляризацией σ^- . Верхние кривые (Abs.) на рис. 5а-с показывают экспериментальные спектры поглощения переходов 85 Rb, $3 \rightarrow 1', 2', 3', 4'$ в магнитном поле B = 800,900 и 1000 Гс соответственно, полученные $\lambda/2$ -методом ($L = \lambda/2 = 390$ нм) при использовании σ^- поляризованного излучения. Спектры находятся на низкочастотном крыле и содержат также переходы 87 Rb, D_2 линии, которые на спектре отмечены стрелками (нумерация приведена только для

Рис. 4. (Цветной онлайн) Атом ⁸⁵Rb, возбуждение σ^+ поляризацией, толщина НЯ L = 390 нм. (a)–(c) – Верхние кривые (Abs.) – экспериментальные спектры поглощения переходов 2, $3 \rightarrow 3', 4', B = 800, 900$ и 1000 Гс соответственно. Красные кривые – SD спектры, МІ2 переход с номером 5 в кружке самый сильный в группе МІ2 переходов; GT (⁸⁵Rb)⁺ – "направляющий" переход; синие линии – SD спектры расчетных спектров поглощения, ПШПВ 40 МГц. Нижние кривые на (a)–(c) (Reper) – спектры SD поглощения переходов ⁸⁵Rb, $2 \rightarrow 0, 1', 2', 3'$ и ⁸⁷Rb, $1 \rightarrow 0, 1', 2'$ при B = 0

Рис. 5. (Цветной онлайн) Атом ⁸⁵Rb, возбуждениие σ^- поляризацией, толщина НЯ L = 390 нм. (a)–(c) – Верхние кривые (Abs.) – экспериментальные спектры поглощения переходов 3 \rightarrow 1', 2', 3', 4', B = 800, 900 и 1000 Гс соответственно, красные кривые – спектры SD, МІ2 переход с номером 1⁻ в кружке – самый сильный в своей группе; GT (⁸⁵Rb)⁻ и GT (⁸⁷Rb)⁻ – "направляющие" переходы; синие линии – SD спектры расчетных спектров поглощения, ПШПВ 40 МГц. Нижние кривые на (a)–(c) – (Reper)-спектры SD поглощения при B = 0

тех переходов, которые важны в настоящей работе). Заметим, что MI2 переход $2 \rightarrow 4'$ при использовании σ^- излучения (переход, отмеченный на рис. 2а под номером 1^{-} в квадрате) отсутствует в спектре, так как по частоте он сильно смещен на $-8 \Gamma \Gamma$ ц в низкочастотную область и имеет в 4 раза меньшую амплитуду, чем у MI2 с номером 5 в красном кружке. Как видно, в спектре поглощения некоторые переходы спектрально плохо разрешены, в то время как в спектрах SD второй производной они спектрально полностью разрешены. Красные кривые показывают спектры SD второй производной поглощения этих атомных переходов. MI2 переход с номером 1^- в красном кружке $(|3,0\rangle \rightarrow |1',-1'\rangle)$ – самый сильный в группе MI2 из переходов атома ⁸⁵Rb при использовании σ^- излучения. На спектре также приведены "направляющие" переходы GT (⁸⁵Rb)⁻ и GT (⁸⁷Rb)⁻. Синие линии показывают SD спектры расчетных спектров поглощения при спектральной ширине переходов 40 МГц. Нижние кривые (Reper) на рис. 5а-с показывают спектры SD поглощения переходов ⁸⁷Rb, $2 \rightarrow 1', 2', 3'$ при B = 0. Известно, что параметры непрерывных диодных лазеров, такие, как мощность, спектральная ширина линии, линейность частотного сканирования, могут различаться в зависимости от частотного диапазона, в котором работает лазер. Поскольку MI2 переход под номером 5 в красном кружке находится на высокочастотном крыле, а MI2 переход под номером 1^- в красном кружке находится на низкочастотном крыле (при $B \sim 1000 \, \Gamma c$ частотное расстояние между ними $\sim 9 \Gamma \Gamma \mu$), то прямое сравнение амплитуд этих переходов по спектру может быть неточным. Поэтому нами проводилось следующее. Вероятности "направляющих" переходов $GT (^{85}Rb)^+$ и $GT (^{85}Rb)^-$ равны друг другу при всех величинах магнитного поля [11]. Абсолютная величина поглощения при использовании $\lambda/2$ -метода мала и составляет ~1%, поэтому величина поглощения может быть записана как $A = \sigma NL$, где σ – сечение резонансного поглощения, которое пропорционально вероятности атомного перехода (в нашем случае зависит от величины B), N – плотность атомов, L – толщина НЯ. Следовательно, амплитуды переходов в спектрах поглощения пропорциональны вероятностям этих переходов (предполагается, что интенсивность возбуждающего излучения мала и не вызывает эффектов насыщения переходов [20]). Поскольку MI2 переход с номером 5 в красном кружке расположен по частоте близко к GT $(^{85}Rb)^+$, a MI2 переход с номером 1⁻ в красном кружке расположен близко к $GT (^{85}Rb)^{-}$, поэтому, измеряя соотношение амплитуд этих MI2 переходов к соответствующим ам-

Рис. 6. (Цветной онлайн) Расчетная кривая отношения вероятностей переходов $|2, -2\rangle \rightarrow |4', -1'\rangle$ и $|3, 0\rangle \rightarrow$ $\rightarrow |1', -1'\rangle$ при возбуждении излучениями с σ^+ и σ^- поляризацией соответственно, черные квадратики – экспериментальные результаты. На вставке – это отношение в широкой области магнитных полей; вероятность перехода $|2, -2\rangle \rightarrow |4', -1'\rangle$ превосходит вероятность перехода $|3, 0\rangle \rightarrow |1', -1'\rangle$ более, чем в 2 раза; это названо циркулярным дихроизмом 2-го типа (MICD2)

плитудам GT ($^{85}{\rm Rb})^+$ и GT ($^{85}{\rm Rb})^-,$ можно определить отношение $A_{MI(5)}/A_{MI(1^{-})}$. На рисунке 6 черными квадратиками показаны экспериментальные результаты для B = 800, 900 и $1000 \,\Gamma c$, сплошная линия – теоретическая кривая. Причина выбора всего трех значений В заключается в следующем: при разных значениях В происходит частотное перекрытие MI2 и GT переходов (при возбуждении излучениями σ^+ или σ^- поляризациями) с другими переходами. При выбранных трех значениях частотного перекрытия с другими переходами не происходит, что важно для правильного определения амплитуд MI2 с номерами 5 и 1⁻ в красных кружках. Из рисунка 6 видно, что вероятность самого сильного перехода $|2,-2\rangle \rightarrow |4',-1'\rangle$ при использовании σ^+ излучения в интервале 0.2-2 кГс значительно превосходит вероятность самого сильного перехода $|3,0\rangle \rightarrow$ $|1',-1'\rangle$ при использовании σ^- излучения, что необходимо учитывать при их использовании в магнитооптических процессах. Пары атомов металлов являются изотропной средой, однако, когда прикладывается продольное магнитное поле В, среда становится анизотропной. Различная реакция в магнитном поле атомной системы при использовании σ^+ и σ^- излучений называется магнито-индуцированным циркулярным дихроизмом [8, 15]; для данного случая можем назвать циркулярным дихроизмом 2-го типа (MICD2).

Отметим, что в настоящей работе исследованы МІ переходы только $nS \to nP$ первой фундаментальный серии *D*-линий щелочных металлов, где n = 3, 4, 5, 6 для Na, K, Rb, Cs, соответственно, где n является главным квантовым числом, что составляет в общей сложности (MI1 и MI2 вместе) ~100 переходов, включая \sim 70 MI2 переходов. Расчеты показывают, что по 70 MI2 переходов будут также наблюдаться и для второй фундаментальной серии D_2 -линий, $nS \to (n+1)P$, а также для третьей фундаментальной серии *D*-линий $nS \rightarrow (n+2)P$ и т.д. Важно отметить, что для каждой последующей серии D_2 -линий величина В, при которой достигается максимальная вероятность MI2 переходов, уменьшается, что упростит их исследования и применения. Также, как это показано в настоящей работе, самый сильный MI2 переход формируется σ^+ излучением для переходов с $\Delta F = +2$ и имеет наименьшее значение магнитного подуровня m_F для нижнего уровня F_q . Недавно изготовленные стеклянные НЯ, заполненные щелочным металлом [21, 22], наряду с приведенной в настоящей работе НЯ (изготовленной из технического сапфира), могут быть успешно применены для этих исследований.

А. Саргсян благодарит ГК МОН РА за финансовую поддержку, проект #19YR-1C017.

- Е.Б. Александров, Г.И. Хвостенко, М.П. Чайка, Интерференция атомных состояний, Наука, М. (1991).
- M. Auzinsh, D. Budker, and S. M. Rochester, *Optically Polarized Atoms: Understanding Light-Atom Interactions*, Oxford University Press, N.Y. (2010).
- P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).
- G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, Europhys. J. D 66, 119 (2012).
- A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).
- S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A 92, 063810 (2015).
- A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).
- А. Саргсян, А. Тоноян, Г. Ахумян, Д. Саркисян, Письма в ЖЭТФ 106, 669 (2017).
- A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, and D. Sarkisyan, EuroPhys. Lett. **121**, 53001 (2018).
- A. Sargsyan, A. Amiryan, A. Tonoyan, and D. Sarkisyan, Phys. Lett. A **390**, 127114 (2021).

- А. Саргсян, Г. Ахумян, А. Папоян, Д. Саркисян, Письма в ЖЭТФ 101, 330 (2015).
- B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).
- M. Zentile, J. Keaveney, L. Weller, D.J. Whiting, C.S. Adams, and I.G. Hughes, Comput. Phys. Commun. 189, 162 (2015).
- 14. А. Саргсян, А. Тоноян, Т. А. Вартанян, Д. Саркисян, Оптика и спектроскопия **128**, 1806 (2020).
- M. Ilchen, N. Douguet, T. Mazza et al. (Collaboration), Phys. Rev. Lett. 118, 013002 (2017).
- V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006).
- A. Sargsyan, A. Amiryan, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 5533 (2019).

- J. Keaveney, A. Sargsyan, U. Krohn, D. Sarkisyan, I.G. Hughes, and C.S. Adams, Phys. Rev. Lett. 108, 173601 (2012).
- A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).
- 20. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, Berlin-Heidelberg (2004).
- T. Peyrot, C. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).
- T. F. Cutler, W. J. Hamlyn, J. Renger, K. A. Whittaker,
 D. Pizzey, I. G. Hughes, V. Sandoghdar, and
 C. S. Adams, Phys. Rev. Appl. 14, 034054 (2020).

Электромагнитно индуцированные решетки атомных населенностей, создаваемые с помощью предельно коротких световых импульсов (Миниобзор)

*Р. М. Архипов*¹⁾

Санкт-Петербургский государственный университет, 199034 С.-Петербург, Россия

Поступила в редакцию 7 апреля 2021 г. После переработки 7 апреля 2021 г. Принята к публикации 8 апреля 2021 г.

Электромагнитно индуцированные решетки (ЭМИР) атомных населенностей создаются в резонансных средах при интерференции двух и более монохроматических пучков, перекрывающихся в среде. Они вызывают значительный интерес в связи с возможностью многочисленных применений в оптике и спектроскопии. В последние годы достигнут значительный прогресс в генерации предельно коротких импульсов фемто- и аттосекундной длительности. Для таких коротких импульсов создание интерференционной картины невозможно, так как область их перекрытия крайне мала, что не позволит создать даже нескольких интерференционных полос. Но при когерентном взаимодействии со средой (когда длительность импульсов короче времен релаксации в среде) они способны быстро изменять населенности атомных уровней за счет когерентных осцилляций Раби (carrier wave Rabi flopping). И в этом случае создание решеток населенностей возможно без одномоментного перекрытия коротких световых импульсов в среде. Приводится обзор последних результатов по созданию и управлению ЭМИР с помощью последовательности одноцикловых и субцикловых световых импульсов. Показана возможность применения униполярных субцикловых импульсов для более эффективного управления населенностями атомных систем и ЭМИР, по сравнению с биполярными многоцикловыми импульсами. Обсуждаются различные применения данных решеток в сверхбыстрой оптике и для голографической записи при использовании униполярных импульсов.

DOI: 10.31857/S1234567821100025

Введение. Электромагнитно индуцированные решетки атомных населенностей (ЭМИР) создаются в резонансной среде с помощью монохроматического лазерного излучения при интерференции двух и более пучков света, перекрывающихся в среде [1–3]. Возникновение интерференционной картины приводит к пространственной модуляции населенностей энергетических уровней среды, и в среде возникают пространственные решетки населенностей. В современной литературе за последние десятилетия активно описывается возможность создания ЭМИР в трех- и четырехуровневых резонансных средах, в которых реализуется режим электромагнитноиндуцированной прозрачности [2,3]. Интерес к таким решеткам обусловлен в первую очередь возможностью их многочисленного применения, например, в системах полностью оптической связи [4-7], для создания фотонных запрещенных зон с помощью света [8], реализации устройств хранения и переключения света [9-12], дефлекторов лазерного излучения [13, 14] и др. приложений [15–18]. Процессы формирования и свойства ЭМИР, созданных таким образом и их применения, описаны в монографии [1].

Не претендуя на полноту полного обзора исследований в данном направлении и отсылая читателя к специальной литературе (см., например, [1–3] и цитируемую литературу), отметим, что ЭМИР использовались для наблюдения эффекта Тальбо [19, 20], а также имеют различные применения в спектроскопии, например, для детектирования оптических восприимчивостей [21], исследования динамики квантовых точек [22, 23] и населенностей молекул [24]. Между тем активно изучается дифракция пробного излучения на ЭМИР [25–28]. Экспериментально ЭМИР реализуются, например, в парах рубидия [29,30]. Наиболее привлекательной является получение решеток в холодных атомах, в которых эффект Допплера является несущественным. Так экспериментально решетки были получены в холодных парах натрия [31], цезия [32] и недавно в холодных атомах рубидия [33].

 $^{^{1)}{\}rm e\text{-}mail:}$ arkhipovrostislav@gmail.com

В последних работах сообщается об использовании ЭМИР для наблюдения так называемых хиральных краевых токов в атомах [34], а также сообщается о применении ЭМИР в топологической фотонике – наблюдение краевых солитонов [35] и спин-орбитального взаимодействия в фотонноиндуцированном графене [36]. На момент написания настоящего обзора появились сообщения о создании эффективного полностью оптического модулятора света [37] на основе атомных решеток населенностей и модификации систем измерения фазы и частоты УФ импульсов [38].

Таким образом, данная тематика, посвященная созданию ЭМИР и изучению их свойств, является активно развивающейся областью современной оптики за последнее время. Однако, как уже отмечалось выше, создание решеток в этом случае происходит при интерференции монохроматических лазерных пучков, перекрывающихся в среде. В последние годы был достигнут значительный прогресс в получении предельно коротких световых импульсов (ПКИ) с длительностью в фемто- и аттосекундном дипазоне [39–44]. Характерные времена осцилляций волновых пакетов в атомах, молекулах и твердых телах могут лежать в аттосекундном диапазоне, поэтому такие импульсы активно применяются для изучения и контроля динамики волновых пакетов в веществе [44–46]. Получаемые на практике импульсы являются биполярными, в них вектор напряженности элекрического поля много раз меняет знак на противоположный за длительность импульса. И интерграл от напряженности поля по времени (электрическая площадь импульса) равен нулю. При дальнейшем сокращении длительности импульсов возникает уже переход к униполярным и субцикловым импульсам, содержащим полуволну поля одной полярности, которые могут обладать уже отличной от нуля электрической площадью [47–50]. Это открывает новые возможности в оптике - такие импульсы способны оказывать более быстрое и эффективное воздействие на атомные системы, по сравнению с обычными биполярными импульсами [51-57].

При когерентном взаимодействии ПКИ с резонасными средами (длительность импульса короче времен релаксации разности населенностей Т₁ и поляризации T₂ в среде) за счет осцилляций Раби возможно быстрое изменение населенностей атомных уровней, которое может происходить за времена порядка длительности импульса [58]. А в среде возможно создание решеток населенностей и фотонного эха с помощью последовательности импульсов, без одномоментного перекрытия последних в среде [59–90]. В этом существенное отличие от рассмотренного выше подхода, когда создание ЭМИР происходит при перекрытии длинных квазимонохроматических лазерных пучков в среде. Этот эффект был продемонстрирован уже в первых экспериментах по наблюдению фотонного эха, в которых использовались длинные импульсы [59, 61]. Однако в литературе ему уделяется не столь значительное внимание, как решеткам, наводимым с помощью перекрывающихся пучков. И отсутствуют обзорные статьи, в которых были бы резюмированы последние результаты в данной области. Ранние результаты по изучению ЭМИР, наведенных с помощью длинных многоцикловых импульсов, и вопросы их применения в эхо-голографии резюмированы в обзорах Штыркова [68, 69]. Возможность наведения и сверхбыстрого управления решетками населенностях при когерентном возбуждении среды ПКИ одноцикловой и субцикловой длительности активно изучалась только в последние пять лет [73-90].

Целью настоящего миниобзора является восполнить указанный пробел и резюмировать последние результаты в области создания и сверхбыстрого управления ЭМИР с помощью последовательности одноцикловых и субикловых ПКИ, не встречающихся в среде. Данное явление пока еще не нашло многочисленных применений в физике и не очень хорошо известно. Это связано, по-видимому, с трудностью в экспериментальной реализации одноцикловых и униполярных субцикловых импульсов в оптическом диапазоне. Тем не менее в последние годы наблюдается интерес к получению униполярных и субцикловых импульсов в оптике, см. предыдущие обзоры автора и цитируемую литературу [47–50]. Применение последних открывает много новых возможностей в оптике [51–57], в частности, в голографии [89].

Ниже последовательно разбирается динамика решеток в двухуровневой, трехуровневой и многоуровневой среде. Обсуждается применение ЭМИР в сверхбыстрой оптике и голографии. Показана возможность эффективного и сверхбыстрого воздействия униполярных субцикловых импульсов на атомные системы, по сравнению с биполярными многопикловыми.

Решетки населенностей, создаваемые длинными лазерными импульсами, не перекрывающимися в резонансной среде. Эффект создания ЭМИР был продемонстрирован уже в первых экспериментах по наблюдению фотонного эха Абеллой и соавторами [59], в которых два лазерных импульса проходили через резонансно поглощающую среду под разными углами и с задержкой. В этом эксперименте излучение фотонного эха регистрировалось в направлении, не совпадавшем с направлениями распространения пучков накачки из-за появления в среде ЭМИР, созданной без перекрытия пучков. Затем появилась теоретическая работа Штыркова [60], в которой была показана возможность наведения решетки населенностей с помощью пары квазимонохроматических импульсов с прямоугольной огибающей, но одномоментно не встречающихся в среде.

Физический механизм создания решеток заключается в следующем. Пусть короткий лазерный импульс 1 с длительностью короче времен релаксации среды, распространяется слева направо в двухуровневой резонансной среде, см. рис. 1. Концентрацию частиц считаем малой, чтобы изменением формы импульсов при распространении можно было пренебречь. Этот импульс оставляет после себя систему в суперпозиционном состоянии и формирует бегущую волну поляризации среды, осциллирующей на частоте резонасного перехода. Когерентность среды будет существовать в течение времени релаксации поляризации T_2 . Если теперь в среде в противоположном направлении распространяется второй такой же импульс, не встречающийся с первым и спустя интервал времени короче T₂, то этот импульс будет взаимодействовать с данной волной поляризации.

Причем фаза осцилляций атомных диполей будет существенно зависеть от положения диполя в среде и от момента времени прихода 2-го импульса в заданную точку, т.е. от задержки между импульсами. Таким образом, в какой-то точке осцилляции атомных диполей будут гаситься вторым импульсом, а в другой точке наоборот, раскачиваться. Это приведет к созданию периодической решетки разности населенностей в среде [73–90].

Затем последовало экспериментальное наблюдение эффекта в охлажденном кристалле рубина, возбуждамого парой наносекундных импульсов от рубинового лазера [61]. Эта идея создания ЭМИР получила дальнейшее развитие в последующих работах [62, 63]. В [62] теоретически изучался вопрос создания ЭМИР при ненулевой отстройке частоты лазерных импульсов от частоты перехода среды и в среде с неоднородным уширением резонасного перехода. Также в этой работе упоминалась возможность измерения времен релаксации среды и дипольного момента перехода при дифракции света на ЭМИР. В работе [63] была построена теория создания таких решеток с помощью длинных многоцикловых лазерных импульсов и рассматривалась возможность наведения решеток заселенностей ультрамалого пе-

риода для детального изучения спектроскопических параметров атомных систем, а также релаксационных процессов, диффузии возбуждений. В дальнейшей экспериментальной работе [64] была показана возможность создания решетки парой пикосекундных лазерных импульсов, не встречающихся в среде, и измерено ее время релаксации поляризации T_2 . Этот метод создания решеток был также предложен для так называемой эхо-голографии – методе записи и восстановления волновых фронтов, когда объектный, опорный и сигнальный лучи проходят через среду, но не перекрываются в ней, см., например, [65–69]. Более подробно результаты этих ранних исследований резюмированы в обзорах Штыркова и соавторов [68, 69]. Однако все эти исследования проводились в двухуровневой среде при использовании длинных многоцикловых световых импульсов. Наведение когерентности в многоуровневой среде с помощью широкополосных ПКИ при исследовании фотонного эха обсуждалось в работах Сазонова и соавторов [70-72].

Ниже будут рассмотрены последние результаты по созданию и сверхбыстрому управлению ЭМИР в резонансных средах с помощью ПКИ одноцикловой и субцикловой длительности, как в двухуровневой, так и в многоуровневой среде [73–90].

Создание и сверхбыстрое управление решетками населенностей с помощью одноцикловых и субцикловых световых импульсов в двухуровневой резонансной среде. Возможность создания ЭМИР с помощью ПКИ была изучена теоретически сравнительно недавно в наших работах [73–90]. В первой работе [73] Архипова и соавторов впервые была показана возможность наведения решеток с помощью биполярных ПКИ, не перекрывающихся в среде. При этом среда моделировалась в двухуровневом приближении, и не использовалось приближение медленно-меняющихся амплитуд и вращаюшейся волны. Была показана возможность создания, стирания и деактивации решеток с помощью пары, трех и четырех импульсов соответственно. Длительность импульсов в расчетах была порядка 700 ас, а длина волны резонансного перехода среды составляла 700 нм. Амплитуда импульсов выбиралась такой, чтобы импульсы действовали, как $\pi/2$ -импульсы.

В работах [74–75] была развита детальная теория наведения, стирания и сверхбыстрого управления (мультиплицирования пространственной частоты) решетками разности населенностей в двухуровневой резонансной среде с помощью последовательности биполярных импульсов фемтосекундной и ат-

Resonant medium

Рис. 1. (Цветной онлайн) Схема формирования решеток населенностей с помощью пары коротких световых импульсов, не перекрывающихся в среде. В резонансно поглощающей среде навстречу друг другу распространяются два коротких световых импульса 1 и 2 с длительностью короче времени релаксации разности населенностей T_1 и поляризации T_2 среды

тосекундной длительности. Взаимодействие таких импульсов с двухуровневой средой описывается с помощью системы уравнений Максвелла–Блоха, которая имеет вид [73–79]:

$$\frac{\partial \rho_{12}(z,t)}{\partial t} = -\frac{\rho_{12}(z,t)}{T_2} + -i\omega_0\rho_{12}(z,t) - \frac{i}{\hbar}d_{12}E(z,t)n(z,t),$$
(1)

$$\frac{\partial n(z,t)}{\partial t} = -\frac{n(z,t) - n_0(z)}{T_1} +$$

$$+\frac{4}{\hbar}d_{12}E(z,t)\mathrm{Im}\,\rho_{12}(z,t),$$
(2)

$$P(z,t) = 2N_0 d_{12} \operatorname{Re} \rho_{12}(z,t), \qquad (3)$$

$$\frac{\partial^2 E(z,t)}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 E(z,t)}{\partial t^2} = \frac{4\pi}{c^2} \frac{\partial^2 P(z,t)}{\partial t^2}.$$
 (4)

Система (1)–(4) содержит следующие параметры: ρ_{12} – недиагональный элемент матрицы плотности, $n = \rho_{11} - \rho_{22}$ – разность населенностей (инверсия) среды, P – поляризация среды, N_0 – концентрация двухуровневых атомов, E – напряженность электрического поля, c – скорость света в вакууме, \hbar – приведенная постоянная Планка, ω_0 – частота резонансного перехода среды ($\lambda_0 = 2\pi c/\omega_0$ – длина волны резонансного перехода, $k_0 = 2\pi/\lambda_0$ – волновое число), d_{12} – дипольный момент резонасного перехода, n_0 – разность населенностей двух рабочих уровней при отсутствии электрического поля ($n_0 = 1$ для поглощающей среды). В среду в разном направлении посылались ПКИ гауссовой формы:

$$E(t) = E_0 e^{-\frac{(t-\Delta_i)}{\tau^2}} \sin[\omega_0(t-\Delta_{ik})], \qquad (5)$$

Здесь Δ_{ik} – задержка между соседними импульсами.

Письма в ЖЭТФ том 113 вып. 9-10 2021

В [74,75] были получены приближенные аналитические решения системы уравнений для матрицы плотности (1)–(2), когда система вобуждалась последовательностью дельта-образных импульсов с задержками между ними:

$$E_i = \frac{\hbar\Theta_i}{d_{12}}\delta\left(t \pm \frac{z}{c} - \Delta_i\right),\tag{6}$$

 Θ_i – площадь *i*-го импульса. Нетрудно видеть, что $\Theta_i = 1/2$ соответсвует $\pi/2$ -импульсу. Следуя работам [74, 75, 77], предположим, что импульс (6) действовал от момента времени t_0 до момента времени t. Тогда система уравнений для матрицы плотности (1)–(2) в пренебрежении релаксационными членами легко может быть переписана в интегральной форме:

$$\delta\rho_{12} = -i\frac{d_{12}}{\hbar}e^{i\omega_0 t} \int_{t-t_0}^t n(t')E(t')e^{-i\omega_0 t}dt', \quad (7)$$

$$\delta n = 4 \frac{i d_{12}}{\hbar} \int_{t-t_0}^t \operatorname{Im} \rho_{12}(t') E(t') dt'.$$
 (8)

Решая последовательно (7)–(8) для последовательности одинаковых дельта-образных импульсов с $\Theta = 1/2$, нерудно получить выражение для населенности и недиагонального элемента матрицы плотности после 2-го и 3-го импульса соответственно (при $\omega_0 \Delta_1 = \frac{\pi}{2} + \pi n, \, \omega_0 \Delta_2 = \frac{\pi}{2} + 2\pi m$, где m, n – целые числа) [74]:

$$n_{2} = -\cos(2k_{0}z), \quad \rho_{12} = -0.5\cos(2k_{0}z)e^{i(\omega_{0}t + k_{0}z)},$$
$$n_{3} = 0, \quad \rho_{12} = e^{i\omega_{0}t + 3k_{0}z}/2. \tag{9}$$

Это соответствует возникновению решетки заселенностей с периодом $\lambda_0/2$ после 2-го импульса. При этом третий импульс стирает решетку, обращая инверсию в 0, и создает медленную волну поляризации с периодом $\lambda_0/3$ и бегущую со скоростью c/3. О существовании медленных бегущих волн поляризации упоминалось в работе [74]. Процедуру управления решетками можно продолжить, пустив в среду 4-ый импульс, который наведет решетку с удвоенной пространственной частотой $4k_0$:

$$n_4 = -\cos(4k_0z), \ \ \rho_{12} = -0.5\sin(4k_0z)e^{i(\omega_0t+3k_0z)}.$$
(10)

Таким образом, используя последовательность ПКИ, можно не только создавать, но и управлять решетками населенностей – стирать их, мультиплицировать их пространственные периоды.

Данные простые выражения получены в приближении дельта-образных импульсов. Для учета конечной длительности импульсов в форме (5) в работе [75] проводился детальный анализ с помощью аналитического решения системы уравнений (1)–(2). Он велся в двух приближениях – когда импульсы короче периода резонансного перехода в среде и длинее. Проведенный аналитический анализ является более горомоздким, чем приведенное выше упрощенное рассмотрение. Однако его результаты также показывают возможность наведения и сверхбыстрого управления решетками населенностей в двухуровневой резонансной среде.

Наиболее точный анализ динамики ЭМИР, свободный от указанных выше приближений, может быть проведен с помощью численного решения системы уравнений Максвелла–Блоха (1)–(4) с последовательностью импульсов в форме (5). Такие расчеты проводились в работах [74, 75]. Пример динамики решеток поляризации и инверсии приведен на рис. 2. Номера импульсов, их направления распространения показаны цифрами и стрелками. Данный пример наглядно иллюстрирует описанный выше сценарий, при котором в среде возможно возникновение, стирание и мультиплицирование пространственного периода решеток поляризации и разности населенностей.

В приведенном примере на рис. 2 среда возбуждалась последовательностью одноцикловых биполярных импульсов. Очевидно, что униполярные субцикловые импульсы способны более быстро менять состояние среды, чем многоцикловые. Возможность наведения и управления ЭМИР с помощью последовательности униполярных аттосекундных импульсов без несущей частоты в двухуровневой среде рассмат-

Рис. 2. (Цветной онлайн) Пример динамики решеток инверсии (а) и поляризации (b), полученных в результате численного решения системы уравнений (1)–(4) с последовательностью импульсов (5), показанных стрелками. Параметры: $d_{12} = 5 \, \text{Д}$, $\lambda_0 = 700 \, \text{нм}$, $N_0 = 10^{17} \, \text{см}^{-3}$, $T_1 = 1 \, \text{нc}$, $T_2 = 5 \, \text{пc}$, $E_0 = 90000 \, \text{ед}$. СГСЭ, $\tau = 2.33 \, \text{фc}$

ривалась в работах [76, 77]. В них показано, что при подборе задержки и амплитуды импульсов возможно возникновение сценария, аналогичного представленному на рис. 2.

Однако в упомянутых работах [73–77], как видно из рис. 1 и 2, импульсы не встречались в среде. В работе [78] изучалась динамика ЭМИР, наведенных униполярными аттосекундными импульсами, которые встречались в центре среды. В среду слева и справа одновременно посылались униполярные импульсы гауссовой формы и одинаковой амплитуды. Поле на левом конце области интегрирования (z = 0) бралось в виде:

$$E_1(t,0) = E_0 \exp\left(-\frac{[t-\tau_1]^2}{\tau_p^2}\right).$$
 (11)

Поле импульса на правом конце (z = L), распространявшегося справа налево, также имело гауссов профиль:

$$E_2(t,L) = E_0 \exp\left(-\frac{[t-\tau_2]^2}{\tau_p^2}\right).$$
 (12)

Здесь $\tau_{1,2}$ – задержки, которые выбирались так, чтобы импульсы пересекались в центре среды.

Рисунок 3 показывает эволюцию динамики разности заселенностей и поляризации при распространении пары униполярных импульсов (11) и (12),

Рис. 3. (Цветной онлайн) (а) – Динамика разности населенностей n(z,t), (b) – динамика поляризации P(z,t)под действием униполярных субцикловых импульсов 1 и 2 в форме (11) и (12), сталкивающихся в центре среды в точке $z/\lambda_0 = 2$. Длина среды $L_m = 4\lambda_0$, $d_{12} = 20$ Д, $\lambda_0 = 700$ нм, $N_0 = 5 \cdot 10^{14}$ см⁻³, $T_1 = 1$ нс, $T_2 = 5$ пс, $E_0 =$ $9.55 \cdot 10^4$ ед. СГСЭ, $\tau_p = 0.38$ фс. Задержки $\tau_1 = \tau_2 = 2.5\tau_p$

сталкивающихся в центре среды. Амплитуда импульсов выбиралась такой, чтобы импульс насыщал среду ($\pi/2$ -импульс). Оба импульса насыщают среду и оставляют позади себя бегущие волны поляризации, осциллирующей на частоте перехода. Затем импульсы сталкиваются в центре среды в точке z/λ_0 = = 2. Столкновение импульсов в этой точке вызывает всплеск в разности заселенностей вблизи нее. В результате столкновения в области пересечения среда переводилась в основное состояние, красная полоса на рис. За. Длина этой красной полосы составляет порядка пространственной длины импульсов. Затем после прохождения центра среды в областях справа и слева от нее возникла ЭМИР инверсии, см. рис. За. А поляризация имела вид стоячих волн, рис. 3b. Затем происходило отражение импульсов от краев области интегрирования, и они снова входили в среду, изменяя глубину модуляции решетки. После столкновения импульсов (в момент времени порядка 0.045 пс) решетки имели сложную пичковую структуру. Впоследствии аналогичные структуры с двумя пиками наблюдались в численных расчетах, проведенных в работе [80], в которой среда возбуждалась последовательностью униполярных импульсов, которые не встречались в среде. Интересно отметить факт возникновения в среде участков, в которых существуют волны поляризации, бегущие в противоположных направлениях, который отчетливо виден на рис. 3b в виде зигзагообразных структур во временном интервале 0.04–0.05 пс.

Данные примеры показывают богатую динамику пространственных структур, которые могут возникать в среде под действием ПКИ. Отметим еще раз, что указанные выше процессы происходят на временах, много меньших времен релаксации T_1 и T_2 среды. Поэтому время жизни решеток ограничено временем фазовой памяти T_2 среды. Это накладывает ограничения на длительность импульсов и задержку между ними.

Динамика ЭМИР при столкновении униполярных субцикловых с биполярными одноцикловыми импульсами изучалась в работе [79]. В целом, как показали расчеты, динамика системы аналогична случаю столкновения униполярных импульсов, изображенному на рис. 3. Одним из интересных результатов этой работы является то, что при столкновении трех импульсов, по разные стороны от области их перекрытия, возможно возникновение волн макроскопической поляризации среды, которые имеют трекратно различающуюся пространственную частоту и распространяются в противоположных направлениях с фазовыми скоростями c и c/3 соответственно.

Проведенные выше расчеты велись в оптическом диапазоне. Очевидно, что аналогичные результаты могут быть получены и в любом другом спектральном диапазоне. Так, в работе [81] было показано возникновение решеток в ТГц диапазоне, когда двухуровневая среда возбуждалась длинными биполярными ТГц импульсами.

Динамика решеток при взаимодействии униполярных и субцикловых импульсов с трехуровневой и многоуровневой резонасной средой. Выше теоретический анализ динамики ЭМИР велся на основе решения системы уравнений Максвелла-Блоха (1)-(4) для двухуровневой среды. А возбуждающие импульсы имели длительность в фемто- и аттосекундном диапазоне, что порядка периода резонасного перехода среды и менее. Однако в этом случае использование двухуровневого или малоуровневого приближения уже является недостаточным для корректного описания динамики системы, и возникает вопрос о возможности наведения и управления ЭМИР в многоуровневых средах. Для ответа на данный вопрос теоретический анализ необходимо проводить на основе решения временного уравнения Шредингера (ВУШ) для волновой функции квантовой системы. Исследования, проведенные в недавних работах [82–90], показали,

что описанные выше сценарии динамики ЭМИР сохраняются и в многоуровневых средах. Разберем кратко результаты этих работ.

Впервые возможность наведения решеток при воздействии на многоуровневую среду пары униполярных импульсов, на основе приближенного решения ВУШ по теории возмущений (когда амплитуда импульсов мала), была показана в работе [82]. В последующей работе [83] с помощью данного подхода анализировалось воздействие пары униполярных импульсов на единичный атом. Остановимся подробнее на результатах этих работ. Пусть протяженная среда с малой концентрацией частиц (что позволят пренебречь поглошением возбуждающего излучения при распространении) возбуждается парой ПКИ, как показано на рис. 1. Как упоминалось выше, фаза колебаний атомного диполя в заданной точке будет зависеть от положения атома. И оно будет определять задержку между воздействием 1-го и 2-го импульса. Поэтому, в этом случае задачу о возбуждении протяженной среды парой распространяющихся в ней импульсов можно свести к задаче о возбуждении единичного атома с помощью пары импульсов с изменяющейся задержкой [73–90].

Для теоретического описания воздействия ПКИ на атом использовалось ВУШ для волновой функции ψ [91]:

$$i\hbar\frac{\partial\psi}{\partial t} = [\hat{H}_0 + V(t)]\psi.$$
(13)

Здесь \hbar – приведенная постоянная Планка, \hat{H}_0 – собственный гамильтониан системы и V(t) = -dE(t) – потенциал ее взаимодействия с импульсом излучения в дипольном приближении, d – дипольный момент атома. В предположении слабого поля населенности k-го состояния дискретного спектра могут быть рассчитаны в первом порядке теории возмущений [91]:

$$w_{0k} = \frac{1}{\hbar^2} \left| \int V_{0k} e^{i\omega_{0k}t} dt \right|^2.$$
 (14)

Здесь $V_{0k} = -d_{0k}E(t)$ – матричный элемент оператора возмущения, d_{0k} – дипольный момент перехода, ω_{0k} – частота резонансного перехода. Пусть на систему воздействует пара униполярных импульсов гауссовой формы:

$$E(t) = E_1 \exp[-t^2/\tau_1^2] + E_2 \exp[-(t-\Delta)^2/\tau_2^2].$$
 (15)

Здесь Δ – задержка между импульсами, которая в случае протяженной среды зависит от координаты z.

Тогда из (14) для населенности *k*-го состояния после импульсов имеем [82–84]:

$$w_{0k} = \frac{d_{0k}^2}{\hbar^2} S_{E1}^2 \exp\left[-\frac{\omega_{0k}^2 \tau_1^2}{2}\right] + \frac{d_{0k}^2}{\hbar^2} S_{E2}^2 \exp\left[-\frac{\omega_{0k}^2 \tau_2^2}{2}\right] + 2\frac{d_{0k}^2}{\hbar^2} S_{E1} S_{E2} \exp\left[-\omega_{0k}^2 (\tau_1^2 + \tau_2^2)/4\right] \cos(\omega_{0k} \Delta) \quad (16)$$

 $(S_{E1}$ и S_{E2} – площади импульсов, см. формулу (17)). Из формулы (16) видна периодическая зависимость заселенностей от задержки между импульсами и от длительности импульсов. Таким образом, возможность наведения ЭМИР сохраняется и в многоуровневой среде.

Формула (16) позволила сделать и другой интересный вывод. Она также справедлива при когерентном возбуждении единичного атома (тонкого слоя среды). Из нее следует, что униполярные импульсы способны оказывать селективное воздействие на атомные системы при изменении задержки между импульсами, несмотря на нерезонансный характер взаимодействия и широкий спектр [83, 84]. Обычно для заселения какого-либо уровня среды используют длинные резонансные импульсы электромагнитного излучения. И чем длиннее импульс, тем эффективнее его воздействие. А с помощью униполярных субцикловых импульсов можно также эффективно и быстрее изменять состояние среды и за меньшее время, равное длительности импульса [49, 52–57, 83–85].

Возможность селективного воздействия на квантовые состояния водородоподобного атома с помощью униполярных импульсов различной формы изучалась в работе [84]. Была продемонстрирована возможность селективного заселения одиночным импульсом прямоугольной формы и парой импульсов различной формы при изменении задержки между ними. Отметим другой важный результат работ [83,84]. На практике получаются квазиуниполярные импульсы, содержащие полуволну поля и слабый хвост противоположной полярности [42–44, 49]. Для таких коротких импульсов важной характеристикой является их электрическая площадь, которая определяется соотношением [92]

$$S_E = \int_{t=-\infty}^{+\infty} E(t)dt, \qquad (17)$$

где E – напряженность электрического поля и t – время. Как показывают результаты теоретических исследований, именно электрическая площадь определяет характер взаимодействия субцикловых импульсов с микрообъектами [53–58]. Возникает во-

прос, насколько существенно влияние данного хвоста при взаимодействии такого импульса с квантовыми объектами [49, 52–57]. Действительно, формула (16) применима и к квазиуниполярному импульсу с нулевой электрической площадью. Пусть в импульсе есть полуволна поля положительной полярности с большой амплитудой и отрицательная компонента. Ее амплитуда меньше, а длительность больше, чем у компоненты положительной полярности. Тогда, в уравнении (16) существенным является только первое слагаемое, а вторым и третьим слагаемым можно пренебречь. Поэтому действие такого одиночного субциклового импульса с нулевой площадью совпадает с действием одиночного униполярного импульса, который не имеет "хвост" противоположной полярности и обладает ненулевой электрической площадью [83,84]. Экспериментальные результаты работы [44] качественно подтверждают данный вывод.

Эти идеи получили дальнейшее развитие в работах [85,86]. В [86] изучалось взаимодействие пары униполярных аттосекундных и фемтосекундных ТГц гауссовых импульсов с трехуровневой резонансной средой. Была показана возможность наведения решеток в трехуровневой среде и селективного заселения уровней одиночного атома при изменении задержки между импульсами. Результаты численного моделирования показали возможность создания инверсии населенностей в трехуровневой среде при определенной задержке. Последнее обстоятельство может быть использовано для лазерной генерации, как упоминалось в [86].

Возможность наведения решеток в трехуровневой среде с параметрами, соответсвующими резонасным переходам D-линий рубидия, изучалась в работе [85]. В этой работе среда возбуждалась парой одинаковых униполярных гауссовых импульсов длительностью 500 ас и амплитудой $E_0 = 10^7 \text{ B/cm}$. Населенности уровней рассчитывались по формуле (14), которая в случае одинаковых гауссовых импульсов заметно упрощается [85]:

$$w_{1k} = 2\frac{d_{1k}^2}{\hbar^2} S_E^2 \exp\left[-\frac{\omega_{1k}^2 \tau^2}{2}\right] (1 + \cos(\omega_{1k}\Delta)). \quad (18)$$

Параллельно населенности уровней вычислялись численно с помощью решения уравнений для матрицы плотности трехуровневой среды. Исследования, проведенные в [85] показали, что результаты численного расчета хорошо согласуются с результами, полученными по теории возмущений с помощью формулы (18).

Таким образом, приведенный выше анализ показывает возможность применений униполярных и квазиуниполярных импульсов для эффективного и сверхбыстрого контроля атомными населенностями, наведения и управления ЭМИР, селективного возбуждения уровней, создания инверсой населенности. Но эти исследования проводились в оптическом диапазоне с помощью аттосекундных импульсов большой амплитуды порядка $10^6 - 10^7 \, \text{B/cm} [73-79, 80-85].$

В недавней работе [88] проводился более детальный анализ динамики решеток в многоуровневой среде. Эта возможность иллюстрировалась на примере колебательных переходов в молекулярной среде, которая моделировалась квантовым гармоническим осциллятором, резонансная частота которого лежала в ТГц диапазоне частот. Система возбуждалась субцикловыми ТГц импульсами. В этой работе было показано, что использование сред с резонансами в ТГц диапазоне частот и имеющими большие дипольные моменты перехода (десятки-сотни Дебай), позволяет использовать ТГц импульсы с амплитудой порядка ~ кВ/см, что легко достичь экспериментально. И это значение на порядки ниже, чем требуется в оптическом диапазоне. Данное обстоятельство делает привлекательным использование ТГц импульсов для создания решеток в ТГц диапазоне частот.

Также в работе [88] были получены общие выражения для населенностей уровней при возбуждении системы импульсами, форма которых отлична от униполярной. Пусть система возбуждается парой импульсов, распространяющихся навстречу друг другу, как на рис. 1 и имеющих форму:

$$E_e(t) = E_0 e^{\frac{-t^2}{\tau^2}} \cos(\Omega t + \phi) + E_0 e^{\frac{-(t-\Delta)^2}{2}} \cos(\Omega [t-\Delta] + \phi)$$
(19)

Здесь Ω – частота, ϕ – фаза (carrier envelope phase, CEP), Δ – задержка между импульсами. Пусть система до прихода импульсов находилась в основном состоянии. В [88] с помощью формулы (14) было получено выражение для населенности *n*-го состояния системы после окончания импульсов:

$$w_n = \frac{d_{1n}^2}{\hbar} E_0^2 \tau^2 \exp\left[-\frac{(\omega_{1n}^2 + \Omega^2)}{2}\right] \times \\ \times \left[\cosh(\omega_{1n}\Omega\tau^2) + \cos(2\phi)\right] [1 + \cos(\omega_{1n}\Delta)].$$
(20)

Из (20) видна возможность создания гармонической ЭМИР, глубина модуляции которой зависит от СЕР импульса ϕ и частоты Ω . А в случае единичного атома (тонкого слоя) данное выражение иллюстрирует возможность селективного воздействия на резонансные переходы среды с помощью пары ПКИ при изменении задержки между ними.

Как показано в работе [88], при использовании трех, четырех и более импульсов в выражении для на-

селенности (20) в последней скобке будут появляться дополнительные гармонические слагаемые типа $\cos(\omega_{1n}\Delta_{ik})$, зависящие от задержки между соседними импульсами Δ_{ik} . Данные выражения являются более громоздкими и здесь не приводятся. Однако очевидно, что путем изменения задержки между соседними импульсами, можно добиться эффекта стирания и мультиплицирования пространственной частоты ЭМИР, что было выше проиллюстрировано в двухуровневой среде.

