российская академия наук ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

ОСНОВАН В МАРТЕ 1873 ГОДА ВЫХОДИТ 12 РАЗ В ГОД М О С К В А *ТОМ 161, ВЫПУСК 6 ИЮНЬ 2022* Р А Н

ЖУРНАЛ ИЗДАЕТСЯ ПОД РУКОВОДСТВОМ ОТДЕЛЕНИЯ ФИЗИЧЕСКИХ НАУК РАН

СОДЕРЖАНИЕ

АТОМЫ, МОЛЕКУЛЫ, ОПТИКА

Моделирование	переноса	излучения	в терминах у	равнения	Бете – Солпитера	а для двухслойн	ых
систем биот	гканей						
	Кузьм	ин В. Л., 2	Каворонков	Ю. А.,	Ульянов С. В.,	Вальков А. Н	O. 779

ЯДРА, ЧАСТИЦЫ, ПОЛЯ, ГРАВИТАЦИЯ И АСТРОФИЗИКА

Влияние коллективных ядерных колебаний на эксцентриситеты начального состояния в столкнове-	
ниях Pb+PbЗахаров Б. Г.	788

ТВЕРДЫЕ ТЕЛА И ЖИДКОСТИ

Влияние низкоэнергетического ионного ассистирования на структуру и оптическое поглощение ком-	
позитных покрытий а- $\operatorname{CH:Ag}$	
Завидовский И. А., Нищак О. Ю., Савченко Н. Ф., Стрелецкий О. А.	803

ПОРЯДОК, БЕСПОРЯДОК И ФАЗОВЫЕ ПЕРЕХОДЫ В КОНДЕНСИРОВАННЫХ СРЕДАХ

Фрустрированная модель Поттса с числом состояний спина $q=4$ в магнитном поле \ldots	
Рамазанов М. К., Муртазаев А. К., Магомедов М. А.	816

© Российская академия наук, 2022

 \odot Редколлегия журнала Ж
ЭТФ (составитель), 2022

Влияние малых предварительных деформаций и начальной температуры на сопротивление высоко- скоростному деформированию Армко-железа в ударных волнах и волнах разрежения 	825
Анизотропная намагниченность пленки NbN	833
Фрустрации в разбавленном изинговском магнетике на решетке Бете Сёмкин С. В., Смагин В. П., Тарасов В. С.	840
Фазовые переходы в двумерных моделях Поттса на гексагональной решетке 	847
Магнитный резонанс в металл-диэлектрических наногранулярных композитах с парамагнитными ионами в изолирующей матрице	853

ЭЛЕКТРОННЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Спиновый транспорт в полупроводниках InSbc различной плотностью электронного газа	
Виглин Н. А., Никулин Ю. В., Цвелиховская В. М., Павлов Т. Н., Проглядо В. В.	866
Электронная структура и механические свойства ${ m Ti}_5{ m Si}_3$	
Чумакова Л. С., Бакулин А. В., Кулькова С. Е.	874

СТАТИСТИЧЕСКАЯ И НЕЛИНЕЙНАЯ ФИЗИКА, ФИЗИКА «МЯГКОЙ» МАТЕРИИ

Особенности генерации лазерно-индуцированного рентгеновского излучения и его воздействия на вещество применительно к задачам лазерного термоядерного синтезаВергунова Г. А.,	
Гуськов С. Ю., Вичев И. Ю., Грушин А. С., Ким Д. А., Соломянная А. Д.	887
Особенности динамики самовоздействия волновых пакетов с исходно нормальной дисперсией груп- повой скорости в нелинейных решеткахСмирнов Л. А., Миронов В. А., Литвак А. Г.	897
Алфавитный указатель тома 161 за 2022 г	909
Предметный указатель тома 161 за 2022 г.	920

МОДЕЛИРОВАНИЕ ПЕРЕНОСА ИЗЛУЧЕНИЯ В ТЕРМИНАХ УРАВНЕНИЯ БЕТЕ-СОЛПИТЕРА ДЛЯ ДВУХСЛОЙНЫХ СИСТЕМ БИОТКАНЕЙ

В. Л. Кузъмин^{а*}, Ю. А. Жаворонков^{b**}, С. В. Ульянов^{b***}, А. Ю. Вальков^{a,b****}

^а Санкт-Петербургский политехнический университет Петра Великого 195251, Санкт-Петербург, Россия

> ^b Санкт-Петербургский государственный университет 198504, Санкт-Петербург, Россия

> > Поступила в редакцию 23 декабря 2021 г., после переработки 29 декабря 2021 г. Принята к публикации 30 декабря 2021 г.

Интенсивность обратного рассеяния излучения ближнего инфракрасного диапазона рассчитана для двухслойной модели сильно неоднородной среды, которую можно рассматривать как систему биотканей «череп-мозг». На основе уравнения Бете – Солпитера описана процедура моделирования многократного рассеяния методом Монте-Карло для двухслойной случайно-неоднородной среды. В качестве индикатрисы однократного рассеяния использована фазовая функция Хеньи – Гринштейна. Рассчитаны зависимости интенсивности обратного рассеяния от расстояния вдоль поверхности головы между источником излучения и приемником. Вид этих зависимостей оказался чувствительным к изменению таких параметров системы, как анизотропия индикатрисы рассеяния, толщина слоев, длина волны лазерного излучения. Эта особенность может быть использована в медицинской диагностике. Предложен альтернативный подход к расчету плотности распределения вероятности длины свободного пробега фотона. Показано, что, начиная с расстояния между источником и приемником порядка нескольких транспортных длин, рассчитанная интенсивность находится в хорошем согласии с предсказаниями диффузионной теории.

DOI: 10.31857/S0044451022060013 **EDN:** DTRSKT

1. ВВЕДЕНИЕ

Методы рассеяния света в настоящее время активно используются для исследования биотканей, прежде всего в связи с медицинской диагностикой [1–4]. Важную область здесь составляет быстрая «полевая» диагностика различных травм головного мозга [5–11]. Наличие так называемого «окна прозрачности» биологических тканей в ближнем инфракрасном диапазоне привело к развитию метода диффузной спектроскопии ближнего инфракрасного диапазона DNIRS (Diffuse Near-infrared Spectroscopy, см. [1–4,7–9]). Указанный метод широко используется для определения глубины и степени повреждения кожных покровов и подкожной клетчатки, диагностики венозных повреждений, травм мозга и мягких тканей [2,9,11–14].

Для корректного описания состояния мозга по данным обратно рассеянного лазерного излучения обязательно требуется дополнительный учет наличия черепа, т.е. для теории — как минимум двухслойная модель головы «череп-мозг» [15, 16]. Задача определения оптических параметров модели «череп-мозг» по данным эксперимента в биофантомах и теоретического описания интенсивности как аналитически — на основе уравнения переноса, так и численно — моделированием методом Монте-Карло (МК), рассматривалась в работе [17]. Аналогичная модель была описана в [18] и использовалась для неинвазивного определения оптических свойств мозга в рамках DNIRS. В работе [19] показано, что оптические параметры мозга можно получить, если расстояние между источником и детектором вдоль поверхности черепа больше некоторого характерного значения.