Формулы (18) и (20) получены в приближении слабого поля. Они показывают гармоническую форму решеток населенностей. Для проверки аналитических результатов в работе [88] проводилось численное интегрирование системы уравнений для матрицы плотности трехуровневой среды. Результаты численных расчетов показали хорошее совпадение с аналитическими, полученными по теории возмущений в слабых полях. А в сильных полях решетки также возникали, но из-за нелинейности среды имели более сложную форму, отличную от простой гармонической, получаемой в слабых полях.

Динамика решеток в многоуровневой среде изучалась не только в ТГц диапазоне частот. В работе [90] с помощью подходов, развитых в [88], была исследована возможность создания ЭМИР с помощью УФ аттосекундных импульсов в газе атомов водорода. Данная задача представляет интерес в связи с активным исследованием сверхбыстрых процессов в веществе с помощью аттосекундных импульсов в последние годы [39, 40, 44–46, 93–98]. В связи с этим остановимся подробнее на задаче о взаимодействии аттосекундных ПКИ с резонасными средами.

Рассмотрим трехуровневую среду, параметры которой соответствуют переходам в атоме водорода. Взаимодействие трехуровневой среды с полем ПКИ описывается системой уравнений для матрицы плотности, которая имеет вид [99]:

$$\frac{\partial}{\partial t}\rho_{21} = -i\omega_{21}\rho_{21} - i\frac{d_{12}}{\hbar}E(\rho_{22} - \rho_{11}) - i\frac{d_{13}}{\hbar}E_{22} + i\frac{d_{23}}{\hbar}E_{22} - \rho_{11} - (21)$$

$$-i\frac{-i}{\hbar}E\rho_{23} + i\frac{-i}{\hbar}E\rho_{31}, \qquad (21)$$

$$\frac{1}{\hbar}\rho_{32} = -i\omega_{32}\rho_{32} - i\frac{1}{\hbar}E(\rho_{33} - \rho_{22}) - i\frac{d_{12}}{\hbar}E\rho_{31} + i\frac{d_{13}}{\hbar}E\rho_{21}, \qquad (22)$$

$$\frac{\partial}{\partial t}\rho_{31} = -i\omega_{31}\rho_{31} - i\frac{d_{13}}{\hbar}E(\rho_{33} - \rho_{11}) - i\frac{d_{12}}{\hbar}E\rho_{32} + i\frac{d_{23}}{\hbar}E\rho_{21}, \qquad (23)$$

$$\frac{\partial}{\partial t}\rho_{11} = i\frac{d_{12}}{\hbar}E(\rho_{21} - \rho_{21}^*) - i\frac{d_{13}}{\hbar}E(\rho_{13} - \rho_{13}^*), \quad (24)$$

$$\frac{\partial}{\partial t}\rho_{22} = -i\frac{d_{12}}{\hbar}E(\rho_{21} - \rho_{21}^*) - i\frac{d_{23}}{\hbar}E(\rho_{23} - \rho_{23}^*), \quad (25)$$

$$\frac{\partial}{\partial t}\rho_{33} = i\frac{d_{13}}{\hbar}E(\rho_{13} - \rho_{13}^*) + i\frac{d_{23}}{\hbar}E(\rho_{23} - \rho_{23}^*).$$
 (26)

Здесь ρ_{21} , ρ_{32} , ρ_{31} – недиагональные элементов матрицы плотности, определяющие динамику поляризации среды, ρ_{11} , ρ_{22} , ρ_{33} , – населенностей 1-го, 2-го и 3-го состояний атома соответственно, d_{12} , d_{13} , d_{23} – дипольные моменты переходов, ω_{21} , ω_{32} , ω_{31} – частоты переходов, \hbar – приведенная постоянная Планка. Релаксационными членами пренебрегается из-за малой длительности импульсов.

Параметры трехуровневой среды (частоты переходов и дипольные моменты переходов) были взяты, как в атоме водорода, см. [90]. Среда возбуждалась парой УФ аттосекундных импульсов (19), для которых частота $\Omega = \frac{\omega_{21}}{2} = 7.75 \cdot 10^{15}$ рад/с (длина волны $\lambda_a = 243.2$ нм, период $T_p = \frac{2\pi}{\Omega} = 810.6$ ас), амплитуда $E_0 = 5 \cdot 10^7$ В/см и длительность $\tau = 300$ ас, СЕР $\phi = 0$.

На рисунке 4 представлены зависимости населенности уровней ρ_{11} , ρ_{22} , ρ_{33} после импульсов от за-

Рис. 4. (Цветной онлайн) Зависимости населенности уровней ρ_{11} (a), ρ_{22} (b), ρ_{33} (c) от задержки между импульсами Δ . Парамеры среды (частоты переходов, дипольные моменты переходов) были взяты, как в атоме водорода) – $\omega_{21} = 1.55 \cdot 10^{16}$ рад/с ($\lambda_{12} = 121.6$ нм), $d_{12} = 3.27$ Д, $\omega_{13} = 1.837 \cdot 10^{16}$ рад/с ($\lambda_{13} = 102.6$ нм), $d_{13} = 1.31$ Д и т.д.

держки между импульсами Δ . Видно, что населенность второго уровня ρ_{22} гармонически зависит от задержки, см. рис. 4b, в соответствии с формулой (20). А населенность второго возбужденного состояния ρ_{33} имеет пичковую структуру, что приведет

Рис. 5. (Цветной онлайн) Зависимость разности населенности $\rho_{11} - \rho_{33}$ от задержки между импульсами Δ и времени t

к формированию решетки с пичкообразной структурой, см. рис. 5.

Полезно проанализировать зависимость глубины модуляции решеток от параметров импульсов возбуждения – их длительности и СЕР. Зависимость населенности первого возбужденного состояния атома водорода от длительности и СЕР, расчитанная по формуле (20), показана на рис. 6.

Рис. 6. (Цветной онлайн) Зависимость населенности первого возбужденного состояния w_2 атома водородеа от длительности UV возбуждающих аттосекундных импульсов τ и фазы СЕР ϕ при величине задержки $\Delta = 4 \, \text{фс.}$ Амплитуда $E_{0a} = 8 \cdot 10^7 \, \text{B/см.}$ Остальные парамеры, как на рис. 4

Письма в ЖЭТФ том 113 вып. 9-10 2021

Из рисунка 6 видно, что теперь населенность сильно зависит от ϕ и τ . Результат показывает, что субцикловые импульсы, длительность которых короче периода резонансного перехода (для водорода значение периода резонансного перехода 12 составляет 405 ас), эффективнее возбуждают среду, чем длинные. Более того, населенность w_2 принимает наибольшие значения не только при малой длительности, $\Omega \tau \ll 1$, но и когда электрическая площадь импульса $S_E = E_0 \tau \sqrt{\pi} \exp(-\Omega^2 \tau^2/4) \cos \phi$ максимальна по абсолютной величине при $\phi = 0, \pi$. Длинные же импульсы, для которых $\Omega \tau \gg 1$, и которые длинее периода перехода, уже не возбуждают среду. Данный результат показывает возможность эффективного воздействия униполярных субцикловых импульсов на квантовые объекты, по сравнению с биполярными импульсами, о чем сообщалось ранее в [49, 52-57, 82-84, 88, 90].

Изученные выше решетки, созданные униполярными субцикловыми импульсами, могут найти применение для голографической записи информации со сверхвысоким временным разрешением, как показано в [89]. В этом случае при использовании униполярных импульсов не требуется взаимная когерентность между опорным и предметным пучком, которая существенна в обычной голографии, в которой применяется монохроматическое лазерное излучение.

В заключении отметим, что выше предполагалось, что концентрация частиц настолько мала, что позволяло пренебречь изменением формы импульсов при распространении (см. выше). В плотной среде самовоздействие ПКИ будет приводить к изменению их формы, компрессии и сдвигу частоты при когерентном распространении в резонансной среде [100]. Это может существенно изменить динамику решеток. Но вопросы создания решеток в плотных средах выходят за рамки настоящего обзора.

Обсуждение результатов. Заключение. Приведен обзор последних результатов в области создания ЭМИР, получаемых как с помощью длинных квазимонохроматических пучков лазерного излучения, так и с помощью коротких и предельно коротких (одноцикловых и субцикловых) световых импульсов, не перекрывающихся в среде. Последнее является особо актуальным в связи с прогрессом в оптике получения сверхкоротких импульсов аттосекундной длительности, которые активно используются для изучения динамики волновых пакетов в веществе [39, 40, 44–46, 93–98].

Представленные результаты наглядно показывают возможность наведения и сверхбыстрого управления решетками населенностей в двухуровневых и многоуровневых средах с помощью предельно коротких импульсов, когерентно взаимодействующих со средой. Это открывает новые возможности в применении сверхкоротких импульсов для сверхбыстрого управления состоянием квантовых систем и, в частности, в голографии [89]. Для экспериментального наблюдения ЭМИР необходимо использовать импульсы с длительностью короче времени фазовой памяти среды T₂. Большие значения времен релаксации T_2 , лежащие в наносекундном диапазоне, имеют газы и охлажденные твердотельные материалы, в частности квантовые точки [101]. Возможно также использовать кристаллы с примесными редкоземельными ионами, в которых время T₂ при низких температурах может иметь значения от нескольких секунд до нескольких часов [102].

Приведенные результаты также показывают возможность применения униполярных субцикловых импульсов для эффективного управления свойствами квантовых систем, по сравнению с биполярными. Субцикловые и униполярные импульсы в настоящее время не имеют значимых применений. По-мнению, автора данного обзора, такие импульсы могут иметь большое число значимых применений в фундаментальных и прикладных исследованиях. Поэтому, на изучение методов их генерации и особенности их взаимодействия с веществом следует обратить внимание исследователям, работающим в области физики сверхбыстрых процессов.

Автор выражает благодарность своим коллегам Н. Н. Розанову, М. В. Архипову, А. В. Пахомову, И. В. Бабушкину, А. Демиркану, У. Моргнеру за полезные обсуждения и ценные замечания.

Исследование динамики светоиндуцированных решеток, наведенных предельно короткими световыми импульсами, выполнено при финансовой поддержке гранта Российского научного фонда в рамках научного проекта 19-72-00012. Изучение взаимодействия единичного атома с униполярными импульсами поддержано грантом Российского фонда фундаментальных исследований 20-32-70049.

- H. J. Eichler, P. Günter, and D. W. Pohl, *Laser-Induced Dynamic Gratings*, Springer-Verlag, Berlin, Heidelberg, N.Y., Tokyo (1981).
- H. Y. Ling, Y. Li, and M. Xiao, Phys. Rev. A 57, 1338 (1998).
- M. Mitsunaga and N. Imoto, Phys. Rev. A 59, 4773 (1999).
- 4. A.W. Brown and M. Xiao, Opt. Lett. 30, 699 (2005).
- Y. Zhang, Z. Wu, H. Zheng, Z. Wang, Y. Zhang, H. Tian, and Y. Zhang, Laser Phys. 24, 045402 (2014).

- P. Zhai, X. Su, and J. Gao, Phys. Lett. A 27, 289 (2001).
- J. Wu, C. G. La Rocca, and M. Artoni, Phys. Rev. B 77, 113106 (2008).
- M. Artoni and C.G. La Rocca, Phys. Rev. Lett. 96, 073905 (2006).
- 9. A.W. Brown and M. Xiao, Opt. Lett. 30, 699 (2005).
- L. Zhao, W. Duan, and S. F. Yelin, Phys. Rev. A 82, 013809 (2010).
- D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, J. Phys. B: At. Mol. Opt. Phys. 43, 115502 (2010).
- A. André, M. Bajcsy, A.S. Zibrov, and M.D. Lukin, Phys. Rev. Lett. 94, 063902 (2005).
- C. H. Sarantos and J. E. Heebner, Opt. Lett. 35, 1389 (2010).
- R. M. Arkhipov, M. V. Arkhipov, V. S. Egorov, I. A. Chekhonin, M. A. Chekhonin, and S. N. Bagaev, J. Phys. Conf. Ser. 643, 012029 (2015).
- S.-q. Kuang, R.-g. Wan, J. Kou, Y. Jiang, and J.-y. Gao, J. Opt. Soc. Am. B 27, 1518 (2010).
- J. Wen, Y.-H. Zhai, S. Du, and M. Xiao, Phys. Rev. A 82, 043814 (2010).
- Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, Phys. Rev. Lett. **106**, 093904 (2011).
- S.-qi Kuang, C.-s. Jin, and C. Li, Phys. Rev. A 84, 033831 (2011).
- Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, Phys. Rev. A 97, 013603 (2018).
- J. Yuan, C. Wu, Y. Li, L. Wang, Y. Zhang, L. Xiao, and S. Jia, Opt. Express 27, 92 (2019).
- G.C. Cardoso and J.W.R. Tabosa, Opt. Commun. 210, 271 (2002).
- L. van Dao, M. Lowe, and P. Hannaford, Appl. Phys. Lett. 81, 1806 (2002).
- G. D. Scholes, J. Kim, and C. Y. Wong, Phys. Rev. B 73, 195325 (2006).
- 24. E.J. Brown, Q.G. Zhang, and M. Dantus, J. Chem. Phys. **110**, 5772 (1999).
- J. Sheng, J. Wang, M. A. Miri, D. N. Christodoulides, and M. Xiao, Opt. Express 23, 19777 (2015).
- 26. J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, Laser Phys. Lett. 14, 125206 (2017).
- D. Ya-Bin and G. Yao-Hua, Chin. Phys. B 23, 074204 (2014).
- М. Ю. Гордеев, Ю. В. Рождественский, Оптика и спектроскопия 127, 150 (2019) [М. Yu. Gordeev, Yu. V. Rozhdestvensky, Optics and Spectroscopy 127, 145 (2019)].
- J. Yuan, C. Wu, Y. Li, L. Wang, Y. Zhang, L. Xiao, and S. Jia, Front. Phys. 14, 52603 (2019).
- J. Yuan, S. Dong, C. Wu, L. Wang, L. Xiao, and S. Jia, Opt. Express 28, 23820 (2020).

- M. Mitsunaga and N. Imoto, Phys. Rev. A 59, 4773 (1999).
- J. Tabosa, A. Lezama, and G. Cardoso, Opt. Commun. 165, 59 (1999).
- 33. H. Zhang, J. Yuan, S. Dong, C. Wu, and L. Wang, Applied Sciences 10, 5740 (2020).
- 34. H. Cai, J. Liu, J. Wu, Y. He, S. Zhu, J. Zhang, and D. Wang, Phys. Rev. Lett. **122**, 023601 (2019).
- 35. Z. Zhang, R. Wang, Y. Zhang, Y. V. Kartashov, F. Li, and M. Xiao, Nat. Commun. **11**, 1902 (2020).
- Z. Zhang, S. Liang, F. Li, S. Ning, Y. Li, G. Malpuech, Y. Zhang, M. Xiao, and D. Solnyshkov, Optica 7, 455 (2020).
- 37. J. Yuan, S. Dong, H. Zhang, C. Wu, L. Wang, L. Xiao, and S. Jia, Opt. Express **29**(2), 2712 (2021).
- 38. T. Jones, W.K. Peters, A. Efimov, D. Yarotski, R. Trebino, and P. Bowlan, Opt. Express 29(8), 11394 (2021).
- F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
- M. Nisoli and G. Sansone, Progress in Quantum Electronics 33, 17 (2009).
- F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, J. Phys. B: At. Mol. Opt. Phys. 49, 062001 (2016).
- J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, Adv. Opt. Mater. 8, 1900681 (2020).
- 43. E. A. Ponomareva, A. O. Ismagilov, S. E. Putilin, A. N. Tsypkin, S. A. Kozlov, and X. C. Zhang, Communications Physics 4, 1 (2021).
- M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, Nature 530, 66 (2016).
- K. Ramasesha, S. R. Leone, and D. M. Neumark, Annu. Rev. Phys. Chem. 67, 41 (2016).
- M. Krüger, C. Lemell, G. Wachter, J. Burgdörfer, and P. Hommelhoff, J. Phys. B: At. Mol. Opt. Phys. 51, 172001 (2018).
- 47. Р. М. Архипов, А. В. Пахомов, М. В. Архипов, И. Бабушкин, Ю. А. Толмачев, Н. Н. Розанов, Письма в ЖЭТФ 105, 388 (2017) [R. M. Arkhipov, A. V. Pakhomov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rosanov, JETP Lett. 105, 408 (2017)].
- Р. М. Архипов, М. В. Архипов, А. А. Шимко, А. В. Пахомов, Н. Н. Розанов, Письма в ЖЭТФ 110, 9 (2019) [R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, JETP Lett. 110, 15 (2019)].
- Р. М. Архипов, М. В. Архипов, Н. Н. Розанов, Квантовая электроника **50**, 801 (2020) [R. М. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, Quantum Electron. **50**, 801 (2020)].

- Р.М. Архипов, М.В. Архипов, А.В. Пахомов, М.О. Жукова, А.Н. Цыпкин, Н.Н. Розанов, Письма в ЖЭТФ 113, 237 (2021) [R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, M.O. Zhukova, A.N. Tcypkin, and N.N. Rosanov, JETP Lett. 113, 242 (2021)].
- X. Chai, X. Ropagnol, S. M. Raeis-Zadeh, M. Reid, S. Safavi-Naeini, and T. Ozaki, Phys. Rev. Lett. **121**, 143901 (2018).
- R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 44, 1202 (2019).
- R. Arkhipov, A. Pakhomov, M. Arkhipov, A. Demircan, U. Morgner, N. Rosanov, and I. Babushkin, Opt. Express 28, 17020 (2020).
- R. Arkhipov, A. Pakhomov, M. Arkhipov, I. Babushkin, and N. Rosanov, Laser Phys. Lett. 17, 105301 (2020).
- H. H. Розанов, H. B. Высотина, ЖЭТФ 157, 63 (2020) [N. N. Rosanov and N. V. Vysotina, JETP 130, 52 (2020)].
- H. H. Розанов, Письма в ЖЭТФ 113, 157 (2021) [N. N. Rosanov, JETP Lett. 113, 145 (2021)].
- 57. I.A. Aleksandrov, D.A. Tumakov, A. Kudlis, V.M. Shabaev, and N.N. Rosanov, Phys. Rev. A **102**, 0231020 (2020).
- 58. S. Hughes, Phys. Rev. Lett. 81, 3363 (1998).
- I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev. 141, 391 (1966).
- Е.И. Штырков, Оптика и спектроскопия 45, 603 (1978).
- Е.И. Штырков, В.С. Лобков, Н.Г. Ярмухаметов, Письма в ЖЭТФ 27, 685 (1978) [Е.І. Shtyrkov, V.S. Lobkov, and N.G. Yarmukhametov, JETP Lett. 27, 648 (1978)].
- E.I. Shtyrkov, N.L. Nevelskaya, V.S. Lobkov, and N.G. Yarmukhametov, Physica Status Solidi (b) 98, 473 (1980).
- С. А. Моисеев, Е. И. Штырков, Квантовая электроника 18, 447 (1991) [S. A. Moiseev and E. I. Shtyrkov, Sov. J. Quantum Electron. 21, 403 (1991)].
- M. Szczurek and M. Kusnierz, Opt. Commun. 74, 121 (1989).
- 65. Е.И. Штырков, В.В. Самарцев, Резонансная динамическая голография и оптическое сверхизлучение, в сб. Электромагнитное сверхизлучение, КФ АН СССР, Казань (1975), с. 398.
- В.В. Самарцев, Е.И. Штырков, ФТТ 18, 3140 (1976).
- Е.И. Штырков, В.В. Самарцев, Оптика и спектроскопия 40, 392 (1976).
- С. А. Моисеев, Н. А. Невельская, Е. И. Штырков, Оптика и спектроскопия **79**, 382 (1995).

- Е.И. Штырков, Оптика и спектроскопия 114, 105 (2013) [E.I. Shtyrkov, Optics and Spectroscopy 114, 96 (2013)].
- А.Ю. Пархоменко, С.В. Сазонов, Письма в ЖЭТФ 67, 887 (1998) [А.Yu. Parkhomenko and S.V. Sazonov, JETP Lett. 67, 934 (1998)].
- А.Ю. Пархоменко, С.В. Сазонов, Оптика и спектроскопия **90**, 788 (2001) [А.Yu. Parkhomenko and S.V. Sazonov, Optics and Spectroscopy **90**, 707 (2001)].
- С. В. Сазонов, Оптика и спектроскопия 94, 453 (2003) [S. V. Sazonov, Optics and Spectroscopy 94, 400 (2003)].
- Р. М. Архипов, М. В. Архипов, И. Бабушкин, Н. Н. Розанов, Оптика и спектроскопия 121, 810 (2016) [R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, and N. N. Rosanov, Optics and Spectroscopy 121, 758 (2016)].
- 74. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 41, 4983 (2016).
- R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N.N. Rosanov, Sci. Rep. 7, 12467 (2017).
- Р. М. Архипов, М. В. Архипов, И. В. Бабушкин, A. B. Пахомов, Н. Н. Розанов, Квантовая электроника 47, 589 (2017) [R. M. Arkhipov, M. V. Arkhipov, I. V. Babushkin, A. V. Pakhomov, and N. N. Rosanov, Quantum Electron 47, 589 (2017)].
- 77. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, Laser Phys. Lett. 14, 1 (2017).
- Р. М. Архипов, М. В. Архипов, А. В. Пахомов, И. Бабушкин, Н. Н. Розанов, Оптика и спектроскопия 123, 600 (2017) [R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, I. Babushkin, and N. N. Rosanov, Optics and Spectroscopy 123, 610 (2017)].
- Р. М. Архипов, М. В. Архипов, А. В. Пахомов, Д. О. Жигулева, Н. Н. Розанов, Оптика и спектроскопия **124**, 510 (2018) [R. M. Arkhipov, A. V. Pakhopmov, M. V. Arkhipov, D. O. Zhiguleva, and N. N. Rosanov, Optics and Spectroscopy **124**, 541 (2018)].
- H. Zhang, S. Zhang, S. Li, and X. Ma, Opt. Commun. 462, 125182 (2020).
- P. M. Архипов, А. В. Пахомов, М. В. Архипов, И. Бабушкин, Н. Н. Розанов, Оптика и спектроскопия 125, 564 (2018) [R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, and N. N. Rosanov, Optics and Spectroscopy 125, 584 (2018)].
- Р. М. Архипов, М. В. Архипов, А. В. Пахомов, Н. Н. Розанов, Квантовая электроника 49, 958 (2019) [R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Quantum Electron. 49, 958 (2019)].

- Р. М. Архипов, М. В. Архипов, А. В. Пахомов, Н. Н. Розанов, Оптика и спектроскопия 128, 106 (2020) [R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Optics and Spectroscopy 128, 102 (2020)].
- R. Arkhipov, A. Pakhomov, M. Arkhipov,
 A. Demircan, U. Morgner, and N.N. Rosanov,
 Opt. Express 28, 17020 (2020).
- Р. М. Архипов, Оптика и спектроскопия **128**, 1732 (2020) [R. M. Arkhipov, Optics and Spectroscopy **128**, 1865 (2020)].
- P. M. Архипов, М. В. Архипов, А. В. Пахомов, М. О. Жукова, А. Н. Цыпкин, Н. Н. Розанов, Оптика и спектроскопия **128**, 1905 (2020) [R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, M. O. Zhukova, A. N. Tsypkin, and N. N. Rosanov, Optics and Spectroscopy **129**, 120 (2021)].
- 87. R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, A. Demircan, U. Morgner, and N. Rosanov, Unipolar half-cycle pulses and their applications for efficient excitation and selective ultrafast control of atomic systems, in The 22nd International Conference on Ultrafast Phenomena 2020, ed. by F. Kärtner, M. Khalil, R. Li, F. Légaré, and T. Tahara, OSA Technical Digest, Optical Society of America (2020), paper Tu4B.37.
- R. Arkhipov, A. Pakhomov, M. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N.N. Rosanov, Sci. Rep. 11, 1961 (2021).
- Р. М. Архипов, М. В. Архипов, Н. Н. Розанов, Письма в ЖЭТФ 111, 586 (2020) [R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, JETP. Lett. 111, 484 (2020)].
- 90. Р. М. Архипов, М. В. Архипов, А. В. Пахомов, Ю. М. Артемьев, Н. Н. Розанов, Оптика и спектроскопия **129**, 627 (2021) [R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, Yu. M. Artem'ev, and N. N. Rosanov, Optics and Spectroscopy **129**, 707 (2021)].
- Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика. Нерелятивистская теория, Наука, М. (1989), 768 с. [L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory, Pergamon Press, Oxford (1977)].
- H. H. Розанов, Р. М. Архипов, М. В. Архипов, УФН
 188, 1347 (2018) [N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, Phys.-Uspekhi 61, 1227 (2018)].
- T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
- 94. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
- 95. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, and F. Krausz, Nature **421**, 611 (2003).
- 96. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature **427**, 817 (2004).
- 97. E. Goulielmakis, Z. H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, Nature 466, 739 (2010).
- 98. А.М. Желтиков, УФН **191**, 386 (2021) [A.M. Zheltikov, Phys.-Uspekhi **64** (2021)].
- 99. Н. Н. Розанов, Диссипативные оптические солитоны от микро- к нано- и атто-, Физматлит, М. (2011).
- R. Arkhipov, M. Arkhipov, A. Demircan, U. Morgner, I. Babushkin, and N. Rosanov, Opt. Express 29, 10134 (2021).
- 101. M. Bayer and A. Forchel, Phys. Rev. B 65, 041308 (2002).
- 102. W. R. Babbit and T. Mossberg, Opt. Commun. 65, 185 (1988).

Формирование нанорешеток на поверхности нанопористого стекла под действием фемтосекундных лазерных импульсов видимого диапазона

П. А. Данилов^{+*1)}, С. И. Кудряшов^{+*}, А. Е. Рупасов^{+*}, Н. А. Смирнов^{+*}, Е. А. Олейничук⁺, А. С. Ривнюк[×], Р. А. Заколдаев^{*}

+ Физический институт им. П. Н. Лебедева РАН, 119991 Москва, Россия

*Университет ИТМО, 197101 С.-Петербург, Россия

[×] Московский физико-технический институт (национальный исследовательский университет), 141700 Долгопрудный, Россия

> Поступила в редакцию 12 апреля 2021 г. После переработки 12 апреля 2021 г. Принята к публикации 20 апреля 2021 г.

На поверхности нанопористого силикатного стекла под действием остросфокусированного лазерного излучения с длиной волны 515 нм и длительностью 300 фс сформированы периодические наноструктуры с периодом ~100–150 нм, визуализированные методом сканирующей электронной микроскопии. Спектроскопия отражения/пропускания полученных наноструктур в видимом диапазоне обнаруживает их антиотражающий эффект.

DOI: 10.31857/S1234567821100037

1. Микро-оптические устройства на основе наноразмерных периодических структур показателя преломления (нанорешеток), сформированных в прозрачных материалах под действием лазерных импульсов ультракороткой длительности (УКИ), пироко применяются в зонных пластинах Френеля [1], преобразователях поляризации лазерного пучка [2– 4], фазовых пластинах [4,5], а также используются при записи голограмм [6]. Ранее, на базе нанорешеток была реализована пятимерная оптическая память с использованием дополнительных координат – фазового сдвига и азимутального угла [7,8].

Формирование контрастных нанорешеток с ориентацией штрихов, перпендикулярной поляризации лазерного излучения [9], происходит при умеренных интенсивностях УКИ ~ 10 ТВт/см² [10], а их параметрами можно гибко управлять за счет варьирования длины волны, длительности, энергии лазерных импульсов, в том числе – частоты следования и направления сканирования [11]. Механизмы формирования нанорешеток связываются с интерференцией падающего лазерного излучения и плазменной волны [9], формированием экситонов и их автолокализацией с образованием точечных кислородных дефектов – кислородно-дефицитных центров (*oxygen- deficient centers* – ODC) [5].

В последнее десятилетие в нанофотонике для прямой лазерной записи волноводов, оптофлюидных сенсоров и других микрооптических элементов стали широко использоваться нанопористые силикатные стекла [12, 13], представляющие собой благодаря более высокому контрасту показателя преломления и низкой массовой плотности более удобную адаптивную среду для локальной оптической и структурной модификации посредством уплотнения или разрушения [14]. Однако при формировании поверхностных структур под действием ультракоротких лазерных импульсов исходный нанорельеф и пористость этих материалов может оказывать существенное влияние при возбуждении и демпфировании поверхностных плазмонов, возникновении "горячих" точек электромагнитного поля, инициировании нанотрещин, кумулятивном накоплении дефектов и т.п. Данные эффекты до сих пор не исследовались в силу трудностей наноразмерной визуализации диэлектрических поверхностей методами электронной микроскопии.

В настоящей работе исследованы пороговые значения модификации поверхности нанопористого силикатного стекла в одноимпульсном и многоимпульсном режиме воздействия фемтосекундных (300 фс) лазерных импульсов видимого диапазона (длина вол-

 $^{^{1)}}$ e-mail: danilovpa@lebedev.ru

ны – 515 нм). Околопороговые режимы модификации использовались для формирования поверхностных самоорганизованных нанорешеток с субволновыми периодами $\Lambda \sim 100$ нм. Полученные структуры проанализированы методами сканирующей электронной микроскопии (СЭМ) и оптической спектроскопии отражения/пропускания.

2. В наших исследованиях облучение поверхности нанопористого силикатного стекла (SiO₂ > 95 %, средний размер пор ~10 нм, пористость 30 %) проводилось на стенде для прецизионного лазерного структурирования [15]. В качестве источника излучения использовалась вторая гармоника (ВГ) волоконного иттербиевого фемтосекундного лазера Satsuma с длиной волны $\lambda_{\text{las}} = 515 \,\text{нм}$, длительностью импульса $\tau \approx 300 \, \mathrm{фc}$, максимальной энергией в импульсе ВГ $E_{\text{max}} = 4$ мкДж в ТЕМ₀₀-моде в одноимпульсном режиме. Лазерное излучение фокусировалось на поверхность образцов через микрообъектив Levenhuk с числовой апертурой NA = 0.65 в пятно с радиусом $R_{1/e} \approx 1.6 \pm 0.1$ мкм, соответственно. Образец закреплялся на трехкоординатной моторизированной шаговой трансляционной платформе (Standa) с минимальным шагом перемещения 150 нм (рис. 1).

Рис. 1. (Цветной онлайн) Схема экспериментальной установки. RA – отражающий ослабитель; BS – делитель пучка; RM – отражающее зеркало; AC – автокоррелятор; PM – измеритель мощности; OB – микрообъектив для фокусировки лазерного излучения; M – оптический микроскоп; CCD – цифровая CCD камера; MS – моторизированная платформа

Морфология поверхности после лазерной обработки анализировалась при помощи оптического микроскопа Altami 6 и сканирующего электронного микроскопа (Tescan MIRA). Микроанализ оптического отражения/пропускания массивов поверхностных нанорешеток размером ~ 100 × 50 мкм² прово-

Письма в ЖЭТФ том 113 вып. 9-10 2021

дился на микроскопе-спектрометре ЛОМО МСФУ-К в диапазоне 400–800 нм и минимальным диаметром фотометрируемой области ~2 мкм. Калибровка спектрометра осуществлялась для образца сравнения – плавленого кварца (КУ-1).

3. Для определения пороговых значений плотности энергии фемтосекундных (300 фс) лазерных импульсов ($\lambda_{las} = 515$ нм) на поверхности нанопористого стекла при фокусировке объективом с NA = 0.65 в зависимости от энергии лазерного излучения были сформированы серии одиночных кратеров (рис. 2a), размеры которых проанализированы с помощью сканирующей электронной микроскопии.

Линейная аппроксимация зависимости квадрата радиуса кратера от натурального логарифма энергии лазерного импульса $(R^2 - \ln E)$ (рис. 2b) позволяет оценить радиус фокусировки (на уровне $1/e^2$ в случае гауссовского пучка) w_0 и соответствующее пороговое значение $E_{\rm abl}$ формирования структур. Таким образом, были оценены значение пороговой плотности энергии абляции $F_{\rm abl} = E_{\rm abl}/\pi w_0^2$, которое в нашем случае для $E_{\rm abl} = (65 \pm 6)$ нДж составило $F_{\rm abl} = (4.2 \pm 0.4)$ Дж/см² (при $w_0 = 0.70 \pm 0.06$ мкм).

Далее, с учетом найденных пороговых значений энергии лазерных импульсов, преимущественно в подпороговом режиме воздействия УКИ на поверхности нанопористого стекла в ходе сканирования (v = 25 мкм/c, $\nu = 250 \text{ к}\Gamma$ ц, период $\Delta = 0.625 \text{ мкм}$, $E_{\text{las}} = 41-72 \text{ н}$ Дж) были сформировано 5 массивов нанорешеток с характерным размером области $\sim 100 \times 50 \text{ мкм}^2$ (рис. 3а). Оптическая микроскопия в режиме скрещенных поляризаторов демонстрирует различия в фазовых свойствах объектов (рис. 3а). СЭМ-изображения сформированных областей (рис. 3b, c) показывают наличие на поверхности нанорешеток с периодом штрихов $\Lambda \sim 100-150 \text{ нм.}$

В общем случае, образование поверхностных периодических структур может быть связано с интерференцией как между падающей электромагнитной волной (источником света) и поверхностной рассеянной электромагнитной (плазмон-поляритонной) волной с волновым числом $K \ge 1/\lambda_{\text{las}}$ (решетки с околоволновыми периодами) [16], так и, при нормальном падении лазерного излучения, между коротковолновыми поверхностными плазмонами с противонаправленными волновыми векторами и одинаковыми высокими волновыми числами $K \gg 1/\lambda_{\text{las}}$ (глубокосубволновые решетки) [17]. Пороговым условием возбуждения поверхностных плазмонов и плазмонполяритонов является равенство $\operatorname{Re}[\varepsilon^*] = -\operatorname{Re}[\varepsilon_{AIR}]$ [18], где $\operatorname{Re}[\varepsilon^*]$ – действительная часть диэлектрической проницаемости возбужденного диэлектрика

Рис. 2. (Цветной онлайн) СЭМ-изображение одноимпульсных кратеров на поверхности нанопористого стекла, сформированных лазерными импульсами с энергией 160 нДж и фокусировке объективом NA = 0.65 (a); зависимость $R^2 - \ln E$ серий одноимпульсных кратеров в диапазоне энергий лазерного излучения 160–560 нДж ($F = 10.4-36.4 \, \text{Дж/см}^2$) при тех же условиях фокусировки (b)

Рис. 3. (Цветной онлайн) (а) – Оптические снимки в скрещенных поляризаторах массивов нанорешеток (100 × 50 мкм²), сформированных лазерными импульсами с энергией в импульсе $E_{\text{las}} = 41-72$ нДж (F = $= 2.7-4.7 \,\text{Дж/см}^2$) при фокусировке микрообъективом с NA = 0.65; (b), (c) – СЭМ-изображения нанорешеток с периодом $\Lambda \sim 100-150$ нм в массивах E = 68 нДж (b) и E = 58 нДж (c), желтая вертикальная стрелка указывает направление сканирования и направление поляризации лазерного излучения (совпадает с направлением сканирования)

Рис. 4. (Цветной онлайн) Дисперсионные кривые для поверхностных электромагнитных волн на фотовозбужденной поверхности пористого стекла при различных плотностях электрон-дырочной плазмы: 1.8×10^{22} см⁻³ (фиолетовая кривая); 1×10^{22} см⁻³ (синяя кривая); 7×10^{21} см⁻³ (зеленая кривая); 4×10^{21} см⁻³ (красная кривая); 1×10^{21} см⁻³ (черная кривая)

 $(\varepsilon = n_0(515\,{\rm Hm})^2 \approx 2.25$ [19]) и $\varepsilon_{\rm AIR} \approx 1$, а соответствующая критическая плотность электрондырочной плазмы, обеспечивающая описываемую моделью Друде металлизацию материала, составля-

Рис. 5. (Цветной онлайн) Спектры оптического отражения (a) и пропускания (b) массивов нанорешеток на поверхности нанопористого стекла (PGlass на графиках), записанных при разных энергиях лазерных импульсов: 72, 68, 60, 58 и 41 нДж (F = 4.7, 4.2, 3.9, 3.8, 2.7 Дж/см²)

ет $\approx (5-6) \times 10^{21}$ см⁻³ для 515 нм. С учетом данных параметров, а также массы электрона в зоне проводимости, равной массе свободного электрона, и частоте рассеяния носителей порядка плазменной частоты ($\sim 10/\omega_{\rm pl}$) [20], по аналогии с работой [21], были рассчитаны дисперсионные соотношения для поверхностных электромагнитных волн на фотовозбужденной поверхности пористого стекла при различных плотностях электрон-дырочной плазмы (рис. 4).

Расчеты показали, что для длины волны 515 нм поверхностный плазмонный резонанс на фотовозбужденной поверхности пористого стекла достигается при плотности плазмы $\geq 7 \times 10^{21}$ см⁻³, а волновое число существенно демпфированных плазмонов составляет при этом $K \approx 2.4$ мкм⁻¹ (рис. 4). Соответственно, период интерференционной стоячей волны достигает $1/2K \approx 200$ нм, что также хорошо согласуется с экспериментальными данными (100–150 нм).

Спектры отражения массивов в области 400– 800 нм (рис. 5а) демонстрируют практически монотонный характер уменьшения соответствующего коэффициента, по сравнению с немодифицированным нанопористым стеклом, по мере роста энергии лазерных импульсов до 72 нДж. В красной области спектра (>650 нм) квадратная область, записанная при энергии $E_{\rm las} = 41$ нДж, показывает незначительное (~4%) повышение коэффициента отражения. Далее, в области длин волн 410–440 нм в спектрах отражения наблюдается уменьшение соответствующего коэффициента на 20–30% в зависимости от энергии импульса при лазерной обработке, что согласуется с известным эффектом антиотражения для поверхностных нанорешеток с периодом $\approx \lambda/4$ [21–23], т.е. в данном случае, порядка 100 нм – в согласии с их измеренным периодом $\approx 100{-}150$ нм.

Аналогично, спектры оптического пропускания в диапазоне 400–800 нм (рис. 4b) демонстрируют монотонный рост соответствующего коэффициента по мере увеличения длины волны до ~ 800 нм. Для квадратных областей пропускание по сравнению с немодифицированным нанопористым стеклом уменьшается с ростом энергии в импульсе от 41 до 72 нДж. Кроме того, для светлых в скрещенных поляризаторах областей с $E_{\text{las}} = 60$ нДж и $E_{\text{las}} = 58$ нДж (рис. 3а) значения коэффициента пропускания практически идентичны.

Соответственно, сформированные под действием лазерных УКИ нанорешетки с периодом $\Lambda \sim 100-150$ нм на поверхности нанопористого стекла демонстрируют дифракционную модуляцию света в видимом диапазоне длин волн, а в синей области спектра (410–440 нм) образуют антиотражающее покрытие.

4. В заключение, впервые на поверхности нанопористого силикатного стекла фемтосекундными лазерными импульсами видимого диапазона варьируемой энергии записаны периодические ($\Lambda \sim 100-150$ нм) нанорешетки поверхностного рельефа. Формирование таких структур, перпендикулярных направлению поляризации излучения, связывается с возбуждением поверхностного плазмонного резонанса при плотности плазмы $\geq 7 \times 10^{21}$ см⁻³ и интерференцией поверхностных плазмонов с противоположными волновыми векторами. Анализ оптических свойств нанорешеток в видимом диапазоне демонстрирует антиотражающий эффект с уменьшением соответствующего коэффициента отражения на 20–30 % в области 410–440 нм, ожидаемый для таких нанорешеток.

Исследование выполнено за счет гранта Российского научного фонда (проект # 20-71-10103).

- E. Bricchi, J. D. Mills, P. G. Kazansky, and J. J. Baumberg, Opt. Lett. 27(24), 2200 (2002).
- M. Beresna, M. Gecevičius, P.G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98(20), 201101 (2011).
- I.B. Sohn, H.K. Choi, Y.C. Noh, J. Kim, and M.S. Ahsan, Appl. Surf. Sci. 479, 375 (2019).
- M. Sakakura, Y. Lei, L. Wang, and P. G. Kazansky, Light Sci. Appl. 9(1), 1 (2020).
- S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, J. Laser Appl. 24(4), 042008 (2012).
- W. Cai, A.R. Libertun, and R. Piestun, Opt. Express 14(9), 3785 (2006).
- J. Zhang, M. Gecevičius, M. Beresna, and P.G. Kazansky, Phys. Rev. Lett. **112**(3), 033901 (2014).
- Y. Shimotsuma, M. Sakakura, P.G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, Adv. Mater. 22(36), 4039 (2010).
- Y. Shimotsuma, P.G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. **91**(24), 247405 (2003).
- K. Sugioka and Y. Cheng, Light Sci. Appl. 3(4), e149 (2014).
- B. Zhang, X. Liu, and J. Qiu, J. Materiomics 5(1), 1 (2019).
- Z. Lijing, R.A. Zakoldaev, M.M. Sergeev, and V.P. Veiko, Nanomaterials **10**(11), 2169 (2020).

- Z. Lijing, R. A. Zakoldaev, M. M. Sergeev, A. B. Petrov, V. P. Veiko, and A. P. Alodjants, Nanomaterials 11(1), 123 (2021).
- V.P. Veiko, S.I. Kudryashov, M.M. Sergeev, R.A. Zakoldaev, P.A. Danilov, A.A. Ionin, T.V. Antropova, and I.N. Anfimova, Laser Phys. Lett. 13(5), 055901 (2016).
- P.A. Danilov, D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, T.T.H. Nguyen, A.A. Rudenko, I.N. Saraeva, A.A. Kuchmizhak, O.B. Vitrik, and Yu.N. Kulchin, JETP Lett. **103**(8), 549 (2016).
- J.E. Sipe, J.F. Young, J.S. Preston, and H.M. van Driel, Phys. Rev. B 27(2), 1141 (1983).
- S.I. Kudryashov, A.A. Nastulyavichus, I.N. Saraeva, A.A. Rudenko, D.A. Zayarny, and A.A. Ionin, Appl. Surf. Sci. 519, 146204 (2020).
- V. V. Klimov, Nanoplasmonics, CRC press, Boca-Raton (2014).
- E. D. Palik, Handbook of Optical Constants of Solids, Academic press, San Diego (1998).
- R. H. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B 51(17), 11433 (1995).
- S.I. Kudryashov, A.O. Levchenko, P.A. Danilov, N.A. Smirnov, A.A. Rudenko, N.N. Melnik, N.I. Busleev, and A.A. Ionin, Appl. Phys. Lett. 115(7), 073102 (2019).
- V. P. Korol'kov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, R. V. Samsonov, A. I. Maslii, A. Zh. Medvedev, and B. G. Gol'denberg, Quantum Electron. 41(4), 387 (2011).
- A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, Appl. Phys. B 111(3), 419 (2013).

Спектр генерации длиноимпульсных лазеров на свободных электронах терагерцового диапазона: квазилинейная теория

Н. С. Гинзбург^{+*}, Е. Р. Кочаровская^{+*1)}, А. С. Сергеев⁺, С. Е. Фильченков⁺

+Федеральный исследовательский центр институт прикладной физики РАН, 603950 Н. Новгород, Россия

*Нижегородский государственный университет им. Н.И.Лобачевского, 603950 Н.Новгород, Россия

Поступила в редакцию 13 апреля 2021 г. После переработки 13 апреля 2021 г. Принята к публикации 15 апреля 2021 г.

Построена квазилинейная теория лазеров на свободных электронах (ЛСЭ), в которых в результате использования интенсивных электронных пучков, обладающих значительным скоростным разбросом, реализуется кинетический режим электронно-волнового взаимодействия. В предположении о накоплении поля в высокодобротном резонаторе найдены стационарные распределения спектральной плотности возбуждаемых резонаторных мод при различных уровнях превышения тока пучка над порогом. Показано, что при значительных превышениях на функции распределения электронов по энергиям на выходе из резонатора возникает плато, ширина которого пропорциональна ширине спектра генерации. Проведены оценки параметров применительно к длинно-импульсным ЛСЭ, которые могут быть реализованы на базе линейных индукционных ускорителей. Показана возможность эффективного преобразования энергии электронных пучков с большим разбросом в широкополосное излучение терагерцового диапазона.

DOI: 10.31857/S1234567821100049

В настоящее время в ИЯФ СО РАН (Новосибирск) создаются линейные индукционные ускорители (ЛИУ) нового поколения, которые способны формировать релятивистские электронные пучки с энергией от 5 до 20 МэВ, килоамперным уровнем тока и длительностью до 200 нс [1, 2]. Очевидна привлекательность использования таких пучков в лазерах на свободных электронах (ЛСЭ) терагерцового диапазона. В данный момент подобный проект разрабатывается в сотрудничестве с ИПФ РАН [3,4]. Необходимо отметить, что в отличие от существующих терагерцовых ЛСЭ на основе линейных высокочастотных ускорителей [5,6] и микротронов [7], пучки которых представляют собой последовательность коротких (пикосекундных) импульсов, ЛСЭ на основе ЛИУ позволяет обеспечить генерацию длиноимпульсного излучения с мощностью до 100 МВт и рекордным уровнем энергии ~ 10-100 Дж в единичном импульсе. Базовый вариант таких ЛСЭ должен обеспечить реализацию одномодового одночастотного режима генерации. Это требует, с одной стороны, разработки высокоселективных электродинамических систем, а с другой формирования электронных пучков с малым скоростным и энергетическим разбросом.

Как известно, для обеспечения гидродинамического режима взаимодействия разброс по энергиям $E = mc^2 \gamma$ и продольным скоростям V_z должен быть ограничен условиями:

$$\frac{\Delta\gamma}{\gamma} \ll \frac{1}{N}, \quad \frac{\Delta V_z}{V_z} \ll \frac{1}{N\gamma^2},$$
 (1)

где N – число периодов ондуляторного поля. Вместе с тем интенсивные электронные пучки обладают достаточно большими разбросами, которые могут не удовлетворять условию (1). В одномодовом режиме генерации это должно приводить к значительному снижению эффективности энергообмена. В таких условиях для более эффективного преобразования энергии электронов в терагерцовое излучение целесообразно допустить возможность многочастотной генерации. Возбуждение большого числа мод с различными частотами и продольными индексами при одновременном присутствии ондуляторного поля обеспечивает возникновение спектра синхронных комбинационных волн, воздействие которых на электронный поток ведет к диффузии частиц в область малых энергий.

Очевидно, что для описания электронноволнового взаимодействия в таких условиях эффективен квазилинейный подход [8–16], который в настоящей работе модифицирован применительно к возбуждению излучения в высокодобротном резо-

¹⁾e-mail: katya@appl.sci-nnov.ru

наторе, когда различные спектральные компоненты представляют собой моды с различным числом продольных вариаций поля. При этом движение электронов описывается уравнением диффузии для усредненной функции распределения.

В высокодобротном резонаторе длины l время пролета релятивистского электрона $T = l/V_z$ существенно меньше времени изменения амплитуд мод

$$T_Q = \frac{Q}{\bar{\omega}_s} = \frac{l}{V_{gr}(1-R^2)},\tag{2}$$

где $Q = \bar{\omega}_s l/V_{ar}(1-R^2)$ – добротность резонатора, *R* – коэффициент отражения зеркал, который близок к единице, $\bar{\omega}_s$ – центральная частота генерации. В таких условиях интегральную интенсивность поля, как и его спектральное распределение за время пролета электронов можно считать фиксированным и описывать движение частиц при заданном коэффициенте диффузии. Далее находится высокочастотный ток, создаваемый электронами, который будет определять динамику спектральной плотности поля и соответствующий коэффициент диффузии на временных масштабах порядка Т_Q. Подобный подход позволяет описать установление стационарного распределения спектральной плотности возбуждаемых резонаторных мод. При этом на выходе из резонатора у функции распределения электронов по энергиям возникает плато, ширина которого пропорциональна ширине спектра генерации и, соответственно, увеличивается по мере превышения тока инжекции над пороговым значением.

Рассмотрим двумерную модель ЛСЭ, изображенную на рис. 1. Предположим, что интенсивный лен-

Рис. 1. (Цветной онлайн) Схема ЛСЭ. 1 – ондулятор с периодом d; 2 – планарный волновод; 3 – электронный пучок; 4 – зеркала с коэффициентами отражения R

точный релятивистский электронный пучок движется в планарном волноводе с расстоянием между пластинами *b*. На краях волновода имеются два зеркала с коэффициентами отражения *R*. Электроны осциллируют в поле ондулятора, заданного векторпотенциалом

$$\mathbf{A}_w = \operatorname{Re}[\mathbf{x}_0 A_w \exp(i\bar{h}z)],\tag{3}$$

где $\bar{h} = 2\pi/d$, d – период ондулятора. Поле излучения внутри двухзеркального резонатора представим в виде набора собственных мод, отличающихся продольным индексом n и имеющих поперечную структуру TE_{01} волны планарного волновода

$$\mathbf{A}_{s} = \operatorname{Re}\left[\sum_{n} \mathbf{x}_{0} A_{n}(t) \sin(\pi y/b) \exp(i\theta_{sn})\right].$$
(4)

Здесь $A_n(t)$ – комплексные амплитуды мод, фазы которых полагаем случайными, $\theta_{sn} = \omega_n t - h_{sn} z$, $\omega_n = n\pi c/l$ – собственные частоты мод.

Усредненное движение релятивистских электронов в электромагнитном поле (4) и поле ондулятора (3) определяется пондеромоторной силой, представляющей набор продольных комбинационных волн,

$$F_z = \frac{e^2}{2_E} \operatorname{Re}\left[\sum_{n=1}^{\infty} (-ih_{cn}) A_{sn} A_w^* \exp(i\theta_{cn})\right]$$
(5)

и может быть описано с помощью кинетического уравнения для функции распределения электронов $f(t, z, p_z)$ [10, 11, 16]:

$$\frac{\partial f}{\partial t} + V_z \frac{\partial f}{\partial z} + F_z \frac{\partial f}{\partial p_z} = 0.$$
 (6)

Здесь $p_z = mV_z\gamma$ – продольный импульс, $\theta_{cn} = \omega_n t - h_{cn} z$ – фазы электронов в полях комбинационных волн, $h_{cn} = h_{sn} + \bar{h}$.

Амплитуды мод могут быть найдены из уравнения возбуждения резонатора [17]

$$\frac{dA_{sn}}{dt} + \frac{\omega_n}{2Q_n} A_{sn} = \tag{7}$$

$$= -i\frac{2\pi\beta_{gr}}{lh_{sn}S_{\perp}}\int_{0}^{l}\int_{S_{\perp}}j_{\omega n}\delta(y-b/2)\sin(\pi y/b)e^{ih_{sn}z}dS_{\perp}dz,$$

где $j_{\omega n} = 1/\pi \int\limits_{0}^{2\pi} j_x \exp(-i\omega_n t) d\omega_n t$ – амплитуда

Фурье-гармоники тока $j_x = -n_0 \int_{-\infty}^{\infty} V_x f dp_z$, $V_x = (e/mc\gamma) \operatorname{Re}[A_w \exp(i\bar{h}z)]$ – осцилляторная скорость, приобретаемая электроном в ондуляторном поле, n_0 – плотность электронного пучка, S_{\perp} – поперечное сечение волновода.

В квазилинейном приближении представим функцию распределения в виде

$$f = \bar{f} + \operatorname{Re}\left[\sum_{n=0}^{\infty} \tilde{f}_n \exp(i\theta_{cn})\right], \qquad (8)$$

где первое слагаемое \bar{f} отвечает за диффузию электронов по энергии, а второе описывает сумму откликов на воздействие ансамбля комбинационных волн, которые согласно уравнениям (5), (6) могут быть представлены в виде:

$$\tilde{f}_n = \frac{e^2}{2E} \frac{h_{cn} A_{sn} A_w^*}{(\omega_n - h_{cn} V_z)} \frac{\partial \bar{f}}{\partial p_z}.$$
(9)

Используем (8), (9) для вычисления амплитуды ВЧ тока $j_{\omega n}$ в правой части уравнения (7). При этом интегрирование по импульсам p_z заменим на интегрирование по скоростям V_z , используя правило Ландау для обхода полюсов $V_z = V_{cn} = \omega_n/h_{cn}$ (см., например, [10]), получим уравнение для интенсивности мод

$$\frac{d|A_{sn}|^2}{dt} + \frac{\omega_n}{Q_n} |A_{sn}|^2 =$$

$$= \frac{2\pi\beta_{gr}IK^2}{bl\omega_n I_a} \int_0^l |A_{sn}|^2 \left(p_z \frac{\partial \bar{f}(z, p_z)}{\partial p_z} \right) \Big|_{V_z = V_{cn}} dz,$$
(10)

где $K=e|A_w|/(mc^2)$ – параметр ондуляторности, I– ток пучка, $I_a=mc^3/e=1.7\,{\rm kA}$ – альфвеновский ток.

В рамках квазилинейного приближения эволюция усредненной части функции распределения $\bar{f}(z, p_z)$ с учетом обратного воздействия волн на частицы опишется диффузионным уравнением:

$$V_z \frac{\partial \bar{f}}{\partial z} = \left\langle \frac{e^2}{4E} \operatorname{Im} \sum_n h_{cn} A_{sn}^* A_w \frac{\partial \tilde{f}_n}{\partial p_z} \right\rangle.$$
(11)

Здесь угловые скобки означают операцию усреднения по ансамблю комбинационных волн. В уравнении (11) производная $\partial \bar{f} / \partial t$ исключена, поскольку в высокодобротном резонаторе характерное время изменения амплитуд мод (2) существенно превышает время пролета электронов через резонатор.

Перейдем в (11) от суммирования по индексам продольных мод n к интегрированию по спектру, принимая во внимание, что в интервале $\Delta \omega_s$ содержится $\Delta n = \Delta \omega_s / \delta \omega_s$ мод резонатора, где $\delta \omega_s =$ $= c\pi/l$ – межмодовое расстояние. Используя соотношение (9), преобразуем уравнение (11) к виду

$$V_z \frac{\partial \bar{f}}{\partial z} = \frac{\partial}{\partial z} \left(D \frac{\partial \bar{f}}{\partial p_z} \right), \tag{12}$$

где коэффициент диффузии

$$D = \frac{\pi e^2 K^2}{4\gamma_0 c^2} \frac{|A_{sn}|^2 \omega_n^2}{\gamma(1-\beta_z)\delta\omega} \bigg|_{h_s=2\gamma^2 \bar{h}}$$
(13)

пропорционален спектральной мощности электромагнитного поля в резонансной точке спектра

$$\omega_s/c = h_s = 2\gamma^2 \bar{h}.\tag{14}$$

6 Письма в ЖЭТФ том 113 вып. 9-10 2021

Уравнения (10) и (12) составляют самосогласованную систему квазилинейных уравнений многомодового ЛСЭ-генератора с высокодобротным резонатором. Эти уравнения должны быть дополнены начальными и граничными условиями:

$$\bar{f}(z=0,p_z) = f_0, \ P_s(t=0,\omega_s) = P_s^0,$$
 (15)

где f_0 – невозмущенная функция распределения электронов по энергиям на входе в пространство вза-имодействия, P_s^0 – начальный уровень электромагнитных шумов.

Перейдем далее к безразмерным переменным, считая электронный пучок ультрарелятивистским, $\gamma \gg 1$. В результате самосогласованная система уравнений (10), (12) преобразуется к виду:

$$\frac{\partial F(u,Z)}{\partial Z} = \frac{\partial}{\partial u} \left(\rho(u,\tau) u \frac{\partial F(u,Z)}{\partial u} \right), \qquad (16)$$

$$\frac{d\rho(u,\tau)}{d\tau} + \rho(u,\tau) = \int_{0}^{L} \rho(u,\tau) u \frac{\partial F(u,Z)}{\partial u} dZ.$$
 (17)

Здесь $F = mc\bar{f}$ – функция распределения электронов по энергиям, удовлетворяющая условиям нормировки $\int_0^{\infty} F(u) du = 1$, $\tau = t\bar{\omega}_s/Q$, $Z = IK^2\bar{\lambda}_s z/(S_{\perp}I_a(1-R^2))$ – безразмерные время и координата, $L = IK^2\bar{\lambda}_s l/(S_{\perp}I_a(1-R^2))$ – безразмерная длина резонатора, $\rho = \frac{I_a(1-R^2)h_{sn}S_{\perp}}{I\gamma_0^2\bar{\lambda}_s} \frac{e^2|A_{sn}|^2}{m^2c^4}$ – нормированная спектральная плотность мощности. С учетом соотношения (14) мы перешли от интегрирования по частотам ω_s к интегрированию по относительным изменениям энергии электронов $u = \gamma/\gamma_0$.

Для системы уравнений (16) запишем закон сохранения энергии

$$\frac{dS_p}{d\tau} + S_p = \eta, \tag{18}$$

где $S_p = \int_0^\infty \rho(u) du$ – полная мощность излучения, $\eta = \int_0^\infty (1-u) F du$ – электронный КПД.

На начальной линейной стадии взаимодействия можно пренебречь деформацией функции распределения электронов по энергиям, тогда спектральную мощность можно представить в виде $\rho(\tau, u) =$ $= \rho_0 \exp(\Gamma(u)\tau)$, где Γ – временной инкремент кинетической стадии неустойчивости. Используя уравнение (17) и полагая $\Gamma = 0$, получим стартовые условия для нормированной длины $L_{st} = (u\partial F_0/\partial u)^{-1}$, которая определяет стартовый ток генератора

$$I_{st} = \frac{I_a(1-R^2)S_\perp}{K^2 l\bar{\lambda}_s} L_{st}.$$
 (19)

Очевидно, наибольшим временным инкрементом и наименьшим стартовым током обладают моды, частоты которых соответствуют резонансным скоростям электронов, находящимся вблизи точки перегиба функции $F_0(u)$ [15, 16]. Пусть распределение электронов по энергиям при влете в резонатор задается гауссовой функцией:

$$F_0(u) = \frac{\exp(-(1-u)^2/\delta^2)}{\sqrt{\pi}\delta}$$
(20)

с относительным разбросом $\Delta \gamma / \gamma_0 = \delta$. Нормированная стартовая длина резонатора как функция параметра δ показана на рис. 2. Очевидно, что указанная длина растет при увеличении разброса.

Рис. 2. Зависимость стартовой длины L_{st} от начального энергетического разброса δ

По мере накопления поля в резонаторе, а, следовательно, роста амплитуд волн возникает деформация функции распределения (см. рис. 3а). В результате на ней устанавливается стационарный профиль, фактически определяющий уровень возбуждения различных мод. Соответствующий спектр выходного излучения изображен на рис. 3b. На рисунке 4 представлены начальное $F_0(u, Z = 0)$ и конечное $F_{\text{out}}(u, Z = L)$ распределения электронов по энергиям, а также спектр стационарной генерации для различных уровней превышения над порогом, регулируемых параметром L. Очевидно, по мере увеличения надкритичности происходит расширение спектра возбуждающихся мод и, одновременно, в выходной функции распределения Fout, вследствие диффузии электронов в область низких энергий, увеличивается область плато. Как ширина плато, так и ширина спектра возбуждающихся мод тем больше, чем больше превышение параметра L над порогом генерации L_{st} . Соответственно с увеличением L растет полная мощность излучения и электронный КПД (рис. 5),

Рис. 3. (Цветной онлайн) Установление стационарного режима генерации. (а) – Эволюция функции распределения электронов по энергиям $F_{\rm out}(u,\tau)$. (b) – Динамический спектр генерации $\rho(u,\tau)$. Нормированная длина области взаимодействия L = 0.03, начальный разброс электронов по энергиям $\delta = 0.03$

который может достигать 20% и более. При этом начальный энергетический разброс практически не влияет на КПД. Таким образом, использование кинетического режима электронно-волнового взаимодействия позволяет с высокой эффективностью применять пучки со значительным скоростным разбросом для генерации широкополосного излучения.

Сделаем в заключение оценки параметров применительно к разрабатываемому в ИЯФ СО РАН длинно-импульсному терагерцовому ЛСЭ. Выберем ондуляторный параметр K = 0.4, коэффициент отражения от зеркал R = 0.8. Пусть период ондулятора d = 4 см, энергия электронов 4.5 МэВ ($\gamma = 10$), центральная частота излучения 1.5 ТГц. При расстоянии между пластинами 0.4 см, ширине пластин

Рис. 4. (Цветной онлайн) Спектр стационарной генерации $\rho(u)$ и функция распределения электронов по энергиям на выходе из резонатора $F_{\rm out}(u)$ при различных уровнях превышения над порогом параметра L. Начальная функция распределения $F_0(u)$ соответствует относительному разбросу электронов $\delta = 0.03$

2 см, длине ондулятора 200 см и начальном энергетическом разбросе 3 % стартовый ток генератора составляет 40 А. В случае с нормированной длиной резонатора L = 0.03, представленном на рис. 3 и 4b, для достижения КПД 7.5 % необходим рабочий ток 240 А, тогда в соответствии с выражением (14) относительная ширина спектра излучения по полувысоте составит 15 % при полной мощности излучения 80 МВт.

Рис. 5. Зависимость КПД от нормированной длины резонатора для электронных пучков с различными начальными разбросами по энергиям δ

Работа выполнена при поддержке Российского научного фонда (проект 19-12-00212).

- П.В. Логачев, Г.И. Кузнецов, А.А. Корепанов, А.В. Акимов, С.В. Шиянков, О.А. Павлов, Д.А. Старостенко, Г.А. Фатькин, Приборы и техника эксперимента 6, 42 (2013).
- D. A. Nikiforov, M. F. Blinov, V. V. Fedorov et al. (Collaboration), Phys. of Particles and Nuclei Letters 17, 197 (2020).
- N. Ginzburg, N. Peskov, A. Savilov, A. Sergeev, V. Zaslavsky, A. Arzhannikov, E. Sandalov, S. Sinitsky, D. Skovorodin, and A. Starostenko, *Programm e-booklet* of The 2020 IEEE Intern. Conf. on Plasma Science (ICOPS), TA2-S2-008 (2020).
- Yu. S. Oparina, N. Yu. Peskov, and A. V. Savilov, Phys. Rev. Appl. 12, 044070 (2019).
- G. R. Neil, C. L. Bohn, S. V. Benson et al. (Collaboration), Phys. Rev. Lett. 84, 662 (2000).
- M.A. Dem'yanenko, D.G. Esaev, B.A. Knyazev, G.N. Kulipanov, and N.A. Vinokurov, Appl. Phys. Lett. 92, 131116 (2008).
- 7. G. M. Kazakevich, V. M. Pavlov, Y. U. Jeong, and B. C. Lee, Phys. Rev. ST Accel. Beams. **12**, 040701 (2009).
- W. E. Drummond and D. Pines, Nuclear Fusion, Suppl. 3, 1049 (1962).
- 9. A. A. Vedenov, Sov. At. Energy 13, 591 (1963).
- A. M. Dimos and R. C. Davidson, Phys. Fluids 28, 677 (1985).
- W. P. Marable and P. A. Sprangle, J. Appl. Phys. 67, 3576 (1990).
- N. A. Vinokurov, Z. Huang, O. A. Shevchenko, and K. J. Kim, Nucl. Instrum. Methods Phys. Res. A 475, 74 (2001).
- О. А. Шевченко, Н. А. Винокуров, Известия вузов. Радиофизика 60, 41 (2017).

Письма в ЖЭТФ том 113 вып. 9-10 2021

- Z. Huang and K.-J. Kim, Phys. Rev. ST Accel. Beams 10, 034801 (2007).
- N.S. Ginzburg and M.A. Shapiro, Opt. Commun. 40, 215 (1982).
- N. S. Ginzburg and E. R. Kocharovskaya, Phys. Rev. ST Accel. Beams. 19, 080701 (2016).
- 17. Л.А. Вайнштейн, Электромагнитные волны, Радио и связь, М. (1988), гл. VIII.

Подавление минищели в S(N/F)S контактах

П. А. Иоселевич^{+*1)}, Д. А. Чукланов⁺

+ Национальный исследовательский университет "Высшая школа экономики", 101000 Москва, Россия

*Институт теоретической физики им. Л. Д. Ландау РАН, 119334 Москва, Россия

Поступила в редакцию 6 апреля 2021 г. После переработки 13 апреля 2021 г. Принята к публикации 15 апреля 2021 г.

Рассматривается длинный диффузный контакт Джозефсона, слабой связью в котором является тонкий бислой нормальный металл (N)-ферромагнетик (F), так что N и F образуют параллельные связи между сверхпроводниками S. Показано, что сверхпроводимость в такой слабой связи описывается эффективным одномерным уравнением Узаделя, содержащим ослабленное обменное поле, а также распаривающий член. Механизм распаривания основан на неотъемлемой неоднородности бислоя и отличает его от обычного SFS контакта. Распаривание влияет на плотность состояний S(N/F)S системы и, в частности, приводит к подавлению минищели в плотности состояний, разрешенной по проекции спина. Сила распаривания выражается через геометрические параметры системы, энергию Таулесса и эффективное обменное поле. Построенная одномерная теория применима для разнообразных систем с тонкими многослойными связями и хорошо согласуется с численными результатами и имеющимся экспериментом.

DOI: 10.31857/S1234567821100050

1. Введение. Гетероструктуры, включающие сверхпроводник и ферромагнетик, давно изучаются теоретически и экспериментально (см. обзоры [1– 3]). Взаимодействие ферромагнитного и сверхпроводящего порядков приводит ко многим интересным явлениям. Так, эффект близости в SF системах демонстрирует осцилляторное поведение: аномальное среднее в F не только затухает по мере удаления от сверхпроводника, но также и осциллирует, меняя знак на магнитной длине l_h . Благодаря этому SFS контакт в зависимости от своей длины L может оказаться в состоянии π -контакта [4, 5], в котором основное состояние приходится на разность сверхпроводящих фаз π . Использование нескольких ферромагнетиков разной поляризации приводит к еще большему числу явлений. Например, FFS и FSF структуры могут играть роль сверхпроводящих спиновых вентилей [6-8].

Практически все F-S гетероструктуры имеют недостаток, сильно затрудняющий их изготовление и использование: обменное поле h в ферромагнетиках довольно велико, так что магнитная длина $l_h = \sqrt{D/h}$ мала (D – коэффициент диффузии). Поэтому для создания системы с заданными свойствами размеры ферромагнитных элементов должны быть очень точно выдержаны, так как ошибка порядка ~ l_h может резко изменить поведение системы. Одно из возможных решений этой проблемы состоит в "разбавлении" ферромагнетика нормальным металлом. Если заменить ферромагнитную связь бислоем, как на рис. 1, то куперовские пары, диффундирую-

Рис. 1. (Цветной онлайн) S(N/F)S система. Слои N и F тонкие в направлении x по сравнению с длиной в направлении y, т.е. $d_N, d_F \ll L$. Все контакты между различными материалами прозрачные

щие в бислое, будут испытывать обменное поле, только находясь в F. B среднем это можно описать как действие эффективного обменного поля h_{eff} , которое может быть гораздо меньше, чем поле h в F [9].

В настоящем письме мы строим теорию диффузных S(N/F)S контактов, в которых слабая связь – NF бислой, как показано на рис. 1. Слои предполагаются тонкими, что позволяет нам вывести эффективную одномерную теорию, описывающую сверхпроводимость в системе. Последовательно учитывая поправки, возникающие из-за неотъемлемой неоднородности бислоя в направлении x, мы выводим все релевантные члены эффективного одномерного

¹⁾e-mail: pioselevich@hse.ru

уравнения. В частности, мы воспроизводим известный результат об эффективном обменном поле $h_{\rm eff}$. Сверх того мы находим распаривающий член (аналогичный членам, описывающим перевороты спина) в следующем порядке малости по толщине слоев. Этот член проявляется в свойствах плотности состояний, отличающих S(N/F)S контакт от обычного SFS контакта.

Системы, аналогичные рис. 1, в прошлом изучались теоретически в ряде ситуаций, допускающих описание линеаризованным уравнением Узаделя [10– 13]. В работе [14] рассматривался короткий контакт и использовались частично нелинейные уравнения. В настоящей работе рассматриваются длинные контакты и полностью нелинейные уравнения Узаделя. В частности, мы изучаем минищель [15–17], которая является полностью нелинейным явлением.

Мы начинаем с введения общих уравнений и интересующего нас параметрического режима. Мы показываем, как тонкий слой F может быть сведен к эффективному граничному условию, к уравнению в N. Затем мы выводим эффективное одномерное уравнение. Мы объясняем влияние эффекта распаривания на плотность состояний и сравниваем теоретические результаты с численными и экспериментальными. Наконец, мы обсуждаем область применимости построенной теории и переходим к заключению.

2. Модель. Мы рассматриваем длинный контакт с диффузной слабой связью, состоящей из нормального и ферромагнитного слоев, как показано на рис. 1. Длина контакта – L, толщины слоев – d_N, d_F . Мы предполагаем, что система находится в грязном пределе, когда применимо уравнение Узаделя [10]. Контакт длинный, т.е. $L \gg d_N, d_F, \sqrt{D_N/\Delta}$, где D_N – коэффициент диффузии в N, а Δ – параметр порядка в S. Ферромагнетик однодоменный, так что $\mathbf{h} = \mathrm{const} \ \mathbf{b} \ \mathbf{F}$ и проекция спина σ в направлении h сохраняется. В этом случае электроны с разными спинами σ описываются независимыми уравнениями. Для простоты мы рассматриваем случай нулевой разности сверхпроводящих фаз в контакте. В таком случае функция Грина для каждого спина параметризуется одним комплексным параметром θ_{σ} , а уравнение Узаделя имеет вид

$$\frac{D_N}{2}(\partial_x^2 + \partial_y^2)\theta_\sigma + iE\sin\theta_\sigma = 0, \qquad (1)$$

$$\frac{D_F}{2}(\partial_x^2 + \partial_y^2)\theta_\sigma + i(E + \sigma h)\sin\theta_\sigma = 0$$
(2)

в N и F соответственно. В дальнейшем мы считаем $\sigma=1$ и опускаем спиновый индекс. Ответы для про-

тивоположного спина получаются обращением знака h.

Уравнения (1), (2) дополнены граничными условиями. На внешних краях слоев условие просто $\partial_y \theta = 0$. Граница между слоями предполагается прозрачной. Это соответствует непрерывности θ , а также сохранению тока. Последнее условие имеет вид

$$\nu_N D_N \partial_y \theta(x, d_N - 0) = \nu_F D_F \partial_y \theta(x, d_N + 0), \quad (3)$$

где ν_i – металлическая плотность состояний в слое i.

Мы предполагаем тонкость слоев по сравнению со всеми остальными длинами за исключением длины свободного пробега:

$$d_N^2 \ll \frac{D_N}{E}, \qquad d_F^2 \ll \frac{D_F}{E+h}.$$
 (4)

В качестве типичной энергии E следует брать энергию Таулесса $E_{\rm Th} \equiv D/L^2$. Условие (4) позволяет ожидать, что решение уравнений Узаделя $\theta(x, y)$ медленно меняется на расстояниях порядка d_N, d_F и может быть записано в виде $\theta(x, y) = \vartheta(x) + \eta(x, y)$, где $\eta \ll \vartheta$.

3. Эффективное граничное условие F слоя. Рассмотрим ферромагнитный слой, находящийся на отрезке $d_N < y < d_N + d_F$. Будем предполагать достаточно сильное обменное поле, $|E| \ll |h|$. Функцию $\theta(x, y)$ в F можно приближенно записать как

$$\theta(x,y) \approx \vartheta_F(x) + \eta_F(x) \frac{(d_F + d_N - y)^2}{d_F^2}.$$
 (5)

Подставляя это в уравнение (2), мы находим в главном порядке

$$\frac{D_F \eta_F}{d_F^2} + i\hbar \sin \vartheta_F = 0. \tag{6}$$

Всеми остальными членами мы пренебрегли, предполагая $\eta_F \ll \vartheta_F$ и $\partial_x^2 \vartheta \ll h/D_F$. Уравнение (6) выражает $\eta_F(x)$ через $\vartheta_F(x)$ и сразу подтверждает, что $\eta_F \ll \vartheta_F$ благодаря условию (4). Теперь мы можем вычислить производную $\partial_y \theta$ на NF границе. Из уравнения (5) получается $\partial_y \theta \approx -2\eta_F/d_F =$ $= 2ihd_F \sin \vartheta_F/D_F$. Подставив это в общее граничное условие (3) и используя $\theta(x, d_N - 0) = \theta(x, d_N + 0) \approx$ $\approx \vartheta_F(x)$, мы находим

$$\partial_y \theta(x,y)|_{y=d_N-0} = 2iq\sin\theta(x,d_N),\tag{7}$$

$$q = \frac{hd_F\nu_F}{\nu_N D_N}.$$
(8)

Таким образом, мы свели весь слой F к эффективному граничному условию на θ в области N. 4. Эффективное уравнение для NF бислоя. Обратимся теперь к решению уравнения (1) в N с граничными условиями (7) и $\partial_y \theta(x, y)|_{y=0} = 0$. Кроме этих двух условий, есть также граничные условия при x = 0, L, однако их конкретный вид для вывода неважен. Достаточно того, что $L \gg d_N, d_F$, так что характерная длина в направлении x велика.

Мы ищем решение в N в виде

$$\theta(x,y) = \vartheta(x) + \sum_{n=2}^{\infty} \eta_n(x) \frac{y^n}{d_N^n}.$$
(9)

Формально такой анзац описывает все функции, удовлетворяющие $\partial_y \theta|_{y=0} = 0$. Подставляя этот анзац в уравнение (1), получаем

$$\vartheta(x)'' + \sum_{n=2}^{\infty} \left[\eta_n(x)'' \frac{y^n}{d_N^n} + n(n-1)\eta_n(x) \frac{y^{n-2}}{d_N^n} \right] + \frac{2iE}{D_N} \sin\left(\vartheta(x) + \sum_{n=2}^{\infty} \eta_n(x) \frac{y^n}{d_N^n}\right) = 0, \quad (10)$$

где $\vartheta'' \equiv \partial_x^2 \vartheta$. Это двумерное уравнение разложим по степеням y/d_N , чтобы получить ряд одномерных уравнений. Первые три члена ряда (y^0, y^1, y^2) имеют вид

$$\vartheta'' + \frac{2\eta_2}{d_N^2} + \frac{2iE}{D_N}\sin\vartheta = 0, \tag{11}$$

$$\eta_3 = 0, \tag{12}$$

$$\eta_2'' + \frac{12\eta_4}{d_N^2} + \frac{2iE}{D_N}\eta_2\cos\vartheta = 0,$$
 (13)

соответственно. Ряд легко продолжить. Нечетные члены ряда, как уравнение (12), приводят к $\eta_{2k+1} =$ 0. Четные члены ряда, начиная с уравнения (13), показывают, что $\eta_{2k+2} \sim (d_N^2 E/D_N)\eta_{2k}$, так что η_{2k} образуют экспоненциально затухающую последовательность.

Уравнения (11)–(13) дополнены граничным условием (7). Подставляя в это условие наш анзац, мы получаем

$$2\eta_2 + 4\eta_4 = 2iqd_N \left[\sin\vartheta + \eta_2\cos\vartheta\right], \qquad (14)$$

где мы оставили только члены двух главных порядков. Мы решим уравнения (11)–(14) последовательными приближениями, начав с главного порядка. Пренебрегая вторым членом с каждой из сторон уравнения (14), мы немедленно находим решение в главном приближении, которое обозначим за $\overline{\eta}_2$:

$$\overline{\eta}_2 = iqd_N \sin\vartheta. \tag{15}$$

Письма в ЖЭТФ том 113 вып. 9-10 2021

Подставляя это в уравнение (11), мы получим

$$\vartheta'' + \frac{2i(E + h_{\text{eff}})}{D_N}\sin\vartheta = 0, \qquad (16)$$

$$h_{\rm eff} \equiv \frac{qD_N}{d_N} = h \frac{\nu_F d_F}{\nu_N d_N}.$$
 (17)

Таким образом, в главном порядке функция $\vartheta(x)$ подчиняется одномерному уравнению Узаделя (16), содержащему эффективное обменное поле h_{eff} , наведенное ферромагнетиком. Это известный результат [9], а наша задача состоит в поиске новых эффектов в следующем порядке по малой толщине бислоя.

Чтобы найти поправки к уравнению (16), нужно вычислить η_2 более точно. Обозначим поправку к решению уравнения (15) за $\delta\eta_2 = \eta_2 - \overline{\eta}_2$. Из граничного условия (14) мы получаем (удерживая только члены в первом неисчезающем порядке)

$$\delta\eta_2 = -2\eta_4 + iqd_N\overline{\eta}_2\cos\vartheta. \tag{18}$$

 η_4 выражается через η_2 с помощью уравнения (13):

$$\eta_4 = -\frac{d_N^2}{12} \left(\partial_x^2 + \frac{2iE}{D_N} \cos \vartheta \right) \overline{\eta}_2 = \tag{19}$$

$$-\frac{iqd_N^3}{12}\left(\vartheta''\cos\vartheta - (\vartheta')^2\sin\vartheta + \frac{iE}{D_N}\sin2\vartheta\right) = (20)$$

$$-\frac{iqd_N^3}{12}\left(-\frac{i(2E+3h_{\text{eff}})}{D_N}\sin 2\vartheta - c\sin\vartheta\right).$$
 (21)

В переходе от выражения (20) к выражению (21) мы воспользовались приближенным уравнением (16), чтобы преобразовать ϑ'' , а также интегралом движения этого уравнения $(\vartheta')^2 - 4i(E + h_{\text{eff}})/D_N \cos \vartheta =$ = const = c, чтобы переписать $(\vartheta')^2$. Член $c \sin \vartheta$ генерирует небольшой сдвиг энергии в уравнении Узаделя, и поэтому нерелевантен. Опуская этот член и подставляя выражение (21) в уравнение (18), мы получаем

$$\delta\eta_2 = \frac{qd_N^3(2E+3h_{\text{eff}})}{6D_N}\sin 2\vartheta - \frac{q^2d_N^2}{2}\sin 2\vartheta$$
$$= \frac{d_N^4Eh_{\text{eff}}}{3D_N^2}\sin 2\vartheta. \tag{22}$$

Наконец, подставив $\eta_2 = \overline{\eta}_2 + \delta \eta_2$ в уравнение (11), мы получаем наше финальное уравнение

$$\frac{D_N}{2}\vartheta'' + i(E + h_{\text{eff}})\sin\vartheta - \Gamma\sin2\vartheta = 0, \qquad (23)$$

$$\Gamma = -\frac{d_N^2 E h_{\text{eff}}}{3D_N}.$$
(24)

Уравнения (23) и (24) составляют главный результат нашей работы. Они показывают, что сверхпроводимость в тонком диффузном NF бислое описывается эффективным одномерным уравнением Узаделя с обменным полем $h_{\rm eff}$ и распаривающим членом $-\Gamma \sin 2\vartheta$.

Уравнение (23) следует сопроводить граничным условием при x = 0, L. Например, в случае системы на рис. 1 с прозрачными границами и сильными сверхпроводниками (толстыми или хорошо проводящими проводами, подавляющими обратный эффект близости) граничные условия имеют простейший вид $\vartheta(0) = \vartheta(L) = \pi/2$.

Величина распаривания Γ мала, так как содержит множитель d_N^2/D_N . Из-за этого в большинстве случаев распаривающим членом можно пренбрегать.

Уравнение (23) определяет пространственную зависимость $\vartheta(x) \equiv \theta(x,0)$. Если вывести аналогичное уравнение для $\theta(x, y_0)$, взятой при каком-то другом фиксированном u_0 , например, для $\theta(x, d_N) \equiv$ $\equiv \vartheta + \eta_2 + \eta_4 + \dots$, то получится другая сила распаривания Г'. Более того, уравнение (24) подразумевает, что Г может быть любого знака, тогда как из физических соображений Г должна быть положительной, чтобы подавлять сверхпроводимость. Эти наблюдения означают, что у распаривающего члена нет непосредственного и самостоятельного физического смысла. Однако таковой смысл появляется в том случае, когда $E + h_{\text{eff}} \ll |h_{\text{eff}}|$, так что распаривающий член становится значимым и начинает определять непосредственно измеримые величины. В частности, в этом случае Г определяет величину минищели S(N/F)S системы, что подробно обсуждается в следующем абзаце. В указанном пределе

$$\Gamma = \frac{d_N^2 h_{\text{eff}}^2}{3D_N},\tag{25}$$

как и следовало, это положительная величина. Более того, несложно проверять, что в этом случае Γ оказывается одной и той же для эффективных уравнений на $\theta(x, y_0)$ для всех y_0 .

5. Условия применимости. Помимо условия тонкости каждого слоя, уравнение (4), эффективное уравнение (23) требует соблюдения еще одного условия, которое мы раньше не упоминали:

$$\nu_F d_F \ll \nu_N d_N. \tag{26}$$

Это условие означает, что F много тоныше N, и оно необходимо для применимости приближенного граничного условия (7). В самом деле, мы вывели условие (7), исходя из приближенного анзаца уравнения (5), содержащего квадратичный член η_F , но не содержащего члена четвертой степени (назовем его η_{4F}), тогда как в N мы удержали и η_2 , и η_4 . Из общего граничного условия (3) мы заключаем, что такой подход правомерен, если $\nu_F D_F \eta_{4F}/d_F \ll$ $\ll \nu_N D_N \eta_4/d_N$, что и переписывается в виде условия (26). Мы также решили и более общий случай бислоя без условия (26): мы удержали η_{4F} в ферромагнетике и применяли общее граничное условие (3). Это усложняет вычисление, но не приводит ни к каким новым явлениям. В частности, оба коэффициента D_{eff} и h_{eff} в эффективном уравнении оказываются средними соответствующих коэффициентов в слоях, взвешенные с весом νd в полном согласии с прошлыми вычислениями [9], например, $D_{\text{eff}} = (\nu_N d_N D_N + \nu_F d_F D_F)/(\nu_N d_N + \nu_F d_F)$. В то же время выражение для Γ в общем случае получается чрезвычайно громоздким.

6. Подавление минищели в S(N/F)S контакте. Минищель – явление, известное по SNS контактам. Плотность состояний $\rho_0(E)$ длинных SNS контактов имеет минищель E_g [18, 19], т.е. $\rho_0(E) = 0$ при $|E| < E_g$. В случае прозрачных NS границ $E_{g0} = C_2 E_{\text{Th}}$, где $E_{\text{Th}} \equiv D/L^2$ – энергия Таулесса, а $C_2 \approx 3.122$ [18, 19]. В SFS контакте по сравнению с SNS контактом дополнительно есть обменное поле h, которое сдвигает плотность состояний по энергии на зависящую от спина величину σh , т.е. $\rho_{\sigma}(E) = \rho_0(E + \sigma h)$. В то же время, форма кривой и, в частности, ширина минищели при этом сохраняются.

В свою очередь, добавление распаривания в SNS контакт влияет на минищель. При увеличении Γ минищель уменьшается и в конце концов закрывается при $\Gamma = \Gamma_c = \pi^2 E_{\rm Th}/4$ [20]. При больших энергиях на месте минищели остается лишь небольшой провал в $\rho(E)$. Эта зависимость исследовалась в SNS контактах с магнитными примесями [20, 21], которые приводят к такому же распаривающему члену, что и в уравнении (23). Так как в SNS контактах с магнитными примесями нет среднего обменного поля, минищель (или провал) всегда находится при E = 0.

В нашей S(N/F)S системе присутствуют и обменное поле, и распаривание. Поэтому разрешенная по спину плотность состояний $\rho_{\sigma}(E)$ имеет минищель при $E_0 = -\sigma h_{\rm eff}$ и эта минищель уменьшена или полностью подавлена распариванием Г. Чтобы эффект распаривания был заметным, Г по порядку величины должна быть сопоставима с $E_{\rm Th}$. Для этого $h_{\rm eff}$ должно быть порядка $\sqrt{E_{\rm Th}D_N}/d_N = D_N/(Ld_N) \gg$ $\gg E_{\rm Th}$. В частности, закрытие минищели происходит при значении эффективного обменного поля

$$h_c = \frac{\sqrt{3D_N\Gamma_c}}{d_N} = \frac{\pi\sqrt{3}D_N}{2Ld_N}.$$
 (27)

На рисунке 2 показана плотность состояний $\rho_{\uparrow}(E)$ S(N/F)S системы в зависимости от h_{eff} . Плотность состояний была получена путем численного

Рис. 2. (Цветной онлайн) Плотность состояний ρ_{\uparrow} как функция энергии E и обменного поля h_{eff} для $L = 10d_N$ (слева) и $L = 2d_N$ (справа). Сплошные синие линии показывают минищель из эффективной одномерной теории уравнения (23). Красная точка отмечает закрытие минищели при $h_{\text{eff}} = h_c$. Выраженная цветом плотность состояний получена численным решением исходного двумерного уравнения (1). Темно-синий означает нулевую плотность состояний $\rho_{\uparrow} = 0$, желтый означает нормальную металлическую плотность состояний $\rho_{\uparrow} = \nu_N$

решения исходных двумерных уравнений Узаделя (1), (2). Синяя сплошная линия показывает минищель, предсказываемую эффективным одномерным уравнением (23). По мере увеличения $h_{\rm eff}$ минищель сдвигается и одновременно ужимается, окончательно закрываясь при $h_{\rm eff} = h_c$. При $L/d_N = 10$ (левый график) согласие между теорией уравнения (23) и двумерным численным счетом очень хорошее. При $L/d_N = 2$ (правый график) согласие тоже на удивление хорошее, учитывая, что d_N/L является малым параметром построенной теории.

Используя $\rho_{\uparrow}(E,h) = \rho_{\uparrow}(-E,-h) = \rho_{\downarrow}(-E,h),$ полную плотность состояний можно записать как $\rho(E,h) = \rho_{\uparrow}(E,h) + \rho_{\uparrow}(-E,h)$. Таким образом, $\rho(E,h)$ получается сложением графика $\rho_{\uparrow}(E,h)$, рис. 2 с его зеркальным отражением относительно оси ординат. Получающееся таким образом $\rho(E)$ показано на рис. 3. В зависимости от величины эффективного обмена $h_{\rm eff}~{
m S(N/F)S}$ система может быть в одном из четырех режимов. При малых полях, $h_{\rm eff} \ll E_{\rm Th}$, распаривание пренебрежимо мало и весь эффект (в сравнении с SNS системой) сводится к расщеплению по спину края минищели, см. рис. 3a, b. При средних полях, $E_{\rm Th} \ll h \ll D/(d_N L)$, минищели в ρ_{\uparrow} и ρ_{\downarrow} значительно раздвинуты, так что перекрытия между ними не остается и, соответственно, отсутствует минищель в полной плотности состояний, см. рис. 3с. Наконец, при больших полях мини-

Письма в ЖЭТФ том 113 вып. 9-10 2021

щели ужимаются и окончательно закрываются при $h_c = \pi \sqrt{3}/2 \cdot D/(d_N L)$, см. рис. 3d. При еще больших полях в $\rho_{\uparrow}, \rho_{\downarrow}$ уже нет щелей, только небольшой провал при $E = \pm h_{\text{eff}}$.

7. Обсуждение. Распаривающие члены, как в уравнении (23), хорошо известны. Обычно распаривающий член возникает из-за магнитных примесей [22], т.е. короткокоррелированных случайных обменных полей. К такому же члену приводят и случайные поля с большой длиной корреляции (случайная доменная структура) [23–25]. Орбитальные эффекты магнитного поля также приводят к такому члену [26, 27]. Другой возможный источник распаривания – мезоскопические флуктуации силы взаимодействия/параметра порядка [28]. Общее свойство всех этих механизмов – усреднение по различным мезоскопическим реализациям системы, приводящее к описанию усредненной системы. Наш случай не вписывается в этот ряд, так как распаривание возникает из фиксированной конфигурации обменных полей. В то же время, нашу теорию можно интерпретировать как некоторое усреднение по координате y, сводящее двумерное описание к одномерному.

Мы стали изучать S(N/F)S контакт вида рис. 1, так как подобная система была исследована экспериментально [9]. Параметры эксперимента L = 130 нм, $d_N = 60$ нм (медь) и $d_F = 10-15$ нм (железо) соответствуют условиям применимости нашей теории. Хотя

Рис. 3. (Цветной онлайн) Полная плотность состояний $\rho = \rho_{\uparrow} + \rho_{\downarrow}$ в точке x = L/2 для S(N/F)S системы с $L = 2d_N$ для различных значений h_{eff} . ρ – четная функция энергии: $\rho(-E) = \rho(E)$. Величина поля равна: (a) – $h_{\text{eff}} = 0$, так что $\rho = 2\rho_{\uparrow}$ и есть четкая минищель; (b) – $h_{\text{eff}} = E_{\text{Th}} < E_g$, так что край минищели ступенчатый за счет зеемановского расщепления; (c) – $h_{\text{eff}} = 4E_{\text{Th}} > E_g$, так что минищели в ρ_{\uparrow} и ρ_{\downarrow} раздвинуты и щели в полной плотности состояний уже нет; (d) – $h_{\text{eff}} = h_c$. Минищель в ρ_{σ} как раз закрылась и превратилась в провал. Дальнейшее увеличение h_{eff} приведет к уменьшению величины провала

контакт не особенно длинный, $L \approx 2d_N$, наша эффективная одномерная теория дает неплохое согласие с двумерными уравнениями, см. правый график на рис. 2.