^{*} E-mail: kuzmin vl@mail.ru

^{**} E-mail: zhavoronkov95@gmail.com

^{***} E-mail: ulyanov_sv@mail.ru

^{****} E-mail: alexvalk@mail.ru

Данная работа посвящена МК-моделированию обратного рассеяния в двухслойной среде. Выбор для исследования двухслойной модели продиктован желанием избежать громоздкости в теоретическом описании, эта модель является удобной базой для верификации результатов для реальных многослойных моделей, учитывающих дополнительно слой скальпа, прозрачную цереброспинальную жидкость и сложную структуру мозга (см., например, [11]).

Наш расчет интенсивности обратно рассеянного лазерного излучения основан на итерационном решении уравнения Бете-Солпитера. Многократные интегралы, являющиеся членами разложения решения по кратностям рассеяния, вычисляются методом Монте-Карло. Широко применяемая процедура MCML (Monte Carlo Multi Layer) [20] основана на подсчете числа фотонов, покинувших систему в результате случайных блужданий. MCML-подход модифицирован нами так, чтобы вклады в интенсивность обратного рассеяния определялись на каждом акте рассеяния [21,22], это приводит к существенному снижению времени расчета. Также мы модифицируем процедуру обратного преобразования в методе МК, явно учитывая наличие абсорбции в каждом порядке рассеяния.

В разд. 2 данной работы приведено решение уравнения Бете – Солпитера в лестничном приближении для интенсивности обратного рассеяния в виде ряда по кратностям рассеяния. В разд. 3 описана процедура МК-вычисления интегралов методом обратного преобразования. В разд. 4 в явном виде приведен метод МСМL обратного преобразования кумулятивной функции распределения вероятности длины пробега фотона в двухслойной случайно неоднородной среде. В разд. 5 описана предложенная нами модификация метода обратного преобразования. В разд. 6 представлены результаты расчетов интенсивности обратного рассеяния, а в разд. 7 проведен анализ полученных результатов и сделаны выводы.

2. УРАВНЕНИЕ БЕТЕ – СОЛПИТЕРА

Мы описываем перенос излучения в случайной среде с помощью уравнения Бете – Солпитера [21,22]

$$\Gamma(\mathbf{r}_{2},\mathbf{r}_{1} | \mathbf{k}_{f},\mathbf{k}_{i}) = \mu_{s} p\left(\mathbf{k}_{f}-\mathbf{k}_{i}\right) \delta(\mathbf{r}_{2}-\mathbf{r}_{1}) + \mu_{s} \int d\mathbf{r}_{3} p\left(\mathbf{k}_{f}-\mathbf{k}_{23}\right) \Lambda(\mathbf{r}_{2}-\mathbf{r}_{3}) \Gamma(\mathbf{r}_{3},\mathbf{r}_{1} | \mathbf{k}_{23},\mathbf{k}_{i}), \quad (1)$$

где пропагатор $\Gamma(\mathbf{r}_2, \mathbf{r}_1 | \mathbf{k}_f, \mathbf{k}_i)$ соответствует излучению из точки \mathbf{r}_1 в точку \mathbf{r}_2 с начальным \mathbf{k}_i и ко-

нечным \mathbf{k}_{f} волновыми векторами, \mathbf{k}_{ij} — волновой вектор, направленный из точки \mathbf{r}_{j} в точку $\mathbf{r}_{i}, \mathbf{k}_{ij} = k_{0}\mathbf{r}_{ij}/r_{ij}$, $\mathbf{r}_{ij} = \mathbf{r}_{i} - \mathbf{r}_{j}$. Здесь $k_{0} = 2\pi/\lambda$ — волновое число в вакууме, λ — длина волны. Пропагатор однократного рассеяния $\Lambda(r) = r^{-2}\exp(-\mu r)$ возникает из произведения двух комплексно-сопряженных средних функций Грина скалярного поля, $\mu = \mu_{s} + \mu_{a}$ — коэффициент экстинкции, μ_{s} и μ_{a} — коэффициенты рассеяния и абсорбции соответственно, $p(\mathbf{k}_{f} - \mathbf{k}_{i})$ — фазовая функция,

$$p(\mathbf{k}_f - \mathbf{k}_i) = \frac{G(\mathbf{k}_f - \mathbf{k}_i)}{\int d\Omega_f G(\mathbf{k}_f - \mathbf{k}_i)},$$
(2)

 $G({f k})$ — преобразование Фурье корреляционной функции диэлектрической проницаемости,

$$G(\mathbf{k}) = \int d(\mathbf{r} - \mathbf{r}_0) e^{-i\mathbf{k} \cdot (\mathbf{r} - \mathbf{r}_0)} \langle \delta \varepsilon(\mathbf{r}) \, \delta \varepsilon^*(\mathbf{r}_0) \rangle.$$
(3)

Уравнение (1) написано в лестничном приближении, подразумевающем условие слабого рассеяния: $\lambda \ll l_s = \mu_s^{-1}$. В формуле (1) мы использовали оптическую теорему для скалярного поля,

$$\mu_s = \frac{k_0^4}{(4\pi)^2} \int d\Omega_f G(\mathbf{k}_f - \mathbf{k}_i). \tag{4}$$

Пусть z — декартова координата, нормальная к границе полубесконечной среды, $\mathbf{r} = (\mathbf{r}_{\perp}, z), z > 0$. Для исходящего поля мы используем приближение Фраунгофера, когда поле в дальней зоне является произведением сферической волны и плоской волны, направленной в точку наблюдения [22]. Тогда основная, некогерентная часть интенсивности обратного рассеяния [23] представляется в виде

$$J(s_i, s_f) = 4\pi \int_0^\infty dz_1 \int_{z_2 > 0} d\mathbf{r}_2 \Gamma(\mathbf{r}_2, \mathbf{r}_1 | \mathbf{k}_f, \mathbf{k}_i) \times \\ \times \exp\left(-\mu(s_f z_2 + s_i z_1)\right), \quad (5)$$

где $s_i = 1/\cos \theta_i$, $s_f = 1/\cos \theta_f$, θ_i — угол падения, а θ_f — угол обратного рассеяния, отсчитываемый от обратного направления.

Проводя итерации в уравнении Бете-Солпитера, представляем интенсивность рассеяния как ряд по кратностям рассеяния [22,24]:

$$J(s_i, s_f) = \sum_{n=1}^{\infty} J^{(n)}(s_i, s_f),$$
 (6)

где вклад в рассеяние *n*-го порядка

$$J^{(n)}(s_i, s_f) = 4\pi \mu_s^n \int_0^\infty dz_1 \int d\mathbf{r}_2 \dots \int d\mathbf{r}_n \Lambda(r_{21}) \times p(\mathbf{k}_{21} - \mathbf{k}_i) \prod_{j=2}^{n-1} \Lambda(r_{j+1j}) p(\mathbf{k}_{j+1\,j} - \mathbf{k}_{j\,j-1}) \times H(z_j) H(z_n) p(\mathbf{k}_f - \mathbf{k}_{n\,n-1}) e^{-\mu(s_i z_1 + s_f z_n)}.$$
 (7)

Функции Хевисайда H(z) обеспечивают исчезновение этого вклада при вылете фотона из среды.