Судя по данным эксперимента [9] и, в частности, рис. 4 в [9], система находится в режиме слабого поля (рис. 3b): минищель $E_g \approx 65 \ \mu eV$ с краем, расщепленным на величину $\Delta U \approx 20 \ \mu eV$. Таким образом, эффекты распаривания несущественны в этом эксперименте.

Чтобы обнаружить подавление минищели в S(N/F)S контакте, параметр порядка Δ в S должен превышать h_c , иначе минищель выйдет за пределы сверхпроводящей щели проводов. Хотя это вполне достижимое условие, есть более простое решение. Если изготовить S(F/N/F')S, в котором F,F' одинаковые ферромагнетики с противоположной намагниченностью, среднее поле будет равно нулю, $h_{\text{eff}} = 0$ (или будет небольшим, если F и F' будут не совсем одинаковыми). В то же время, распаривание в таком трислое останется достаточно сильным, порядка $d_N^2 h_{\text{eff0}}^2 / D_N$, где h_{eff0} – эффективное обменное поле, которое было бы наведено, будь F и F' намагничены параллельно. Отсутствие эффективного обмена $h_{\rm eff}$ в трислое также означает, что минищели для ρ_{\uparrow} и ρ_{\downarrow} находились бы при E = 0 и совпадали, образуя минищель и в полной плотности состояний $\rho,$ которую проще обнаружить, чем минищель для определенной проекции спина. Подробные вычисления для S(F/N/F')S системы будут опубликованы отдельно.

Эффективное уравнение (23) может применяться не только в джозефсоновских контактах, но и, например, S(N/F), S(N/F)NS и других системах, в которых есть связи, состоящие из тонких слоев, ориентированных вдоль направления связи.

Помимо бислоев типа FN, теория также описывает бислои NI_F , где за I_F обозначен магнитный диэлектрик – диэлектрик, отражающий электроны с разным спином по-разному. Как было показано Cottet et al. [29], контакт с таким диэлектриком описывается граничным условием ровно такой же формы, что и уравнение (7).

Формально уравнение (7) можно интерпретировать и как граничное условие Куприянова–Лукичева [30], описывающее туннельный контакт с нормальным металлом с мнимой туннельной проводимостью $g_t \propto iq$. И наоборот, для рассмотрения SNS, в котором N туннельно связан с металлическим резервуаром, мы должны использовать граничное условие (7) с мнимым параметром q. Это приведет к мнимой поправке $i\gamma$ к энергии (не зависящей от спина), описывающей утечку в металлический резервуар. В этом случае минищель пропадет, а распаривающий член окажется пренебрежимым, так как член $(E+i\gamma)\sin\vartheta$ будет главным в уравнении Узаделя при любых энергиях.

До сих пор мы обсуждали влияние распаривания только на плотность состояний. Другими важнейшими характеристиками джозефсоновского контакта являются ток-фазовая зависимость $I(\varphi)$ и вольтамперная характеристика (BAX) V(I). Для вычисления сверхтока решение Узаделя необходимо решить при ненулевой разности фаз. При этом в функции Грина возникает дополнительный параметр – фаза $\chi(x,y)$ и число переменных в уравнениях удваивается. Мы полагаем, что и в этом случае двумерное уравнение Узаделя сводится к эффективному одномерному, однако это требует очень громоздких вычислений. В любом случае можно утверждать, что ток-фазовая зависимость будет обладать той же симметрией $I(-\varphi) = -I(\varphi)$, что и SFS и SNS контакты. Это непосредственно следует из симметрии системы относительно преобразования $\{x, \varphi\} \mapsto \{-x, -\varphi\}.$ Мы ожидаем, что эффект распаривания количественный и небольшой, $\delta I \sim I d_N^2 h_{\rm eff} / D_N$. В пользу этого говорит то, что равновесный ток можно вычислять с помощью техники Мацубары, требующей решения уравнений при мнимых энергиях $E = i\omega_k$. В этом случае энергетический член в уравнении Узаделя всегда много больше распаривающего, а потому последний может привести лишь к небольшим количественным поправкам.

Вольт-амперная характеристика джозефсоновских контактов обычно довольно богатая и сложная. Как правило, она отражает особенности в плотности состояний, что приводит к особенностям при $eV = 2\Delta$ и $eV = 2E_g$, как видно на рис. 4 работы [9], однако может обнаруживать и многие дополнительные особенности, например субгармоническую целевую структуру при $eV = 2\Delta/n$ вследствие многократного андреевского отражения [31–33]. Мы не знаем, как будет устроено взаимное влияние многократного андреевского отражения, обменного поля, распаривания, но уверены, что подавление минищели, которое мы обсудили выше, проявится в BAX S(N/F)S контакта.

8. Заключение. Мы показали, что сверхпроводимость в тонком NF бислое может быть описана одномерным уравнением Узаделя (23) с эффективным обменным полем $h_{\rm eff}$ уравнения (17) и распариванием Г уравнения (24). Распаривание возникает благодаря неотъемлемой неоднородности бислоя и подавляет сверхпроводимость. Сила распаривания порядка $\Gamma \sim d_N^2 h_{\rm eff}^2 / D_N \ll h_{\rm eff}$ и распаривание становится важным только при энергиях, близких к $\pm h_{\rm eff}$. В

Письма в ЖЭТФ том 113 вып. 9-10 2021

этом случае оно приводит к уменьшению минищели в разрешенной по спину плотности состояний S(N/F)S системы. При $h_{eff} > h_c = \pi \sqrt{3} D_N / (2Ld_N)$ минищель полностью закрывается. Перспективной системой для наблюдения подавления минищели является S(F/N/F')S, где F, F' в трислое имеют противоположную намагниченность. В такой системе эффективное поле h_{eff} может быть нулевым или малым, в то время как распаривание остается достаточно сильным. Помимо бислоев из нормального металла и ферромагнетиков, теория применима и к гетероструктурам с другими материалами, например, магнитными диэлектриками.

Мы благодарим В. В. Рязанова, Я. В. Фоминова, П. М. Островского и М. В. Фейгельмана за ценные замечания.

Работа была поддержана Российским научным фондом (грант номер 19-72-00125). Численный анализ одномерного уравнения Узаделя был выполнен при поддержке Программы фундаментальных исследований НИУ ВШЭ.

- 1. A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
- F.S. Bergeret, A.F. Volkov, and K.B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
- S. V. Mironov, A. V. Samokhvalov, A. Buzdin, and A. S. Mel'nikov, JETP Lett. 113, 2 (2021).
- V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
- T. Kontos, M. Aprili, J. Lesueur, F. Genêt, B. Stephanidis, and R. Boursier, Phys. Rev. Lett. 89, 137007 (2002).
- S. Oh, D. Youm, and M.R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).
- 7. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).
- P. V. Leksin, N. N. Garif'yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).
- T. E. Golikova, F. Hübler, D. Beckmann, I. E. Batov, T. Yu. Karminskaya, M. Yu. Kupriyanov, A. A. Golubov, and V. V. Ryazanov, Phys. Rev. B 86, 064416 (2012).
- 10. K. D. Usadel, Phys. Rev. Lett. 25, 8 (1970).
- T. Yu. Karminskaya and M. Yu. Kupriyanov, JETP Lett. 85(6), 286 (2007).
- T. Yu. Karminskaya, A. A. Golubov, M. Yu. Kupriyanov, and A. S. Sidorenko, Phys. Rev. B 79, 214509 (2009).
- T. Yu. Karminskaya, A. A. Golubov, M. Yu. Kupriyanov, and A. S. Sidorenko, Phys. Rev. B 81, 214518 (2010).

- S. V. Bakurskiy, N. V. Klenov, T. Yu. Karminskaya, M. Yu. Kupriyanov, and A. A. Golubov, Supercond. Sci. Technol. 26, 015005 (2013).
- A. A. Golubov and M. Y. Kupriyanov, Pis'ma v ZhETF 61, 830 (1995) [JETP Lett. 61, 851 (1995)].
- A. Altland and M.R. Zirnbauer, Phys. Rev. Lett. 76, 3420 (1996).
- S. Guéron, H. Pothier, N.O. Birge, D. Esteve, and M.H. Devoret, Phys. Rev. Lett. 77, 3025 (1996).
- F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, J. Low Temp. Phys. **110**, 841 (1998).
- D. A. Ivanov, R. von Roten, and G. Blatter, Phys. Rev. B 66, 052507 (2002).
- B. Crouzy, E. Bascones, and D. A. Ivanov, Phys. Rev. B 72, 092501 (2005).
- J. C. Hammer, J. C. Cuevas, F. S. Bergeret, and W. Belzig, Phys. Rev. B 76, 064514 (2007).
- A. A. Abrikosov and L. P. Gor'kov, ZhETF **39**, 1781 (1960) [Sov. Phys. JETP **12**, 1243 (1961)].
- D. A. Ivanov and Ya. V. Fominov, Phys. Rev. B 73, 214524 (2006).

- B. Crouzy, S. Tollis, and D. A. Ivanov, Phys. Rev. B 76, 134502 (2007).
- D. A. Ivanov, Ya. V. Fominov, M. A. Skvortsov, and P. M. Ostrovsky, Phys. Rev. B 80, 134501 (2009).
- A.I. Larkin, ZhETF 48, 232 (1965) [Sov. Phys. JETP 21, 153 (1965)].
- W. Belzig, C. Bruder, and G. Schön, Phys. Rev. B 54, 13 (1996).
- M. A. Skvortsov and M. V. Feigel'man, ZhETF 144, 560 (2013) [Sov. Phys. JETP 117, 487 (2013)].
- A. Cottet, D. Huertas-Hernando, W. Belzig, and Yu. V. Nazarov, Phys. Rev. B 80, 184511 (2009).
- M. Y. Kuprianov and V. F. Lukichev, Pis'ma v ZhETF 94, 139 (1988) [Sov. Phys. JETP 67, 1163 (1988)].
- 31. N. van der Post, E. T. Peters, I. K. Yanson, and J. M. van Ruitenbeek, Phys. Rev. Lett. **73**, 2611 (1994).
- G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
- T. M. Klapwijk, G. E. Blonder, and M. Tinkham, Physica (Amsterdam) 109–110B, C, 1657 (1982).

Влияние "магических" ГЦК чисел на стабильность строения малых нанокластеров серебра

Д. А. Рыжкова, С. Л. Гафнер, Ю. Я. Гафнер¹⁾

Хакасский государственный университет им. Н. Ф. Катанова, 655017 Абакан, Россия

Поступила в редакцию 19 апреля 2021 г. После переработки 19 апреля 2021 г. Принята к публикации 21 апреля 2021 г.

Одной из возможных областей применения наночастиц серебра стало их использование в плазмонных приложениях, которые определяются сильным взаимодействием между электромагнитной волной и свободными электронами в наноструктурах. Выяснилось, что частота и интенсивность плазмонного резонанса зависят от распределения поляризационного заряда, определяемого формой и структурой наночастицы. Следовательно, контроль строения нанокластеров позволяет изменять длины волн света, которые они рассеивают или поглощают. В данной работе методом молекулярной динамики с использованием модифицированного потенциала сильной связи ТВ-SMA были изучены границы термической стабильности исходной аморфной фазы в кластерах серебра размером до 2.0 нм с числом атомов, соответствующим "магическим" числам ГЦК структуры. Полученные закономерности сравнивались с данными для аналогичного набора частиц с начальным ГЦК строением. Было показано, что характер термически индуцированных структурных переходов в исследуемых группах нанокластеров резко отличается. Данный факт может позволить создать малые кластеры серебра с требуемым внутренним строением.

DOI: 10.31857/S1234567821100062

1. Введение. В настоящее время серебро активно применяется в микроэлектронике, в основном благодаря своей высокой электро- и теплопроводности. Однако в области наноразмеров многие даже хорошо знакомые нам металлы могут обладать совершенно неожиданными свойствами. Так недавние эксперименты показали, что малые нанометровые кластеры металлов могут вести себя как полупроводники из-за появления у них на уровне Ферми запрещенной зоны [1]. Было обнаружено, что ширина такой зоны увеличивается с уменьшением размера кластера и ее значение может превысить 2-3 эВ в случае наночастиц очень малого размера. Поэтому далее сконцентрируемся на анализе некоторых особенностей поведения серебренных нанокластеров именно в этом наиболее интересном размерном диапазоне.

В основном их изучение идет в направлении прогнозирования различных физико-химических свойств, разработки новых методов синтеза и возможных технологических приложений [2–4]. Остановимся на последнем вопросе чуть более подробно и отметим, что уже имеющиеся основные применения наночастиц Ag лежат в широчайшем диапазоне: варьируясь от плазмоники, фотоэлектрических устройств, оптических антенн, наносканирующих зондов до разнообразных медицинских приложений [5,6], биосенсоров [7] и многих других. С точки зрения оптики можно сказать, что кластеры Ag являются наиболее популярными кандидатами на построение двумерных квантовых точек, так как такие небольшие соединения атомов обладают интересными спектроскопическими свойствами, отличными от свойств их массивных аналогов [8].

Необычные оптические свойства нанокластеров Ag определяются, прежде всего, наблюдающимися в них квантовыми эффектами, которые наиболее отчетливо проявляются при размерах до 2.0 нм [9]. В этом случае нанокластеры серебра обладают уже не объемными, а молекулярно-подобными свойствами, поскольку их размеры сопоставимы с длиной волны Ферми электронов (~ 0.5 нм для Ag), из-за чего малые кластеры Ag имеют дискретные энергетические электронные уровни, ведущие, например, к сильной флуоресценции [1].

При последующих исследованиях выяснилось, что такие квантовые эффекты в значительной мере определяются размерами нанокластеров, их формой, внутренним строением, местоположением и плотностью размещения наночастиц на подложке. Так, большие Ag нанокластеры можно применять при использовании явлений поглощения и рассеяния света, тогда как малые нанокластеры серебра ответственны

¹⁾e-mail: ygafner@khsu.ru

за нелинейные оптические свойства. В частности, в то время как объемное серебро обычно не является люминесцирующим из-за металлического характера связи между атомами, а одиночные атомы Ag показывают лишь узкую и слабую полосу излучения в УФ – синей части спектра, нанокластеры Ag излучают широкую полосу люминесценции, которая покрывает весь видимый диапазон спектра [10, 11].

Учет процессов взаимодействия между металлом и световой волной (плазмонные эффекты) дает совершенно новые технические приложения серебра. Эти приложения становятся возможными благодаря сильному взаимодействию между падающим светом и свободными электронами в наноструктурах. Если размеры наночастицы металла оказываются меньше длин волн видимого света, то такие наночастицы могут сильно поглощать свет вследствие явления поверхностного плазмонного резонанса (surface plasmon resonance – SPR), который возникает из-за коллективной осцилляции электронов проводимости под действием световой волны. К настоящему времени уже стало понятно, что размер, форма и структура наночастиц определяют их оптические свойства, в том числе резонансные частоты. Так, в работе [12] была показана типичная корреляция между пиковым значением длины волны при поверхностном плазмоном резонансе нанокластеров серебра и их размером. Например, Ад нанокластеры демонстрировали пики SPR при 380 нм (диаметр кластера D = 1.6 нм); при диаметре кластера D = 3.0 нм пик SPR приходился уже на 390 нм и при D = 4.8 нм – на 396 нм [12].

Симметрия частиц также может влиять на величину рассеяния и поглощения световой волны. Без образования сильного диполя рассеяние и поглощение света наночастицами будет незначительным. Для высоко-симметричных фигур, таких как сферы, кубы и октаэдры, сильный диполь может быть легко сформирован. Так разделение заряда на углах куба создаст диполь из-за того, что углы находятся на противоположных сторонах линии симметрии. По аналогии, для сфер разделение заряда происходит в полностью изотропной среде. Однако наноструктуры, не имеющие такой симметрии, например, треугольные пластины, не могут образовать сильный диполь, что приводит к слабой абсорбции света. В экспериментальной работе [13] было найдено, что в зависимости от вида строения наноструктур серебра плазмонный резонанс может наблюдаться в пределах от 300 до 1200 нм. При этом основной пик резонанса у сферической наночастицы фиксировался в диапазоне 320-450 нм; у кубической 400-480 нм; у декаэдрона LSP (*localized surface plasmon*) резонанс приходился на 350–450 нм; а у октаэдра на 400–500 нм.

Следовательно, подгонкой размера, внешнего вида металлической наноструктуры и ее внутреннего строения, можно управлять светом с очень большой степенью точности. Поэтому неудивительно, что успехи в сборке металлических наноструктур дали новые возможности более точного контроля процессов взаимодействия металлических наночастиц со световой волной [13] и определение морфологии отдельных наночастиц серебра представляет здесь большой интерес. В наших более ранних работах [14, 15] уже проводился анализ термической стабильности нанокластеров серебра диаметром до 2.0 нм при условии их начального ГЦК строения. Было показано, что такой вид построения кластеров оказывается термически стабильным для наночастиц, содержащих более 200 атомов. Однако при меньших размерах нанокластеров серебра сценарии термической эволюции внутреннего строения значительно усложнялись. Данная статья также посвящена рассмотрению термической стабильности строения нанокластеров серебра диаметром до 2.0 нм, однако в качестве исходной была принята аморфная конфигурация, что позволяет проследить влияние начальной морфологии Ад наночастиц на характер структурных переходов.

2. Компьютерная модель. В представленной работе был проведен анализ процессов возможной перестройки конфигураций атомов в малых кластерах серебра ($D \le 2.0$ нм) при условии теплового воздействия. Помимо причин, указанных выше, выбор частиц такого малого размера обусловлен также и тем, что именно здесь наибольшую роль в стабильности строения играют так называемые "магические" числа различной природы [9, 16, 17]. К сожалению, имеющиеся в настоящее время экспериментальные методики не могут дать нам адекватную диффузионную картину перемещений атомов внутри таких малых кластеров, в лучшем случае нам будет доступно лишь изображение конечной стадии эволюции синтезированных химическим или физическим способом наночастиц. Однако полученные при помощи электронного микроскопа данные по форме и внутреннему строению малых металлических кластеров все же не могут считаться полностью адекватными.

Так в [18] было произведено исследование частиц Cu_3Au (D = 2.0-20.0 нм) электронным микроскопом высокого разрешения, и был сделан вывод о том, что морфология наночастиц существенно изменялась под действием электронного пучка микроскопа. На первом этапе частицы наносплава Cu_3Au не имели четко определяемой внешней формы, варьируемой от сферичной к эллиптической. После облучения частиц потоком электронов в течение 2 мин их форма начала меняться и примерно через 15 мин частицы сформировали новый внешний вид. Таким образом, в результате облучения частицы переходили в состояние жидких капель, которые затем кристаллизировались. Полученные в ходе кристаллизации из расплава форма и строение (ГЦК) частицы уже не менялись, даже если они проходили через повторное облучение. Понятно, что металлические наночастицы еще меньшего размера будут претерпевать самые драматические изменения своей внутренней структуры и формы при воздействии электронного потока, поэтому, на наш взгляд, для подробного изучения процессов диффузионного перемещения атомов серебра под действием тепловой энергии более правильным будет использование технологий компьютерного моделирования.

Наиболее подходящей методикой исследования поставленной задачи может стать молекулярнодинамический подход (МД), в основе которого лежит расчет классических (ньютоновских) траекторий движения объекта в фазовом пространстве координат и импульсов его атомов. Этот метод позволяет достаточно точно определить структурные и термодинамические свойства кластеров, а также проследить динамику атомов наночастиц при изменении различных внешних факторов, таких как температура, давление и т.д.

Другим важным моментом успешной имитации реальных систем является выбор правильной формы межатомного взаимодействия. Как показала практика, применение EAM (Embedding Atom Method) потенциала (метод погруженного атома) при моделировании малых металлических наночастиц не может считаться успешным в силу базовых особенностей построения такого рода взаимодействия. В случае достаточно больших частиц такой метод способен дать адекватные результаты, но при имитации изучаемых нами малых нанокластеров полученные на его основе данные перестают быть физически корректными. Так, в частности, при использовании ЕАМ потенциала температуры плавления малых наночастиц перестают зависеть от размера кластера, т.е. энергии связи атомов оказывается практически одинаковыми, несмотря на различное число координационных сфер в кластерах разного размера [19].

Более адекватным в этом случае может стать использование модифицированного потенциала сильной связи ТВ-SMA [20], который основан на предположении, что большая группа свойств переходных металлов может быть полностью определена из плотности состояний внешних *d*-электронов. Именно такой метод, в котором ион–ионное взаимодействие описано с учетом зонного характера связи и короткодействующего парного потенциала отталкивания, на наш взгляд, способен достаточно правильно описать некоторые характерные особенности малых металлических наносистем. Поэтому моделирование наночастиц серебра было проведено с использованием именно такого потенциала межатомного взаимодействия.

Компьютерный анализ всех протекающих в Ag кластерах процессов проводился в каноническом NVT ансамбле. Температура определялась посредством средней кинетической энергии атомов, которая рассчитывалась на основе скоростного алгоритма Верле с шагом по времени h = 1 фс. Структурные переходы определялись при помощи визуализаторов, а также функции радиального распределения и зависимости потенциальной энергии от температуры.

При проведении компьютерного эксперимента в качестве начальной структуры были использованы сферические кластеры серебра размером до 2.0 нм. Первичная аморфная структура нанокластеров была получена путем выборки частиц, вырезанных из идеальной ГЦК решетки, которые затем претерпевали процедуру нагрева до полного разрушения дальнего порядка в них. Далее, с целью фиксации аморфного строения, кластеры подвергались "мгновенной" заморозке до температуры 20 К. При этом размеры нанокластеров были выбраны таким образом, что число атомов в них соответствовало "магическим" числам ГЦК структуры. Затем для оценки термической устойчивости аморфного типа построения малых Ад кластеров моделируемые системы были плавно нагреты от 20 до 1000 К с помощью термостата Нозе. Верхний предел в 1000 К достаточен, чтобы расплавить моделируемые частицы, так как температура плавления для кластеров Ад значительно понижается с уменьшением размера частицы по сравнению с объемным материалом (T_m = 1235.1 K). Для определения наиболее устойчивой кластерной структуры был взят ансамбль наночастиц одинакового размера. В ходе подвода тепловой энергии температура ступенчато изменялась с шагом в 20 К, а в области структурных переходов с шагом 5 К и при каждом ее фиксированном значении кластеры выдерживались 1.0 нс. Моделирование проводилось с использованием компьютерной программы MDNTP, разработанной Ральфом Майером, университет г. Дуйсбурга, Германия (Dr. Ralf Meyer, University Duisburg, Germany).

3. Результаты и обсуждения. Хорошо известно, что атомы серебра обладают высокой способностью к окислению [1], из-за чего для сохранения химической чистоты Ад нанокластеров необходимо использовать различного рода стабилизаторы. Однако эти методы достаточно сложны для применения в промышленных масштабах [15, 21]. Другим подходом к решению данной проблемы может стать синтез очень чистых частиц с идеальной кристаллической структурой. В таких монокристаллических наночастицах только поверхностные атомы вследствие уменьшения своего координационного числа, способны к химическим реакциям. Стоит также отметить, что наличие дефектов кристаллической решетки и межфазных границ в частице приводит к дополнительному рассеянию электронов проводимости, вызывающему большие оптические потери, снижающие плазмонную эффективность. Таким образом, наличие идеальной кристаллической структуры является важным фактором длительного существования плазмонного резонанса.

Это предположение имеет прямое экспериментальное подтверждение. Так, в работе [21] методом осаждения кластерного пучка на основе магнетронного распыления были получены монокристаллические наночастицы Ag с $D = 12.5 \pm 1.1$ и 24.0 ± 2.0 нм, имевшие монокристаллическую ГЦК структуру. По мнению авторов [21], именно монокристаллическая природа Ад наночастиц являлась причиной долговременной устойчивости локализованных поверхностных плазмонных резонансов (localized surface plasmon resonance – LSPR). Так синтезированные в [21] Ад наночастицы демонстрировали отличную стабильность интенсивности полосы плазмонного резонанса, который уменьшился только на 20% через 30 дней нахождения при комнатной температуре в окружающей атмосфере.

Мы считаем, что еще одной неучтенной возможностью повышения плазмонной эффективности может стать использование в качестве LSPR структур наночастиц серебра с размером, равным "магическим" числам различного кристаллического строения. Экспериментальный анализ распределения синтезированных частиц по размерам явно показывает, что кластеры с определенным числом атомов, отвечающим "магическим" числам, гораздо более стабильны по сравнению с кластерами иной величины. При этом степень дефектности поверхности таких "магических" кластеров минимальна, в то время как у остальных она может быть весьма значительной. Таким образом, с точки зрения использования нанокластеров серебра в плазмонных применениях представляется очень важным определение границ термической и размерной стабильности начальной структуры наночастиц.

Так как в объемном состоянии серебро обладает стандартным ГЦК строением, то анализ полученных при моделировании результатов проведем для кластеров серебра, размеры которых равны "магическим" числам именно такого расположения атомов в кристаллической решетке (N = 79, 135 и 201 атом). Вначале приведем основные данные по термической стабильности таких кластеров, полученные нами в предположении их исходного ГЦК строения [14, 15]. На первый взгляд может показаться, что "магические" ГЦК структурные числа должны были полностью стабилизировать данный вид внутреннего построения, но ситуация оказалась не такой однозначной. Действительно, в случае кластеров Ag₇₉ и Ag₂₀₁ все происходило согласно высказанной выше гипотезе. Таким образом, рассматривая геометрическое расположение атомов ансамбля кластеров Ag₇₉ и Ag₂₀₁, было определено, что имевшаяся в них начальная ГЦК структура сохранялась вплоть до температуры плавления, постепенно разрушаясь с поверхности, то есть исходная ГЦК фаза кластеров такого размера являлась термически стабильной, что подтверждается, в частности, работой [17]. Никаких спонтанных структурных переходов под действием теплового фактора для данных размеров наночастиц обнаружено нами не было. Такое поведение Ag кластеров было ожидаемым и предсказуемым, но кластеры Ag_{135} ($D = 1.59 \, \text{нм}$) существенно нарушили данную закономерность. В этом случае по результатам компьютерного анализа был зафиксирован переход к икосаэдрическому строению (ГЦК \rightarrow Ih). В процессе МД моделирования такой спонтанный переход к Ih структуре у ГЦК частиц серебра размером 135 атомов был обнаружен в 100 % модельных экспериментов. Полученная икосаэдрическая фаза сохранялась в дальнейшем вплоть до температуры плавления кластера.

Так как ранее подобный эффект был установлен нами для 135 атомных кластеров никеля и меди [22], то был сделан общий вывод, что такое количество атомов в наночастице приводит к созданию наиболее благоприятных энергетических условий для образования Ih строения. Следовательно, для нанокластера серебра размером N = 135 атомов формирующаяся при тепловом воздействии структура определялась не только "магическим" ГЦК числом, но и какими-то иными факторами, в частности, электронными "магическими" числами [23]. Авторы [24] также пришли к заключению, что на стабильность кластеров могут одновременно влиять и структурные и электронные эффекты. На наш взгляд, именно близость "магического" икосаэдрического числа (N = 147) и электронного "магического" числа N = 138 могли стать ответственными за переход от одной структуры к другой в случае с кластером Ag₁₃₅.

Однако закономерности, выявленные для нанокластеров серебра с аналогичными размерами N = = 79, 135, 201 атомов, но начальным аморфным строением, говорят о том, что термическая стабильность аморфной фазы для данных частиц определяется в большей степени рядом иных факторов, нежели соответствие "магическим" числам ГЦК структуры. Так из анализа данных проведенного нами МД моделирования видно, что аморфные наночастицы Аg₇₉ в большинстве случаев (≈ 70 %) полностью сохраняют исходную конфигурацию только на начальном этапе нагрева ($\approx 200-250$ K). Но уже при комнатной температуре начинается слабая перестройка внутреннего строения кластеров Ад₇₉, которая становится более активной при температурах порядка 400-450 К. Все это хорошо видно по скачкообразному падению потенциальной энергии кластера как функции температуры (рис. 1). Несмотря на то, что ве-

Рис. 1. (Цветной онлайн) Зависимость потенциальной энергии кластера Ag (N = 79 атомов) от температуры. Показан наиболее вероятный вариант термической эволюции

личина возникающего локального минимума энергии очень мала, не более 0.2–0.3 % от значения потенциальной энергии всего кластера при данном значении температуры, все же этого оказывается достаточным для формирования явно выраженного зародыша пятичастичного строения, который сохранялся вплоть до перехода в жидкое состояние. Понятно, что из-за наличия у кластера начального расположения атомов, соответствующего аморфной фазе и слабой перестройки структуры в ходе проведенного нагрева, область такого перехода могла быть определена нами весьма условно, в основном по "мгновенным снимкам". Тем не менее, можно считать, что базовым вариантом термической эволюции наночастицы Ag₇₉ данного типа является почти полное сохранение исходного аморфного строения в ходе подвода тепловой энергии.

Полученный при моделировании результат можно объяснить следующим образом. Не являясь плотноупакованной структурой, аморфное строение характеризуется пониженным средним координационным числом, из-за чего обладает значительной способностью перемещения атомов с целью образования наиболее энергетически выгодного их расположения. В случае кластеров такого малого размера это может характеризоваться, в основном, минимальным значением поверхностной энергии. ГЦК кластер же из-за особенностей своего строения (наличие плоских граней) таким поверхностной энергии значением не обладает. Поэтому может сложиться такая ситуация, что разупорядоченное строение может стать энергетически даже более выгодным, чем ГЦК.

Проведем сравнительный анализ потенциальных энергий кластеров Ag₇₉ при условии разного их начального строения, так как именно этот вид энергии может дать нам много информации об особенностях межатомного взаимодействия. При температуре $T = 50 \,\mathrm{K}$ кластер с ГЦК строением ожидаемо является более устойчивым, обладая энергией $E_p = -15.17 \, \text{Ry}$, в то время как тот же кластер, но с аморфным начальным строением, имел E_p = $= -15.06 \,\mathrm{Ry} \ (\Delta E_p \approx 0.11 \,\mathrm{Ry}$ или $\approx 0.019 \,\mathrm{sB/atom}).$ Подобная ситуация сохранялась до начала структурной перестройки в аморфном кластере. Так при T = 200 K кластер с начальным ГЦК строением по прежнему имел аналогичный выигрыш в энергии $(E_p = -15.06 \, {\rm Ry}$ против $E_p = -14.95 \, {\rm Ry}$ у аморфного Ag₇₉), но уже в случае комнатной температуры наблюдалось резкое, почти в два раза, сокращение различия энергий ($\Delta E_p \approx 0.06 \, \text{Ry}$ или $\approx 0.01 \, \text{эB/атом}$). Причина этого, на наш взгляд, очевидна: в кластере с ГЦК строением, да еще при условии соответствия размера геометрическому "магическому" числу, атомы достаточно жестко закреплены в имеющейся кристаллической решетке, что практически не дает им возможности для диффузионного перемещения в пределах кластера с целью изменения его внутреннего строения. Кластер же с начальной аморфной структурой такими ограничениями не обладает, и как только значения тепловой энергии kT становится достаточным, начинается оптимизация расположения атомов для того, что бы перевести кластер Ад₇₉ в энергетически более выгодное состояние с формированием икосаэдрического зародыша. Такой переход происходит в два этапа: в температурном интервале $T = 250 - 350 \,\mathrm{K}$ (предварительный) и $T = 350 - 450 \,\mathrm{K}$ (окончательный) из-за чего при $T = 500 \,\mathrm{K}$ кластер с начальной аморфной конфигурацией впервые становится даже энергетически чуть более стабильным $(E_p = -14.78 \, \text{Ry})$ по отношению к "классическому" ГЦК кластеру ($E_p = -14.8 \, \text{Ry}$). Конечно, такой вывод может быть справедлив только при соблюдении нескольких важных условий: начального аморфного строения и малого размера кластера, что подтверждается нашими более ранними работами [14, 15].

В остальных 30% опытов наблюдался переход от аморфной к достаточно хорошо сформированной декаэдрической структуре. Однако сам процесс перестройки кластерного строения происходил иначе. Из анализа значений энергий аморфных кластеров Ад₇₉ первого и второго типов можно сделать вывод, что во втором варианте термической эволюции переход к зародышу пятичастичного строения происходил уже на этапе начальной релаксации кластера. Так при $T = 50 \,\mathrm{K}$ такой кластер обладал энергий $E_p = -15.21 \, \text{Ry}$, в то время как тот же кластер, но с аморфным начальным строением имел E_p = = -15.06 Ry, а с ГЦК строением $E_p = -15.17$ Ry. Далее, при температурах порядка 450-500 К наблюдалось окончательное формирование декаэдрического строения, сохранявшегося до температуры плавления кластера. Таким образом, из анализа термической устойчивости начального аморфного строения кластеров Ад₇₉ можно сделать вывод о том, что "магическое" число ГЦК структуры не может оказать влияние на этот процесс. Если в случае начального идеального ГЦК строения кластера Ag₇₉ оно оказывается термически устойчивым до наступления процесса плавления [14, 15], то в случае неупорядоченной начальной структуры именно оно оказывается устойчивой в большинстве проведенных модельных экспериментов.

Как уже говорилось, в объемном состоянии серебро имеет кубическую решетку, но конкуренция между объемной и поверхностной энергиями в нанометровом диапазоне может привести к формированию нескольких различных изомеров из-за очень близких значениях энергий у разных структур. Например, МД моделирование близких к серебру по процессам структурообразования кластеров золота, проведенное в [25] с использованием потенциала Гупта,

при N = 38 атомов дает следующие величины энергии кластера в своем основном состоянии: аморфном (-3.4405 эB/ат), ГЦК (-3.44 эB/ат), икосаэдрическом (-3.431 эВ/ат). Причем такое слабое различие у всех трех изомеров сохранялось вплоть до комнатной температуры. При $T > 250 \,\mathrm{K}$ тепловой энергии оказывается уже достаточно для преодоления потенциального барьера между разными структурами, в результате чего случайным образом начинают встречаться все три вида строения. Главной причиной такого поведения можно считать то, что при таких размерах наночастиц почти все атомы лежат на поверхности и малейшего изменения их положения в результате термической диффузии может оказаться достаточным, для того чтобы спонтанно сформировать другую структурную модификацию.

В другой работе тех же авторов [26] также МД моделированием с использованием потенциала Гупта были произведены аналогичные оценки для кластеров золота большего размера. Так, различие по энергии связи при N = 55 составило 9.4 мэB/атом между аморфной и Ih структурами, а при N = 75 пятичастичная Dh модификация оказалась стабильнее аморфной всего на 5.7 мэВ/атом. С целью проверки полученного результата авторами [26] было проведено дополнительное ab-initio исследование относительной стабильности кластеров золота с кристаллическим и аморфным построением. Было определено, что различие по энергии связи на атом между наиболее стабильной аморфной и кристаллическими модификациями, указанных выше размеров, составляет менее 0.01 эВ/атом.

Далее рассмотрим особенности поведения кластера Ад₁₃₅. Как было сказано выше, здесь при наличии исходного ГЦК строения и при условии плавного нагрева в 100 % случаев фиксировался переход к икосаэдрической структуре при температуре примерно 400 К. Рассмотрим, как будет происходить термическая эволюция строения такой наночастицы при условии начального разупорядоченного положения атомов. В отличие от "классического" ГЦК случая здесь встретилось три различных сценария перестройки кластерного строения. На первом этапе изучим наиболее вероятное поведение, встречающееся примерно в 70% модельных случаев (рис. 2). Прежде всего отметим, что кластер Ag₁₃₅ с ГЦК строением при $T = 50 \,\mathrm{K}$ обладал типичным значением потенциальной энергии $E_p = -26.32 \, \text{Ry}$, в то время как кластер такой же величины, но исходного аморфного строения ожидаемо имел более высокое среднее значение $E_p = -26.21 \,\mathrm{Ry} \,(\Delta E_p \approx 0.11 \,\mathrm{Ry}$ или ≈ 0.011 эB/атом). Однако уже при комнатной темпе-

Рис. 2. (Цветной онлайн) Зависимость потенциальной энергии кластера Ag (N = 135 атомов) от температуры. Показан наиболее вероятный вариант термической эволюции

ратуре значения энергий практически выровнялись за счет небольшой перестройки разупорядоченной фазы при $T = 250 \, \text{K}$. Второй структурный переход произошел также при температуре $T = 400 \, \text{K}$ и привел к образованию практически идеального икосаэдра. Теперь уже здесь произошло формирование более энергетически устойчивого строения со значением $E_p = -25.88 \, \text{Ry}$ при $T = 500 \, \text{K}$ в то время как в "классическом" ГЦК случае значение энергии было -25.8 Ry, что и привело к более высокому значению температуры плавления кластер Ag₁₃₅ с аморфным начальным состоянием. Следовательно, независимо от исходного строения кластера Ag₁₃₅, начиная с температуры примерно 400 К эволюция внутреннего строения начинает протекать практически одинаково. Возможные причины перехода ГЦК Ih для кластера серебра такого размера были нами подробно рассмотрены в [14, 15].

Однако нами были замечены еще два возможных сценария перестройки внутреннего строения кластера Ag_{135} . Примерно в 20 % модельных экспериментов наблюдалась ситуация, аналогичная выше рассмотренному случаю кластера Ag_{79} . Таким образом, уже на начальном этапе термической релаксации вследствие случайно протекающих диффузионных процессов происходил переход к зародышу икосаэдрического (декаэдрического) строения, что приводило к понижению потенциальной энергии до значения $E_p = -26.25 \text{ Ry}$ (T = 50 K), дающему выигрыш в энергии примерно 0.004 эВ/атом. При комнатной температуре энергии кластеров Ag_{135} , эволюционирующих по первому и второму вариантам, выравнивались за счет образования икосаэдрического строения примерно одинакового вида. Однако при более высоких температурах, порядка T = 500 K, во втором варианте наблюдалось образование менее качественного икосаэдра со значением энергии $E_p = -25.8$ Ry ($E_p = -25.88$ Ry в первом сценарии термической эволюции), почти совпадающим со значением энергии "классического" ГЦК кластера Ag₁₃₅ при той же температуре, что, соответственно, приводило и к близкой температуре плавления.

Наиболее редко встречающийся способ термического развития кластера Ag_{135} ($\approx 10\%$) состоял в наличии двух последовательных структурных переходов: Аморфное \rightarrow Dh \rightarrow Ih. Проанализируем энергетическую сторону процесса внутренней перестройки для таких кластеров. При $T = 50 \,\mathrm{K}$ потенциальная энергия имела в среднем чуть более высокое значение $E_p = -26.2 \, \text{Ry}$ по отношению к выше рассмотренным вариантам, далее при $T = 300 \, \text{K}$ значения энергий кластеров, эволюционирующих по первому и второму сценариям, обычно выравнивались, но здесь этого не произошло, а по прежнему фиксировалась разница энергий в 0.1 Ry. Реальный переход в строении стал наблюдаться только при $T = 400 \, \text{K}$, но привел лишь к слабому локальному минимуму за счет образования очень некачественного декаэдрического строения с $E_p = -25.82 \,\text{Ry}$. При $T = 550 \,\text{K}$ начинает происходить переход Dh \rightarrow Ih, приводящий к дальнейшему падению энергии до $E_p = -25.84 \, \text{Ry},$ сопоставимому с наиболее вероятным первым случаем. Однако наиболее существенным отличием от остальных 90% модельных опытов стала достаточно плавная зависимость потенциальной энергии от температуры в области до 700-750 К, сопоставимая с типичным поведением кластера Ад₇₉ (рис. 1).

Следовательно, из анализа термической устойчивости начального аморфного строения кластеров Ag_{135} можно сделать вывод о том, что "магическое" число ГЦК структуры также не оказывает влияние на этот процесс. Если в случае начального идеального ГЦК строения кластера Ag_{135} наблюдался переход ГЦК \rightarrow Ih [14, 15] при температурах порядка 400 K, то и в случае рассматриваемой нами неупорядоченной начальной структуры именно данное превращение наблюдалось во всех проведенных модельных опытах, хотя и с разными вариациями.

Последний из рассматриваемых нами "магических" ГЦК кластеров серебра содержал 201 атом. Как уже было определено нами ранее, в случае начального идеального ГЦК строения данная структура сохранялась вплоть до температуры плавления, постепенно разрушаясь с поверхности, что свидетельствовало об ее термической устойчивости. В свою очередь характер поведения нанокластеров Ag_{201} с начальным разупорядоченным расположением атомов претерпевал по отношению к этому случаю значительные изменения. Здесь предпочтительным становится переход к икосаэдрической модификации ($\approx 80\%$ опытов) при температурах порядка $T \approx 350-400$ K (рис. 3). Энергетический выигрыш

Рис. 3. (Цветной онлайн) Зависимость потенциальной энергии кластера Ag (N = 201 атом) от температуры. Показан наиболее вероятный вариант термической эволюции

такого перехода Аморфное \rightarrow Ih составил примерно 0.3 Ry (0.02 эB/атом), что делает икасаэдрическое строение нанокластеров Ag₂₀₁ очень устойчивым.

Проанализируем теперь термическую стабильность строения кластеров Ag₂₀₁ с разным начальным размещением атомов с точки зрения потенциальной энергии (энергии связи). При первой рассматриваемой нами температуре ($T = 50 \, \text{K}$) энергия ГЦК строения оказывается ощутимо ниже ($E_p =$ $= -39.98 \, \text{Ry}$) энергии кластера с аморфной структурой $(E_p = -39.45 \,\text{Ry})$, что дает очень большой выигрыш в энергии (0.037 эВ/атом). При комнатной температуре данная тенденция сохраняется с наличием различия в энергии связи в 0.034 эВ/атом. Понятно, что Ag₂₀₁ с начальным аморфным строением очень сильно энергетически проигрывает кластеру Ag₂₀₁ с начальной ГЦК структурой, из-за чего данный вид кластеров серебра не может являться термодинамически устойчивым, что и приводит при $T \approx 350 - 400 \,\mathrm{K}$ к перестройке аморфного строения в икосаэдрическое, хотя и не совсем идеальное. Теперь различие в энергиях двух видов наночастиц практически нивелируется, и при T = 400 К бывший аморфный кластер имел уровень потенциальной энергии $E_p = -39.2$ Ry, что сопоставимо с $E_p = -39.3$ у кластера с ГЦК строением. Далее с ростом температуры это различие по уровню потенциальной энергии примерно выдерживалось до начала процесса плавления.

Но в 20% проведенных нами компьютерных экспериментов была замечена и другая ветвь термической эволюции кластеров Ag₂₀₁ с начальной аморфной структурой. При температуре $T = 50 \,\mathrm{K}$ процесс термической эволюции начинался с того же значения потенциальной энергии $E_p = -39.45 \,\mathrm{Ry}$. Далее до температур примерно $T \approx 300 - 350 \,\mathrm{K}$ значительных различий ни по энергии, ни по строению практически не фиксировалось. Однако в этом случае структурный переход начинался примерно на 50 К раньше, при $T \approx 300-350 \,\mathrm{K}$, а не $T \approx 350-400 \,\mathrm{K}$, как было найдено в базовом варианте кластера Ag₂₀₁. Энергетический выигрыш такого перехода оказался в два раза меньше и составил примерно 0.15 Ry (0.01 эВ/атом). В результате структурной перестройки был сформирован декаэдр, однако уже при T == 500 K энергии кластеров Ag₂₀₁ икосаэдрического и декаэдрического строения выравнились до одинаковых значений, примерно -38.9 Ry. Таким образом, и в этом случае структурные "магические" числа ГЦК структуры не смогли помочь сформировать данную конфигурацию.

4. Заключение. В настоящее время нанокластеры серебра находят широкое применение в различных технических, медицинских и плазмонных приложениях. При этом в ходе исследований выяснилось, что их физические и химические свойства в значительной степени определяются размерами, формой и внутренним строением. В свою очередь, наиболее стабильными должны быть кристаллические конфигурации, отвечающие так называемым структурным "магическим" числам. При этом до сих пор открытыми являются вопросы механизмов образования и устойчивости этих структур.

Когда частица металла уменьшается в размерах до нескольких десятков или сотен атомов, плотность состояний в ее зоне проводимости радикально меняется. Непрерывная плотность состояний объемного тела заменяется набором дискретных уровней, интервалы между которыми могут быть больше, чем тепловая энергия k_BT , что приводит к образованию щели. Кластеры разных размеров и внутреннего строения имеют разную электронную структуру и, соответственно, разные расстояния между уровнями, что может быть использовано при проектировании наноматериалов и создании различных технических устройств. К примеру, индуцированные светом пе-

677

реходы между энергетическими уровнями определяют цвет материала, что широко используется в плазмонных приложениях. Также от размера и строения кластера зависит его способность реагировать с другими веществами.

В данной работе средствами компьютерного моделирования методом молекулярной динамики исследовалась термическая стабильность малых нанокластеров серебра (диаметрами до 2 нм) с размерами, соответствующими ряду "магических" чисел ГЦК структур, при исходной аморфной конфигурации ансамблей. Полученные закономерности сравнивались с более ранними данными для аналогичного набора частиц с начальной ГЦК морфологией. Было показано, что характер термически индуцированных структурных переходов исследуемых нанокластеров резко отличается от ранее наблюдаемых: отсутствуют ГЦК и ГПУ конфигурации на фоне преобладания Ih модификаций. Следовательно, использование разного начального строения малых нанокластеров серебра (N < 200 атомов) позволяет нам в ходе термической эволюции создать кластеры с требуемым внутренним строением, что может быть недостижимо при обычных химических или физических методах синтеза. Данный факт может быть использован в плазмонных приложениях, для которых необходимо подробно изучить вопросы термической стабильности кластерного строения, по всей видимости, с учетом влияния различного рода "магических" чисел.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант # 19-48-190002).

- D. Hua and Y. Hongtao, Advances in Natural Science 8, 1 (2015).
- J. Natsuki, T. Natsuki, and Y. Hashimoto, International Journal of Materials Science and Applications 4, 325 (2015).
- P. Horta-Fraijo, M. Cortez-Valadez, R. Britto Hurtado, R. A. Vargas-Ortiz, A. Perez-Rodriguez, and M. Flores-Acosta, Physica E 97, 111 (2018).
- 4. C. Guo and J. Irudayaraj, Anal. Chem. 83, 2883 (2011).
- T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav, Frontiers in Microbiology 7, 1831 (2016).
- A.-C. Burdusel, O. Gherasim, A.M. Grumezescu, L. Mogoanta, A. Ficai, and E. Andronescu, Nanomaterials 8, 681 (2018).
- I. Ghiuta and D. Cristea, Nanoengineered Biomaterials for Advanced Drug Delivery (2020), p. 347; DOI: 10.1016/B978-0-08-102985-5.00015-2.

- S. Alkis, J. L. Krause, J. N. Fry, and H.-P. Cheng, Phys. Rev. B. **79**, 121402(R) (2009).
- H. Akbarzadeh and H. Yaghoubi, J. Colloid Interface Sci. 418, 178 (2014).
- A.S. Kuznetsov, N.T. Cuong, V.K. Tikhomirov, M. Jivanescu, A. Stesmans, L.F. Chibotaru, J.J. Velázquez, V.D. Rodríguez, D. Kirilenko, G. van Tendeloo, and V.V. Moshchalkov, Opt. Mater. 34, 616 (2012).
- J. J. Velázquez, V. K. Tikhomirov, L. F. Chibotaru, N. T. Cuong, A. S. Kuznetsov, V. D. Rodríguez, M. T. Nguyen, and V. V. Moshchalkov, Opt. Express 20, 13582 (2012).
- J. D. Padmos, R. T. M. Boudreau, D. F. Weaver, and P. Zhang, J. Phys. Chem. C 119, 24627 (2015).
- M. Rycenga, C. M. Cobley, J. Zeng, W. Li, Ch. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. **111**, 3669 (2011).
- Л. В. Редель, Ю. Я. Гафнер, С. Л. Гафнер, ФТТ 57, 2061 (2015).
- Y. Gafner, S. Gafner, and D. Bashkova, J. Nanoparticle Res. 21, 243 (2019).
- Y.-P. Chiu, Ch.-M. Wei, and Ch.-S. Chang, Phys. Rev. B 78, 115402 (2008).
- D. Liu, Z. Wen, and Q. Jiang, Current Nanoscience 7, 463 (2011).
- D. T. Tran, I. P. Jones, R. L. Johnston, J. A. Preece, and C. R. van den Brom, J. Phys. Conf. Ser. **241**, 012086 (2010).
- V. M. Samsonov, S. A. Vasilyev, K. K. Nebyvalova, V. Talyzin, N. Y. Sdobnyakov, D. N. Sokolov, and M. I. Alimov, J. Nanoparticle Res. 22, 247 (2020).
- 20. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
- S. M. Novikov, V. N. Popok, A. B. Evlyukhin, M. Hanif, P. Morgen, J. Fiutowski, J. Beermann, H.-G. Rubahn, and S. I. Bozhevolnyi, Langmuir 33, 6062 (2017).
- S. L. Gafner, L. V. Redel, Zh. V. Golovenko, Yu. Ya. Gafner, V. M. Samsonov, and S. S. Kharechkin, JETP Lett. 89, 364 (2009).
- W. Demtröder, Molekülphysik: Theoretische Grundlagen und experimentelle Methoden, Oldenburg, Heidelberg (2000).
- 24. A.K. Starace, C.M. Neal, B. Cao, M.F. Jarrold, A. Aguado, and J.M. Lopez, J. Chem. Phys. **129**, 144702 (2008).
- I. L. Garzon, K. Michaelian, M. R. Beltan, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal, and J. M. Soler, Eur. Phys. J. D 9, 211 (1999).
- I. L. Garzon, K. Michaelian, M. R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, and J. M. Soler, Phys. Rev. Lett. 81, 1600 (1998).

Резонансное магнитостимулированное изменение микротвердости кристаллов NaCl

Е. А. Петржик, В. И. Альшиц¹⁾

Институт кристаллографии им. А.В.Шубникова Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН, 119333 Москва, Россия

> Поступила в редакцию 20 апреля 2021 г. После переработки 20 апреля 2021 г. Принята к публикации 20 апреля 2021 г.

Обнаружено резонансное уменьшение микротвердости кристаллов NaCl с примесью Ni после их экспозиции в сверхнизких скрещенных магнитных полях в схеме ЭПР: постоянном поле Земли $B_{\rm Earth} \approx 50$ мкТл и перпендикулярном ему переменном поле с амплитудой порядка 3 мкТл и частотой, варьируемой в интервале 1.1–2.2 МГц. Получена серия пиков разупрочнения, которые образуют спектр из двух групп по девять пиков в каждой. Резонансные частоты в группах связаны эмпирическим соотношением $\nu_n^{\rm II} \approx \nu_n^{\rm I}/\sqrt{2}$ (n = 1, ..., 9). Максимальное уменьшение микротвердости наблюдается через 2–3 ч после экспозиции, а затем она медленно релаксирует к исходному значению. Интерпретация наблюдаемых эффектов, включая и связь между частотами $\nu_n^{\rm I}$ и $\nu_n^{\rm II}$, основана на особенностях резонансной магнитопластичности, когда внешнее поле ($B_{\rm Earth}$) на несколько порядков ниже локальных магнитных полей в кристалле.

DOI: 10.31857/S1234567821100074

Введение. При изучении влияния слабых магнитных полей на немагнитные материалы принято различать in situ эффекты и эффекты памяти. Их природа едина и заключается в спиновом преобразовании точечных дефектов в магнитных полях. А вот изменение свойств может происходить либо сразу, как отрыв дислокаций от центров пиннинга и их релаксационное перемещение в поле внутренних напряжений, либо через некоторое время после магнитного воздействия, с задержкой, обусловленной диффузионными процессами распада или перестройки дефектных комплексов. Магнитостимулированная трансформация структуры точечных дефектов в кристаллах наиболее ярко проявляется в изменении их механических свойств. Это явление получило название магнитопластического эффекта [1-8], который наблюдается как в подвижности индивидуальных дислокаций, так и в макропластической деформации кристаллов и их микротвердости. Эффект изучался в кристаллах самых разных типов в постоянном и импульсном магнитном поле, а также в схеме ЭПР-типа. Было также обнаружено магнитное влияние той же природы на электрические свойства сегнетоэлектриков [9–11] и сегнетоэластиков [12, 13], а также на темновой ток в полупроводниках [14], где

эти эффекты сопутствуют изменениям микротвердости [15].

В настоящей работе мы будем изучать резонансные изменения микротвердости кристаллов NaCl в результате их экспозиции в скрещенных магнитных полях, постоянном и переменном, в схеме ЭПР. Впервые этот эффект был обнаружен в работах [16,17] на обычных для ЭПР высоких частотах ~10 ГГц. Позже аналогичный резонанс был найден и на радикально более низких частотах "накачки" ~1 МГц при использовании магнитного поля Земли 50 мкТл в качестве постоянной компоненты скрещенных полей [18, 19].

В работе [20] при исследовании *in situ* резонансных перемещений дислокаций в кристаллах NaCl при их экспозиции в скрещенных магнитных полях: постоянном поле $B = 26 \div 261$ мкТл и перпендикулярном ему переменном поле, была обнаружена серия равноотстоящих по частоте резонансных пиков дислокационных пробегов. Магнитное влияние на эти кристаллы, где пиннинг дислокаций лимитируется немагнитоактивными примесными ионами Ca²⁺ (~10 ppm), выглядит парадоксальным. Оно объясняется тем [5], что в ядре дислокации такой ион захватывает электрон (Ca²⁺ \rightarrow Ca⁺), становится магнитоактивным и в резонансных условиях изменяет структуру пиннинг-центра, облегчая отрыв дислокации. Но в опытах с микротвердостью основная масса

¹⁾e-mail: valshits@mail.ru

центров Ca²⁺ находится отнюдь не на дислокациях, и магнитных эффектов трудно ожидать. Известно, что на таких кристаллах обычный ЭПР не наблюдается [21]. Впрочем, в опытах [17] с кристаллами NaCl: Еu в режиме классического ЭПР пики микротвердости наблюдались с резонансными частотами, отвечающими известным областям ЭПР активности примеси Eu.

В настоящей работе мы будем искать аналогичные пики микротвердости на сверхнизких частотах в диапазоне 1.1–2.2 МГц в кристаллах NaCl, где, кроме ~10 ppm других примесей, содержится магнито-активная примесь Ni (~2 ppm). Как будет показано, серия пиков микротвердости в этом диапазоне действительно наблюдается, причем в весьма неожиданном виде. Она состоит из двух групп по 9 пиков разупрочнения, частоты которых для каждой пары с одинаковыми номерами n (1,...,9) связаны простым эмпирическим соотношением $\nu_n^{\rm II} \approx \nu_n^{\rm I}/\sqrt{2}$ с довольно высокой точностью.

1. Методика. Исследования проводились на кристаллах NaCl со специально введенной примесью никеля, выращенных в ЛОМО методом Киропулоса. Согласно проведенному анализу методом PerkinElmer Total Quant в кристаллах содержится 2 ppm Ni. Общее содержание всех остальных примесей ~10 ppm, среди которых преобладает кальций.

Измерения микротвердости проводились методом Виккерса на оптическом микроскопе Neophot-21 со специальной приставкой. Каждое значение микротвердости H определялось по усредненному размеру диагоналей 20–25 отпечатков индентора.

После измерения начальной микротвердости образцы выдерживались в течение 30 мин в скрещенных магнитных полях: поле Земли и перпендикулярном ему поле переменного тока. Амплитуда и направление магнитного поля Земли были измерены непосредственно в месте нахождения образца в установке. Вектор поля $\mathbf{B}_{\mathrm{Earth}}$ составлял с вертикалью угол $\theta \approx 29.5^{\circ}$, а его длина равнялась $B_{\text{Earth}} = 49.9 \,\text{мкTл.}$ Концентрическое переменное магнитное поле создавалось в коаксиальной камере вокруг провода, по которому пропускался синусоидальный переменный ток заданной частоты. В данной работе частота варьировалась в интервале 1.1–2.2 МГц. За время экспозиции частота изменялась на $\Delta \nu \sim 1 \, \mathrm{k}\Gamma$ ц. Образец ставился в установку так, чтобы поле $\mathbf{B}_{\mathrm{Earth}}$ было параллельно направлению [001]. Плоскость индентирования была (100).

Микротвердость измерялась сразу после магнитной экспозиции и через каждый час в течение первых 4–5 ч. На рисунке 1 показан пример зависимости

Рис. 1. Зависимости величины микротвердости H от времени t, прошедшего после выдержки кристаллов NaCl:Ni в скрещенных магнитных полях при частоте 1.375 МГц

микротвердости H от времени t, прошедшего после выдержки образца в скрещенных магнитных полях. По временным зависимостям H(t) находилось максимальное изменение микротвердости $\Delta H = H - H_0$ для конкретных экспериментальных условий. В итоге строилась зависимость относительного изменения микротвердости $\Delta H/H_0$ от частоты ν переменного поля. Значения $\Delta H/H_0$ отличались от образца к образцу, поэтому при построении зависимости $\Delta H/H_0 \div \nu$ проводилось усреднение по нескольким образцам. Методика, применявшаяся в данных экспериментах, позволила снизить погрешность определения изменений микротвердости до 1 %. Максимумы измеряемых изменений составляли от 3 до 8%, т.е. заметно превышали эту погрешность. Впрочем, в нашем исследовании ключевым измеряемым параметром была не амплитуда, а резонансная частота пика, которая находилась со значительно более высокой точностью. Абсолютная погрешность составляла $\Delta \nu \sim 1 \, \mathrm{k} \Gamma$ ц, так что на фоне типичных значений $\nu_r \sim 1-2 \,\mathrm{M}\Gamma$ ц относительная ошибка составляла $\sim\!10^{-3}$.

Следует отметить, что обсуждаемый эффект изменения микротвердости кристаллов является обратимым. Вслед за достижением минимума через 2– 3 ч после экспозиции начинается медленный возврат микротвердости к исходному значению, которое достигается примерно через сутки. А через 2 недели при комнатной температуре релаксация кристалла полностью заканчивается, так что образцы можно опять подвергать магнитному воздействию, и эффект воспроизводится с близкими результатами.

2. Экспериментальные результаты и их обсуждение. Наши измерения показали, что изменение микротвердости исследуемых кристаллов NaCl с примесью Ni после их предварительной экспозиции в скрещенных сверхнизких магнитных полях в схеме ЭПР-типа происходит на целом ряде резонансных частот. На рисунке 2 представлена зависимость относительного изменения микротвердости от частоты переменного магнитного поля. Видны две группы пиков разупрочнения, по девять в каждой из них. Соответствующие резонансные частоты $\nu_n^{\rm I}$ и $\nu_n^{\rm II}$ ($n = 1, \ldots, 9$) этих групп представлены в табл. 1. Видно, что они попарно связаны между собой приближенным эмпирическим соотношением

$$\nu_n^{\rm II} \approx \nu_n^{\rm I} / \sqrt{2}. \tag{1}$$

Небольшие отклонения положений экспериментальных минимумов группы II от соответствующих значений (1), отмеченных на рис. 2 вертикальными рисками, не выходят за рамки погрешностей, связанных с дискретностью варьируемых частот. Величина среднего относительного отклонения равна $1.9 \cdot 10^{-3}$, а максимальное относительное отклонение составляет всего $4.6 \cdot 10^{-3}$.

Предположительно, изменение микротвердости происходит из-за преобразования дефектных комплексов в кристалле под действием магнитных полей. Начальная трансформация дефектов связана со спин-зависимыми электронными переходами непосредственно во время магнитной экспозиции. Возникает новое метастабильное весьма долгоживущее состояние. Перестройка структуры центра возмущает равновесное распределение дефектов, например, из-за нарушения локальной электронейтральности. Новое равновесие устанавливается диффузионными процессами. Эта релаксация и предопределяет относительно медленное изменение микротвердости кристалла (рис. 1). Обратный релаксационный процесс, восстанавливающий исходный уровень микротвердости, начинается после распада метастабильного состояния дефекта и происходит, как говорилось выше, гораздо медленнее.

Как известно, спектры ЭПР отражают не только разнообразие дефектов, но и более тонкие процессы [22–24]. Примером является сверхтонкое расщепление линий, возникающее из-за того, что на парамагнитный центр, кроме внешнего (**B**), действует также локальное кристаллическое магнитное поле (**B**_{loc}), которое происходит от соседних ядер с нескомпенсированными спинами. Это может быть

собственное ядро парамагнитного иона или соседние ядра лигандов. В стандартных установках ЭПР внешнее поле на несколько порядков выше локального $(B \gg B_{\text{loc}})$. Поэтому расщепления в спектрах оказываются небольшими и далеко не всегда разрешаются. Мы же работаем в условиях, когда внешнее поле B_{Earth} , наоборот, на несколько порядков ниже локального $(B_{\text{Earth}} \ll B_{\text{loc}})$. В этих условиях картина радикально изменяется. Теперь внешнее поле лишь слегка возмущает спектр "нулевого поля". так что разрешение резонансов резко увеличивается, и мы можем наблюдать их при комнатной температуре. Вдобавок, квантовые состояния системы по электронным и ядерным спинам при таких полях оказываются смешанными, что снимает привычные для ЭПР запреты на переходы [22, 23]. Согласно [19], резонансные частоты в рассматриваемом случае $B_{\rm Earth} \ll B_{\rm loc}$ описываются уравнением

$$\nu_r = g \frac{\mu_B}{h} \left(\sqrt{(\mathbf{B}_{\text{Earth}} + \mathbf{B}_{\text{loc}})^2} - B_{\text{loc}} \right) \approx$$
$$\approx g \frac{\mu_B B_{\text{Earth}}}{h} \cos \angle (\mathbf{B}_{\text{Earth}}, \mathbf{B}_{\text{loc}}), \qquad (2)$$

 $\sim g - \frac{1}{h} \cos 2$ (Веатth, Вюс), (2) где g – фактор Ланде, $\mu_{\rm B}$ – магнетон Бора и h – постоянная Планка. Эта величина зависит не от длины вектора $\mathbf{B}_{\rm loc}$, а только от его направления. По эмпирическим данным [19] этот вектор обычно ориентирован вдоль элементов симметрии кристалла. Формула (2) предсказывает, что при поворотах кристалла (вместе с $\mathbf{B}_{\rm loc}$) относительно магнитного поля $\mathbf{B}_{\rm Earth}$ частота резонанса ν_r должна изменяться пропорционально $\cos \angle (\mathbf{B}_{\rm Earth}, \mathbf{B}_{\rm loc})$. Это согласуется со всеми нашими экспериментальными данными и по дислокационной подвижности [8, 25] в аналогичных кристаллах, и по микротвердости серии других типов кристаллов [19].

Таким образом, если есть локальное магнитное поле (а его существование в наших кристаллах гарантировано наличием ядерных спинов как у Ni, так и у лигандов Cl), то должен существовать и спектр состояний нулевого поля. Большая часть этих состояний расщепляется на несколько линий при включении слабого внешнего поля. При этом каждому такому состоянию нулевого поля должен отвечать свой *g*-фактор. По данным настоящего исследования (табл. 1), у нас их девять: $g = g_1, \ldots, g_9$. А судя по наличию двух таких групп, связанных соотношением (1), можно предположить, что они отвечают ориентациям локального магнитного поля вдоль осей симметрии четвертого и второго порядка. При **B**_{Earth} [[001] из (2) следует, что первая группа пиков соответствует $\mathbf{B}_{loc} \| [001] \| \mathbf{B}_{Earth}$, а вторая – В_{loc} [[011]. Разные амплитуды сходственных

Рис. 2. Зависимость максимального относительного изменения микротвердости $\Delta H/H_0$ от частоты переменного магнитного поля ν . Вертикальные черточки под минимумами пиков группы II указывают положения этих минимумов по формуле (1)

Таблица 1. Значения резонансных частот ν_r двух групп пиков и связь между ними

I группа									
$\nu^{\mathrm{I}}, \mathrm{M}\Gamma$ ц	2.14	2.08	2.04	2.00	1.94	1.91	1.84	1.77	1.70
g	3.06	2.97	2.92	2.86	2.77	2.73	2.63	2.53	2.43
II группа									
$\nu^{\text{II}}, \text{M}\Gamma$ ц	1.52	1.47	1.44	1.41	1.375	1.35	1.30	1.255	1.20
$\nu^{\mathrm{I}}\cos(45^{\circ}), \mathrm{M}\Gamma$ ц	1.513	1.471	1.442	1.414	1.372	1.351	1.301	1.252	1.202

пиков в двух группах на рис. 2 предположительно указывают на неодинаковую заселенность соответствующих ориентационных состояний локального поля \mathbf{B}_{loc} . В частности, абсолютный максимум эффекта ($\Delta H/H_0 \approx 6.5\%$) реализуется в группе II при $\nu_r = 1.375 \,\mathrm{MFr}$, а сходственный пик в группе I при $\nu_r = 1.94 \,\mathrm{MFr}$ ниже более, чем вдвое. Причем, эта разница не случайна – она воспроизводится. По-видимому, можно констатировать, что в данном случае заселенность ориентации $\mathbf{B}_{\text{loc}} \parallel [011]$ примерно вдвое выше, чем $\mathbf{B}_{\text{loc}} \parallel [001]$.

3. Заключение. В настоящей работе продемонстрировано, как тонкие спин-зависимые процессы в дефектах кристалла при его экспозиции в сверхнизких магнитных полях в схеме ЭПР приводят к весьма специфическим резонансным изменениям такой макро-характеристики кристалла, как микротвердость. При сканировании частоты поля накачки появляется серия пиков разупрочнения на резонансных частотах, которые образуют спектр из двух групп (рис. 2) с "жесткой" связью частот (1) и идентичными наборами эффективных *g*-факторов (см. табл. 1). Наблюдаемая закономерная связь между резонансными частотами хорошо описывается формулой (2), которая была ранее получена в нашей работе [19].

Сама возможность наблюдать столь тонкие процессы при комнатной температуре, по-видимому, связана со спецификой закономерностей ЭПР при сверхнизких магнитных полях. В этом случае обсуждаемые резонансные переходы происходят между смешанными электрон-ядерными спиновыми состояниями [22]. Хорошо известно, что ядерные спиновые состояния оказываются несопоставимо более долгоживущими, чем чисто электронные состояния в классическом высокочастотном ЭПР. Согласно [26], в аналогичных кристаллах при комнатной температуре обычный высокочастотный спектр ЭПР содержит лишь широкие изотропные линии, которые авторы приписывают скоплениям или преципитатам ионов Ni²⁺. Только при очень низких температурах получались узкие ЭПР линии, отвечающие одиночным центрам Ni⁺, но даже при гелиевой температуре сверхтонкое расщепление от лигандов окружающих ядер Cl не разрешалось. С другой стороны, в

кристаллах SrF_2 : Ni при T = 4.2 К сверхтонкое расщепление линий Ni⁺, обусловленное влиянием лигандов ядер атомов F, было обнаружено [24] в той же стандартной ЭПР методике. Для этого, однако, пришлось кристаллы облучать рентгеновскими лучами для повышения концентрации ионов Ni⁺. Известно, что преобладающее число ионов никеля в таких кристаллах находится в состоянии Ni²⁺. По данным [26] в кристаллах NaCl: Ni лишь один из тысячи примесных ионов был в состоянии Ni⁺. Облучение повышало их число в 50 раз.

В наших кристаллах примесь Ni имеет относительно низкую концентрацию ~2 ppm. Если ионов Ni⁺ еще на несколько порядков меньше, то трудно представить, что такое ничтожное количество центров, изменяя свое спиновое состояние и структуру, способно изменить микротвердость кристалла. Таким образом, скорее всего наблюдаемые нами эффекты связаны с ионами Ni²⁺.

Следует также иметь в виду, что исследованные в нашей работе кристаллы NaCl: Ni были подвергнуты длительному отжигу с очень медленным охлаждением. В таких кристаллах примесные атомы имеют тенденцию собираться в комплексы. У нас нет данных ни о количестве таких комплексов в наших образцах, ни об их размерах, ни об участии их в наблюдаемых эффектах. С этой точки зрения, нельзя исключить того, что за пределами исследованного диапазона частот тоже существуют спектры, связанные с частью дефектов, которые себя пока не проявили. Но для проверки этого предположения понадобятся новые исследования.

Авторы благодарны М. В. Колдаевой за полезные обсуждения и ценные замечания.

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

- В.И. Альшиц, Е.В. Даринская, М.В. Колдаева, Е.А. Петржик, Кристаллография 48, 826 (2003).
- А.А. Урусовская, В.И. Альшиц, А.Е. Смирнов, Н.Н. Беккауер, Кристаллография 48, 855 (2003).
- 3. Ю.И. Головин, ФТТ **46**, 769 (2004).
- 4. Р.Б. Моргунов, УФН **174**, 131 (2004).
- 5. V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, and E.A. Petrzhik, *Magnetoplastic effect in nonmagnetic*

crystals, in: Dislocations in Solids, ed. by J. P. Hirth, Elsevier, Amsterdam (2008), v. 14, ch. 86, p. 333.

- Р.Б. Моргунов, А.Л. Бучаченко, ЖЭТФ 136, 505 (2009).
- R. B. Morgunov, A. L. Buchachenko, Phys. Rev. B 82, 014115 (2010).
- В.И. Альшиц, Е.В. Даринская, М.В. Колдаева, Е.А. Петржик, Письма в ЖЭТФ 104, 362 (2016).
- Е. А. Петржик, В. И. Альшиц, Е. С. Иванова, Известия РАН. Серия Физическая 78, 1305 (2014).
- 10. Е.Д. Якушкин, Письма в ЖЭТФ 99, 483 (2014).
- Р. В. Гайнутдинов, Е. С. Иванова, Е. А. Петржик, А. К. Лашкова, Т. Р. Волк, Письма в ЖЭТФ 106, 84 (2017).
- 12. Е.Д. Якушкин, Письма в ЖЭТФ 106, 523 (2017).
- Е. Д. Якушкин, В. А. Сандлер, Письма в ЖЭТФ 113, 348 (2021).
- И. С. Волчков, В. М. Каневский, М. Д. Павлюк, Письма в ЖЭТФ 107, 276 (2018).
- И.С. Волчков, А.М. Ополченцев, М.Д. Павлюк, В. М. Каневский, Кристаллография 63, 746 (2018).
- Ю.И. Головин, Р.Б. Моргунов, В.Е. Иванов, А.А. Дмитриевский, ЖЭТФ 117, 1080 (2000).
- Yu. I. Golovin, R. B. Morgunov, and A. A. Baskakov, Mol. Phys. **100**, 1291 (2002).
- В.И. Альшиц, Е.В. Даринская, М.В. Колдаева, Е.А. Петржик, ФТТ 54, 305 (2012).
- В. И. Альшиц, М. В. Колдаева, Е. А. Петржик, Письма в ЖЭТФ 107, 650 (2018).
- В.И. Альшиц, М.В. Колдаева, Е.А. Петржик, С.А. Минюков, Е.В. Даринская, Д.Е. Капуткин, Е.К. Наими, Письма в ЖЭТФ 98, 33 (2013).
- В. А. Закревский, В. А. Пахотин, А. В. Шульдинер, ФТТ 44, 1990 (2002).
- Дж. Вертц, Дж. Болтон, Теория и практические приложения метода ЭПР, пер. с англ. под ред. М. Г. Гольдфельда, Л. А. Блюменфельда, Мир, М. (1975).
- А. Абрагам, Б. Блини, Электронный парамагнитный резонанс переходных ионов, пер. с анг. под ред. С. А. Альтшулера, Г. В. Скроцкого, Мир, М. (1972), т. 1.
- P. J. Alonso, J. Casas Gonzalez, H. W. den Hartog, and R. Alcala, Phys. Rev. B 27, 2722 (1983).
- В. И. Альшиц, М. В. Колдаева, Е. А. Петржик, А. Ю. Белов, Е. В. Даринская, Письма в ЖЭТФ 99, 87 (2014).
- A. Shengelaya, H. Drulis, B. Macalik, and M. Suszynska, Z. Phys. B 101, 373 (1996).

Спектр оптических фононов монокристалла $Ge_2Sb_2Te_5$

А.Б. Талочкин⁺¹), К.А. Кох^{$*\times$}, О.Е. Терещенко^{$+\times$}

⁺Институт физики полупроводников им. А.В. Ржанова Сибирского отделения РАН, 630090 Новосибирск, Россия

*Институт геологии и минералогии им. В. С. Соболева Сибирского отделения РАН, 630090 Новосибирск, Россия

[×]Новосибирский государственный университет, 630090 Новосибирск, Россия

Поступила в редакцию 14 апреля 2021 г. После переработки 20 апреля 2021 г. Принята к публикации 20 апреля 2021 г.

Впервые исследованы спектры комбинационного рассеяния света на оптических фононах монокристалла Ge₂Sb₂Te₅, полученного методом Бриджмена. При другом способе получения этого соединения, связанном с отжигом аморфного состояния и использованном в многочисленных исследованиях ранее, происходит образование различных дефектов, которые кардинально влияют на спектр оптических фононов. Это приводит к неопределенности в идентификации наблюдаемых фононных спектров. Поэтому использование объемного монокристалла Ge₂Sb₂Te₅ позволило исключить влияние решеточных дефектов и выявить новые особенности фононного спектра, связанные со структурой решетки. В спектрах наблюдались широкие особенности, типичные для аморфного состояния материала, а также узкие фононные линии кристаллического состояния. Показано, что первая компонента связана с разупорядоченностью, возникающей из-за перемешивания атомов Ge и Sb в соответствующих слоях решетки. Кроме того, существуют оптические фононы, частоты которых не зависят от этого перемешивания в силу специфики их нормальных координат. Эти моды проявляются в спектрах в виде узких интенсивных линий.

DOI: 10.31857/S1234567821100086

Введение. Халькогениды с фазовым переходом из аморфного состояния в кристаллическое и обратно, как, к примеру, псевдо-бинарный раствор GeTe-Sb₂Te₃, используются уже более 30 лет в носителях памяти (DVD-RAM, RW) [1]. Среди исследованных материалов данного класса соединение Ge₂Sb₂Te₅ (GST) имеет наилучшие параметры по скорости записи и фазовой стабильности, а также является кандидатом для создания энергонезависимых элементов памяти, управляемыми как светом, так и электрическими импульсами [2,3]. Изначально полученная пленка аморфного GST (a-GST) при нагревании до температуры $\sim 160 \,^{\circ}\mathrm{C}$ переходит в кристаллическое состояние с кубической решеткой (типа NaCl) (c-GST). При нагреве до ~ 250 °C происходит фазовый переход в гексагональное состояние (h-GST), которое при быстром охлаждении превращается обратно в *a*-GST. Эти три фазовые состояния GST значительно отличаются удельным сопротивлением, а также значением оптических параметров. Это позволяет записывать, хранить, считывать и перезаписывать информацию, используя электрические импульсы или лазерный свет [4,5].

Оптимизация рабочих параметров элементов памяти требует знания структурных особенностей GST и механизмов наблюдаемых фазовых переходов, изучению которых посвящено значительное число работ за последние 15 лет (например, [6–10]). Для изучения структуры GST использовалась электронная микроскопия (ЭМ) [11–13], а также дифракция и поглощение рентгеновских лучей [6, 14]. Из-за сложности GST однозначные выводы о его структуре не всегда удавалось получить данными методами. Так, предложены три модели решетки h-GST, объясняющие данные ЭМ и отличающиеся последовательностью чередования слоев в элементарной ячейке (ЭЯ) кристалла. Модель Петрова [11] дает последовательность A: Te-Sb-Te-Ge-Te-Ge-Te-Sb-Te. Согласно Кооі [12], реализуется другая очередность атомных слоев B: Te-Ge-Te-Sb-Te-Sb-Te-Ge-Te, в которой слои Ge и Sb меняются местами. Matsunaga [14] предположил, что в каждом слое Ge и Sb эти атомы перемешаны случайным образом. Недавно Zhu [13] показал, используя новейшие достижения ЭМ, что перемешивание атомов Ge и Sb в соответствующих слоях реально существует. Кроме того, установлен механизм фазового перехода (c-GST)-(h-GST) и определен состав Ge: Sb раствора в разных слоя [13].

¹⁾e-mail: tal@isp.nsc.ru

Кроме чисто структурных исследований, в GST изучались спектры комбинационного рассеяния света (КРС) на оптических фононах (например, [6, 15– 20]) для определения колебательных состояний решетки и их связи со структурой кристалла. Спектры КРС, полученные в основном в пленках, кристаллическое состояние которых достигалось с помощью отжига аморфного состояния, обнаруживают необычное поведение. Так, полуширина фононных линий кристалла обычно составляет несколько cm^{-1} , в то время как для аморфного материала эта величина примерно на порядок больше (несколько десятков см $^{-1}$). В пленках *a*- и *c*-GST этот параметр спектров не различается и составляет $\sim 50 \, {\rm cm}^{-1}$. Теоретический анализ описывает это поведение наличием дефектов кристалла [21, 22], которые возникают из-за неоднородности кристаллизации в процессе отжига аморфной фазы [23]. Согласно расчетам [21], решеточные искажения приводят к значительному росту интенсивности КРС на фононах, локализованных вблизи них. Как следствие, широкие и интенсивные полосы дефектных областей маскируют узкие фононные линии упорядоченного кристалла, которые наблюдались в спектрах КРС в редких случаях и их природа неясна [24–27]. Это влияние дефектов можно устранить при использовании объемного монокристаллического h-GST, однако, таких исследований ранее не проводилось. В результате, спектр оптических фононов *h*-GST и его модификация при фазовых переходах до сих пор остается не выясненным.

Интерес к изучению объемного GST возник недавно в связи с топологическими свойствами его электронного спектра, предсказанными теоретически [28] и подтвержденными экспериментально [29]. Для наблюдения этих явлений необходимо макроскопическое совершенство решетки, которое достигается в монокристалле. В связи с этим актуальным представляется изучение его фононного спектра.

В данной работе исследованы спектры КРС на оптических фононах объемного монокристалла h-GST. Это позволило исключить влияние решеточных дефектов и выявить необычные особенности фононного спектра h-GST, связанные с его структурой. В спектрах наблюдались широкие линии, как и в a- и c-GST. В нашем случае их форма определяется неоднородным уширением, связанным с перемешиванием атомов Ge и Sb в соответствующих слоях. Кроме того, наблюдались две узкие линии (54.8 см⁻¹ и 178 см⁻¹), типичные для упорядоченного кристалла. Показано, что эти линии соответствуют колебательным модам, на частоты которых Ge-Sb перемепивание не оказывает существенного влияния. В результате, для этих типов колебаний GST представляет собой упорядоченный кристалл. Для остальных оптических мод *h*-GST разупорядочен из-за Ge-Sb перемешивания и его спектр KPC подобен спектру аморфного материала.

Условия экспериментов. Исследованные монокристаллы h-GST были получены с помощью модифицированного метода Бриджмена. Из выращенного слитка вырезались пластины с поверхностью, перпендикулярной гексагональной оси c. Перед измерениями поверхность образца готовилась с помощью механического отщепления верхнего слоя толщиной ~100 нм. Как показали измерения спектров КРС и анализ поверхностного атомного слоя, проведенный с помощью туннельного микроскопа, состояние поверхности GST, находящейся в контакте с атмосферой, не изменялось в течение часа.

Спектры КРС возбуждались лазерной линией с длиной волны $\lambda = 488$ нм при T = 300 K и регистрировались с помощью спектрометра ДФС-52, оснащенного ФЭУ в режиме счета фотонов. Луч лазера мощностью ~ 100 мВт фокусировался на поверхность образца в пятно с размерами 0.1×0.4 мм. Использованная плотность мощности лазерного излучения, как показали измерения температуры в области возбуждения образца по отношению интенсивностей стоксовой компоненты фононной линий к антистоксовой, приводит к незначительному перегреву кристалла (не более, чем на 40 ± 20 °C). Световое пятно двигалось по поверхности образца для выбора наиболее структурно совершенной области с минимальным уровнем упруго рассеянного света. Вектор поляризации возбуждающего и рассеянного света лежал в плоскости (a, b), перпендикулярной гексагональной оси с. Разрешение спектрометра составляло $2 \, \text{cm}^{-1}$.

Частоты оптических фононов GST расположены в низкочастотной области (0–200 см⁻¹), в которой проявляются слабые линии рассеяния на вращательных колебаниях молекул воздуха, находящихся вблизи освещаемой поверхности образца. На рисунке 1*b* приведен спектр воздуха, полученный без образца. Он вычитался из спектра КРС образца для устранения этих паразитных линий. Результирующий спектр приведен на рис. 1*a*. Из рисунка 1 можно видеть, что эта процедура существенно не влияет на вид спектра образца.

Результаты и обсуждение. На рисунке 1a приведен спектр КРС на оптических фононах монокристалла *h*-GST, измеренный при T = 300 К в гео-

Рис. 1. (a) – спектр КРС на оптических фононах монокристалла *h*-GST после вычитания линий рассеяния на вращательных колебаниях молекул воздуха (b)

метрии обратного рассеяния от поверхности образца перпендикулярной гексагональной оси *c*. Спектр состоит из широкой особенности в диапазоне 75– 200 сm^{-1} и двух узких линий на частотах 54.8 сm^{-1} (*c*) и 178 сm^{-1} (*d*). Первая компонента явно выделена на рис. 2 исключением этих двух линий, поло-

Рис. 2. (Цветной онлайн) Протяженная компонента спектра КРС *h*-GST (рис. 1(*a*)), полученная вычитанием линий (*c*) и (*d*). Кривая 1 – экспериментальная зависимость, кривая 2 – ее аппроксимация суммой трех лоренцевских контуров 3, 4 и 5. Стрелками обозначены частоты оптических фононов *h*-GST (**A**), полученные в [22]

жения которых показаны на рис. 2 вертикальными линиями *с* и *d*. Полученная таким образом экспериментальная зависимость показана на рис. 2 кривой *1*. Ее аппроксимация суммой трех лоренцевских конту-

Письма в ЖЭТФ том 113 вып. 9-10 2021

ров (кривые 3, 4 и 5), показанных на рис. 2 штриховыми линиями, обозначена на рис. 2 кривой 2. Контур 3 с максимумом при нулевой частоте соответствует упруго рассеянному лазерному свету в спектрометре. Два широких пика (кривые 4 и 5 на рис. 2) с частотами 110 и $160 \,\mathrm{cm}^{-1}$, имеющие полуширину 60 и $50 \, \text{см}^{-1}$, соответственно, связаны со спектром оптических фононов GST. Из рисунка 2 видно, что данное разложение хорошо описывает экспериментальную зависимость. В результате, наблюдаемый спектр КРС монокристаллического *h*-GST содержит две узкие фононные линии (рис. 1, c и d) и две широкие полосы (рис. 2, 4 и 5). Последние полосы значительно большей интенсивности наблюдались ранее в спектрах КРС пленок a-, c- и h-GST, полученных отжигом аморфного состояния [6, 15–20].

Рассмотрим структуру *h*-GST, которая определяет спектр оптических фононов. Согласно модели Петрова [11], это соединение содержит одну формульную единицу Ge₂Sb₂Te₅ в элементарной ячейке (ЭЯ). Фрагмент решетки, состоящий из 9 атомных плоскостей, приведен на рис. За, где показано

Рис. 3. (Цветной онлайн) (а) – Фрагмент кристаллической решетки *h*-GST (А). (b) и (c) – Схема элементарной ячейки *h*-GST (А) с нормальными координатами двух фононных мод, полученными в [22]

направление гексагональной оси c и векторы элементарных трансляций в перпендикулярной плоскости aи b. В отличие от a- и c-GST гексагональная фаза является слоистым кристаллом. Каждый слой, состоящий из девяти атомных плоскостей (рис. 3a), связан с соседними слабыми силами ван-дер-Ваальса, что допускает их механическое отщепление. На рисунка 3b, с показана ЭЯ из N = 9 атомов, образующих последовательность **A**: Te-Sb-Te-Ge-Te-Ge-Te-Sb-Te. Эта решетка имеет 3N - 3 = 24 оптических фонона при k = 0, которые классифицируются по неприводимым представлениям точечной группы D_{3d} , как $\Gamma = 4 (A_{1g} + E_g + E_u + A_{2u}).$ Символ A относится к невырожденным модам (атомные смещения вдоль оси c), а E означает двукратно вырожденные моды (атомные смещения в плоскости (ab)). Симметричные фононы (индекс q) активны в спектрах KPC, а антисимметричные (индекс и) активны только в ИК поглощении и запрещены в КРС. Значения частот оптических фононов, вычисленные для h-GST (A) в работе [22], показаны стрелками на рис. 2. Верхние стрелки на рис. 2 обозначают частоты симметричных фононов, а нижние – антисимметричных. В результате, для h-GST (A) в КРС спектрах должны наблюдаться восемь отдельных линий оптических фононов, что, как видно из рис. 2, не согласуется с экспериментом.

Позднее появилась модель Кооі [12], которая предсказывает последовательность **B**: Te-Ge-Te-Sb-Te-Sb-Te-Ge-Te, в которой по сравнению с **A** атомы Ge и Sb меняются местами. Частоты оптических фононов для последовательности **B** были также вычислены в работе [22]. Изменение их частот по сравнению с последовательностью **A** может достигать $\sim 40 \text{ см}^{-1}$. Это означает, что вариация порядка атомов Ge и Sb в ЭЯ может изменять дискретный спектр фононов в широком диапазоне частот.

Вслед за рассмотренными моделями структуры ЭЯ h-GST Matsunaga [14] показал, что в каждом слое Ge и Sb (см. рис. 3) эти атомы перемешаны случайным образом, т.е. реализуется последовательность C: Te-(Ge/Sb)-Te-(Ge/Sb)-Te-(Ge/Sb)-Те, где (Ge/Sb) означает перемешивание атомов Ge и Sb в соответствующем слое. Недавно Zhu [13] подтвердил этот вывод. Кроме того, определено значение состава $\operatorname{Ge}_x \operatorname{Sb}_{1-x}$ раствора $x \approx 0.15$, которое для крайних слоев ЭЯ значительно отличается от $x \approx 0.5$ в случае случайного перемешиванием компонент. В результате, *h*-GST в своей структуре проявляет двойственность. С одной стороны, положения атомов в решетке подобно случаю идеально упорядоченного кристалла, с другой – перемешивание компонент в Ge и Sb слоях создает разупорядоченность, которая вызывает формальное нарушение как трансляционной симметрии, так и симметрии ЭЯ.

Результаты теоретического расчета фононного спектра, проведенные для *h*-GST с **A** и **B** типами ЭЯ [22], не согласуются с экспериментом, как и следовало ожидать из-за влияния Ge/Sb перемешивания. Ее учет был проведен методом молекулярной дина-

мики, когда вычисляются частоты оптических фононов большого атомного кластера [21, 22]. Для кластеров из 18 и 270 атомов расчеты фононных спектров проведены в работах [21, 22]. Результаты этого теоретического анализа хорошо описывают две широкие полосы (110 и $160 \,\mathrm{cm}^{-1}$, рис. 2), наблюдаемые в спектрах КРС пленок *a*-, *c*- и *h*-GST, полученных в многочисленных экспериментах с помощью отжига a-GST [6, 15–20]. Поскольку число фононных мод увеличивается с размером кластера, при большой их плотности линии КРС отдельных мод перекрываются, сливаясь в непрерывный широкий спектр. Кроме того, для такого типа пленок, существенную роль играет влияние дефектов, присущих как аморфной фазе, так и возникающих в *с*- и *h*-GST из-за неоднородности кристаллизации. Как показали расчеты [21], решеточные искажения уширяют фононный спектр и вызывают значительное усиление интенсивности КРС на фононах в дефектных областях. В результате, интенсивные широкие фононные линии дефектных областей маскируют узкие линии регулярного кристалла, которые наблюдались экспериментально в редких случаях [24–26]. Поэтому использование нами монокристаллического h-GST позволяет исключить влияние структурных дефектов на его спектр оптических фононов.

Рассмотрим природу широких фононных полос, наблюдаемых в спектрах КРС h-GST (рис. 2, контуры 4 и 5), в рамках модели упорядоченного кристалла (рис. 3). Поскольку решеточные искажения, связанные с дефектами, в нашем случае отсутствуют, разупорядоченность в Ge и Sb слоях превращает набор дискретных частот (рис. 2, стрелки) в широкий непрерывный спектр низкой интенсивности (рис. 2, полосы 4 и 5). Легко видеть, что из-за Ge/Sb перемешивания, кроме последовательности А, возможны еще 9 вариантов сочетаний атомов Ge и Sb в ЭЯ. Каждая из них имеет свой набор оптических фононов, частоты которых согласно вычислениям [22] могут значительно (на несколько десятков см $^{-1}$) отличаться друг от друга. Отсюда, плотность фононных состояний по сравнению с регулярным кристаллом размывается в широком частотном диапазоне, а интенсивность КРС падает примерно на порядок. Это известный случай неоднородного уширения, когда разные области кристалла имеют различные спектры оптических фононов, которые, накладываясь друг на друга, дают результирующий непрерывный широкий спектр. Из рисунка 2 (стрелки) видно, что набор фононных частот последовательности А можно условно разделить на две части: низкочастотную и высокочастотную, которые при расщеплении каждой частоты на девять компонент и формируют две наблюдаемые широких полосы (рис. 2, полосы 4 и 5). Кроме того, антисимметричные фононы (нижний ряд стрелок на рис. 2) также становятся активны в КРС, поскольку для шести конфигураций ЭЯ центр инверсии исчезает. Таким образом, наблюдаемые широкие линии спектра КРС *h*-GST объясня-

ются Ge/Sb перемешиванием.