3. МОДЕЛИРОВАНИЕ МЕТОДОМ МОНТЕ-КАРЛО

Опишем алгоритм моделирования для однородной полубесконечный среды. Метод основан на известной процедуре обратного преобразования [25], который представляет пространственные интегралы итерационного ряда (6) по полубесконечному интервалу в виде интегралов по единичным интервалам. Трехмерный пространственный интеграл в декартовых координатах $\mathbf{r}_i = (x_i, y_i, z_i)$ преобразуется в интеграл по сферическим координатам (r, θ, ϕ) , с началом в \mathbf{r}_{i-1} . Ось *z* находится под прямым углом к поверхности образца и уходит вглубь него. Форма пропагатора однократного рассеяния $\Lambda(r)$ показывает, что длина свободного пробега фотона имеет экспоненциальное распределение вероятности с плотностью $f(r) = \mu \exp(-\mu r)$ на интервале $r \in [0, \infty)$, где $r = |\mathbf{r}_i - \mathbf{r}_{i-1}|$ — расстояние между точками *j*-го и (*j* - 1)-го порядков актов рассеяния. Для экспоненциального распределения кумулятивная функция распределения $\xi = F(r)$ находится элементарно,

$$\xi = F(r) = \int_{0}^{r} f(r') dr' = 1 - \exp(-\mu r).$$
 (8)

Обратное преобразование $r = F^{-1}(\xi)$ дает

$$r = -\mu^{-1}\ln(1-\xi) = -\mu^{-1}\ln\xi',$$
(9)

где ξ и $\xi' = 1 - \xi$ — случайные величины, равномерно распределенные в единичном интервале [0, 1]. Аналогичное обратное преобразование выполняется с косинусом угла рассеяния: от $t = \cos \theta$ переходим к

$$\chi = 2\pi \int_{-1}^{t} p(t') dt'$$

Таким образом, трехмерный пространственный интеграл по относительной координате $\mathbf{r} = \mathbf{r}_j - \mathbf{r}_{j-1}$ преобразуется как

$$\int d\mathbf{r} \Lambda(r) p(t) = \frac{1}{2\pi\mu} \int_{0}^{1} d\xi \int_{0}^{1} d\chi \int_{0}^{2\pi} d\phi.$$
(10)

После этого интеграл вычисляется как среднее по выборке трех равномерно распределенных переменных ξ , χ , ϕ , где первые две принадлежат интервалу [0, 1], а азимутальный угол ϕ — интервалу $[0, 2\pi]$.

Приближая член *n*-го порядка $J^{(n)}(1, s_f)$ средним по выборке из N_{ph} падающих фотонов, имеем

$$J^{(n)}(1,s_f) \simeq \sum_{i=1}^{N_{ph}} \frac{W_n^{(i)}}{N_{ph}} p\left(\mathbf{k}_f - \mathbf{k}_{n\,n-1}^{(i)}\right) e^{-\mu s_f z_n^{(i)}}, \ (11)$$

где веса $W_n^{(i)}$ для n>1 задаются формулой

$$W_n^{(i)} = \left(\frac{\mu_s}{\mu}\right)^n \prod_{j \le n} H\left(z_j^{(i)}\right) H\left(T - z_j^{(i)}\right).$$
(12)

Функция H(z)H(T-z) учитывает, что реальная среда заполняет конечный слой толщиной $T, 0 \le z \le T$. Отметим, что интенсивность рассеяния, рассчитанная с помощью (11), может быть интерпретирована как среднее значение экспоненты $\exp(-\mu s_f z_n^{(i)})$, которая описывает затухание фотона, возвращающегося из среды к границе после n актов рассеяния.

Вес $W_n^{(i)}$ представляет собой случайное значение многократного пространственного интеграла, полученного в результате итерации *n*-го порядка уравнения Бете-Солпитера. Вычисляя его, моделируем стохастическую последовательность, или траекторию, точек рассеяния $\mathbf{r}_1, \ldots, \mathbf{r}_n$. Переменная $z_i^{(i)}$ это расстояние до границы от *j*-го события рассеяния. Функция $\phi_{BLB}(z_n^{(i)}) = \exp(-\mu s_f z_n^{(i)})$ возникает вследствие затухания рассеянного излучения, распространяющегося от случайной точки *n*-го события рассеяния $z_n^{(i)}$ к границе. Оно зависит от локальных оптических параметров на пути фотона, движущегося к границе, и имеет вид в приближении Фраунгофера закона Бугера – Ламберта – Бера. Для однородной среды $\phi_{BLB}(z) = \exp(-\mu s_f z)$. В формуле (12) мы пренебрегли потерями энергии на отражение на границах между слоями и с вакуумом. Эти потери можно учесть, если весовые коэффициенты $W_n^{(i)}$ умножить на коэффициенты отражения Френеля (см. [26]).

Метод МК широко используется для моделирования миграции фотонов в тканях и тканевых фантомах, в основном в рамках известного алгоритма MCML [20]. В рамках MCML в сигнал вносят вклад фотоны, выходящие из рассеивающей среды, что требует довольно большой выборки из-за того, что число случайно вышедших фотонов с заданной геометрией задачи могут составлять очень малую долю падающего света. В развитой в настоящей работе модификации каждый фотон вносит свой вклад в сигнал при каждом акте рассеяния, пока не покинет среду. Таким образом, объем выборки и, соответственно, время вычислений, необходимое для получения результатов, существенно уменьшается.

4. МЕТОД ОБРАТНОГО ПРЕОБРАЗОВАНИЯ ДЛЯ ДВУХСЛОЙНОЙ СРЕДЫ

Рассмотрим неоднородную среду, в которой оптические параметры зависят от положения фотона, а именно — от декартовой координаты z по оси, нормальной к границам.

В общем случае положим $\mu = \mu(z)$. Мы предполагаем, что на границе раздела слоев отражение отсутствует. Таким образом, предполагая, что направление луча не меняется при движении в неоднородной среде, получаем, что экспоненциальная функция распределения, определяющая затухание фотона, движущегося из точки \mathbf{r}_0 в точку \mathbf{r} , может быть представлена в следующем виде:

$$\exp\left(-\mu|\mathbf{r}-\mathbf{r}_{0}|\right) \to \exp\left(-\frac{1}{\cos\theta}\int_{z_{0}}^{z}\mu(z')\,dz'\right).$$
 (13)

Здесь θ — угол между направлением движения фотона и осью z, который должен быть определен заранее. Заметим, что распределение зависит от начального положения фотона \mathbf{r}_0 . Определим плотность вероятности для пространственной координаты z, задающей новое положение фотона, формулой

$$f(z, z_0) = C_0^{-1} \exp\left(-\frac{1}{\cos\theta} \int_{z_0}^{z} \mu(z') \, dz'\right), \quad (14)$$

где C_0 — нормировочная постоянная.

Рассматривается двухслойная модель, состоящая из слоев A и B. Слой A занимает область $0 < z < T_A$, слой B — область $T_A < z < T$, где $T = T_A + T_B$ — толщина данной двухслойной системы. При построении обратного преобразования мы рассматриваем среду B как полубесконечный слой $T_A < z$, а в численных расчетах будем полагать T_B конечным, но $T_B \gg T_A$. Нам необходимо получить кумулятивную функцию, зависящую от знака $\cos \theta$, и выполнить обратное преобразование для шести различных случаев, а именно, как видно из рис. 1, для каждого возможного направления движения фотона, вверх или вниз на рисунке,

Рис. 1. Схематическое представление случайного пути фотона из начальной точки \mathbf{r}_j (черный кружок) в точку следующего рассеяния \mathbf{r}_{j+1} (белый кружок); варианты движения фотона вглубь образца, $\cos \theta > 0$: (1а) — из среды A в A, (1b) — из A в B, (2) — из B в B; варианты движения фотона в направлении поверхности, $\cos \theta < 0$: (3а) — из среды B в B, (3b) — из B в A, (4) — из A в A

а также с учетом того, движется ли фотон в слое A или B, либо пересекает границу этих слоев. Таким образом, нам необходимо построить алгоритм определения последовательных шагов, которые должен пройти фотон, начиная с точки z_0 .