Как видно из рис. 1а, наряду с широкими особенностями в спектре КРС наблюдаются две узкие линии на частотах $54.8 \,\mathrm{cm}^{-1}$ (пик c) и $178 \,\mathrm{cm}^{-1}$ (пик d) с полушириной 7 и 8 см⁻¹ соответственно. Эти значения типичны для естественной полуширины фононной линии, определяемой временем жизни фонона. Полобные линии наблюдались ранее в спектрах КРС образцов *h*-GST, полученных отжигом *a*-GST [24-26]. В нашем случае их интенсивность по сравнению с широкой компонентой значительно выше. Появление таких фононных мод в разупорядоченной решетке с фононным спектром аморфного материала является, на первый взгляд, необычным явлением, которое не возникает в теоретических расчетах [21, 22]. С другой стороны, перемешивание Ge и Sb происходит в определенных слоях (рис. 3), а атомы Те находятся в положениях регулярного кристалла. В результате, структура решетки кардинально отличается от аморфного случая отсутствием дефектов и решеточных искажений, что должно проявляться в фононном спектре. В самом деле, расчеты фононных частот А и В последовательностей ЭЯ показали, что частоты пяти фононных мод отличаются для них несущественно (не более, чем на полуширину фононной линии) или равны [22]. Можно предположить, что существуют моды, для которых это условие выполняется для большинства возможных конфигураций ЭЯ в случае перемешивания компонент. Тогда, для этих фононов решетка будет представлять упорядоченный кристалл и они должны проявляться в спектре КРС в виде узких линий, неподверженных неоднородному уширению, в отличие от остальных фононных мод.

Строгий подход к определению типов оптических фононов, частоты которых не чувствительны к Ge/Sb перемешиванию, требует теоретических расчетов, таких, как в работе [22], но с учетом экспериментальных значений реперных фононных частот, которые ранее были неизвестны. Поэтому это явление выпало из теоретического анализа [21, 22]. В то же время, были получены и приведены в работе [22] нормальные координаты для некоторых фононов ЭЯ **A** типа. На схеме ЭЯ h-GST (**A**) (рис. 3b, c) стрелками обозначены амплитуды и направления смещения

Письма в ЖЭТФ том 113 вып. 9-10 2021

атомов из положения равновесия для двух фононных мод [22]. Для первого колебания (рис. 3b) две группы по 4 атома двигаются как целое относительно неподвижного центра масс (слой атомов Те 3) и его частоту можно представить как $\omega_0 = (\gamma/M)^{1/2}$, где M – суммарная масса четырех атомов, а γ – силовая постоянная Ge-Te (Sb-Te) связи. Можно найти, что максимальное изменение частоты, связанное с заменой двух атомов Sb на атомы Ge составляет $\Delta \omega_0 = (\omega_0/2) \times (\Delta M/M)$, где ΔM – изменение массы. Для $\omega_0\,=\,50\,{\rm cm}^{-1}~\Delta\omega_0\,\approx\,5\,{\rm cm}^{-1}$, что не превышает наблюдаемую полуширину фононной линии (рис. 1а). В результате, частота данной моды практически не зависит от Ge-Sb перемешивания. Для высокочастотной фононной моды, показанной на рис. 3с, два атома Sb неподвижны, а амплитуда колебаний атомов Ge мала. Поэтому частота этой моды определяется в основном движением атомов Те. В результате, данное колебание может так же слабо зависеть от расположения атомов Ge и Sb в ЭЯ. Таким образом, в спектре частот оптических фононов h-GST могут существовать моды, частоты которых не зависят от разупорядоченности в слоях Ge и Sb. Следовательно, для них h-GST представляет собой упорядоченный кристалл, и эти моды наблюдаются в спектре КРС в виде узких и интенсивных линий (рис. 1*a*).

Отметим, что подобное поведение недавно наблюдалось также для слоистого кристалла BiSbTeSe₂ [30], в котором существует Bi/Sb и Te/Se перемешивание. Так, из восьми наблюдаемых в спектрах КРС фононных мод две линии на частотах 69 и 185.2 см⁻¹ имеют малую полуширину линии 7.6 и 10 см⁻¹, соответственно, и высокую интенсивность рассеяния. Остальные фононные линии уширены до значения 15–40 см⁻¹. Поскольку плотность фононных мод меньше, чем в нашем случае, все они проявляются в виде отдельных пиков [30]. Таким образом, в кристалле BiSbTeSe₂, содержащем разупорядоченность, также существуют фононные моды, на частоты которых она практически не влияет.

Заключение. Исследованы спектры КРС на оптических фононах монокристаллического *h*-GST. В спектрах наблюдались две компоненты, связанные со структурными особенностями решетки кристалла. Показано, что пирокие полосы, совпадающие со спектром аморфного GST, обусловлены перемешиванием атомов Ge и Sb в соответствующих слоях решетки. Низкая интенсивность полос обусловлена отсутствием структурных дефектов, присущих аморфному состоянию. Установлено, что узкие линии КРС спектра соответствуют оптическим фононам, частоты которых не зависят от разупорядоченности компонент в слоях Ge и Sb. Это свойство наблюдаемых фононов определяется спецификой их нормальных координат, для которых частота определяется в основном движением атомов Te, а от расположения атомов Ge и Sb она почти не зависит.

- Phase-Change Materials: Science and Applications, ed. by S. Raoux and M. Wuttig, Springer Science & Business Media (2009).
- T. Ohta and S.R. Ovshinsky, in *Photo-induced Metastability in Amorphous Semiconductors*, ed. by A.V. Kolobov, Wiley-VCH, Berlin (2003).
- R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, Nano Lett. 10, 414 (2010).
- 4. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1991).
- M. Wuttig and C. Steimer, Appl. Phys. A 87, 411 (2007).
- A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, Nat. Mater. 3, 703 (2004).
- J. Akola and R.O. Jones, Phys. Rev. B 76, 235201 (2007).
- A. V. Kolobov, J. Haines, A. Pradel, M. Ribes, P. Fons, J. Tominaga, Y. Katayama, T. Hammouda, and T. Uruga, Phys. Rev. Lett. 97, 035701 (2006).
- T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, and M. Takata, Inorg. Chem. 45, 2235 (2006).
- G. W. Burr, M. J. Breitwisch, M. Franceschini, and D. Garetto, J. Vac. Sci. Technol. 28, 223 (2010).
- I. I. Petrov, R. M. Imamov, and Z. G. Pinsker, Sov. Phys. Crystallogr. 13, 339 (1968).
- B. J. Kooi and J. Th. De Hosson, J. Appl. Phys. 92, 3584 (2002).
- M. Zhu, K. Ren, L. Liu, S. Liu, X. Miao, M. Xu, and Z. Song, Phys. Rev. Mater. 3, 033603 (2019).

- T. Matsunaga, N. Yamadab, and Y. Kubotac, Acta Crystallogr. B 60, 685 (2004).
- A. M. Mio, S. M. S. Privitera, V. Bragaglia, F. Arciprete, S. Cecchi, G. Litrico, C. Persch, R. Calarco, and E. Rimini, Sci. Rep. 7, 2616 (2017).
- P. Nemec, A. Moreac, V. Nazabal, M. Pavlišta, J. Prikřyl, and M. Frumar, J. Appl. Phys. **106**, 103509 (2009).
- K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobovc, P. Fonsd, and J. Tominaga, J. Phys. Chem. Solids 68, 1074 (2007).
- H. Satoh, K. Sugawara, and K. Tanaka, J. Appl. Phys. 99, 024306 (2006).
- L. Zheng, X. Zhu, L. Zhai, Y. Hu, H. Zou, B. Liu, M. Pei, and Z. Song, Eur. Phys. J. Appl. Phys. 77, 30102 (2017).
- С. А. Яковлев, А. В. Анкудинов, Ю. В. Воробьев, М. М. Воронов, С. А. Козюхин, Б. Т. Мелех, А. Б. Певцов, ФТП 52, 664 (2018).
- G. C. Sosso, S. Caravati, R. Mazzarello, and M. Bernasconi, Phys. Rev. B 83, 134201 (2011).
- G. C. Sosso, S. Caravatil, C. Gatti, S. Assoni, and M. Bernasconi, J. Phys.: Cond. Mat. 21, 245401 (2009).
- M. Behrens, A. Lotnyk, H. Bryja, J. W. Gerlach, and B. Rauschenbach, Materials 13, 2082 (2020).
- H.-K. Ji, H. Tong, H. Qian, Y.-J. Hui, N. Liu, P. Yan, and X.-S. Miao, Sci. Rep. 6, 39206 (2016).
- L. Zheng, X. Zhu, L. Zhai, Y. Hu, H. Zou, B. Liu, M. Pei, and Z. Song, Eur. Phys. J. Appl. Phys. 77, 30102 (2017).
- J. Xu, C. Qi, L. Chen, L. Zheng, and Q. Xie, AIP Adv. 8, 055006 (2018).
- J. Kellner, G. Bihlmayer, M. Liebmann, S. Otto et al. (Collaboration), Comm. Phys. 1, 5 (2018).
- M. Nurmamat, K. Okamoto, S.Y. Zhu et al. (Collaboration), ACS Nano. 14, 9059 (2020).
- R. German, E. V. Komleva, P. Stein, V. G. Mazurenko, Z. Wang, S. V. Streltsov, Y. Ando, and P. H. M. van Loosdrecht, Phys. Rev. Mat. 3, 054204 (2019).

Электронный спиновый резонанс в условиях ферромагнитного фазового перехода

А.В.Шепетильников^{+*1)}, А.Р. Хисамеева⁺, Ю.А. Нефедов⁺, И.В. Кукушкин⁺

+Институт физики твердого тела РАН, 142432 Черноголовка, Россия

*Национальный исследовательский университет "Высшая школа экономики", 101000 Москва, Россия

Поступила в редакцию 9 апреля 2021 г. После переработки 20 апреля 2021 г. Принята к публикации 21 апреля 2021 г.

Явление парамагнитного резонанса двумерных электронов проводимости, заключенных в ZnO/MgZnO гетеропереход, было изучено вблизи фактора заполнения $\nu = 2$ в наклонных магнитных полях. Анализ интенсивности парамагнитного резонанса при различных ν позволил установить, что при определенном угле в окрестности $\nu = 2$ в двумерной электронной системе происходит фазовый переход, сопровождающийся масштабным изменением спиновой поляризации. При этом при ν , больших некоторого ν_c , наблюдался интенсивный парамагнитный резонанс, т.е. система оказывалась в поляризованном по спину состоянии. Если же $\nu < \nu_c$, амплитуда резонанса падала более чем на порядок, при этом спиновая поляризация основного состояния значительно уменьшалась. Непосредственно в области перехода спиновый резонанс значительно уширялся и расщеплялся на несколько независимых пиков. Такое поведение резонанса, по всей видимости, обуславливается расщеплением системы на домены с различной спиновой поляризацией.

DOI: 10.31857/S1234567821100098

Квантовый эффект Холла (КЭХ) представляет собой одно из наиболее ярких явлений в современной физике конденсированного состояния. Несмотря на то, что данный эффект был открыт несколько десятилетий назад [1], он все еще остается объектом активного изучения. Во многом это связано с тем, что квантовый эффект Холла хорошо исследован лишь в достаточно ограниченных условиях. Так, до сих пор нет полного понимания физики данного явления в режиме, когда характерная энергия электрон-электронного взаимодействия превосходит расщепление между уровнями Ландау – циклотронную энергию. Такой режим реализуется, например, в двумерных электронных системах с малым циклотронным расщеплением, малость которого обусловлена большой эффективной массой носителей заряда. В рамках данной работы спиновые свойства одной из таких структур, а именно ZnO/MgZnO гетеропереходов [2, 3], были изучены вблизи четных факторов заполнения в режиме квантового эффекта Холла.

Сильное электронное взаимодействие существенно модифицирует практически все физические свойства двумерной электронной системы, в том числе и

спиновые. Ярким примером таких изменений является переход системы из парамагнитного состояния в ферромагнитное уже в нулевом магнитном поле. Подобный эффект был впервые предложен Стонером [4] и позже подтвержден численными расчетами [5]. По аналогии, в условиях сильного взаимодействия в режиме КЭХ возможен переход основного состояния системы вблизи четных факторов заполнения из немагнитного в полностью поляризованное по спину. При этом возникает особенность в продольном магнитосопротивлении двумерного электронного канала, а также в его магнитооптических свойствах. В рамках данной работы такой переход изучался альтернативной методикой, а именно посредством электронного парамагнитного резонанса (ЭПР). Было показано, что спиновая поляризация при таком переходе претерпевает крупномасштабную модификацию, а система разбивается на домены.

В качестве основной экспериментальной методики был выбран один из наиболее продуктивных подходов по изучению физики спина в различных материальных системах, в том числе и в низкоразмерных полупроводниковых структурах [6–8] – метод электронного парамагнитного резонанса. Парамагнитный резонанс электронов в режиме КЭХ подразумевает переход электрона с нижнего спин-

¹⁾e-mail: shchepetilnikov@issp.ac.ru

расщепленного подуровня Ландау на верхний подуровень при поглощении кванта электромагнитного излучения. Возбужденный электрон и оставшаяся на нижнем подуровне дырка образуют связанное состояние – спиновой экситон [9]. Возбуждение описанного типа активно изучалось в ZnO/MgZnO гетеропереходах ранее, в том числе и в режиме квантового эффекта Холла вблизи ферромагнитного перехода около четных факторов заполнения, при помощи комбинационного рассеяния света (КРС) [10–15]. Такой подход имеет ряд существенных отличий в сравнении с методикой ЭПР. Так, КРС подразумевает резонансное неупругое рассеяние света и, таким образом, амплитуда детектируемого сигнала может зависеть от длины волны возбуждающего лазера (см., например, рис. 2 в работе [11]). Более того, в структуpax ZnO/MgZnO методом KPC практически невозможно отследить эволюцию ширины и формы резонансной линии, отвечающей спиновому экситону, из-за существенно ограниченной разрешающей способности используемых спектрометров [10]. Методика ЭПР свободна от этого недостатка, что дает возможность с хорошей точностью изучать резонансные линии суб-мТ ширины и, как будет показано ниже, позволяет разрешить в том числе вклад доменной структуры в форму линий ЭПР. Также различаются и волновые вектора k используемого электромагнитного излучения. Так, при КРС типичные значения k составляют $0.1/l_b$, где $l_b = \sqrt{\hbar/eB}$ представляет собой магнитную длину. В методике ЭПР характерные значения kl_b составляют $10^{-4} - 10^{-5}$, что позволяет изучать свойства системы на существенно больших масштабах. Таким образом, несмотря на значительный объем исследований спиновых экситонов, выполненных посредством KPC в ZnO/MgZnO гетеропереходах, изучение спиновых свойств таких материальных систем посредством ЭПР представляет собой актуальную и интересную задачу.

Эксперименты проводились на высококачественном ZnO/MgZnO гетеропереходе, выращенном посредством молекулярно-лучевой эпитаксии. Образец имел квадратную форму с омическими контактами к двумерной системе расположенными по краям образца в геометрии ван дер Пау (см. вставку к рис. 1а). Для формирования контактов к двумерному слою использовалось вжигание индия. Низкотемпературные значения двумерной плотности электронов и подвижности составляли $n = 2.1 \cdot 10^{11}$ см⁻² и $\mu = 4 \cdot 10^5$ см²/Вс. Образец монтировался на подставку таким образом, чтобы нормаль к его поверхности образовывала угол θ с внешним магнитным полем. Измерения проводились в жидком гелии-3, пары которого откачивались, так что температура образца составляла T = 0.5 К. Микроволновое излучение подводилось к образцу по сверхразмерному волноводу. В качестве источников излучения выступали блоки умножения частоты, сопряженные с микроволновым генератором.

Детектирование парамагнитного резонанса двумерных электронов проводимости осуществлялось по изменению продольного магнитосопротивления образца R_{XX} при поглощении микроволнового излучения. Такой подход был впервые предложен в 1983 г. [6]. При этом ЭПР детектируется как пик в R_{XX} при развороте магнитного поля и фиксированной частоте микроволнового излучения. Для увеличения соотношения сигнал-шум использовалась метолика двойного синхронного детектирования, принцип работы которой подробно описан в наших предыдущих публикациях [16–18]. Отметим, что форма и амплитуда наблюдаемых резонансных пиков не зависела от скорости разворота магнитного поля, а значит, эффект динамической поляризации ядер [7] не существенен в условиях эксперимента.

Типичное магнитосопротивление R_{XX} образца, измеренное при $\theta = 35^{\circ}$, приведено на рис. 1а. Положение нескольких первых минимумов осцилляций Шубникова-де Гааза отмечены на рис. 1а. При определенных значениях угла θ вблизи четных факторов заполнения появляется острый пик. Данный эффект хорошо заметен на рис. 1b, где показано продольное сопротивление образца при различных $\theta = 0^{\circ}$, 22.5° , 35° в окрестности $\nu = 2$. На рисунке 1с особенность в R_{XX} , наблюдающуюся при $\theta = 22.5^{\circ}$, показана в увеличенном виде и при существенно меньшей скорости разворота магнитного поля. Стрелкой отмечено положение такой особенности. Появление описанного пика обычно связывают с ферромагнитным фазовым переходом, возникающим при пересечении спиновых подуровней Ландау с разным индексом и проекцией спина (см. рис. 1d). Наклонные магнитные поля способствуют такому пересечению, поскольку при фиксированном факторе заполнения увеличение угла наклона θ приводит к росту расщепления между спиновыми подуровнями и не меняет циклотронную щель между уровнями Ландау. Такая модель, без сомнения, является значительным упрощением, поскольку все эффекты электронэлектронного взаимодействия учитываются лишь за счет приписывания электрону перенормированных эффективной массы и фактора Ланде электрона. Энергии спинового и циклотронного расщепления, определяющие порядок следования уровней, оказываются существенно перенормированными и очень

Рис. 1. (Цветной онлайн) (a) – Типичная зависимость продольного сопротивления двумерного канала от магнитного поля при угле наклона поля $\theta = 35^{\circ}$. Концентрация двумерных электронов составляла $n = 2.1 \cdot 10^{11}$ см⁻². Температура образца составляла 0.5 К. На вставке – схематичное изображение образца и его ориентации относительно внешнего магнитного поля. (b) – Минимум осцилляций Шубникова–де Гааза вблизи $\nu = 2$ при трех разных углах наклона магнитного поля, $\theta = 0^{\circ}$, 22.5°, 35°. (c) – Особенность, наблюдаемая вблизи фактора заполнения $\nu = 2$, при $\theta = 22.5^{\circ}$. Стрелкой отмечено положение особенности. (d) – Ожидаемый порядок следования уровней Ландау и их заполнение при различных углах наклона θ

сильно зависят от двумерной плотности электронов n [10, 19, 20]. Как следствие, угол, при котором наблюдается ферромагнитный переход, определяется величиной n, и при низких плотностях такой переход происходит уже при $\theta = 0^{\circ}$. В области перехода, как считается, система разбивается на домены с разной спиновой поляризацией, границы между которыми эффективно рассеивают электроны проводимости. Как следствие, продольное сопротивление системы возрастает. Появление такого пика в R_{XX} позволяет установить положение перехода по магнитному полю и двумерной плотности электронов, однако

Рис. 2. (Цветной онлайн) (a) и (b) – Типичные пики ЭПР, измеренные в окрестности фактора заполнения $\nu = 2$ по разные стороны от ферромагнитного перехода и при частотах электромагнитного излучения f = 126.25 GHz и 125.25 GHz, соответственно. Угол наклона поля составлял $\theta = 22.5^{\circ}$. (c) – Зависимость интегральной амплитуды ЭПР от фактора заполнения для двух углов, $\theta = 22.5^{\circ}$ (пустые синие круги) и $\theta = 35^{\circ}$ (красные заполненные круги). Данные для $\theta = 35^{\circ}$ смещены вверх для наглядности, а пунктирные линии задают для них положения нуля. Красная вертикальная стрелка задает положение особенности в сопротивлении, наблюдаемую в окрестности $\nu = 2$, а горизонтальные стрелки указывают на точки, соответствующие пикам на панелях (a) и (b). Температура образца составляла T = 0.5 K

не позволяет отследить непосредственно эволюцию спиновой поляризации системы и формирование доменной структуры, а также оценить масштаб этих доменов. Рассмотрим поведение ЭПР вблизи описанного ферромагнитного перехода. Типичные пики ЭПР, измеренные вблизи $\nu = 2$ по разные стороны от перехода при $\theta = 22.5^{\circ}$, показаны на рис. 2а и b. Характер-

ные факторы Ланде, извлекаемые из положения пиков ЭПР, составляют $q \approx 1.96$ и являются существенно одночастичными в силу теоремы Лармора. Соответствующие частоты микроволнового излучения указаны возле каждого резонансного пика. Хорошо видно, что форма пиков далека от Лоренцевой. В таких условиях аппроксимация сигнала какой-либо формулой не имеет смысла, поэтому для характеризации интенсивности ЭПР использовался интегральный подход. Фоновый нерезонансный сигнал аппроксимировался полиномом в некоторой области магнитных полей вокруг пика ЭПР, сама резонансная линия в эту область не входила. Учет фона позволял осуществлять интегрирование амплитуды по модулю только по резонансному контуру. Применимость такого подхода была проверена на полученных вблизи нечетных факторов заполнения пиках ЭПР, которые имели Лоренцеву форму.

Итоговая зависимость интегральной амплитуды парамагнитного резонанса, полученной при θ = = 22.5°, показана на рис. 2с синими пустыми кругами. Горизонтальными стрелками отмечены точки, соответствующие пикам на панелях (a) и (b) того же рисунка. Вертикальная стрелка обозначает положение пика в R_{XX} , продемонстрированного на рис. 1с. Хорошо видно, что интенсивность ЭПР по разные стороны от фазового перехода отличается на порядок, таким образом, можно заключить, что спиновая поляризация системы претерпевает крупномасштабные изменения при таком переходе. Действительно, в немагнитном состоянии, когда спиновая поляризация системы равна нолю, переходы электрона между двумя спиновыми подуровнями оказываются подавлены из-за отсутствия свободных мест на верхнем подуровне (см. рис. 1d). Эффект подавления ЭПР в номинально немагнитной фазе становится еще очевиднее, если сравнить зависимость амплитуды ЭПР от фактора заполнения для большего угла наклона $\theta = 35^{\circ}$, показанной на рис. 2с. При таком угле наклона состояние системы, как ожидается [10], должно быть ферромагнитным в широкой окрестности $\nu = 2$. При нулевом θ наблюдался крайне слабый пик ЭПР. Отметим, что наличие большого количества ферромагнитных доменов малого размера может служить эффективными рассеивателями спиновых возбуждений и дополнительно подавлять ЭПР в номинально парамагнитной фазе.

Рассмотрим теперь как наличие доменной структуры с характерным размером ξ скажется на пиках ЭПР. Наличие неоднородностей спиновой плотности такого масштаба позволяет не сохранять импульс на масштабах \hbar/ξ , при этом из-за наличия квадратич-

Письма в ЖЭТФ том 113 вып. 9-10 2021

ной дисперсии у спиновой волны $E = g\mu_B B + \alpha (kl_b)^2$ следует ожидать уширения резонансных пиков и даже разбиения их на несколько независимых пиков, что и наблюдается на эксперименте. Здесь $q\mu_B B$ – величина одночастичного зеемановского расщепления, g – фактор Ланде, μ_B – магнетон Бора, а k – волновой вектор и в условиях образования доменов $k \sim 1/\xi$. Тогда уширение пика δB можно оценить как $\delta B = \frac{\alpha (l_b / \xi)^2}{g \mu_B}$. В условиях эксперимента $\delta B \sim 2 \,\mathrm{MTr}$, а величина α была получена в работах [21, 22]. С учетом этих данных характерный размер домена составит $\xi \sim 100 l_b \sim 1$ мкм. Отметим, что такого расщепления ЭПР не наблюдается в номинально ферромагнитной фазе, что указывает на хорошо упорядоченную фазу. Кроме того, такое расщепление отсутствует вблизи нечетных факторов заполнения, основное состояние которых представляет собой квантово-холловский ферромагнетик, а значит, наблюдаемое измерение формы ЭПР не связано с неоднородностью двумерной плотности в образце.

заключение, спиновый резонанс двумер-В электронов проводимости, заключенных в ных ZnO/MgZnO гетеропереход, исследовался в наклонных магнитных полях в режиме квантового эффекта Холла в окрестности $\nu = 2$. По эволюции интенсивности спинового резонанса при изменении фактора заполнения системы было обнаружено, что при определенном угле наклона поля основное состояние системы претерпевает фазовый переход, сопровождающийся масштабным изменением спиновой поляризации. При этом в ферромагнитном состоянии наблюдается интенсивный спиновый резонанс, амплитуда которого существенно снижается в парамагнитной фазе. Непосредственно в области перехода спиновый резонанс уширяется и расщепляется на несколько независимых пиков. Такое поведение резонанса, по всей видимости, обуславливается расщеплением системы на домены с различной спиновой поляризацией.

Работа была выполнена при поддержке Российского научного фонда (грант # 20-72-10097). Авторы благодарны Дж. Фалсон (J. Falson) за предоставленные для исследования гетероструктуры.

- 1. K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).
- V. E. Kozlov, A. B. Van'kov, S. I. Gubarev, I. V. Kukushkin, V. V. Solovyev, J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, M. Kawasaki, and J. H. Smet, Phys. Rev. B **91**, 085304 (2015).
- J. Falson and M. Kawasaki, Rep. Prog. Phys. 81, 056501 (2018).

- E. C. Stoner, Ferromagnetism. Rep. Prog. Phys. 11, 43 (1947).
- N. D. Drummond and R. J. Needs, Phys. Rev. Lett. 102, 126402 (2009).
- D. Stein, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).
- A. Berg, M. Dobers, P.R. Gerhardts, and K. von Klitzing, Phys. Rev. Lett. 64, 2563 (1990).
- M. Dobers, K. von Klitzing, and G. Weimann, Phys. Rev. B 38, 5453 (1988).
- C. Kallin and B.I. Halperin, Phys. Rev. B 30, 5655 (1984).
- A. B. Van'kov, B. D. Kaysin, and I. V. Kukushkin, Phys. Rev. B 96, 235401 (2017).
- A. B. Van'kov, B. D. Kaysin, and I. V. Kukushkin, Phys. Rev. B 98, 121412(R) (2018).
- A.B. Van'kov, B.D. Kaysin, S. Volosheniuk, and I.V. Kukushkin, Phys. Rev. B 100, 041407(R) (2019).
- A.B. Van'kov and I.V. Kukushkin, JETP Lett. 113, 102 (2021).
- A. B. Van'kov, B. D. Kaysin, and I. V. Kukushkin, JETP Lett. 107, 106 (2018).

- B. D. Kaysin, A. B. Vankov, and I. V. Kukushkin, JETP Lett. **112**, 53 (2020).
- A. V. Shchepetilnikov, D. D. Frolov, V. V. Solovyev, Yu. A. Nefyodov, A. Großer, T. Mikolajick, S. Schmult, and I. V. Kukushkin, Appl. Phys. Lett. **113**, 052102 (2018).
- A. V. Shchepetilnikov, D. D. Frolov, Yu. A. Nefyodov, I. V. Kukushkin, L. Tiemann, C. Reichl, W. Dietsche, and W. Wegscheider, JETP Lett. **108**, 481 (2018).
- A. V. Shchepetilnikov, A. R. Khisameeva, Y. A. Nefyodov, and I. V. Kukushkin, JETP Lett. 110, 599 (2019).
- K. Vakili, Y. P. Shkolnikov, E. Tutuc, E. P. De Poortere, and M. Shayegan, Phys. Rev. Lett. **92**, 226401 (2004).
- D. Maryenko, J. Falson, Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Phys. Rev. B 90, 245303 (2014).
- S. Dickmann and B.D. Kaysin, Phys. Rev. B 101, 235317 (2020).
- A. B. Van'kov and I. V. Kukushkin, Phys. Rev. B 102, 235424 (2020).

Coalescence of Andreev bound states on the surface of a chiral topological semimetal

V. D. Esin, Yu. S. Barash, A. V. Timonina, N. N. Kolesnikov, E. V. Deviatov¹⁾

Institute of Solid State Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Russia

Submitted 5 April 2021 Resubmitted 20 April 2021 Accepted 20 April 2021

DOI: 10.31857/S1234567821100104

Recently, chiral topological semimetals have been predicted [1, 2] as natural generalization of Weyl semimetals. They are characterized by simultaneously broken mirror and inversion symmetries and non-zero Chern numbers. In topological semimetals, the nontrivial topology results in extensive Fermi arcs connecting projections of bulk excitations on the side surface. In a chiral topological semimetal there is only one pair of chiral nodes of opposite Chern numbers with large separation in momentum space. This leads to extremely long surface Fermi arcs [3], in sharp contrast to Weyl semimetals, which have multiple pairs of Weyl nodes with small separation.

Chiral topological semimetals can be realized, in particular, in a family of transition metal silicides with a chiral crystal structure, including CoSi, RhSi, RhGe, and CoGe single crystals, where CoSi is the mostly investigated material.

In proximity to a superconductor, topological materials exhibit non- trivial physics that can in various cases result in topological superconductivity and existence of Majorana modes. A proximity-induced superconductivity in chiral topological semimetals with multifold fermions, such as CoSi, has been studied until now neither experimentally nor theoretically. Although, a superconducting state allow the existence of topological superconductivity with surface Majorana fermions [4] in a doped chiral semimetal interfaced with the undoped one.

Here, we investigate the magnetic field dependence of Andreev transport through a region of proximityinduced superconductivity in CoSi chiral topological semimetal. We observe sharp subgap peaks, which are usually ascribed to Andreev bound state (ABS) positions. Evolution of these peaks depends on the magnetic field orientation: they are moving together to nearlyzero bias position for parallel to the CoSi flake surface magnetic fields, while there is only monotonic peaks suppression in normal magnetic fields. Also, zero-bias dV/dI resistance value is perfectly stable in parallel magnetic field. These effects are qualitatively similar for In and Nb superconducting leads, so they reflect properties of a proximized CoSi surface.

The behavior of the peaks with increasing in-plane magnetic field can be interpreted as ABSs coalescence due to the joined effect of spin-orbit coupling (SOC) and Zeeman interaction. The effect is known for proximized semiconductor nanowires [5]. The observed magnetic field anisotropy can be associated with the Zeeman interaction of the Fermi arcs states on (001) surface in CoSi, which have recently been predicted to be in-plane spin polarized [6].

Observation of well defined superconducting gap is a direct confirmation of Andreev regime [7] of transport for both type junctions. In the Andreev regime, different subgap dV/dI(V) features are known for finite-size junctions [8]. The pronounced wide central structure in dV/dI reflects the proximity-induced gap, e.g. in the topological surface state [9]. Shallow oscillations originate from Tomasch and MacMillan–Rowell geometrical resonances or multiple Andreev reflection. In contrast, sharp subgap peaks are usually associated with Andreev bound states [8]. It is important, that these features (superconducting gap, oscillations, ABSs) can appear either as dI/dV conductance peaks or dV/dI resistance peaks, depending on the experimental configuration [9].

Our main experimental result is the difference in the ABS evolution for two different orientations of magnetic field, as it is demonstrated in Fig. 1. We trace dV/dI resistance peaks as the ABS positions, following [8] due to the similar experimental setup.

If the field is oriented normally to the flake's plane, no special traces can be observed for ABS resonances, as it is shown by colormap in Fig. 1a and by the dV/dI(I = 0) magnetic field scan in Fig. 1b. This behavior is usual for the superconductivity suppression in magnetic field [7].

In contrast, the zero-bias value dV/dI(I = 0) is stable in parallel magnetic field, while the width of the central region is gradually decreasing. Subgap ABS peaks

Fig. 1. (Color online) (a) – Detailed evolution of dV/dI(V) level in normal magnetic field for Nb-CoSi-Nb junction. No special traces can be observed for ABS. (b) – dV/dI(I = 0) level is monotonicly increasing in normal magnetic field scan for the Nb-CoSi-Nb junction (main field) and for the In-CoSi-In one (inset). (c) – Subgap ABS peaks monotonicly come to nearly-zero position in parallel magnetic field, they are coalescing together at approximately 2 T, as depicted by yellow dashed lines. (d) – Zero-bias level dV/dI(I = 0) is stable in parallel magnetic field below 2 T for the Nb-CoSi-Nb junction (main field) and below 40 mT for the In-CoSi-In one (inset)

monotonicly come to nearly-zero position, they are coalescing together at approximately 2 T, see Fig. 1c. The stability of the zero-bias level dV/dI(I = 0) below 2 T is also demonstrated by the dV/dI(I = 0) magnetic field scan in Fig. 1d for parallel magnetic field.

We wish to thank V. T. Dolgopolov for fruitful discussions, and S. S. Khasanov for X-ray sample characterization.

We gratefully acknowledge financial support partially by the Russian Foundation for Basic Research (project # 19-02-00203), and RF State task.

Full text of the paper is published in JETP Letters journal. DOI: 10.1134/S0021364021100015

 B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Science 353, aaf5037 (2016).

- P. Tang, Q. Zhou, and Sh.-Ch. Zhang, Phys. Rev. Lett. 119, 206402 (2017).
- Zh. Rao, H. Li, T. Zhang et al. (Collaboration), Nature 567, 496 (2019).
- 4. Y. Huang and Sh.-K. Jian, arXiv:2009.04654.
- Ch.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 96, 075161 (2017).
- D. A. Pshenay-Severin, Y. V. Ivanov, A. A. Burkov, and A. T. Burkov, J. Phys. Condens. Matter **30**, 135501 (2018).
- M. Tinkham, Introduction to Superconductivity, 2-nd ed., McGraw–Hill, N.Y. (1996).
- L. Banszerus, F. Libisch, A. Ceruti, S. Blien, K. Watanabe, T. Taniguchi, A. K. Hüttel, B. Beschoten, F. Hassler, and Ch. Stampfer, arXiv:2011.11471.
- J. Wiedenmann, E. Liebhaber, J. Kübert, E. Bocquillon, Ch. Ames, H. Buhmann, T. M. Klapwijk, and L. W. Molenkamp, Phys. Rev. B 96, 165302 (2017).

Поглощение микроволнового излучения двумерными электронными системами, связанное с возбуждением размерных резонансов бернштейновских мод

С. И. Дорожкин⁺¹⁾, А. А. Капустин⁺, В. Уманский^{*}, Ю. Х. Смет[×]

+Институт физики твердого тела РАН, 142432 Черноголовка, Россия

*Department of Physics, Weizmann Institute of Science, 76100 Rehovot, Israel

 \times Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Поступила в редакцию 10 апреля 2021 г. После переработки 21 апреля 2021 г. Принята к публикации 22 апреля 2021 г.

На образцах гетероструктур GaAs/AlGaAs с двумерной электронной системой под микроволновым излучением частоты 130–170 ГГц выполнены исследования зависимости амплитуд осцилляций Шубникова-де Гааза от магнитного поля. Обнаружены две особенности подавления амплитуд осцилляций излучением, имеющие резонансный характер по полю. Один из резонансов возникает в магнитном поле, соответствующем второй гармонике циклотронного резонанса, в то время как существование, положение и амплитуда второго резонанса более сложным образом зависят от частоты излучения. Обнаруженное резонансное поглощение излучения на второй гармонике, по-видимому, является причиной аномального пика магнетосопротивления, недавно наблюдавшегося около этой гармоники. Указанные резонансы могут быть объяснены возбуждением в ограниченном образце стоячих магнитоплазменных волн с одинаковым волновым вектором, но соответствующих двум различным областям их закона дисперсии: почти бездисперсионному участку бернштейновской моды и циклотронной магнитоплазменной моде.

DOI: 10.31857/S1234567821100116

Фотоотклик на микроволновое излучение, наблюдаемый в магнетосопротивлении двумерных электронных систем (ДЭС), демонстрирует целый ряд ярких эффектов. Прежде всего упомянем индуцированные излучением осцилляции магнетосопротивления (MIRO, microwave induced resistance oscillations в англоязычной литературе) [1, 2], а также состояния с близкими к нулю значениями диссипативных компонент тензоров магнетосопротивления [3-5] и магнетопроводимости [6], возникающие в минимумах MIRO. Объяснение этих эффектов оказалось возможным в терминах невзаимодействующих электронов. Так, одним из механизмов возникновения MIRO является формирование под облучением неравновесной функции распределения электронов, имеющей немонотонную зависимость от энергии [5, 7–9]. Возникновение MIRO считается не связанным с какими-либо резонансами в поглощении микроволнового излучения. Другим хорошо известным типом фотоотклика являются максимумы сопротивления [10, 1, 11], вызванные нагревом электронной

системы при возбуждении в ней размерных магнитоплазменных резонансов (РМПР), связанных с формированием стоячих плазменных волн в образцах конечных размеров. РМПР сосуществуют с MIRO [1] и даже могут наблюдаться в состояниях с малой диссипацией [12]. Микроволновое поглощение при размерных магнитоплазменных резонансах может быть зарегистрировано по возрастанию температуры электронного газа, например, при измерениях спектров фотолюминесценции [13, 14] или амплитуды осцилляций Шубникова-де Гааза (ОШДГ) [15], а также по изменению добротности микроволновых резонаторов [16, 17]. Регистрация резонансного поглощения такими методами не связана с температурной зависимостью неосциллирующей части магнетосопротивления. В образцах с очень высокой подвижностью электронов и большим периодом ОШДГ несколько узких РМПР могут наблюдаться в пределах одной осцилляции [18]. Наблюдавшиеся до сих пор РМПР были связаны с магнитоплазменными волнами, описываемыми широко известным законом дисперсии:

¹⁾e-mail: dorozh@issp.ac.ru

$$\omega_{\rm mp} = \sqrt{\omega_c^2 + \frac{2\pi e^2 n_{\rm s} k}{m^* \epsilon_{\rm eff}}}.$$
 (1)

Здесь ω_{mp} – круговая частота магнитоплазменной волны с волновым вектором $k, \, \omega_c = eB/m^*c$ – циклотронная частота электронов с эффективной массой m^* в магнитном поле B, n_s – плотность двумерных электронов, ε_{eff} – эффективная диэлектрическая проницаемость среды, окружающей ДЭС. Во многих случаях $\varepsilon_{\rm eff}$ неплохо описывается полусуммой диэлектрических проницаемостей подложки и вакуума. Для гетероструктур GaAs/AlGaAs обычно используются значения $m^* = 0.067 m_{\rm e}$ и $\varepsilon_{\rm eff} = 6.9$. Возбуждения ДЭС со спектром (1) носят название циклотронных магнитоплазмонов (ЦМП). Для часто встречающейся в эксперименте планарной геометрии образцов вида холловских мостиков ширины w в первом приближении положения РМПР соответствуют значениям волнового вектора $k_n = n\pi/w$, где n = 1, 2, ...(относительно отклонений от этого соотношения см. результаты численного расчета [19]). Отметим также недавнее наблюдение [20] стоячих магнитоплазменных волн со спектром, отличным от (1) в силу наличия на поверхности гетероструктуры металлической полоски, частично покрывающей ДЭС.

Неожиданным результатом [21, 22] оказалось наблюдение под микроволновым излучением частоты f узких пиков магнетосопротивления вблизи второй гармоники циклотронного резонанса (ЦР), т.е., при $2\pi f = 2\omega_c$, где они накладываются на более плавные максимумы MIRO, расположенные примерно в тех же магнитных полях. Происхождение таких пиков связывается с сильной температурной зависимостью сопротивления исследованных образцов в соответствующей области магнитных полей и резонансным нагревом электронной системы. Очевидно, что при заданных $n_{\rm s}$ и k из формулы (1) можно получить совпадение частот РМПР и второй гармоники ЦР только для одного значения частоты f, тогда как эффект наблюдается в довольно широком непрерывном диапазоне частот. Для объяснения резонансного поглощения микроволнового излучения на второй гармонике циклотронного резонанса было предложено несколько альтернативных механизмов. Это [23] возникновение плазменной неустойчивости при попадании частоты излучения в щель между первой и второй бернштейновскими магнитоплазменными модами [24, 25], находящуюся вблизи удвоенной частоты ЦР. Реализация такой неустойчивости оказывается возможной вблизи металлического контакта к ДЭС. Другое недавно предложенное объяснение [26] связывается с высокочастотным резонансом [27] при вязком течении сильновзаимодействующих двумерных электронов в магнитном поле. В данной работе на основании измерений ОШДГ под микроволновым облучением обнаружено сосуществование РМПР с резонансным поглощением излучения вблизи второй гармоники ЦР. Показано, что объяснение двух резонансов возможно на основании полного спектра магнитоплазменных волн в ДЭС, образованного бернштейновскими модами [24]. Это объяснение состоит в формировании размерных магнитоплазменных резонансов двух типов: обычный РМПР, сформированный магнитоплазменными волнами со спектром (1), и резонанс, соответствующий почти бездисперсионным участкам спектра около второй гармоники ЦР (см. рис. 2а). Ниже мы будем называть этот резонанс размерным бернштейновским резонансом (РБР).

Измерения были выполнены на двух образцах, изготовленных из одной гетероструктуры GaAs/AlGaAs, и показали одинаковые результаты. Двумерные электронные системы создавались в квантовых ямах GaAs шириной 30 нм за счет селективного легирования кремнием в слой AlGaAs. После засветки от красного фотодиода при температуре около 4 К плотность электронов составляла $n_{\rm s} = 2.7 \cdot 10^{11} \, {\rm cm}^{-2}$, а подвижность при температуре $0.5 \,\mathrm{K}$ равнялась $6.8 \cdot 10^6 \,\mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c}$. Образцы имели планарную геометрию холловских мостиков шириной w = 50 мкм и расстоянием между потенциальными контактами L = 300 мкм. Образцы помещались внутри сверхразмерного прямоугольного волновода сечением $6.5 \times 13.0 \,\mathrm{mm^2}$ (WG19) и погружались в жидкий ³Не, температура которого во время измерений поддерживалась равной 0.5 К. Плоскость ДЭС ориентировалась перпендикулярно оси волновода, совпадавшей с направлением магнитного поля. Непрерывное микроволновое излучение диапазона частот 130-170 ГГц генерировалось лампой обратной волны и проходило через аттенюатор типа WG28, соответствующий диапазону частот 90-140 ГГц. Мощность излучения менялась при изменении параметров аттенюатора, но это изменение для части использованного диапазона частот неточно соответствовало калибровке аттенюатора. Ниже ослабление излучения характеризуется показаниями аттенюатора.

На рисунке 1а представлены кривые магнетосопротивления, измеренные в отсутствие микроволнового излучения и под облучением частоты $f = 168 \, \Gamma \Gamma \mu$ различной мощности. Высокочастотные осцилляции на всех кривых являются ОШДГ. Низкочастотные осцилляции (MIRO) появляются под облучением (кривые 2 и 3) в более слабых полях. В дан-

Рис. 1. (а) – Удельное магнетосопротивление ρ_{xx} , измеренное в отсутствие облучения (кривая 1) и под облучением частоты 168 ГГц двух различных мощностей (кривые 2 и 3, сдвинутые вверх на 7 и 14 Ом/квадрат соответственно). Около кривых 2 и 3 указано номинальное ослабление аттенюатора (подробнее см. текст). Между кривыми 1 и 2 показаны их фрагменты, растянутые в 3 раза вдоль вертикальной оси и наложенные друг на друга для наглядности изменения амплитуд ОШДГ в соответствующем интервале магнитных полей. Фрагмент кривой 2 в увеличенном в 3 раза масштабе, но со сглаженными ОШДГ показан над ней. (b) – Зависимости от магнитного поля амплитуд ОШДГ под облучением, нормированные на их величины в отсутствие облучения, для двух мощностей излучения. Треугольниками с вершинами вверх (вниз) представлены результаты для амплитуд осцилляций в их максимумах (минимумах). Сплошные вертикальные линии отмечают положения циклотронного резонанса и его второй гармоники для электронов с эффективной массой $m^* = 0.067 m_{\rm e}$. Пунктирная вертикальная прямая отмечает магнитное поле, в котором наблюдается максимальное подавление амплитуды ОШДГ и максимум сопротивления при большой мощности излучения (кривая *3*)

ной работе мы прежде всего рассмотрим подавление ОЩДГ в результате облучения. Этот эффект хорошо заметен уже при небольшой мощности излучения (кривая 2) и имеет резонансный характер. Этот характер наиболее ярко проявляется в почти полном

Письма в ЖЭТФ том 113 вып. 9-10 2021

подавлении одной осцилляции, отмеченной треугольником на кривой 2. Результаты анализа подавления других осцилляций показаны на рис. 1b. Для всех наблюдаемых ОШДГ влияние облучения на их амплитуды A_n характеризовалось отношением амплитуд осцилляций под облучением $A_{\rm n}^{(\omega)}$ и без облучения A_n^0 . Нормированные значения $A_{norm,n} = A_n^{(\omega)} / A_n^0$ приведены на рис. 1b для двух значений мощности. Из этого рисунка очевидно существование двух областей магнитных полей (R1 и R2), в которых происходит наибольшее подавление амплитуды ОШДГ, имеющее резонансный вид. Положение глубокого минимума (область R1), отмеченного пунктирной линией, будет обсуждаться ниже, левый же минимум (область R2) расположен около второй гармоники ЦР, где $2\pi f = 2\omega_{\rm c}$. Отметим разное поведение под облучением неосциллирующей части магнетосопротивления в этих областях. В области R1 она сначала резко уменьшается (кривая 2), а при дальнейшем возрастании мощности излучения образует максимум сопротивления (кривая 3). В области R2 на кривой 2 подавление амплитуды ОШДГ сопровождается возникновением узкого пика, который при дальнейшем возрастании мощности сливается с ближайшим максимумом MIRO (кривая 3). Два минимума на кривых $A_{\text{norm}}(B)$, очевидно, отражают две резонансные особенности в поглощении микроволнового излучения. Мы связываем их с возбуждением двух размерных магнитоплазменных резонансов, соответствующих стоячим волнам с одним и тем же волновым вектором, но относящимся к разным частям спектра магнитоплазмонов.