Пусть начальная точка z_0 выбрана в слое А для фотона, движущегося вглубь среды, $\cos \theta > 0$, что соответствует путям (1a) или (1b) среди шести путей, показанных на рис. 1. Для описания случайного расстояния, пройденного фотоном между двумя последовательными актами рассеяния, определим функцию плотности вероятности [20]:

$$f(z, z_0) = \begin{cases} \frac{\mu(A)}{\cos \theta} \exp\left(-\frac{\mu(A)}{\cos \theta}(z - z_0)\right), & z \le T_A, \\ \xi_A \frac{\mu(B)}{\cos \theta} \exp\left(-\frac{\mu(B)}{\cos \theta}(z - T_A)\right), & z > T_A, \end{cases}$$
(15)

где параметр $\xi_A = \exp(-\mu(A)(T_A - z_0)/\cos\theta)$ соответствует движению фотона от точки z_0 до границы $z = T_A$. Для краткости мы опускаем зависимость введенных параметров от z_0 . Интегрируя плотность вероятности (15), получаем кумулятивную функцию распределения

$$F(z) = \begin{cases} 1 - \exp\left(-\frac{\mu(A)}{\cos\theta}(z - z_0)\right), & z \le T_A, \\ 1 - \xi_A \exp\left(-\frac{\mu(B)}{\cos\theta}(z - T_A)\right), & z > T_A. \end{cases}$$
(16)

Значение кумулятивной функции рассматривается далее как равномерно распределенная случайная величина $\xi = F(z, z_0)$. Выполняя обратное преобразование, т. е. определяя пространственную переменную z как обратную функцию $z = F^{-1}(\xi)$, получаем

$$z = \begin{cases} z_0 - \frac{\cos\theta}{\mu(A)} \ln(1-\xi), & \xi \le 1-\xi_A, \\ T_A - \frac{\cos\theta}{\mu(B)} \ln\left(\frac{1-\xi}{\xi_A}\right), & \xi > 1-\xi_A. \end{cases}$$
(17)

В случае $z_0 > T_A$ и положительного направления движения фотона, $\cos \theta > 0$, коэффициент рассеяния не меняется, $\mu(z) = \mu(B)$, и применение обратного преобразования дает

$$z = z_0 - \frac{\cos\theta}{\mu(B)} \ln(1-\xi).$$
 (18)

Аналогично для фотона, движущегося из сло
яBв отрицательном направлении, со
з $\theta < 0,$ получаем

$$z = \begin{cases} z_0 - \frac{\cos\theta}{\mu(B)} \ln(1-\xi), & \xi \le 1-\xi_B, \\ T_A - \frac{\cos\theta}{\mu(A)} \ln\left(\frac{1-\xi}{\xi_B}\right), & \xi > 1-\xi_B, \end{cases}$$
(19)

где $\xi_B = \exp(-\mu(B)(T_A - z_0)/\cos\theta)$. Для фотона, движущегося в сторону границы z = 0 из слоя A, аналогично получаем

$$z = z_0 - \frac{\cos\theta}{\mu(A)} \ln(1-\xi).$$
 (20)

Таким образом, формулы (17)–(20) определяют изменение координаты z фотона в результате одного акта рассеяния как функцию равномерно распределенной величины ξ для двухслойной среды. Число возможных случаев увеличивается как k(k+1) с ростом числа слоев k; так, в трехслойной среде имеется 12 различных вариантов движения фотона.

5. МОДИФИКАЦИЯ АЛГОРИТМА МСМЬ

Каждое событие рассеяния в члене *n*-го порядка в выражении (7) для интенсивности рассеяния порождает коэффициент $\mu_s(A)$ или $\mu_s(B)$. Мы разработали процедуру обратного преобразования, включающую эти множители в явном виде в функцию плотности вероятности. Это позволит нам при МК-моделировании более точно учесть наличие абсорбции и, в частности, отличие альбедо μ_s/μ от 1.

Движение вглубь среды: $z > z_0$, $\cos \theta > 0$. Пусть фотон начинает двигаться в слое A, $z_0 < T_A$, в положительном направлении, $\cos \theta > 0$. Плотность вероятности для $z_0 < T_A$ имеет вид

$$f^{(+)}(z, z_0) =$$

$$= \begin{cases} \frac{\mu_s(A)}{C^{(+)}\cos\theta} \exp\left(-\frac{\mu(A)}{\cos\theta}(z-z_0)\right), & z \le T_A, \\ \frac{\xi_A \mu_s(B)}{C^{(+)}\cos\theta} \exp\left(-\frac{\mu(B)}{\cos\theta}(z-T_A)\right), & z > T_A. \end{cases}$$
(21)

В нормировочную постоянную $C^{(+)} = C_1^{(+)} + C_2^{(+)}$ вносят вклад два члена,

$$C_1^{(+)} = (1 - \xi_A) \frac{\mu_s(A)}{\mu(A)}, \quad C_2^{(+)} = \xi_A \frac{\mu_s(B)}{\mu(B)}.$$
 (22)

Теперь найдем обратную кумулятивную функцию $z = (F^{(+)})^{-1}(\xi)$. Выполняя схему обратного преобразования, находим переменную z как функцию случайной величины ξ :

$$z = \begin{cases} z_0 - \frac{\cos \theta}{\mu(A)} \ln \left(1 - C^{(+)} \xi \frac{\mu(A)}{\mu_s(A)} \right), & \xi \le \xi^{(+)}, \\ T_A - \frac{\cos \theta}{\mu(B)} \ln \left((1 - \xi) \frac{C^{(+)}}{C_2^{(+)}} \right), & \xi > \xi^{(+)}. \end{cases}$$
(23)

Здесь

$$\xi^{(+)} = F^{(+)}(T_A) = (1 - \xi_A) \frac{\mu_s(A)}{\mu(A)C^{(+)}} \qquad (24)$$

— значение кумулятивной функции на границе слоев А и В. При $z_0 > T_A$, при движении вглубь, $\cos \theta >$ > 0, обратное преобразование дает

$$z = z_0 - \frac{\cos\theta}{\mu(B)} \ln(1-\xi).$$
 (25)

Движение к поверхности: $z_0 > z$, $\cos \theta < 0$. Двигаясь в отрицательном направлении из слоя B, $\cos \theta < 0$, мы получаем аналогичный результат:

$$z = \begin{cases} z_0 - \frac{\cos \theta}{\mu(B)} \ln \left(1 + C^{(-)} \xi \frac{\mu(B)}{\mu_s(B)} \right), & \xi \le \xi^{(-)}, \\ T_A - \frac{\cos \theta}{\mu(A)} \ln \left((1 - \xi) \frac{C^{(-)}}{C_2^{(-)}} \right), & \xi > \xi^{(-)}, \end{cases}$$
(26)

где

$$\xi^{(-)} = (1 - \xi_B) \frac{\mu_s(B)}{\mu(B)C^{(-)}},$$
(27)

	$\lambda = 750$		$\lambda =$	850	$\lambda =$	950	$\lambda = 1050$	
	μ_a	μ_s'	μ_a	μ_s'	μ_a	μ_s'	μ_a	μ_s'
Мозг	0.036	0.859	0.106	0.762	0.114	0.622	0.118	0.525
Череп	0.006	1.974	0.013	1.876	0.019	1.757	0.019	1.665

Таблица. Типичные коэффициенты рассеяния и абсорбции рассмотренных биотканей μ_a и μ'_s (в мм $^{-1}$) для различных длин волн λ (в нм)

а нормировочная постоянная $C^{(-)} = C_1^{(-)} + C_2^{(-)}$ представляет собой сумму двух слагаемых,

$$C_1^{(-)} = (1 - \xi_B) \frac{\mu_s(B)}{\mu(B)}, \quad C_2^{(-)} = \xi_B \frac{\mu_s(A)}{\mu(A)}.$$
 (28)

В случае $z_0 < T_A$, при движении к поверхности, $\cos \theta < 0$, обратное преобразование дает

$$z = z_0 - \frac{\cos\theta}{\mu(A)} \ln(1-\xi).$$
 (29)

6. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

В данном разделе приводятся результаты расчетов интенсивности обратного рассеяния лазерного излучения ближнего инфракрасного диапазона двухслойной средой.

Существуют обширные данные по оптическим параметрам биотканей (см., например, [27–30]). Параметры для системы «череп–мозг», использованные нами при моделировании, приведены в таблице.

Моделирование проводилось методом МК с использованием как традиционного метода обратного преобразования кумулятивной функции распределения вероятности длины свободного пробега фотона [20], так и предложенной в разд. 5 данной работы его модификации. В расчетах полагалось, что в среду, занимающую полупространство $z \ge 0$, лазерное излучение попадает вдоль направления оси z. Далее, в результате многократного рассеяния в двухслойной среде возникает обратное рассеяния, интенсивность которого рассчитывалась в точке на поверхности z = 0 на расстоянии ρ от точки входа лазерного луча в среду. В расчетах кратность рассеяния ограничивалась числом $n = 3 \cdot 10^5$, а объем выборки был выбран $N = 10^6$.

Результаты многократного рассеяния существенно зависят от анизотропии рассеяния. Для изучения этой зависимости нормированную фазовую функцию $p(\cos \theta)$, где θ — угол однократного рассеяния, мы описывали широко применяемой модельной фазовой функцией Хеньи – Гринштейна (ХГ) [3,31]:

$$p_{HG}(\cos\theta) = \frac{1}{4\pi} \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}},$$
 (30)

где $g = \langle \cos \theta \rangle$ — параметр анизотропии однократного рассеяния. Удобство фазовой функции ХГ связано с тем, что для нее в элементарных функциях выражается обратная кумулятивная функция распределения вероятности по углу рассеяния θ .

Во многих оптических исследованиях биотканей и биофантомов используется приведенный коэффициент рассеяния μ'_s (обратная транспортная длина), связанный с коэффициентом рассеяния μ_s (обратной длиной рассеяния) соотношением $\mu'_s = (1-g)\mu_s$. На рис. 2 показаны зависимости интенсивности обратно рассеянного излучения от расстояния между источником фотонов и приемником на плоскости z = 0 при изменении параметра анизотропии g. На рис. 2а приведены результаты расчетов для различных значений параметра g при одном и том же значении коэффициента рассеяния μ_s . В соответствии с оптической теоремой, для всех кривых рис. 2*a* неизменной остается интегральная интенсивность однократного рассеяния, в то время как приведенный коэффициент рассеяния μ'_s с изменением параметра gменяется.

Как видно из рис. 2a, с ростом параметра g, т. е. с увеличением вытянутости индикатрисы однократного рассеяния вперед, растет и интенсивность обратного рассеяния на любом расстоянии ρ между источником и приемником, исключая самую близкую к источнику область. Такое поведение находится в согласии с аналитическими расчетами [32, 33], выполненными для изотропной и сильно анизотропной фазовых функций. Отметим, что на рис. 2а для каждого значения д показаны результаты вычислений, выполненных по двум алгоритмам нахождения длины свободного пробега фотона, приведенным в разд. 4 и 5 данной работы: а именно — закрашенные символы соответствуют классическому алгоритму MCML из работы [20], а белые символы — нашему алгоритму. На рис. 26 приведены результаты МК-моделирования для другого варианта

Рис. 2. Зависимости интенсивности обратного рассеяния в двухслойной модели череп (A) и мозг (B) от расстояния источник-приемник. Закрашенные символы соответствуют классическому алгоритму, белые — модифицированному. Значения параметра анизотропии $g = 0.8 (\Box \ \mathbf{u} \ \mathbf{I}), 0.9$ ($\bigtriangleup \ \mathbf{u} \ \mathbf{A}$), 0.95 ($\diamondsuit \ \mathbf{u} \ \mathbf{A}$). Длина волны $\lambda = 750$ нм. Толщина слоя A — $T_A = 5$ мм. Графикам a и b отвечают варьируемые параметры μ'_s и μ_s соответственно

роста параметра анизотропии g, а именно — неизменной оставалась величина приведенного коэффициента рассеяния μ'_s , а коэффициент μ_s изменялся согласованно с изменением параметра анизотропии g. Из совпадения графиков на этом рисунке следует, что зависимость интенсивности обратного рассеяния от расстояния между приемником и источником в рассмотренной двухслойной системе определяется приведенными коэффициентами рассеяния $\mu'_s(A)$ и $\mu'_s(B)$, что свидетельствует о сформировавшемся диффузионном режиме переноса излучения.

На рис. 3 представлены результаты моделирования зависимости интенсивности обратного рассеяния от расстояния между источником и приемни-

Рис. 3. Зависимости интенсивности обратного рассеяния в двухслойной модели череп (А) и мозг (В) от расстояния источник-приемник для различных толщин слоя А: 0 (\blacksquare), 3 мм (+), 5 мм (\blacktriangle), 7 мм (\times), 10 мм (\blacklozenge), 150 мм (*). Длина волны $\lambda = 750$ нм. Параметр анизотропии g = 0.9

ком для системы «череп-мозг» с различной толщиной верхнего слоя, т. е. черепа. Кривые для $T_A = 0$ и $T_A = 150$ мм показывают результаты обратного рассеяния на полупространстве, содержащем лишь вещество мозга и черепа соответственно. Другие кривые на рис. 3 показывают, как с увеличением толщины верхнего слоя, т. е. черепа, изменяется наклон кривых. По результатам МК-моделирования излучения, обратно рассеянного полупространством только из одной биоткани, определялся угловой коэффициент μ_{eff} в уравнении [34]

$$\ln[\rho^2 I(\rho)] = -\mu_{eff}\rho + I_0, \qquad (31)$$

справедливом при $\rho \gg l_{tr} = 1/\mu'_s$, т.е. в случае применимости диффузионного приближения переноса излучения. По данным кривой на рис. 3 с $T_A = 0$, т.е. для полупространства с параметрами ткани мозга, было получено значение $\mu_{eff}(B) =$ $= 0.31 \text{ мм}^{-1}$, которое очень близко к результату $\mu_{eff}(B) = 0.305 \text{ мм}^{-1}$, найденному по данным таблицы:

$$\mu_{eff} = \sqrt{3\mu'_s\mu_a}.\tag{32}$$

По данным кривой на рис. 3 с $T_A = 150$ мм было найдено значение $\mu_{eff}(A) = 0.197 \text{ мм}^{-1}$, которое также близко к значению $\mu_{eff}(A) = 0.188 \text{ мм}^{-1}$, найденному по формуле (32) с данными из таблицы. Таким образом, для данных тканей при моделировании обратного рассеяния на расстояниях от источника излучения больших 10 мм можно пользоваться диффузионным приближением.