В данной работе, интерпретируя наши экспериментальные результаты, мы рассмотрим более полный по сравнению с (1) закон дисперсии магнитоплазменных волн в ДЭС, образованный бериштейновскими модами [24], который в квазистатическом пределе ($\omega < ck/\sqrt{\varepsilon_{\rm eff}}$) и отсутствии рассеяния электронов является решением следующего уравнения:

$$1 - \frac{4e^2m^*}{\hbar^2\epsilon_{\rm eff}k} \sum_{n=1}^{\infty} \frac{n^2 J_{\rm n}^2(kR_{\rm c})}{(\omega/\omega_{\rm c})^2 - n^2} = 0.$$
 (2)

Здесь J_n – функция Бесселя порядка $n, R_c = V_F/\omega_c$ – циклотронный радиус электронов на уровне Ферми вырожденной ДЭС, V_F – фермиевская скорость. Как будет видно ниже, при наших экспериментальных параметрах этот закон дисперсии фактически включает в себя дисперсию (1). Магнитодисперсия, полученная решением уравнения (2) для волнового вектора $k = \pi/w$ без использования свободных параметров, показана на рис. 2а. Она состоит из системы непересекающихся ветвей (бернштейновских мод) с

Рис. 2. (а) – Магнитодисперсия трех нижних бериштейновских мод, полученная в результате численного решения уравнения (2) для значения волнового вектора $k = \pi/w$ (серые кривые разной интенсивности, обозначенные В1, В2 и В3). Черными точками показана магнитодисперсия ЦМП для того же волнового вектора, определяемая уравнением (1). Сплошные прямые, описываемые соотношением $\omega/\omega_c = (2\pi f/kV_F)kR_c$, соответствуют движению по диаграмме при сканировании магнитного поля для двух значений частоты излучения, указанных около прямых. Открытыми символами отмечены точки пересечения линии 168 ГГц с модами В1 и В2, а также линии 138 ГГц с модой В1. (b) - Распределение интенсивности микроволнового поглощения по диаграмме $(kR_c, \omega/\omega_c)$, вычисленное с использованием уравнения (3) для $\tau = 2.6 \cdot 10^{-10}$ с, определенного из величины подвижности ДЭС, и $k = \pi/w$

частотами ω , лежащими в интервалах $n < \omega/\omega_c < n + 1$. Зависимость, показанная темными точками, представляет собой магнитодисперсию ЦМП со спектром (1) и таким же волновым вектором $k = \pi/w$. При использованном значении волнового вектора и $\omega/\omega_c \neq n$ эта дисперсионная зависимость почти полностью покрывается фрагментами бернштейновских мод, отличными от их почти горизонтальных участков. В общем случае закон дисперсии ЦМП (1) получается из уравнения (2) при малых значениях волнового вектора и частотах, достаточно удаленных от гармоник ЦР, когда в сумме, фигурирующей в

уравнении (2), существенен только первый член, а функция Бесселя первого порядка заменяется главным членом ее разложения по малому параметру kR_c. Можно показать, что для актуальных малых значений волнового вектора горизонтальные участки магнитодисперсии на рис. 2а соответствуют почти бездисперсионным зависимостям $\omega(k)$ в постоянном магнитном поле. Для малых значений волнового вектора расщепления между бернштейновскими модами очень малы. Они становятся существенными при $kR_{\rm c}\gtrsim 1$, где они наблюдались экспериментально [28, 29]. В координатах ($kR_c, \omega/\omega_c$) на рис. 2а развертка магнитного поля под облучением частоты $f = \omega/2\pi$, осуществляемая в эксперименте, соответствует движению в начало координат вдоль прямой линии с наклоном $2\pi f/kV_F$. Две такие линии (нагрузочные прямые), соответствующие частотам 168 и 138 ГГц, также приведены на рис. 2. Резонансное поглощение ожидается в точках пересечения нагрузочных прямых и линий магнитодисперсии. Такое предположение, однако, справедливо лишь в случае полного отсутствия рассеяния электронов. Как будет обсуждаться ниже, для частоты 168 ГГц и достижимых в настоящее время значений подвижности электронов в рамках используемого анализа ожидается возникновение только двух резонансов, соответствующих пересечениям нагрузочной прямой с линиями магнитодисперсии второй бернштейновской моды в точке (0.02685, 2.0068) и циклотронного магнитоплазмона в точке (0.0193, 1.45), где его магнитодисперсия совпадает с дисперсией первой бернштейновской моды. Второе из указанных пересечений соответствует обычному размерному магнитоплазменному резонансу. Первая же точка реализует размерный бернштейновский резонанс. Очевидно, что в силу почти бездисперсионного поведения бернштейновской моды около второй гармоники РБР в образцах типичных размеров будут реализовываться именно около этой гармоники.

Расчетное положение РБР хорошо согласуется с положением резонанса R2 около второй гармоники ЦР. Расчетное же положение РМПР ($\omega/\omega_c = 1.45$) несколько отличается от положения резонанса R1 на рис. 1 ($\omega/\omega_c = 1.25$). В связи с этим отметим, что в экспериментах (см., например, [10, 11]) довольно часто наблюдается аналогичное незначительное (10– 20%) отклонение наблюдаемых положений РМПР от рассчитанных для волнового вектора $k = \pi/w$. Это может быть связано со следующими факторами. Во-первых, резонансы поглощения в полосках конечной ширины могут быть сдвинуты от вычисленных в таком простом приближении [19]. Кроме того, значение эффективной диэлектрической проницаемости ε_{eff} может зависеть от реальной архитектуры гетероструктуры, особенно в случае наличия в ней сильно легированных слоев, и отличаться от обычно используемого значения $\varepsilon_{\text{eff}} = 6.9$. Отметим, что положение РБР около второй гармоники при актуальных значениях волнового вектора очень слабо зависит от отклонений параметров образца от выбранных при расчете значений, включая ширину w.

Для качественного представления о сравнительной силе наблюдаемых резонансов можно воспользоваться формулой для поглощения волны, модулированной по амплитуде вдоль плоскости ДЭС: $E_x = E \exp(i(kx - \omega t))$, полученной [30] для квазистатического случая в квазиклассическом приближении:

$$Q = E^2 \operatorname{Im} \frac{m^* e^2 \omega}{2\pi (\hbar k)^2} \left(\frac{1 - iN/\omega_c \tau}{1 - N(\omega + i/\tau)/\omega_c} + \frac{2m^* e^2}{\hbar^2 k \epsilon_{\text{eff}}} \right)^{-1}$$
(3)

Здесь

$$N = \sum_{l=-\infty}^{\infty} \frac{J_l^2(kR_c)}{(\omega + i/\tau)/\omega_c + l},$$

т – время релаксации электронов по импульсу. Отметим, что эта формула приводит к максимумам поглощения на линиях закона дисперсии, получаемых из уравнения (2), при $\omega \tau \to \infty$. Более того, уравнение (2) можно получить из уравнения (3), приравняв нулю производную $\partial Q/\partial \omega$, а затем перейдя к пределу $\omega\tau \to \infty.$ Результаты расчета поглощаемой мощности в соответствии с уравнением (3) представлены на рис. 2b. Как следует из этих результатов, наиболее сильное поглощение ожидается вдоль дисперсионной кривой циклотронного магнитоплазмона и быстро уменьшается при удалении от нее. Кроме того, как показали более подробные численные расчеты, для нашего значения подвижности электронов максимумы поглощения вдоль нагрузочных линий возникают в точках их пересечений с горизонтальными участками дисперсионных зависимостей только на второй гармонике циклотронного резонанса. На рисунке 2b этот факт проявляется в наличии около второй гармоники узких горизонтальных полос, соответствующих более высокому уровню поглощения излучения. Уменьшение же подвижности в пять раз приводит к исчезновению максимума поглощения для частоты 168 ГГц и на второй гармонике. Таким образом, существование резонансов микроволнового поглощения на гармониках циклотронного резонанса критическим образом зависит от подвижности электронов через параметр $\omega \tau$.

Необходимо, однако, отметить, что приведенные расчетные результаты для поглощаемой мощности

имеют только качественное значение для интерпретации наших результатов, так как сила осциллятора для размерных резонансов вполне может отличаться [19] от рассчитанной для случая осциллирующего с координатой высокочастотного электрического поля. Тем не менее, различие в микроволновом поглощении при РМПР и РБР, ожидаемое на основании расчета, качественно коррелирует с наблюдением, что подавление амплитуды ОШДГ на рис. 1 максимально в области R1 и заметно меньше в области R2.

Из данных на рис. 2а нетрудно видеть (см. нагрузочную прямую, соответствующую частоте 138 ГГц), что изменение частоты излучения заметно сдвигает положение РМПР по вертикальной оси ω/ω_c , не меняя положения РБР около второй гармоники ЦР. Результаты измерений для частоты 138 ГГц приведены на рис. 3. Как видно из этого рисунка, на этой час-

Рис. 3. Экспериментальные данные для частоты излучения $f = 138 \, \Gamma \Gamma \eta$, аналогичные приведенным на рис. 1 для $f = 168 \, \Gamma \Gamma \eta$

тоте доминирующим стал минимум $A_{\text{norm}}(B)$ около второй гармоники, и исчез глубокий минимум в диапазоне $1 < \omega/\omega_c < 2$, что вполне коррелирует с результатом расчета для этой частоты на рис. 2а. Отметим, что максимальное подавление ОШДГ около второй гармоники наблюдалось также в работе [31], где не получило определенной интерпретации.

Внимательное прочтение работ [21, 22] показывает, что пики сопротивления на второй гармонике циклотронного резонанса наблюдались в области частот 60–190 ГГи на образиах с подвижностью электронов, превышающей значение $10 \cdot 10^6 \, \text{см}^2 / \text{B} \cdot \text{c}$, и имеющих ширину проводящего канала холловских мостиков $w \leq 200$ мкм. Как было отмечено выше, высокая подвижность электронов может являться ключевым фактором для возникновения максимума поглощения на второй гармонике. Небольшая величина ширины канала, очевидно, способствует формированию стоячей волны при наличии рассеяния электронов. Что касается частотного диапазона, как следует из рис. 2b, максимального резонансного поглощения на второй гармонике следует ожидать для частот, не слишком отличающихся от частоты, соответствующей пересечению магнитодисперсии циклотронного магнитоплазмона и нагрузочной линии $\omega/\omega_c = kR_c\omega/kV_F$ на второй гармонике. Нетрудно получить, что это происходит на частоте $f = \omega/2\pi =$ $= (eV_F/\hbar)\sqrt{m^*/3\pi\varepsilon_{\text{eff}}w}$. Эта частота равняется 141 $\Gamma\Gamma$ ц при $n_{\rm s} = 2.7 \cdot 10^{11} \,{\rm cm}^{-2}, w = 50$ мкм, т.е., типичных значениях параметров, при которых наблюдались пики магнетосопротивления на второй гармонике. Необходимо отметить, что величина поглощения на второй гармонике может усиливаться за счет формирования РБР стоячими волнами с волновыми векторами $k_{(n+1)} = (n+1)\pi/w$ вследствие почти бездисперсионной зависимости бернштейновской моды около этой гармоники. Этот факт иллюстрируется результатами расчета магнитодисперсии для $k_2 = 2\pi/w$ и нагрузочной прямой для $f = 168 \, \Gamma \Gamma \mu$, приведенными на рис. 4. Действительно, в этом слу-

Рис. 4. Результаты расчета для $k = 2\pi/w$ магнитодисперсии двух нижних бернштейновских мод и циклотронного магнитоплазмона, а также нагрузочной прямой для $f = 168 \Gamma \Gamma$ ц. Обозначения те же, что и на рис. 2

чае резонанс ожидается только на второй гармонике и отсутствует в области частот $1 < \omega/\omega_c < 2$. Очевидно, что этот результат остается справедливым для волнового вектора $k = \pi/w_2$, соответствующего полоске шириной $w_2 = w/2$. Таким образом, представляется возможным наблюдение только одного резонанса – размерного бернштейновского резонанса на второй гармонике ЦР.

В заключение, полученные нами экспериментальные и расчетные результаты свидетельствуют о резонансном поглощении микроволнового излучения двумерными электронами на второй гармонике циклотронного резонанса в результате возбуждения стоячих волн, соответствующих двум нижним бернштейновским модам магнитоплазменных колебаний.

Авторы благодарны В. А. Волкову и И. В. Кукушкину за полезные обсуждения.

Работа выполнена в рамках госзадания Института физики твердого тела РАН. В. Уманский и Ю. Х. Смет благодарны German–Israeli Foundation for Scientific Research and Development (GIF) за поддержку.

- M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. Rev. B 64, 201311(R) (2001).
- P. D. Ye, L. W. Engel, D. C. Tsui, J. A. Simmons, J. R. Wendt, G. A. Vawter, and J. L. Reno, Appl. Phys. Lett. **79**, 2193 (2001).
- R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Jonson, and V. Umansky, Nature 420, 646 (2002).
- M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. **90**, 046807 (2003).
- 5. S. I. Dorozhkin, JETP Lett. 77, 577 (2003).
- C. L. Yang, M. A. Zudov, T. A. Knuuttila, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. **91**, 096803 (2003).
- I.A. Dmitriev, A.D. Mirlin, and D.G. Polyakov, Phys. Rev. Lett. **91**, 226802 (2003).
- I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 71, 115316 (2005).
- I.A. Dmitriev, A.D. Mirlin, D.G. Polyakov, and M.A. Zudov, Rev. Mod. Phys. 84, 1709 (2012).
- E. Vasiliadou, G. Müller, D. Heitmann, D. Weiss, K. von Klitzing, H. Nickel, W. Schlapp, and R. Lösch, Phys. Rev. B 48, 17145 (1993).
- I. V. Kukushkin, V. M. Muravev, J. H. Smet, M. Hauser, W. Dietsche, and K. von Klitzing, Phys. Rev. B 73, 113310 (2006).
- A. T. Hatke, M. A. Zudov, J. D. Watson, and M. J. Manfra, Phys. Rev. B 85, 121306 (2012).
- B. M. Ashkinadze, E. Linder, and V. Umansky, Phys. Rev. B 62, 10310 (2000).

- I. V. Kukushkin, J. H. Smet, S. A. Mikhailov, D. V. Kulakovskii, K. von Klitzing, and W. Wegscheider, Phys. Rev. Lett. 90, 156801 (2003).
- С.И. Дорожкин, А.А. Быков, И.В. Печенежский, А.К. Бакаров, Письма в ЖЭТФ 85, 705 (2007).
- S.A. Studenikin, A.S. Sachrajda, J.A. Gupta, Z.R. Wasilewski, O.M. Fedorych, M. Byszewski, D.K. Maude, M. Potemski, M. Hilke, K. W. West, and L. N. Pfeiffer, Phys. Rev. B 76, 165321 (2007).
- O. M. Fedorych, M. Potemski, S. A. Studenikin, J. A. Gupta, Z. R. Wasilewski, and I. A. Dmitriev, Phys. Rev. B 81, 201302(R) (2010).
- Q. Shi, M.A. Zudov, L.N. Pfeiffer, K.W. West, J.D. Watson, and M.J. Manfra, Phys. Rev. B 93, 165438 (2016).
- S. A. Mikhailov and N. A. Savostianova, Phys. Rev. B 71, 035320 (2005).
- А. М. Зарезин, П. А. Гусихин, В. М. Муравьев, И. В. Кукушкин, Письма в ЖЭТФ 111, 316 (2020).
- Y. Dai, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. **105**, 246802 (2010).

- A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 83, 121301(R) (2011).
- V. A. Volkov and A. A. Zabolotnykh, Phys. Rev. B 89, 121410(R) (2014).
- 24. I.B. Bernstein, Phys. Rev. 109, 10 (1958).
- 25. K. W. Chiu and J. J. Quinn, Phys. Rev. B 9, 4724 (1974).
- P.S. Alekseev and A.P. Alekseeva, Phys. Rev. Lett. 123, 236801 (2019).
- 27. P.S. Alekseev, Phys. Rev. B 98, 165440 (2018).
- E. Batke, D. Heitmann, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 54, 2367 (1985).
- И. В. Кукушкин, В. А. Волков, Двумерная электронная жидкость в сильном магнитном поле. Магнитоплазмоны, магниторотоны, композитные фермионы, Физматкнига, М. (2016).
- A. V. Chaplik and D. Heitmann, J. Phys. C: Solid State Phys. 18, 3357 (1985).
- Q. Shi, P.D. Martin, A.T. Hatke, M.A. Zudov, J.D. Watson, G.C. Gardner, M.J. Manfra, L.N. Pfeiffer, and K.W. West, Phys. Rev. B 92, 081405(R) (2015).

Текущий авторский указатель томов 111–113 ¹⁾

Abbad A. 112, 387 (364) Abbaoui S. 111, 228 (210) Afashokov Yu. Z. 112, 797 (753) AlFiky M. T. 111, 10(8) Alsobhi B. O. **113**, 326() Andjelkovic L. **113**, 236() Aziz Z. 112, 313 (290) Barkalov O. I. 111, 524 (456) Baskakov A. O. 111, 524 (456) Belyaeva T. L. 111, 483 (409); **112**, 499 (463) Benatmane S. 111, 819 (694) Bendeddouche Z. 111, 228 (210) Benstaali W. 112, 313 (290); 112, 387 (364) Bentata S. 112, 313 (290); 112, 387 (364) Bouadjemi B. 112, 313 (290); **112**, 387 (364) Boukortt A. 111, 228 (210) Burtebaev N. 111, 483 (409) Chen J. 112, 119 (117) Cherid S. 111, 819 (694) Chernodubov D. A. 112, 112 (106) Chu J. H. 113, 131 (120) Clark J. W. **111**, 86 (96); 112, 700 (657) Danilov A. N. 111, 483 (409); 112, 499 (463) Demyanova A. S. 111, 483 (409); **112**, 499 (463) Deviatov E. V. **111**, 813 (685); **113**, 390() Dmitriev A. P. 113, 132 (127) Dmitriev S. V. 111, 483 (409) Dmitriev V. V. 112, 820 (780) Dolinina D. A. **111**, 303 (268); **112**, 79 (71) Doumi B. 112, 617 (568) Dzaparova I. M. 112, 797 (753) Dzhappuev D. D. 112, 797 (753) Elsherif O. 111, 10(8)

Eltsov V. B. **111**, 462 (389); 111, 707 (600) Esin V. D. 111, 813 (685) Falcon E. 112, 799 (757) Friesen A. V. 111, 147 (129) Garifullin I. A. **113**, 210() Goncharov S. A. 111, 483 (409); 112, 499 (463) Gorbacheva E. A. 112, 797 (753) Gurov Yu. B. 111, 483 (409) Haid S. 112, 387 (364) Hamed A. M. **111**, 10(8) He X. **112**, 172 (157) Houari M. 112, 313 (290); 112, 387 (364) Inyushkin A. V. 112, 112 (106) Irkhin V. Yu. 111, 242 (230) Iskrenovic P. **113**, 236() Jansitov D. **111**, 483 (409) Japaridze G. S. **112**, 700 (657) Jin G. 111, 301 (264) Kacimi S. 111, 228 (210) Kadiri A. 111, 228 (210) Kalinovsky Yu. L. 111, 147 (129) Kamashev A. A. 113, 210() Kamenshchik A. Yu. **111**, 343 (306); 111, 485 (416) Karpikov I. S. 112, 797 (753) Khadzhiev M. M. 112, 797 (753) Khlebnikov S. V. **111**, 483 (409) Khodel V. A. **111**, 86 (96) Klimenko N. F. 112, 797 (753) Kochurin E. **112**, 799 (757) Kolesnikov N. N. **111**, 813 (685); 113, 390 () Kolganov N. 111, 623 (519) Kompaniets L. A. 112, 482 (444) Kotikov A. V. 111, 59 (67) Kudzhaev A. U. 112, 797 (753) Kukovitsky E. 113, 265 () Kurenya A. N. 112, 797 (753) Kutuzov M. S. 112, 820 (780)

Lantri T. 112, 313 (290); 112, 387 (364) Lebed A. G. 111, 249 (239) Leevik Y. S. 112, 700 (657) Lidvansky A. S. 112, 797 (753) Li L. **112**, 119 (117) Louko J. 111, 483 (409) Luo M. 112, 68 (58) L'vov V. S. **111**, 462 (389); 111, 707 (600) Lyubutina M. V. 111, 524 (456) Lyubutin I. S. **111**, 524 (456) Maslov V. A. **111**, 483 (409) Matouguia M. 112, 387 (364) Matougui M. 112, 313 (290) Mavrogordatos Th. K. 112, 304 (274) Medvedev S. A. 111, 524 (456) Mikhailova O. I. 112, 797 (753) Milenkovic M. R. **113**, 236() Mitkin P. G. **113**, 446() Mokaddem A. 112, 617 (568) Morozov An. 111, 623 (519) Msezane A. Z. 112, 700 (657) Naryshkin Yu. G. **113**, 221 () Naumov P. G. 111, 524 (456) Nikolic A. S. **113**, 236 () Ogarkova Yu. L. 111, 524 (456) Ogloblin A. A. 111, 483 (409); 112, 499 (463) Orlova N. N. 113, 390() Panov A. V. 111, 32 (36) Penionzhkevich Yu. E. 111, 483 (409) Petkov V. B. 112, 797 (753) Pikalov A. 113, 274() Remigio A. S. 113, 587 () Remil G. 112, 313 (290) Ricard G. 112, 799 (757) Romanenko V. S. **112**, 797 (753) Roy A. M. **112**, 187 (173); **113**, 263 () Rubtsov G. I. 112, 797 (753) Ryshkov N. S. 113, 390()

¹⁾В скобках указаны номера страниц английского издания для вып. 111(1)–113(2).

Sakhin V. 113, 265() Semenov A. N. 111, 50 (55) Sepper O. 111, 249 (239) Sergeev V. M. 111, 483 (409) Shabara R. M. 113, 326() Shaginyan V. R. 112, 700 (657) Shalin A. S. **111**, 303 (268); **112**, 79 (71) Shen Y. H. 112, 68 (58) Shreter Yu. G. 112, 112 (106) Simonov Yu. A. 113, 589() Skryabin Yu. N. 111, 242 (230) Sobolev Yu. G. 111, 483 (409) Soldatov A. A. 112, 820 (780) Solovyev I. V. 112, 686 (642) Sonin E. B. 111, 705 (598) Starastsin V. I. 111, 483 (409); **112**, 499 (463) Starchikov S. S. 111, 524 (456) Streltsov S. V. **112**, 686 (642) Subbotin A. V. **111**, 50 (55) Suljagic M. 113, 236() Surovtsev E. V. 112, 820 (780) Tadjer A. 112, 617 (568) Talanov Yu. 113, 265() Taldenkov A. N. **112**, 112 (106) Tan Q. 111, 301 (264); 112, 172 (157) Teitel'baum G. 113, 265() Timonina A. V. **111**, 813 (685); **113**, 390() Toneev V. D. 111, 147 (129) Troitsky S. V. 112, 797 (753) Tronconi A. 111, 485 (416) Trzaska W. H. 111, 483 (409); 112, 499 (463) Tyurin G. P. 111, 483 (409) Unatlokov I. B. 112, 797 (753) Ushakov A. V. 112, 686 (642) Vardanyan T. 111, 343 (306) Venturi G. 111, 485 (416) Volovik G. E. 111, 441 (368); Volovik G. E. **111**, 689 (582); Volovik G. E. **112**, 539 (505); Volovik G. E. **113**, 546(); **113**, 624()

Voronenkov V. V. **112**, 112 (106) Wang H. 111, 301 (264); 112, 172 (157) Xu Y. E. 113, 131 (120) Yanin A. F. 112, 797 (753) Yudin A. N. 112, 820 (780) Yulin A. V. 111, 303 (268); 112, 79 (71) Zakharov B. G. **112**, 435 (393); 112, 723 (681) Zakharov V. I. 113, 446() Zakhvataev V. E. 112, 482 (444) Zaoui A. 111, 228 (210) Zarembo K. 111, 173 (157) Zaslavskii O. B. 111, 300 (260) Zhezher Ya. V. 112, 797 (753) Zhuravleva K. V. **112**, 797 (753) Zitouni A. 112, 313 (290) Zubarev N. 112, 799 (757) Zubkov M. A. **113**, 448() Zverev M. V. 111, 86 (96) Авдеев М. В. 111, 154 (139) Аверкиев Н. С. 113, 52 (47) Авосопянц Г. В. **111**, 646 (543) Агасян Н. О. 111, 219 (201) Азаревич А. Н. **112**, 451 (413); **113**, 533 () Айдакина Н. А. 113, 96 (86) Акмаев М. А. 112, 650 (607) Акопян Л. А. **112**, 626 (585) Аксенов С. В. **111**, 321 (286) Алексенский А. Е. 111, 375 (338) Алешкин В. Я. **112**, 541 (508) Альшиц В. И. **112**, 127 (127) Аминев Д. Ф. 112, 501 (471) Амусья М. Я. 111, 536 (472) Амусья М. Я. **111**, 12 (18); Амусья М. Я. **112**, 233 (219); 112, 709 (673) Андреев А. А. 112, 598 (550) Андреева М. А. 113, 175() Андрианов Е. С. 112, 725 (688) Андрюшечкин Б. В. 111, 697 (591) Анисимов А. Н. 112, 813 (774) Антипина Л. Ю. **111**, 244 (235) Антоненко Д. С. 112, 466 (428)

Антонов Н. Н. **111**, 291 (251) Антропов А. С. **112**, 334 (310) Аплеснин С. С. **112**, 680 (636) Арбузов А. Б. **112**, 493 (457) Арбузова Т. И. **111**, 186 (172) Аристова И. М. **113**, 189() Аристов В. Ю. **113**, 189() Аронин Кобелев А. С. Н. П. 113, 341() Артемов В. В. **112**, 374 (352) Артемьев А. А. **112**, 291 (263) Артюх А. А. **111**, 93 (109); 111, 469 (397) Архипов М. В. 111, 586 (484); Архипов М. В. **111**, 794 (668); 113, 237 () Архипов Р. М. **111**, 586 (484); Архипов Р. М. **111**, 794 (668); **113**, 237 () Асадчиков В. Е. **111**, 597 (489); Асадчиков В. Е. **113**, 161 (); 113, 175 () Афанасьев А. Е. 111, 757 (608) Афанасьева Е. Ю. 111, 520 (452) Афанасьев В. П. 111, 230 (218) Афонин А. Г. 113, 223 () Афонин Г. В. 111, 691 (586) Ахматханов А. Р. **112**, 644 (602) Ашитков С. И. **113**, 84 (75); 113, 311 () Бабиченко В. С. 112, 618 (577) Бабунц Р. А. **112**, 813 (774) Багаев В. С. 112, 160 (145) Баева Э. М. **111**, 88 (104) Бакаров А. К. **112**, 54 (45) Бакаров А. К. s **112**, 475 (437) Бакшеев Д. Г. **112**, 196 (186); **113**, 328() Балаев Д. А. 111, 197 (183) Балакин Д. А. **113**, 590() Балацкий Д. В. 113, 267 () Балдин А. А. **111**, 291 (251) Балтенков А. С. **111**, 12 (18); **111**, 536 (472) Балыкин В. И. 111, 757 (608) Банников М. И. **111**, 166 (151);

Банников М. И. **112**, 263 (246); **113**, 548() Бантыш Б. И. **111**, 615 (512) Барабанов А. Л. 112, 343 (323) Баранов В. Т. 113, 223() Баранов П. Г. 112, 813 (774) Баренки Б. **111**. 674 (568): Барецки Б. **112**, 45 (37); 112, 275 (257) Баркалова А. С. 112, 88 (84) Барнов Е. В. 113, 223() Барсукова М. Г. 111, 40 (46) Барышников К. А. 111, 820 (703) Баулин Р. А. **113**, 175 () Бахтизин Р. З. 111, 396 (357) Башаров А. М. 111, 632 (532); **111**, 798 (672) Баюков О. А. 113, 267 () Бекиров А. Р. 112, 361 (341) Белавин А. 112, 388 (370) Белинский А. В. 113, 590() Белов Н. К. 111, 305 (273) Белогорлов А. А. 113, 378() Белозеров Е. И. 112, 516 (485) Белоплотов Д. В. 113, 133 (129) Белотелов В. И. 111, 52 (62); Белотелов В. И. 112, 314 (299); Белотелов В. И. 112, 749 (710); 112, 759 (720) Белых В. В. 112, 650 (607) Белых С. Ф. 111, 531 (467) Бельская Н. А. 113, 267 () Бельтюков Я. М. 112, 547 (513) Бен Хамида Я. 112, 743 (705) Березуцкий А. Г. 111, 335 (299) Бессас Д. 113, 175() Бишлер Л. 111, 591 (494) Блошкин А. А. 113, 501 () Бовкун Л. С. 112, 541 (508) Богацкая А. В. 111, 443 (371) Богач А. В. 112, 451 (413); **113**, 533() Богданова Н. А. 111, 646 (543) Богданов Ю. И. 111, 615 (512); 111, 646 (543) Больгинов В. В. 112, 743 (705)

Бондаревская А. С. **113**, 52 (47) Бордонский Г. С. **111**, 311 (278) Борман В. Д. **113**, 378 () Бочкин Г. А. **112**, 754 (715) Бояринцев Э. Л. 111, 335 (299) Брагута В. В. 112, 9(6) Бражкин В. В. 112, 787 (745) Бреев И. Д. 112, 813 (774) Бритвич Г. И. 113, 223() Брысев А. П. 111, 464 (392) Бугров А. Н. **113**, 385 () Буздин А. И. **113**, 38 (34); **113**, 102 (92) Бузмаков А. В. **113**, 161 () Бузовкин А. Б. 111, 509 (442) Булатов М. Ф. 111, 674 (568) Бункин А. Ф. 111, 464 (392); Бункин А. Ф. **112**, 437 (399); **113**, 435 () Буньков Ю. М. **111**, 52 (62); Буньков Ю. М. **112**, 101 (95); Буньков Ю. М. **112**, 314 (299); 112, 749 (710) Буриков С. А. 111, 625 (525) Буримов Н. И. 112, 644 (602) Быков А. А. **112**, 54 (45); **112**, 475 (437) Бюхнер Б. 111, 388 (350) Вагизов Ф. Г. **111**, 181 (167) Вайшнене Л. А. **112**, 343 (323) Валуев К. А **113**, 68 (61) Вальков В. В. 111, 772 (647) Ванчо П. 112, 328 (305) Ваньков А. Б. **112**, 62 (53); **113**, 112 (102) Варлачев В. А. 113, 229 () Васильев С. Г. 112, 754 (715) Васильев А. Н. 113, 450 () Васильева О. Ф. 111, 579 (477) Васильев В. В. 111, 579 (477) Васильев Н. Н. 113, 463 () Васильев О. А. 111, 435 (363) Вахрушев В. О. **113**, 468() Введенский Н. В. **112**, 81 (77) Вдовин Е. Е. **113**, 605 () Векман А. В. 111, 767 (643)

Великанов Д. А. **111**, 197 (183) Веневцев И. Д. **112**, 240 (225) Вергелес С. С. **111**, 509 (442) Ветошко П. М. **111**, 52 (62); Ветошко П. М. **112**, 314 (299); 112, 749 (710) Вивек Кумар Сингх **111**, 591 (494) Викторов В. А. **111**, 291 (251) Вильшанская Е. В. 113, 92 (82) Виноградов А. П. **112**, 725 (688) Владимирова Г. А. **111**, 223 (205) Власенко В. А. 111, 475 (403); 112, 822 (786) Власов И. И. **112**, 17(13) Волков В. В. **112**, 632 (591) Волков М. К. **112**, 493 (457) Волочаев М. Н. **111**, 815 (690) Воробьев А. С. **112**, 343 (323) Воробьев Н. С. **112**, 774 (734) Воронин А. А. **112**, 22 (17); **113**, 304 () Воронин В. В. **112**, 639 (597) Воронов А. А. **112**, 759 (720) Воронов В. В. 111, 625 (525) Врубель И. И. 111, 328 (293) Вуколов В. А. 111, 295 (255) Вуль А. Я. **112**, 807 (769) Вурмель С. 111, 388 (350) Гавриленко В. И **112**, 541 (508) Гавриленко В. И. 111, 682 (575); 113, 399() Гаврилкин С. Ю. **111**, 166 (151) Гавричков В. А. **112**, 258 (241) Гаврюшкин П. Н. **111**, 160 (145) Гагарский А. М. **112**, 343 (323) Газизов А. Р. **113**, 152() Галеева А. В. **112**, 263 (246); **113**, 548 () Галимов А. И. 113, 248() Галль Н. Р. **111**, 520 (452); **113**, 595 () Галоян А. С. **111**, 291 (251) Галынский М. В. **113**, 579() гальперин Ю. М. **112**, 54 (45) Ганичев С. Д. **113**, 463() Гапиенко В. А. **111**, 291 (251)

Гапиенко Г. С. **111**, 291 (251) Гартман А. Д. **112**, 730 (693) Гашков М. А. **113**, 370 () Гершензон М. Е. 111, 237 (225) Гижа С. С. **112**, 774 (734) Гимазов И. И. 113, 450() Глазков В. Н. **112**. 688 (647) Глазов М. М. **113**, 10(7) Глазунов А. Л. 111, 223 (205) Глезер А. М. 113, 468 () Глек П. Б. **112**, 22 (17); **113**, 304() Глушков В. В. **112**, 451 (413); **113**, 533() Головенчиц Е. И. 111, 826 (709) Головчанский И. А **112**, 743 (705) Голуб Л. Е. **111**, 19 (24) Голубь А. П. **113**, 440 () Голышев А. А. 111, 838 (720) Гончарова Е. В. **111**, 691 (586) Горан А. В. **112**, 475 (437) Горнакова А. С. 111, 674 (568) Горяйнов С. В. **111**, 230 (218) Горячук И. О. 111, 789 (663) Грановский А. Б. 113, 527 () Гресь В. Н. 111, 291 (251) Григорьев П. Д. **112**, 107 (101) Григорьев Т. **111**, 591 (494) Гришаков К. С. **113**, 182() Гришаков К. С. **112**, 674 (630) Гришин М. Я. **111**, 464 (392); 112, 437 (399) Громилов С. А. **113**, 267 () Губайдуллин А. Р. 111, 763 (639) Гудков В. В. **113**, 52 (47) Гунбина А. А. **111**, 641 (539) Гуров Ю. Б. 113, 147 () Гурулев А. А. 111, 311 (278) Гусев А. И. 111, 190 (176) Гусева Ю. А. 113, 248() Гусев Г. М. **111**, 107 (121) Гусев Н. С. 111, 370 (333); **111**, 815 (690) Гусихин П. А. **111**, 316 (282) Гуськов С. Ю. 111, 149 (135) Гущин М. Е. **113**, 96 (86)

Давыдов М. А. **112**, 437 (399); **113**, 435 () Данилов М. В. **112**, 484 (452) Данилов П. А. **112**, 579 (533); Данилов П. А. **113**, 299 (); **113**, 495() Данилов С. Н. **113**, 548() Дворецкий С. А. **111**, 682 (575); Дворецкий С. А. **111**, 750 (633); Дворецкий С. А. **112**, 263 (246); Дворецкий С. А. **112**, 541 (508); Дворецкий С. А. **113**, 399(); **113**, 548 () Двуреченский А. В. **113**, 58 (52); **113**, 501 () Дегтяренко Н. Н. **112**, 674 (630) Делев В. А. **113**, 26 (23) Демин В. А. **111**, 469 (397); Демин В. А. **112**, 328 (305); **112**, 379 (357) Демишев С. В. **112**, 451 (413); 113, 533 () Демьянов Б. Ф. **111**, 767 (643) Димитриева С. Е. **112**, 501 (471) Дмитриев А. А. **112**, 54 (45) Доленко Т. А. **111**, 625 (525) Долженко Д. Е. 112, 263 (246); **113**, 548 () Дорожкин С. И. **111**, 668 (562) Доронин И. В. **112**, 725 (688) Дорофенко А. В. **113**, 527() Дричко И. Л. **112**, 54 (45) Дровосеков А. Б. **112**, 88 (84) Дроздов М. Н. **111**, 531 (467) Дружинин А. В. **112**, 45 (37) Дубиков А. В. **112**, 644 (602) Дудкин Г. Н. 113, 229 () Дулебо А. И. **112**, 650 (607) Дьячкова И. Г. **111**, 597 (489); **113**, 161 () Дюгаев А. М. **112**, 107 (101) Евдокимов С. В. **113**, 291 () Европейцев Е. А. **113**, 507() Еганова Е. М. **113**, 84 (75) Егоров С. В. **112**, 743 (705) Егранов А. В. **113**, 52 (47)

Екимов Е. А. **112**, 17 (13) Екомасов Е. Г. **111**, 209 (193); 112, 357 (337) Ельцов К. Н. **111**, 697 (591) Емельянов А. В. **112**, 379 (357) Еремин Б. **112**, 388 (370) Есин А. А. **112**, 644 (602) Ефимов М. А. **111**, 335 (299) Жаров А. А. **112**, 73 (65) Жаров А. А. мл. **112**, 73 (65) Жарова Н. А. **112**, 73 (65) Жаховский В. В. **113**, 84 (75); **113**, 311 () Жевстовских И. В. 113, 52 (47) Желтиков А. М. **113**, 3(1) Желтиков А. М. **112**, 22 (17); **113**, 304 () Жигадло Н. Д. 112, 523 (491) Жиляева Е. И. **112**, 623 (582) Жмерик В. Н. **113**, 507() Жолудев М. С. **111**, 682 (575); Жолудев М. С. **112**, 541 (508); 113, 399 () Жукова М. О. **113**, 237 () Журавлев А. С. **112**, 516 (485) Задиранов Ю. М. **113**, 248() Задорожная Л. А. 112, 240 (225) Зайцев-Зотов С. В. 111, 45 (50); Зайцев-Зотов С. В. **112**, 93 (88); 112, 367 (346) Заколдаев Р. А. 113, 495() Заливако И. В. 112, 626 (585) Зарезин А. М. 111, 316 (282) Зарецкий Н. П. **111**, 149 (135) Захаров Ю. П. 111, 335 (299) Зверев В. Н. 112, 623 (582) Зегря Г. Г. 112, 807 (769) Зеленер Б. Б. 113, 92 (82) Зеленер Б. В. 113, 92 (82) Зинган А. П. 111, 579 (477) Зиновьева А. Ф. 113, 58 (52) Зиновьев В. А. 113, 58 (52) Зиняков Т. А. 111, 65 (76) Зиятдинова М. З. 112, 774 (734) Золотов Д. А. 111, 597 (489); **113**, 161 ()

Золотько А. С. 113, 495 () Зубарева О. В. 113, 370() Зубарев Н. М. 113, 256 (); **113**, 370() Зудин И. Ю. 113, 96 (86) Зыбцев С. Г. 112, 93 (88) Зябловский А. А. 112, 725 (688) Иванов К. Е. **111**, 487 (422) Иванькова Е. М. **113**, 385() Ивахненко С. А. 111, 597 (489) Ивченко Е. Л. **113**, 10(7) Игнатов А. И. 113, 84 (75) Игнатьева Д. О. **112**, 759 (720) Иешкин А. Е. **111**, 531 (467) Изучеев В. И. 113, 291 () Иконников А. В. 111, 682 (575); Иконников А. В. **112**, 541 (508); Иконников А. В. **113**, 399(); **113**, 548() Ильичев Л. В. **113**, 212() Илюшин М. А. **111**, 291 (251) Иногамов Н. А. 113, 84 (75); 113, 311 () Ионин А. А. **112**, 579 (533); Ионин А. А. **113**, 299(); Ионин А. А. **113**, 365(); **113**, 495() Исхаков Р. С. 111, 197 (183) Каган М. Ю. 111, 321 (286) Казак Н. В. 113, 267() Казаков А. С. 112, 263 (246); **113**, 548() Казей З. А. **112**, 189 (180) Кайсин Б. Д. **112**, 62 (53) Калитеевский М. А. 111, 763 (639) Калиш А. Н. **112**, 759 (720) Каневский В. М. **112**, 240 (225) Капустин А. А. 111, 668 (562) Караштин Е. А. **112**, 121 (122) Кардакова А. И. **111**, 88 (104) Карелина Л. Н. **112**, 743 (705) Каримов Д. Н. **113**, 175 () Карки Д. **112**, 759 (720) Карманов Д. Е. 111, 435 (363) Катаев А. Л. 111, 789 (663) Катамадзе К. Г. 111, 646 (543)

Катин К. П. **113**, 182() Кашин А. М. **112**, 531 (498) Кашкаров П. К. **112**, 379 (357) Квашнин А. Г. 111, 380 (343) Квашнин Д. Г. **111**, 244 (235); Квашнин Д. Г. 111, 743 (627); **112**, 328 (305) Квон З. Д. **111**, 107 (121); Квон З. Д. **112**, 174 (161); Квон З. Д. **113**, 328(); **113**, 463 () Кецко В. А. **112**, 680 (636) Кившарь Ю. **112**, 658 (615) Кильмаметов А. Р. **111**, 674 (568); 112, 45 (37) Кириенко В. В. **113**, 501 () Кирпичев В. Е. **112**, 38 (31) Кирпиченкова Н. В. **112**, 114 (112) Кирпиченков В. Я. **112**, 114 (112) Китаева Г. X. **112**, 297 (269) Киямов А. Г. **113**, 450 () Кленов Н. В. **111**, 443 (371) Климко Г. В. **113**, 248 () Клопотов Р. В. **111**, 464 (392) Клочкова Н. В. 111, 723 (603) Книжник А. А. 111, 305 (273) Князев Г. А. **112**, 314 (299); 112, 749 (710) Князев Ю. В. 113, 267 () Кобелев Н. П. **111**, 691 (586); 111, 806 (679) Ковалев А. И. 113, 468() Ковалев И. М. **111**, 435 (363) Ковалев М. С. **113**, 365 () Ковалевский В. В. 111, 230 (218) Коваленко С. Л. **111**, 697 (591) Ковальчук О. Е. **112**, 579 (533) Ковражкин Р. А. **111**, 223 (205) Кожаев М. А. **112**, 759 (720) Козлов Д. А. **112**, 174 (161) Козлов Д. В. 111, 682 (575); 113, 399 () Колачевский Н. Н. **112**, 626 (585) Колесников С. В. **111**, 101 (116) Колмычек И. А. 111, 370 (333) Колобов А. В. **112**, 501 (471)

Колоколов И. В. **111**, 509 (442) Колотинский Д. А. **113**, 514 () Комаров П. С. **113**, 311 () Комельков А. С. **112**, 774 (734) Комиссарова М. В. **111**, 355 (320) Компанец В. О. 111, 27 (31); **113**. 365 () Конарев П. В. **112**, 632 (591) Кондорский А. Д. 112, 736 (699) Кондратюк Е. С. 113, 291 () Кон И. А. **111**, 45 (50); 112, 93 (88) Консежо К. **112**, 541 (508) Константинова Е. А. **112**, 562 (527) Константинов Д. **112**, 101 (95) Кончаков Р. А. **111**, 806 (679); **113**, 341 () Конюх Д. А. **112**, 547 (513) Копасов А. А. **113**, 38 (34) Копица Г. П. **113**, 385() Коробейщиков Н. Г. **111**, 531 (467) Коробков С. В. **113**, 96 (86) Коробцев С. В. **111**, 305 (273) Коротеев Г. А. 111, 723 (603) Коршунов М. М. **113**, 63 (57) Косарева О. Г. **111**, 27 (31) Косач А. А. **112**, 114 (112) Костин В. А. **112**, 81 (77) Котова О. Д. 111, 625 (525) Котов А. Ю. **112**, 9(6) Кочергин И. В. **112**, 291 (263) Кочиев М. В. **112**, 650 (607) Крайнов И. В. **111**, 820 (703) Красиков К. М. **112**, 451 (413); 113, 533 () Краснорусский В. Н. **113**, 533 () Крейнес Н. М. **112**, 88 (84) Кретова М. А. **111**, 806 (679) Кривенков В. А. **112**, 584 (537) Кривобок В. С. **112**, 160 (145); **112**, 501 (471) Кригель М. Й. **111**, 674 (568) Криштопенко С. С. **112**, 541 (508) Кройчук М. К. **112**, 730 (693) Крюкова А. Е. **112**, 632 (591) Крюкова И. С. **112**, 584 (537)