Рис. 4. Зависимости интенсивности обратного рассеяния в двухслойной модели череп (A) и мозг (B) от расстояния источник-приемник для различных длин волн λ : 750 нм (+), 850 нм (\blacklozenge), 950 нм (\blacklozenge), 1050 нм (\times). Параметр анизотропии g = 0.9. Толщина слоя A — $T_A = 3$ мм

На рис. 4 показано, как меняется зависимость интенсивности обратного рассеяния на двухслойной среде от расстояния источник–приемник для разных длин волн. Значительное отличие кривой, построенной для $\lambda = 750$ нм, от трех других кривых связано с большим отличием коэффициента абсорбции и согласуется с формулой (32) для μ_{eff} .

7. ЗАКЛЮЧЕНИЕ

В работе проведен расчет интенсивности обратного рассеяния лазерного инфракрасного излучения на двухслойной случайно неоднородной биоткани. В качестве основной модели рассматривалась система «череп-мозг». Для сравнения с реальными биомедицинскими данными по обратному рассеянию инфракрасного излучения головой человека двухслойная модель является очень упрощенной. Однако она может служить предельным случаем для верификации результатов, учитывающих слой скальпа, прозрачную цереброспинальную жидкость и более сложную структуру мозга (см., например, [11]). Моделирование переноса излучения в биоткани основывалось на уравнении Бете-Солпитера в лестничном приближении, решение которого представлено в виде разложения по кратностям рассеяния. Каждый член разложения является многократным интегралом, вычисление которого проводится методом Монте-Карло. Были рассчитаны зависимости интенсивности обратного рассеяния от расстояния вдоль поверхности черепа между приемником и источником излучения. Изучено влияние на интенсивность рассеяния изменения параметра анизотропии фазовой функции, толщины черепа и длины волны. Чувствительность интенсивности обратного рассеяния к изменению параметров биоткани позволяет использовать данные обратного рассеяния в медицинской диагностике. В расчетах мы применяли нашу модификацию известной процедуры MCML [20], отличающуюся способом регистрации фотонов [22], а для моделирования длины свободного пробега фотона мы пользовались как традиционным методом MCML, так и предложенной в данной работе его модификацией. Модифицированный метод позволил существенно сократить время вычислений, а также явно учесть в моделировании альбедо μ_s/μ .

ЛИТЕРАТУРА

- 1. S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).
- D. J. Davies, Z. Su, M. T. Clancy et al., J. Neurotrauma 32, 933 (2015).
- В. В. Тучин, Оптика биологических тканей. Методы рассеяния света в медицинской диагностике, IPR Media, Москва (2021).
- А. Н. Башкатов, А. В. Приезжев, В. В. Тучин, КЭ 41, 283 (2011).
- D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, Appl. Opt. 45, 8142 (2006).
- M. Dehaes, P. E. Grant, D. D. Sliva et al., Biomed. Opt. Express 2, 552 (2011).
- J. Selb, D. A. Boas, S.-T. Chan et al., Neurophoton. 1, 015005 (2014).
- A. Sabeeh and V. V. Tuchin, J. Biomed. Photon. Eng. 6, 040201 (2020).
- R. Francis, B. Khan, G. Alexandrakis et al., Biomed. Opt. Express 6, 3256 (2015).
- S. Mamani, L. Shi, T. Ahmed et al., J. Biophotonics 11, e201800096 (2018).
- 11. A. P. Tran, S. Yan, and Q. Fang, Neurophoton. 7, 015008 (2020).
- E. Zinchenko, N. Navolokin, A. Shirokov et al., Biomed. Opt. Express 10, 4003 (2019).
- E. S. Papazoglou, M. D. Weingarten, S. Michael et al., J. Biomed. Opt. 13, 044005 (2008).

- E. S. Papazoglou, M. T. Neidrauer, L. Zubkov et al., J. Biomed. Opt. 14, 064032 (2009).
- S. Mahmoodkalayeh, M. A. Ansari, and V. V. Tuchin, Biomed. Opt. Express 10, 2795 (2019).
- M. S. Cano-Velazquez, N. Davoodzadeh, D. Halaney et al., Biomed. Opt. Express 10, 3369 (2019).
- A. Kienle, M. S. Patterson, N. Dögnitz et al., Appl. Opt. 37, 779 (1998).
- J. H. Choi, W. Martin, V. Yu. Toronov et al., J. Biomed. Opt. 9, 221 (2004).
- M. A. Franceschini, S. Fantini, L. A. Paunescu et al., Appl. Opt. 37, 7447 (1998).
- 20. L. Wang, S. L. Jacques, and L. Q. Zheng, Comput. Meth. Prog. Bio. 47, 131 (1995).
- В. Л. Кузьмин, А. Ю. Вальков, Письма в ЖЭТФ 105, 261 (2017).
- 22. В. Л. Кузьмин, А. Ю. Вальков, Л. А. Зубков, ЖЭТФ 155, 460 (2019).
- 23. V. L. Kuzmin, V. P. Romanov, and E. V. Aksenova, Phys. Rev. E 65, 016601 (2001).

- 24. V. L. Kuzmin, M. T. Neidrauer, D. Diaz et al., J. Biomed. Opt. 20, 105006 (2015).
- 25. L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York (1986).
- 26. T. H. Pham, O. Coquoz, J. B. Fishkin et al., Rev. Sci. Instrum. 71, 2500 (2000).
- 27. A. N. Bashkatov, E. A. Genina, V. I. Kochubey et al., J. Phys. D Appl. 38, 2543 (2005).
- 28. A. N. Bashkatov, E. A. Genina, V. I. Kochubey et al., Proc. SPIE 6163, 616310 (2006).
- 29. J. D. Johansson, J. Biomed. Opt. 15, 0570059 (2010).
- 30. E. A. Genina, A. N. Bashkatov, D. K. Tuchina et al., Biomed. Opt. Express 10, 5182 (2019).
- 31. T. Durduran, R. Choe, W. B. Baker et al., Rep. Progr. Phys. 73, 076701 (2010).
- 32. T. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E 48, 569 (1993).
- 33. V. L. Kuzmin and A. Yu. Valkov, J. Quant. Spectrosc. Radiat. Transf. 272, 107760 (2021).
- 34. D. Tamborini, P. Farzam, B. B. Zimmermann et al., Neurophoton. 5, 011015 (2017).

ВЛИЯНИЕ КОЛЛЕКТИВНЫХ ЯДЕРНЫХ КОЛЕБАНИЙ НА ЭКСЦЕНТРИСИТЕТЫ НАЧАЛЬНОГО СОСТОЯНИЯ В СТОЛКНОВЕНИЯХ Pb+Pb

Б. Г. Захаров*

Институт теоретической физики им. Л. Д. Ландау Российской академии наук 117334, Москва, Россия

> Поступила в редакцию 7 декабря 2021 г., после переработки 7 декабря 2021 г. Принята к публикации 8 декабря 2021 г.