Кугель К. И. **112**, 693 (651); 112, 764 (725) Кудасов Ю. Б. 113, 168() Кудрявцев А. Г. **111**, 112 (126); **113**, 406 () Кудрявцев О. С. **112**, 17 (13) Кудряшов И. А. 111, 435 (363) Кудряшов С. И. **112**, 579 (533); Кудряшов С. И. 113, 299(); Кудряшов С. И. 113, 365(); **113**, 495 () Кузмичев А. Н. **112**, 314 (299); **112**, 749 (710) Кузмичёв А. Н. **111**, 52 (62) Кузнеделев Д. Д. 112, 9(6) Кузнецов А. В. 113, 533 () Кузнецов В. А. **112**, 516 (485) Кузнецов К. А. **112**, 297 (269) Кузнецов С. В. 111, 625 (525) Кузьмичева Т. Е. **111**, 388 (350); Кузьмичева Т. Е. **112**, 523 (491); 112, 822 (786) Кузьмичев С. А. 111, 388 (350); Кузьмичев С. А. **112**, 523 (491); 112, 822 (786) Кукушкин В. И. **112**, 38 (31) Кукушкин И. В. 111, 316 (282); Кукушкин И. В. **112**, 38 (31); Кукушкин И. В. 112, 62 (53); Кукушкин И. В. 112, 516 (485); **113**, 112 (102) Кулеева Н. А. **112**, 603 (555) Кулик Л. В. **112**, 516 (485); **113**, 58 (52) Куликов А. Г. 112, 374 (352) Кунцевич А. Ю. **111**, 166 (151); Кунцевич А. Ю. 111, 750 (633); 112, 650 (607) Курганов А. А. 111, 435 (363) Кутлин А. Г. 113, 38 (34) Кутузов А. С. 111, 154 (139) Кучинский Э. З. 112, 603 (555) Кучугов П. А. **111**, 149 (135) Кытина Е. В. **112**, 562 (527) Ладыгина В. П. **111**, 197 (183) Лапушкин С. В. **113**, 147()

Ларюшин И. Д. **112**, 81 (77) Латышев А. В. **113**, 328() Лахманский К. Е. **112**, 626 (585) Лебедев В. В. 111, 509 (442) Леви М. **112**, 759 (720) Левин В. М. **113**, 68 (61) Левченко А. А. **111**, 653 (549) Левченко А. О. **112**, 579 (533) Леднев В. Н. **111**, 464 (392) Лемзяков С. А. **111**, 641 (539) Леонидов А. В. **113**, 620() Леонова Т. И. 113, 147() Леонтьев А. А. **112**, 297 (269) Лерер А. М. **112**, 152 (138) Лисянский А. А. **112**, 725 (688) Литасов К. Д. **111**, 160 (145); 111, 230 (218) Лобанов И. С. 113, 223() Лозин О. И. **112**, 114 (112) Ломоносова Т. А. **113**, 320() Лукичев В. Ф. 111, 646 (543) Лукьянчук Б. С. **112**, 361 (341) Любимов В. Н. **112**, 127 (127) Любовская Р. Н. **112**, 623 (582) Любовский Р. Б. **112**, 623 (582) Любутин И. С. **112**, 374 (352) Лютостанский Ю. С. **111**, 723 (603) Лядов Н. М. **113**, 450() Мазилкин А. А. 111, 674 (568); 112, 45 (37) Мазилкин И. А. **111**, 514 (447); 112, 275 (257) Мазурицкий М. И. **112**, 152 (138) Маишеев В. А. **112**, 3(1) Майдыковский А. И. 111, 370 (333) Макаров А. С. 111, 691 (586); 113, 341 () Макаров Г. Н. 111, 361 (325); 112, 226 (213) Максимычев А. В. 113, 523() Макушина В. А. **112**, 774 (734) Мальцев Е. И. 111, 475 (403) Мамин Г. В. **111**, 52 (62) Мамрашев А. А. 111, 75 (85) Мареев Е. И. 112, 780 (739) Марк Г. 112, 328 (305)

Маркевич С. А. **113**, 486 () Мартовицкий В. П. **111**, 166 (151); 112, 501 (471) Маслаков К. И. 111, 487 (422) Маслов М. М. **113**, 182() Массалимов Б. И. 111, 475 (403) Масюгин А. Н. **112**, 680 (636) Ma X. 111, 501 (434) Махмудиан М. М. **112**, 246 (230) Мацукатова А. Н. **112**, 379 (357) Машко А. М. 111, 757 (608) Медведев Д. Д. 111, 305 (273) Медриш И. В. **111**, 160 (145) Межов-Деглин Л. П. **111**, 653 (549) Мейлахс А. П. **111**, 375 (338) Мейстерсон А. А. **111**, 757 (608) Мельников А. С. **113**, 38 (34); **113**, 102 (92) Меньшиков Л. И. **113**, 523() Меньшиков П. Л. **113**, 523 () Месяц Г. А. 113, 256 (); **113**, 370() Мигдал К. П. **113**, 299 () Микушкин В. М. 112, 801 (764) Мильштейн А. И. **111**, 215 (197); 112, 352 (332) Минакова В. Е. 112, 367 (346) Минеев В. П. **111**, 833 (715) Миннегалиев М. М. **113**, 3(1) Миннеханов А. А. 112, 379 (357); 112, 562 (527) Миролюбов М. А. **113**, 553 () Миронов А. 111, 591 (494) Миронов С. В. **113**, 38 (34); 113, 102 (92) Мирошниченко И. Б. 111, 335 (299) Митрофанов А. В. **112**, 22 (17); **113**, 304 () Михайлов Н. Н. **111**, 107 (121); Михайлов Н. Н. **111**, 682 (575); Михайлов Н. Н. 111, 750 (633); Михайлов Н. Н. **112**, 174 (161); Михайлов Н. Н. **112**, 263 (246); Михайлов Н. Н. **112**, 541 (508); Михайлов Н. Н. **113**, 399(); Михайлов Н. Н. **113**, 463 ();

Письма в ЖЭТФ том 113 вып. 9-10 2021

113, 548() Михальков Ю. М. **112**, 774 (734) Могиленец Ю. А. 112, 374 (352) Моисеев С. А. **111**, 602 (500); **113**, 3(1) Молодец А. М. 111, 838 (720) Молоднова О. В. **113**, 189() Молотков С. Н. **111**, 608 (506); Молотков С. Н. 111, 778 (653); **112**, 401 (383) Морозов А. 111, 591 (494) Морозова Е. Н. **112**, 38 (31) Морозов Ан. 111, 591 (494) Морозов И. В. 111, 388 (350) Морозов К. М. 111, 763 (639) Морозов С. В. 111, 682 (575); **113**, 399() Мороков Е. С. **113**, 68 (61) Мохов Е. Н. 112, 813 (774) Музыченко Д. А. **111**, 396 (357) Муравьев В. М. 111, 316 (282) Мурзина Т. В. 111, 370 (333) Муслимов А. Э. 112, 240 (225) Мусорин А. И. 111, 40 (46) Мяконьких А. В. 111, 531 (467) Набиев И. Р. 112, 584 (537) Надолинский А. М. **111**, 61 (72) Назаров М. М. 113, 304() Найденов М. Н. **112**, 147 (133) Науменко Г. А. **111**, 295 (255) Наумов С. В. **111**, 186 (172) Некоркин В. И. 113, 415() Некрасов А. Н. 111, 674 (568) Некрасов И. А. **113**, 63 (57); 113, 126 (115) Ненашев А. В. **113**, 58 (52) Неронов А. 113, 77 (69) Нестеров А. И. 112, 268 (250) Нечаев Б. А. 113, 229 () Нечаев Д. В. 113, 507() Никитина А. М. 112, 367 (346) Никифорова П. М. **111**, 443 (371) Николаева И. А. **111**, 27 (31) Николаев В. С. 113, 514() Николаев И. Д. 111, 682 (575) Николаев Н. Н. **111**, 215 (197);

112, 352 (332) Николаев С. В. **112**, 268 (250) Николаев С. Н. 112, 88 (84); Николаев С. Н. **112**, 160 (145); **112**, 501 (471) Номоконов Д. В. 112, 475 (437) Норман Г. Э. **111**, 175 (162); **111**, 251 (245) Овчинникова Т. М. **112**, 258 (241) Овчинников С. Г. **112**, 258 (241); 112, 268 (250) Ольшанецкий Е. Б. **112**, 174 (161) Онищенко Е. Е. **112**, 501 (471) Орешкин А. И. **111**, 396 (357) Орешкин С. И. 111, 396 (357) Орлинский С. Б. 111, 52 (62) Орлита М. **112**, 541 (508) Орлов А. О. 111, 311 (278) Орлов А. П. **112**, 93 (88) Орлов Ю. С. **112**, 258 (241); **112**, 268 (250) Осипенко А. П. 111, 723 (603) Осипов А. А. **113**, 410() Ошурко В. Б. 113, 435 () Павлова А. А. **113**, 385 () Павлова Т. В. **111**, 697 (591) Павлов Н. С. **113**, 63 (57); **113**, 126 (115) Панкрац А. И. 111, 197 (183) Панов А. Д. 111, 435 (363) Панов В. И. 111, 396 (357) Панов Н. А. **111**, 27 (31) Паршиков А. Н. **113**, 311 () Пахомов А. В. 113, 237 () Пацаева С. В. 111, 625 (525) Пашенькин И. Ю. 111, 815 (690) Пеленович В. О. 111, 531 (467) Пеньков Ф. М. **113**, 229 () Перваков К. С. 111, 475 (403); 112, 822 (786) Первишко А. А. 111, 328 (293) Перминов Н. С. 111, 602 (500) Пермякова И. Е. **113**, 468 () Першина Е. А. **113**, 84 (75) Першин С. М. **111**, 464 (392); Першин С. М. **112**, 437 (399);

113. 435 () Песоцкий С. И. 112, 623 (582) Петин А. Н. 111, 361 (325); **112**, 226 (213) Петров А. Г. **112**, 165 (150) Петров И. Л. **111**, 61 (72) Петров М. И. **113**, 553() Петров Ю. В. **113**, 311 () Петросян А. С. **111**, 65 (76) Петруша С. В. **111**, 88 (104) Петухов М. Н. 111, 396 (357) Пех П. Л. **111**, 80 (90) Пивоваров А. А. **112**, 493 (457) Пикалов А. М. **113**, 527 () Пиршин И. В. **112**, 774 (734) Платонов К. Ю. 112, 598 (550) Побойко И. В. **112**, 251 (234) Подливаев А. И. 111, 728 (613); **113**, 182() Подорожный Д. М. **111**, 435 (363) Полищук Б. В. **113**, 291 () Полищук И. Я. 112, 618 (577) Полников В. Г. **111**, 501 (434) Полуэктов И. В. 113, 223 () Попель С. И. 113, 440() Попов А. М. 111, 443 (371) Попов Е. Н. 111, 846 (727) Попов З. И. 111, 743 (627) Попов К. Е. 111, 295 (255) Пополитова Д. В. 112, 702 (666) Попруженко С. В. **113**, 320() Посух В. Г. 111, 335 (299) Потапкин Б. В. **111**, 305 (273) Потемкин Ф. В. **112**, 508 (478); 112, 780 (739) Потемски М. 112, 541 (508) Поторочин Д. В. 113, 189() Потылицын А. П. 111, 295 (255) Пресняков И. А. 111, 487 (422) Пройдакова В. Ю. **111**, 625 (525) Протасова С. Г. 112, 45 (37) Прохоров В. Е. 112, 591 (543) Прошин Ю. Н. 111, 154 (139) Прудковский П. А **111**, 494 (428) Прудкогляд А. Ф. **111**, 291 (251) Пряников Д. С. 111, 291 (251)

Пугачев М. В. **112**, 650 (607) Пудалов В. М. 111, 237 (225) Пунегов В. И. **111**, 448 (376) Пухов А. А. 112, 725 (688) Пушкин А. В. 112, 508 (478) Разова А. А. **113**, 399() Рамадеви П. **111**, 591 (494) Ратников П. В. **111**, 80 (90) Раттенбахер Д. **112**, 17 (13) Рафайя Д. 111, 674 (568) Рахлин М. В. **112**, 17 (13); **113**, 248() Рахманов А. Л. **112**, 693 (651); **112**, 764 (725) Резников М. 111, 750 (633) Решетников С. Ф. 113, 223 () Решетов В. А. 111, 846 (727) Ривнюк А. С. 113, 299() Рогов В. В. 111, 815 (690) Родин А. О. 111, 514 (447) Родный П. А. **112**, 240 (225) Родякина Е. Е. 113, 328 () Роенко А. А. 112, 9(6) Рожков А. В. 112, 693 (651); **112**, 764 (725) Рожко М. В. **112**, 22 (17); **113**, 304() Розанов Н. Н. 111, 586 (484); Розанов Н. Н. 111, 794 (668); Розанов Н. Н. 113, 157(); **113**, 237 () Розенбаум В. М. **112**, 341 (316) Романовский В. А. 111, 291 (251) Ромашевский С. А. **113**, 84 (75); **113**, 311() Ромшин А. М. **112**, 17 (13) Рощин Б. С. 113, 175() Рубан В. П. 111, 455 (383); Рубан В. П. 112, 554 (520); **113**, 539() Руденко В. В. 113, 267 () Руменских М. С. 111, 335 (299) Румянцев Б. В. 112, 780 (739) Румянцев В. В. 111, 682 (575); **113**, 399() Рунов В. В. 113, 385()

Рупасов А. Е. **112**, 579 (533); **113**, 495 () Рутьков Е. В. **111**, 520 (452); **113**, 595 () Руффенах С. 112, 541 (508) Рыбальченко Г. В. **111**, 166 (151) Рыжкин И. А. **112**, 531 (498); **113**, 457 () Рыжкин М. И. **112**, 531 (498); **113**, 457 () Рыльков В. В. **112**, 88 (84); 112, 379 (357) Рябова Л. И. **112**, 263 (246); **113**. 548 () Рябчук С. В. **112**, 22 (17) Рязанов В. В. **112**, 743 (705) Саакян С. А. 113, 92 (82) Савин Д. А. 113, 223 () Савченков Е. Н. 112, 644 (602) Савченко М. Л. **112**, 174 (161) Сагатова Д. Н. **111**, 160 (145) Сагатов Н. Е. 111, 160 (145) Садаков А. В. 111, 475 (403) Садовников С. И. **112**, 203 (193) Садовский М. В. 111, 203 (188); Садовский М. В. **112**, 603 (555); **113**, 600 () Садовский С. А. 113, 291 () Сазонов С. В. 111, 355 (320); Сазонов С. В. 112, 30 (24); Сазонов С. В. 112, 306 (283); **113**, 612 () Саитов И. М. **111**, 175 (162) Сайко А. П. 113, 486 () Сайфутдинова А. А. 112, 443 (405) Сайфутдинов А. И. 112, 443 (405) Салецкий А. М. **111**, 101 (116) Салимов Р. К. 111, 209 (193); 112, 357 (337) Салимов Т. Р. 112, 357 (337) Сальников С. Г. **111**, 215 (197); 112, 352 (332) Самойлов Р. М. **112**, 211 (199); 112, 487 (455) Самосват Д. М. 112, 807 (769) Самохвалов А. В. 113, 38 (34);

113, 102 (92) Самохвалов П. С. **112**, 584 (537) Самусев А. К. 113, 553() Самцевич А. И. **111**, 380 (343) Сандлер В. А. **113**, 348() Сандомирский Ю. Е. **112**, 3(1): **113**, 223 () Сандуковский В. Г. 113, 147() Сандуляну Ш. В. **112**, 165 (150) Санина В. А. 111, 826 (709) Сапожников М. В. 111, 815 (690) Сараева И. Н. **113**, 365() Сарманова О. Э. 111, 625 (525) Сарычев М. Н. **113**, 52 (47) Сасвати Дхара 111, 591 (494) Сатунин С. Н. 112, 667 (623) Саутенков В. А. **113**, 92 (82) Сафин Т. Р. 111, 52 (62) Сбойчаков А. О. **112**, 693 (651); 112, 764 (725) Селиванов Ю. Г. 111, 166 (151) Семак А. А. **111**, 291 (251) Семенцов Д. И. 111, 735 (619) Семикоз Д. 113, 77 (69) Сенков В. М. 112, 774 (734) Серебров А. П. **112**, 211 (199); 112, 487 (455) Серебрянников Е. Е. **112**, 22(17); **113**, 304() Серов Ю. М. 113, 507() Сидоренков А. В. 111, 101 (116) Сидоров-Бирюков Д. А. 112, 22(17);**113**, 304 () Силин А. П. 111, 80 (90) Синицын В. В. **112**, 531 (498) Сираев Ф. М. **111**, 154 (139) Ситников А. В. 112, 88 (84) Ситников М. Н. **112**, 680 (636) Скворцов М. А. **112**, 394 (376); **112**, 466 (428) Скробова Н. А. **112**, 484 (452) Слепцов А. 111, 591 (494) Слободчиков А. А. 113, 63 (57) Словинский И. С. 112, 508 (478) Случанко Н. Е. **112**, 451 (413);

113. 533 () Смаглюк Д. С. 113, 223() Смаев М. П. 113, 495() Смет Ю. Х. 111, 668 (562) Смирнов М. А. **113**, 3(1) Смирнов А. В. 112, 774 (734) Смирнова М. Н. **112**, 680 (636) Смирнов И. Ю. **112**, 54 (45) Смирнов Н. А. **112**, 579 (533) Смыслов Р. Ю. 113, 385() Снегирев В. В. **112**, 189 (180) Снегирев Н. И. 112, 374 (352) Соболевский О. А. 111, 475 (403) Соколова В. В. **113**, 365() Соловьев В. В. **112**, 38 (31) Солодовников И. П. 111, 291 (251) Солтамов В. А. 112, 813 (774) Сорокин А. О. 111, 34 (41) Сорокин Д. А. 113, 133 (129) Сороко В. А. 111, 469 (397) Стаховский И. Р. **112**, 830 (793) Стегайлов В. В. 113, 392() Степанов Н. А. **112**, 394 (376) Столяренко М. С. **112**, 189 (180) Столяр С. В. 111, 197 (183) Страумал А. Б. **111**, 514 (447); 112, 275 (257) Страумал Б. Б. 111, 674 (568); Страумал Б. Б. **112**, 45 (37); 112, 275 (257) Стриковский А. В. 113, 96 (86) Стругацкий М. Б. **112**, 374 (352) Струлева Е. В. **113**, 311 () Стрыгин И. С. **112**, 475 (437) Суворов Э. В. 113, 161 () Султанов В. Д. 112, 297 (269) Супрун Е. М. 111, 597 (489) Суриков В. Т. 113, 52 (47) Суханова Е. В. 111, 743 (627) Сухих А. С. 113, 267 () Сухорукова О. С. 112, 458 (420) Сушков О. П. 112, 196 (186) Тагиров М. С. **111**, 52 (62) Таланов Ю. И. 113, 450() Тарасенко А. С. 112, 458 (420) Тарасенко В. Ф. **113**, 133 (129)

Тарасенко С. В. **111**, 345 (311); Тарасенко С. В. **112**, 458 (420); 113, 475 () Тарасов М. А. 111, 641 (539) Татаринцев А. А. **111**, 531 (467) Татарский Д. А. **111**, 815 (690) Телькушев М. В. **113**, 147 () Тепп Ф. **112**, 541 (508) Терехов В. И. **111**, 291 (251); **113**, 223 () Терешонок М. В. **111**, 443 (371) Тетерин А. Ю. 111, 487 (422) Тетерин Ю. А. **111**, 487 (422) Тимеркаев Б. А. **112**, 443 (405) Тимофеев А. В. **113**, 514() Титова Н. А. **111**, 88 (104) Тихонова О. В. **112**, 702 (666) Тихонов В. Н. **111**, 723 (603) Ткаченко В. А. **112**, 196 (186); **113**, 328 () Ткаченко О. А. **112**, 196 (186); 113, 328 () Толордава Э. Р. **113**, 365 () Толстогузов А. Б. **111**, 531 (467) Томилин В. А. **113**, 212 () Тонкаев П. **112**, 658 (615) Торопов А. А. **112**, 17 (13); Торопов А. А. **113**, 248(); **113**, 507 () Торунова С. А. **112**, 623 (582) Тофтул И. Д. 113, 553 () Трахтенберг Л. И. **112**, 341 (316) Тронин И. В. **113**, 378 () Трошков С. И. **113**, 248() Трубилко А. И. **111**, 632 (532); 111, 798 (672) Трусов Г. В. **112**, 562 (527) Тупиков Е. В. 111, 750 (633) Турундаевский А. Н. **111**, 435 (363) Турьянский А. Г. **112**, 774 (734) Уаман Светикова Т. А. 111. 682(575);113, 399 () Уланов В. А. **113**, 52 (47) Уманский В. **111**, 668 (562) Устинов Н. В. **112**, 30 (24)

Уткин Д. Е. **113**, 501 () Уханов М. Н. **111**, 291 (251) Фабричная О. Б. **111**, 674 (568) Фадин В. С. **111**, 3(1) Фазлиахметов А. Н. **111**, 723 (603) Федорова А. В. **112**, 754 (715) Федоров А. Н. **112**, 437 (399); **113**, 435 () Федоров В. В. **112**, 639 (597) Федоров И. Д. **113**, 392() Федоров П. П. **111**, 625 (525) Федорук Г. Г. **113**, 486 () Федотов А. Б. **112**, 22 (17); **113**, 304 () Федотова Я. В. **112**, 38 (31) Федотов И. В. **113**, 3(1) Федянин А. А. **111**, 40 (46); Федянин А. А. **112**, 361 (341); 112, 730 (693) Фейгельман М. В. **112**, 251 (234) Фельдман Э. Б. **112**, 754 (715) Феоктистов А. 113, 385() Филатов С. В. 111, 653 (549) Филипов В. Б. **113**, 533() Филипович М. **113**, 229() Филиппов А. В. **113**, 229() Филиппов В. Б. **112**, 451 (413) Фишман Р. И. **112**, 774 (734) Флейта Д. Ю. 111, 251 (245) Флусова Д. С. **113**, 229() Фортов В. Е. **113**, 92 (82) Форш П. А. **112**, 379 (357) Фраерман А. А. **111**, 815 (690); 113, 353 () Франк А. Г. **112**, 667 (623) Фу Д. 111, 531 (467) Хабарова К. Ю. **112**, 626 (585) Хайдуков З. В. **113**, 21 (18) Ханин Ю. Н. 113, 605 () Ханнанов Б. Х. **111**, 826 (709) Харинцев С. С. 113, 152() Харитонов А. В. 113, 152() Харлов Ю. В. 113, 291 () Хмельницкий Р. А. **112**, 579 (533) Холин А. А. **112**, 314 (299) Хоник В. А. **111**, 691 (586);

Хоник В. А. **111**, 806 (679); **113**, 341 () Хоперский А. Н. 111, 61 (72) Хорошилов А. Л. **112**, 451 (413); **113**, 533() Хохлов В. А. **113**, 84 (75); **113**, 311() Хохлов Д. А. 112, 764 (725) Хохлов Д. Р. **112**, 263 (246); **113**, 548() Храпай В. С. 111, 88 (104) Цветков А. Ю. **111**, 166 (151) Цзиао Ц. Ч. 111, 691 (586) Цой К. В. 111, 514 (447); 112, 275 (257) Цыганков П. А. **113**, 311 () Цымбаленко В. Л. 113, 33 (30) Цыпкин А. Н. **113**, 237 () Цяо Ф. 111, 501 (434) Чайка А. Н. 113, 189() Чайков Л. Л. 113, 435() Чанг Ш. 111, 501 (434) Чаплик А. В. 112, 246 (230) Чаповский П. Л. 111, 75 (85) Чареев Д. А. 113, 450() Чекалин С. В. **111**, 27 (31); **113**, 365 () Ченцов С. И. 112, 501 (471) Чернозатонский Л. Α. 111, 93(109);111, Чернозатонский Л. Α. 244 (235); Чернозатонский Л. Α. 111. 469 (397); 112. 328 (305) Чернопицский М. А. **112**, 160 (145) Чернышева Л. В. **111**, 12(18);

Чернышева Л. В. **112**, 233 (219); 112, 709 (673) Чернышев Б. А. **113**, 147 () Чернявский А. Ю. **111**, 615 (512) Черняк А. М. **111**, 40 (46) Чесноков М. Ю. **112**, 3(1); **113**, 223 () Чесноков Ю. А. **112**, 3(1); **113**, 223 () Чибранов А. А. 111, 335 (299) Чижевский Е. Г. **111**, 166 (151) Чижов М. В. **112**, 147 (133) Чирков П. Н. 113, 223() Чичков В. И. 112, 743 (705) Чумаков А. И. **113**, 175() Чумаков Д. К. 113, 229() Шавров В. Г. **111**, 345 (311); Шавров В. Г. 112, 458 (420); 113, 475 () Шайхисламов И. Ф. 111, 335 (299) Шакуров Г. С. **113**, 52 (47) Шангараев А. А. **113**, 291() Шандаров С. М. **112**, 644 (602) Шапиро Д. Д. 112, 639 (597) Шапочкина И. В. **112**, 341 (316) Шараева А. Е. 112, 644 (602) Шарыпов К. А. **113**, 370() Шахмуратов Р. Н. **111**, 181 (167) Шашков Е. В. 112, 774 (734) Шевелев М. В. **111**, 295 (255) Шелыгина С. Н. **113**, 365 () Шилов Г. В. 111, 838 (720) Шиманский С. С. **111**, 291 (251) Шипило Д. Е. **111**, 27 (31) Ширяев А. А. 111, 597 (489) Шицевалова Н. Ю. 112, 451 (413); **113**, 533()

Шкарин А. Б. **112**, 17 (13) Шкитов Д. А. 111, 295 (255) Шкляев А. А. **113**, 58 (52) Шкляев В. А. 113, 133 (129) Шорохов А. С. **111**, 40 (46): **112**, 730 (693) Шпак В. Г. **113**, 370() Шпатаковская Г. В. 111, 526 (463) Шубина Т. В. **113**, 248 (); 113, 507 () Шувалов Е. Н. 113, 229() Шунайлов С. А. 113, 370 () Шур В. Я. 112, 644 (602) Шустин М. С. 113, 267 () Шутый А. М. **111**, 735 (619) Щапин Д. С. 113, 415() Щеголев А. Е. 111, 443 (371) Щербаков О. А. 112, 343 (323) Эггелер Г. 111, 514 (447) Эдельман В. С. 111, 641 (539) Эркенов Ш. А. 112, 743 (705) Юанов Ю. В. **112**, 725 (688) Юсупов Р. А. **111**, 641 (539) Ягупов С. В. **112**, 374 (352) Язынин И. А. **112**, 3(1) Якимов А. И. **113**, 501 () Якушкин Е. Д. **113**, 348 () Яландин М. И. **113**, 370 () Янович А. А. **112**, 3(1); **113**, 223() Янушкевич К. И. **112**, 680 (636) Яржемский В. Г. 111, 487 (422) Ярославцев Р. Н. **111**, 197 (183) Ярошевич А. С. **113**, 328() Ярошевич А. С. **111**, 107 (121); **112**, 174 (161)

Информация для авторов

Журнал "Письма в ЖЭТФ" (и его англоязычная версия "JETP Letters") публикует:

- Краткие оригинальные статьи, требующие срочной публикации и представляющие общий интерес для широкого круга читателей-физиков. К категории срочных публикаций относятся первые наблюдения новых физических явлений и теоретические работы, содержащие принципиально новые результаты.
- Миниобзоры на наиболее актуальные "горячие" темы, по результатам недавних исследований выполненных авторами.
- Краткие комментарии к статьям, появившимся ранее в нашем журнале.

"Письма в ЖЭТФ" является двуязычным журналом, принимая и публикуя статьи на русском и на английском языках¹⁾. Все статьи на английском языке, принятые к публикации, направляются на лингвистическую экспертизу. Если английский текст признается недостаточно ясным, то редакция оставляет за собой право попросить авторов улучшить качество языка или представить для опубликования русскую версию статьи.

В "JETP Letters" все статьи публикуются на английском языке. Авторы принятых к печати статей могут (и это приветствуется), сразу же после извещения о принятии, прислать в редакцию предлагаемый ими самостоятельный перевод своей русскоязычной статьи на англ. язык. Наличие такого перевода, хотя и не гарантирует его безусловное принятие переводчиками Издателя, но зачастую облегчает авторам взаимодействие с ними. Перевод русских и редактирование английских статей осуществляется в издательстве МАИК "Наука/Интерпериодика". Русская и англоязычная версии должны быть идентичны, поскольку статья, опубликованная в обеих версиях, является одной публикацией. Хотя английская версия окончательно редактируется на месяц позже русской, в ней не должно быть дополнительных ссылок, рисунков, формул и т.п., и все утверждения должны быть одинаковы.

Размер оригинальной статьи, как правило, не должен превышать 7 страниц русского издания (двухколоночный формат, соответствующий стилевому файлу), включая 5–6 рисунков. Размер миниобзора, как правило, не должен превышать 12 страниц, включая 8–10 рисунков. Типичный размер комментария и ответа на комментарий – до 1 стр.

Образец статьи²⁾, с использованием стилевого файла jetpl.cls (кодировка UTF-8³⁾, кодировка KOI8-R⁴⁾).

Статьи в редакцию можно направлять

- по электронной почте letters@kapitza.ras.ru направлять текст в формате TeX, LaTeX (для статей на русском языке допускается MS Word), рисунки в формате PostScript (..ps), EncapsulatedPostScript (..eps) или PaintBrush (..pcx), каждый рисунок отдельным файлом. Необходимо также приложить pdf файл статьи с встроенными рисунками.
- о по почте по адресу: 117334 Москва, ул. Косыгина 2, "Письма в ЖЭТФ" − два экземпляра статьи с рисунками на отдельных страницах (для полутоновых рисунков еще один дополнительный экземпляр).

К рукописи нужно приложить электронный адрес (e-mail) и почтовый адрес с индексом, фамилию, полное имя и отчество того автора, с которым предпочтительно вести переписку, а также номера его служебного и домашнего телефонов; для статей на английском языке – дополнительно CD диск или флеш карту с текстом в формате LATEX; для статей из России и других стран СНГ, в случае необходимости, может быть представлено направление от учреждения, которое будет фигурировать в титуле статьи как основное.

¹⁾http://www.jetpletters.ru/ru/info.shtml#sub1

 $^{^{2)}} http://www.jetpletters.ru/tex/utf8/example.tex$

 $^{^{3)}} http://www.jetpletters.ru/tex/utf8/jetpl.cls$

 $^{^{4)}} http://www.jetpletters.ru/tex/koi/jetpl.cls$

Представленные в редакцию рукописи предварительно рассматриваются Редакторами. Не все рукописи направляются на отзыв рецензентам. Редколлегия на основании заключения Редактора может отклонить статьи, которые явно не соответствуют правилам и не подходят для журнала. С другой стороны, ни одна статья не принимается в печать без отзыва рецензентов или членов Редколлегии.

Решение о публикации или отклонении статей принимается на заседании редколлегии по представлению члена редколлегии по соответствующему разделу, с учетом мнения рецензентов. Основанием для отклонения статьи может быть ее недостаточная актуальность, отсутствие существенного продвижения по сравнению с другими публикациями в этой области, слишком специальная тематика и др. Рецензии на отклоненные статьи могут и не посылаться авторам. Авторы могут прислать отклоненную статью на повторное рассмотрение, сопроводив ее аргументированным разъяснительным письмом. В этом случае статья будет направлена на дополнительное рецензирование.

В связи с требованиями издателя и распространителя журнала "JETP Letters", наш журнал "Письма в ЖЭТФ" с середины 2016 года лишен возможность публиковать полные тексты статей, исходно написанных на английском языке. Чтобы выполнить это требование, но не лишать российских читателей части информации, редакцией журнала принято следующее решение: для статей, представленных на английском языке и удовлетворяющих всем требованиям журнала, публиковать в "Письмах в ЖЭТФ" распиренные аннотации на английском языке (объемом не более 1–2 стр. журнального текста, или 5600–11200 знаков текста, включая один рисунок и список литературы). В конце аннотации будет приведена ссылка на полный текст статьи в журнале "JETP Letters".

Оформление рукописи

Первая страница рукописи должна выглядеть следующим образом.

ЗАГЛАВИЕ

Инициалы и фамилии авторов Обязательно — Учреждения, где работают авторы (включая город и почтовый индекс; e-mail одного из авторов) Дата поступления Текст аннотации

Далее следует основной текст.

Фамилии иностранных авторов пишутся в русской транскрипции, но в сноске дополнительно указывается оригинальная транскрипция. Названия мест работы за рубежом пишутся по-английски.

Обращаем внимание авторов статей на русском языке на то, что перевод фамилий с русского языка на английский производится по жестким правилам (см. Письма в ЖЭТФ, т. 58, вып. 8, с. 699). Если авторы по каким-то причинам предпочитают иную транскрипцию своей фамилии, об этом следует написать на отдельном листе. Поскольку аннотации сейчас распространяются и отдельно от статей (базы данных, системы – On-line. и т.п.), текст аннотации должен быть самодостаточным: без ссылок на список литературы, с понятными обозначениями, без аббревиатур.

Сокращения словосочетаний должны даваться заглавными буквами (без точек) и поясняться при первом их употреблении. В тексте подстрочные примечания должны иметь сплошную нумерацию по всей статье.

Цитируемая литература должна даваться общим списком в конце статьи с указанием в тексте статьи ссылки порядковой цифрой, например, [1]. Литература дается в порядке упоминания в статье. Для журнальных статей указываются сначала инициалы, затем фамилии всех авторов, название журнала, номер тома (полужирным шрифтом), первая страница и год в круглых скобках. В случае, если цитируемая статья имеет более 4-х авторов, то только 3 первых должны быть перечислены явно, например

1. A. B. Ivanov, V. G. Petrov, I. M. Sergeev et al., JETP 71, 161 (1990).

Для книг надо указывать инициалы и фамилии всех авторов, полное название книги, издатель, год, том, номер издания, часть, глава, страница (если ссылка на переводное издание, то обязательно в скобках нужно указать данные оригинала), например 2. L. M. Blinov, Structure and Properties of Liquid Crystals, Springer, Heidelberg (2011).

Цитирование двух или более произведений под одним номером, одного и того же произведения под разными номерами не допускается.

В обозначениях и индексах не должно быть русских букв. Например, следует писать P_{opt}, а не P_{ont}.

В десятичных дробях вместо запятой нужно использовать точку. Векторы должны выделяться в тексте статьи полужирным шрифтом (без стрелки над ними).

Поскольку рисунки переносятся без изменений из "Писем в ЖЭТФ" в "JETP Letters" все надписи на рисунках должны быть только на английском языке. Авторов, использующих при подготовке рисунков компьютерную графику, просим придерживаться следующих рекомендаций: графики делать в рамке; штрихи на осях направлять внутрь; по возможности использовать шрифт Times; высота цифр и строчных букв должна быть в пределах (3-4) % от максимального размера (высоты или ширины) рисунков, это относится и к цифрам на осях вставки; единицы измерения на осях графиков приводить в скобках. При подготовке рисунка имейте в виду, что, как правило, ширина рисунка при печати не превышает 82 мм; в исключительных случаях рисунок размещается на всей ширине листа (до 160 мм).

Рисунки публикуются "on-line" в цвете. На авторов возлагается обязанность проверить, что цветные рисунки читаемы, достаточно контрастны и в черно-белом печатном варианте. Образцы оформления статьи и рисунков, а также стилевой файл можно найти на WWW-странице "Писем в ЖЭТФ" (http://www.jetpletters.ru/).

Дополнительный материал

Журнал "Письма в ЖЭТФ" предоставляет авторам возможность публикации Дополнительного материала. Дополнительный материал, относящийся к статье, помещается на сайт одновременно с публикацией статьи в журнале. В Дополнительный материал помещаются сведения, существенные для узкого круга специалистов (например, детали сложных вычислений или мелкие детали экспериментальной техники), но не являющиеся критичными для понимания статьи широким кругом читателей журнала. Дополнительный материал не может быть использован для преодоления ограничения статьи по объему.

Объем дополнительного материала не должен превышать 4 страниц текста, с включением не более 4 рисунков.

В дополнительный материал нельзя включать:

- Дополнительный список литературы
- Сведения о вкладе авторов в работу
- Благодарности
- Комментарии, отклики или поправки.

Как прислать Дополнительный материал в редакцию

Дополнительный материал принимается на английском языке в виде TeX, doc и eps файлов одновременно со статьей по электронной почте по адресу letters@kapitza.ras.ru и рассматривается редакционной коллегией и рецензентами в совокупности со статьей. Файлы Дополнительного материала могут быть посланы в виде нескольких сообщений или могут быть включены в одно сообщение. В качестве темы этих сообщений должно быть указано "Дополнительный материал". В письме должно также быть приведено название статьи, фамилия первого автора и перечень всех прилагаемых файлов.

Правила оформления файлов Дополнительного материала и процедура рассмотрения

Правила оформления файла Дополнительного материала совпадают с правилами оформления основной статьи. В заголовке должно быть написано "Дополнительный материал к статье {название статьи}". Рисунки предпочтительны в цвете. Редакцией и рецензентами Дополнительный материал рассматривается как часть статьи и отдельно не рецензируется. За качество рисунков и качество английского языка Дополнительного материала ответственность ложится на авторов. Ссылка на Дополнительный материал в статье

В статье адрес **Дополнительного материала** приводится в последней ссылке списка литературы в следующем виде:

See Supplemental Material at {для принятой к печати статьи ссылка будет введена редакцией}

Или в русском тексте

См. Дополнительный материал по адресу {для принятой к печати статьи ссылка будет введена редакцией}.

Право на воспроизведение

Дополнительный материал не является отдельным субъектом авторского права и входит в соглашение, подписанное автором для основного текста статьи. Любое воспроизведение Дополнительного материала должно подчиняться тем же правилам, что и текст основной статьи.

Комментарии в журнале "Письма в ЖЭТФ"

Журнал "Письма в ЖЭТФ" публикует краткие комментарии на ранее опубликованные в нем статьи. Авторы оригинальной статьи, на которую написан комментарий, могут на него ответить. Если и комментарий и ответ на него обоснованы и интересны, они принимаются в печать и публикуются в одном номере журнала. Отсутствие ответа авторов комментируемой статьи не является основанием для чрезмерной задержки или отказа в публикации комментария – если комментарий соответствует установленным критериям, он будет опубликован независимо от того, получен на него ответ авторов комментируемой работы или нет. Редакция не принимает комментарии, написанные кем-либо из авторов статьи. Комментарии и ответы ограничены по объему одной журнальной страницей (включая рисунки), аннотация не требуется. При желании авторы могут разместить на сайте журнала дополнительный материал, руководствуясь общими правилами (см. соответствующий раздел)⁵⁾.

Комментарий должен быть направлен на исправление или критику конкретной статьи. В первом абзаце комментария необходимо дать четкую ссылку на комментируемую статью, а также на то ее утверждение, которое комментируется. Комментарий должен касаться существа комментируемой статьи (не формы или стиля изложения) и быть непосредственно связанным с ней, а не просто содержать обсуждение общей темы. Формат комментария не предназначен для использования как инструмент для публикации дополнений к уже опубликованным статьям, он не предназначен также для установления приоритета или исправления библиографических неточностей. Критические замечания должны быть написаны в коллегиальном тоне; полемические комментарии отклоняются без рецензирования. Ответ авторов, чтобы быть пригодным для публикации, также должен быть написан в коллегиальном стиле и свободен от полемики.

Каждый комментарий отправляется авторам оригинальной статьи, у которых запрашиваются ответы на следующие вопросы:

- 1. Может ли комментарий быть опубликован без ответа?
- 2. Будет ли прислан ответ на комментарий для одновременной публикации?
- 3. Не кажется ли авторам, что комментарий слабо связан с оригинальной статьей? (В этом случае требуется подробная аргументация).

Автор оригинальной статьи не является анонимным рецензентом по отношению к комментарию. Редакция оставляет за собой право обратиться к анонимному рецензенту — независимому эксперту, у которого может быть запрошено мнение о комментарии и об ответе авторов. Авторам комментария рекомендуется вначале отправить свой комментарий первому автору комментируемой статьи для прямого ответа, однако редакция не рассматривает такой шаг в качестве обязательного. Ответ авторов комментируемой статьи будет предоставлен авторам комментария до публикации, однако последовавший за этим существенный пересмотр комментария будет интерпретирован как знак его опшбочности и может послужить причиной отказа в его публикации. Редакция не рассматривает комментарии на ответ авторов.

⁵⁾http://www.jetpletters.ru/ru/supp.shtml

Миниобзоры

Журнал "Письма в ЖЭТФ" в течение последних 10 лет в порядке опыта публиковал "заказные" миниобзоры по результатам избранных законченных проектов РФФИ и РНФ. Как показало время, такие обзоры пользуются популярностью и активно читаются. В связи с этим редколлегия журнала решила расширить данную практику и, начиная с июля 2020 г., принимает к рассмотрению миниобзоры не только заказные, но и представленные самими авторами в инициативном порядке.

Правила оформления рукописей, касающиеся статей и обзоров – см. на

http://www.jetpletters.ru/ru/info.shtml

Миниобзор, как и регулярная статья, будет рецензироваться, обсуждаться членами редколлегии и будет приниматься к публикации только в случае его соответствия требованиям, предъявляемым к статьям.

Содержание Том 113, выпуск 9 _{Поля, частицы, ядра}

Галынский М.В. О передаче поляризации от начального к конечному протону в упругом процессе $e\vec{p} \rightarrow e\vec{p}$	579
Remigio A.S. Using relativistic kinematics to generalize the series solution of Bethe stopping power obtained from Laplace–Adomian Decomposition method	587
Simonov Yu.A. Understanding two slopes in the $pp(p\bar{p})$ differential cross sections	589
Оптика, лазерная физика	
Балакин Д.А., Белинский А.В. Адаптивная фантомная оптика	590
Конденсированное состояние	
Рутьков Е.В., Галль Н.Р. Роль приповерхностной области объема подложки в двумерном фазовом переходе, приводящем к росту однослойного графена: система Pt–C	595
Садовский М.В. Температура сверхпроводящего перехода для очень сильной связи в антиадиа- батическом пределе уравнений Элиашберга	600
Вдовин Е.Е., Ханин Ю.Н. Влияние мощности излучения на модификацию осцилляций фототока в однобарьерных $p-i-n$ GaAs/AlAs/GaAs гетероструктурах с InAs квантовыми точками	605
Сазонов С.В. Ультразвуковой диссипативный солитон в неравновесном парамагнитном кристалле	612
Методы теоретической физики	
Леонидов А.В. О неаддитивной анизотропной релятивистской гидродинамике	620
Разное	
Volovik G.E. Negative temperature: further extensions	624

Содержание Том 113, выпуск 10 Оптика, лазерная физика

Саргсян А., Тоноян А., Саркисян Д. Самые сильные магнито-индуцированные переходы ато- мов щелочных металлов	629
Архипов Р.М. Электромагнитно индуцированные решетки атомных населенностей, создаваемые с помощью предельно коротких световых импульсов (Миниобзор)	636
Данилов П.А., Кудряшов С.И., Рупасов А.Е., Смирнов Н.А., Олейничук Е.А., Рив- нюк А.С., Заколдаев Р.А. Формирование нанорешеток на поверхности нанопористого стекла под действием фемтосекундных лазерных импульсов видимого диапазона	650
Гинзбург Н.С., Кочаровская Е.Р., Сергеев А.С., Фильченков С.Е. Спектр генерации дли- ноимпульсных лазеров на свободных электронах терагерцового диапазона: квазилинейная теория	655
Конденсированное состояние	
Иоселевич П.А., Чукланов Д.А. Подавление минищели в S(N/F)S контактах	661
Рыжкова Д.А., Гафнер С.Л., Гафнер Ю.Я. Влияние "магических" ГЦК чисел на стабильность строения малых нанокластеров серебра	669
Петржик Е.А., Альшиц В.И. Резонансное магнитостимулированное изменение микротвердости кристаллов NaCl	678
Талочкин А.Б., Кох К.А., Терещенко О.Е. Спектр оптических фононов монокристалла Ge ₂ Sb ₂ Te ₅	683
Щепетильников А.В., Хисамеева А.Р., Нефедов Ю.А., Кукушкин И.В. Электронный спи- новый резонанс в условиях ферромагнитного перехода	689
Esin V.D., Barash Yu.S., Timonina A.V., Kolesnikov N.N., Deviatov E.V. Coalescence of Andreev bound states on the surface of a chiral topological semimetal	695
Дорожкин С.И., Капустин А.А., Уманский В., Смет Ю.Х. Поглощение микроволнового из- лучения двумерными электронными системами, связанное с возбуждением размерных резонансов бернштейновских мод	697
Текущий авторский указатель томов 111–113	704
Информация для авторов	714