В рамках Монте-Карло-модели Глаубера изучается влияние коллективных квантовых эффектов в ядре Pb на коэффициенты азимутальной анизотропии $\epsilon_{2,3}$ в столкновениях Pb+Pb при энергиях коллайдера LHC. Для учета квантовых эффектов мы изменяем генерацию положений нуклонов, применяя подходящие фильтры, которые гарантируют, что сталкивающиеся ядра имеют среднеквадратичные квадрупольные и октупольные моменты, равные извлеченным из экспериментальных квадрупольных и октупольных силовых функций для ядра Pb с помощью энергетически взвешенного правила сумм. Наша Монте-Карло-модель Глаубера с модифицированной выборкой положений нуклонов приводит к $\epsilon_2\{2\}/\epsilon_3\{2\} \sim 0.8$ при центральности не более 1 %, что позволяет решить загадку отношения v_2/v_3 .

DOI: 10.31857/S0044451022060025 **EDN:** DTVKIH

1. ВВЕДЕНИЕ

В настоящее время принято считать, что образование адронов при столкновениях тяжелых ионов при энергиях коллайдеров RHIC и LHC проходит через стадию кварк-глюонной плазмы (КГП). Гидродинамический анализ экспериментальных данных с коллайдеров RHIC и LHC показывает, что КГП формируется на собственных временах $\tau_0 \sim 0.5$ –1 фм [1–3] после взаимодействия лоренц-сжатых ядер. Файербол КГП, образованный между удаляющимися друг от друга ядерными дисками, наследует приблизительно форму области перекрытия сталкивающихся ядер. Для нецентральных АА-столкновений область перекрытия имеет миндалевидную форму. Это может привести к значительной анизотропии в поперечном расширении КГП в более поздние времена и, в конечном счете, к азимутальной асимметрии спектров частиц [4]. При наличии флуктуаций начальной плотности КГП азимутальная асимметрия может появляться и для центральных столкновений. Азимутальная

зависимость спектров адронов характеризуется коэффициентами потока v_n в разложении Фурье

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n\left(\phi - \Psi_n\right)\right] \right\}, \quad (1)$$

где N — это множественность адронов в определенной области p_T и области быстроты, а Ψ_n — углы плоскости реакции события. В гидродинамических моделях с гладкими начальными условиями в ряде Фурье (1) при средней быстроте (y = 0) выживают только члены с n = 2k (если адронизация происходит без флуктуаций). В этом приближении для AA-столкновений с нулевым прицельным параметром коэффициенты v_{2k} должны исчезать из-за азимутальной симметрии. Гидродинамические расчеты показывают, что для столкновений тяжелых ионов с малой центральностью в каждом событии коэффициенты потока $v_n c n \leq 3$ с хорошей точностью пропорциональны коэффициентам анизотропии ϵ_n для начального распределения энтропии [5–7]

$$v_n \approx k_n \epsilon_n \,.$$
 (2)

Коэффициенты ϵ_n определены как [8,9]

^{*} E-mail: bgz@itp.ac.ru

где $\rho_s(\boldsymbol{\rho})$ — начальная плотность энтропии файербола, и предполагается, что $\boldsymbol{\rho}$ вычисляется в системе центра масс в поперечной плоскости, т.е.

$$\int d\boldsymbol{\rho} \, \boldsymbol{\rho} \boldsymbol{\rho}_s(\boldsymbol{\rho}) = 0.$$

Гидродинамические расчеты требуют начальной плотности энтропии, которая в настоящее время не может быть определена ab initio. В настоящее время используются несколько моделей для расчетов начального распределения энтропии при столкновениях тяжелых ионов. Наиболее широко используемым и простым феноменологическим методом для генерации начального распределения энтропии является Монте-Карло (МК)-модель Глаубера поврежденных нуклонов [10, 11], в которой плотность энтропии выражается через линейную комбинацию числа участвующих нуклонов и бинарных столкновений. В МК-модели Глаубера флуктуации плотности энтропии от события к событию представляют собой совокупный эффект флуктуаций положений нуклонов в сталкивающихся ядрах и флуктуаций производства энтропии для заданной геометрии положений нуклонов. МК-модель Глаубера оказалась весьма успешной для описания в рамках гидродинамических моделей экспериментальных данных по коэффициентам потока в АА-столкновениях, полученных на RHIC и LHC. Гидродинамическое моделирование с начальными условиями модели Глаубера показало, что КГП, рождающаяся на RHIC и LHC, имеет очень малое отношение сдвиговой вязкости к плотности энтропии, которое близко к нижней квантовой границе 1/4π [12,13]. Другой, более поздней феноменологической МК-схемой для производства энтропии в АА-столкновениях, которая успешно использовалась в гидродинамических анализах, является модель TRENTO [14]. В модели TRENTO, аналогично МК-схеме Глаубера, флуктуации плотности энтропии происходят из флуктуаций положений нуклонов в сталкивающихся ядрах и флуктуаций производства энтропии для заданной геометрии положений участвующих нуклонов. Это отличается от КХД-моделей IP-Glasma [15] и МАGMA [16], в которых флуктуации плотности энтропии происходят только от флуктуаций положений нуклонов.

Хотя гидродинамические модели могут воспроизводить обширный набор данных по столкновениям тяжелых ионов на RHIC и LHC, в последние годы было установлено, что в них имеется проблема с описанием отношения $v_2\{2\} \ \kappa \ v_3\{2\}$ в ультрацентральных $(c \rightarrow 0)$ столкновениях Pb+Pb при энергиях LHC (так называемая загадка v2-to-v3). Измерения коэффициентов потока в ультрацентральных Pb+Pb-столкновениях с энергиями 2.76 ТэВ [17] и 5.02 ТэВ [18] показывают, что v_2 {2} и v_3 {2} близки друг к другу. Это противоречит гидродинамическим расчетам с начальными условиями в МК-модели Глаубера и TRENTO, которые дают $v_2\{2\}/v_3\{2\} \sim 1.25$ –1.4 [19, 20]. Это предсказание в основном связано с тем фактом, что для эллиптического потока коэффициент k₂ в соотношении линейного отклика (2) больше, чем коэффициент k_3 для триангулярного потока (например, для идеальной гидродинамики расчеты, выполненные в [19], дают $k_2/k_3 \sim 1.35$ для Pb+Pb-столкновений с энергией 2.76 ТэВ в интервале центральности 0-0.2% для $0.3 < p_T < 3$ ГэВ, причем отношение k_2/k_3 растет с увеличением сдвиговой вязкости КГП [6, 19]). Моделирование начального распределения энтропии при нулевом прицельном параметре в МКмодели Глаубера и модели TRENTO дает эллиптичность $\epsilon_2\{2\}$ и триангулярность $\epsilon_3\{2\}$, которые близки друг к другу (здесь, как обычно, $\epsilon_n \{2\} = \sqrt{\langle \epsilon_n^2 \rangle}$ является квадратным корнем от среднеквадратичного (RMS) эксцентриситета). Следовательно, для $k_2/k_3 > 1$ соотношение линейного отклика (2) приводит к $v_2\{2\}/v_3\{2\} > 1$. Проблема с воспроизведением экспериментального отношения $v_2\{2\}/v_3\{2\}$ в ультрацентральных столкновениях Pb+Pb, безусловно, является серьезной проблемой для гидродинамической парадигмы столкновений тяжелых ионов, потому что предсказание, что $k_2 > k_3$, кажется вполне надежным.

В последние годы было предпринято несколько попыток объяснить, почему в ультрацентральных столкновениях Pb+Pb $v_2\{2\}/v_3\{2\} > 1.$ В [19] коэффициенты потока в ультрацентральных столкновениях Pb+Pb были рассмотрены с использованием начальных условий для моделей МК Глаубера и MC-KLN [21, 22]. Было обнаружено, что как модель МК Глаубера, так и модель KLN не воспроизводят отношение $v_2\{2\}/v_3\{2\}$. Авторы [19] пришли к выводу, что наблюдаемое отношение $v_2\{2\}/v_3\{2\} \approx 1$ в ультрацентральных столкновениях Pb+Pb требует $\epsilon_2\{2\}/\epsilon_3\{2\} \sim 0.5$ -0.7, что не согласуется как с предсказанием модели МК Глаубера, так и MC-KLN. В работе [23] было исследовано влияние объемной вязкости на коэффициенты потока в ультрацентральных столкновениях Pb+Pb. Было показано, что для начальных условий модели IP-Glasma включение объемной вязкости может несколько снизить отношение $v_2\{2\}/v_3\{2\}$. Хотя эффект недостаточно сильный, чтобы хорошо воспроизвести экспериментальное $v_2\{2\}/v_3\{2\}$. В работе [24] было исследовано влияние КХД уравнения состояния на $v_2\{2\}/v_3\{2\}$ для начальных условий модели TRENTO. Авторы обнаружили, что в ультрацентральных столкновениях Pb+Pb $v_2\{2\}/v_3\{2\} \gtrsim 1.2$, и пришли к выводу, что изменение уравнения состояния не позволяет решить загадку v_2 -to- v_3 .

В работах [19, 23, 24] предполагалось, что ядро ²⁰⁸Рb имеет сферическую форму. Сценарий с октупольной (грушевидной) деформацией ядра ²⁰⁸Pb был рассмотрен в работе [20] для начальных условий TRENTO. Этот сценарий кажется привлекательным в контексте проблемы v_2 -to- v_3 , так как для заданного отношения k_2/k_3 имеем $v_2\{2\}/v_3\{2\} \propto$ $\propto \epsilon_2 \{2\}/\epsilon_3 \{2\}$. Таким образом, можно ожидать, что грушевидная деформация ядра ²⁰⁸Pb должна несколько увеличивать ϵ_3 {2} (без значительной модификации ϵ_2 {2}) и, следовательно, должна уменьшать $v_2\{2\}/v_3\{2\}$. На возможность грушевидной формы ядра ²⁰⁸Pb указывают результаты работы [25], в которой в рамках расширения метода Хартри-Фока-Боголюбова для генерирующих координат авторы получили октупольный параметр деформации $\beta_3 \sim 0.0375$ для основного состояния. Однако в этой же работе значение $\beta_3 = 0$ было найдено в рамках обычного метода Хартри-Фока-Боголюбова. Совсем недавно в работе [26] значение $\beta_3 = 0$ для основного состояния ядра ²⁰⁸Pb также было получено в рамках ковариантной теории функционала плотности. Результаты [20] показывают, что при разумных значениях β_3 сценарий с октупольной деформацией ²⁰⁸Pb не приводит к значительному улучшению описания отношения $v_2\{2\}/v_3\{2\}$ в ультрацентральных столкновениях Pb+Pb.

В работах [19, 20, 23, 24] начальные условия были сгенерированы с использованием МК-генерации положений нуклонов для ядерного распределения Вудса – Саксона (WS). Фактически, в настоящее время этот метод является стандартным подходом для МК-расчетов начальных условий при столкновениях тяжелых ионов. Одним из очевидных недостатков МК-генерации позиций нуклонов для WS-распределения является то, что этот подход полностью игнорирует коллективные динамические эффекты для флуктуаций позиций нуклонов на больших расстояниях (которые особенно важны для расчетов коэффициентов азимутальной анизотропии ϵ_n). Действительно, хорошо известно, что флуктуации ядерной плотности на больших расстояниях имеют коллективную природу [27, 28]. Коллективные эффекты проявляются в присутствии гигантских резонансов/колебаний, которые соответствуют когерентным колебаниям нуклонов [27, 28] (более поздние обзоры см. [29, 30]). Поскольку коллективные эффекты на больших расстояния игнорируются при МК-генерации положений нуклонов для WS-распределения, нет никакой гарантии, что этот подход может имитировать истинные флуктуации ядерной плотности на больших расстояниях. Можно ожидать, что в контексте коэффициентов анизотропии ϵ_2 и ϵ_3 для ультрацентральных столкновений Pb+Pb, наиболее важными модами гигантских колебаний являются квадрупольная и октупольная. В нашей предыдущей работе [31] мы исследовали возможное влияние изосинглетной квадрупольной гигантской вибрационной моды на отношение $\epsilon_2\{2\}/\epsilon_3\{2\}$. Анализ [31] был мотивирован тем фактом, установленным в [32], что МК-генерация положений нуклонов для WS-распределения приводит к значительному завышению среднеквадратичного квадрупольного момента ядра ²⁰⁸Pb по сравнению с его значением, полученным с помощью экспериментальных параметров изосинглетного гигантского квадрупольного резонанса (ISGQR). Квантовый расчет с помощью энергетически взвешенного правила сумм (EWSR) для квадрупольной силовой функции (см., например, обзор [33]) дает среднеквадратичный квадрупольный момент, который меньше, чем рассчитанный с ядерной плотностью WS, на множитель порядка 2.2 [31] (после исправления ошибки, допущенной в [32]). Это означает, что вытянутые и сплюснутые эллиптические флуктуации ядра ²⁰⁸Pb значительно слабее, чем предсказывает МК-выборка положений нуклонов для WS-распределения. По этой причине можно ожидать, что истинная ядерная многочастичная плотность должна давать меньшую эллиптичность ϵ_2 , чем МК-моделирование со стандартной ядерной плотностью WS. Для количественного изучения этого эффекта в [31] мы выполнили в МК-модели Глаубера расчеты коэффициентов анизотропии $\epsilon_{2,3}$ для центральных столкновений Pb+Pb, используя модифицированный МК-метод генерации положений нуклонов, который гарантирует, что усредненные по всем столкновениям квадрупольные моменты сталкивающихся ядер совпадают со среднеквадратичным квадрупольным моментом ядра ²⁰⁸Pb, полученным с использованием EWSR. Результаты работы [31] показывают, что модифицированная МК-генерация с фильтрацией положений нуклонов по значению квадрупольного момента приводит к заметному уменьшению эллиптичности ϵ_2 . Было обнаружено, что фильтрация по квадрупольному моменту практически не изменяет предсказания для триангулярности ϵ_3 . Мы получили, что МК-модель Глаубера с фильтрацией по квадрупольному моменту положений нуклонов дает $\epsilon_2\{2\}/\epsilon_3\{2\} \approx 0.8$ для энергий 2.76 ТэВ и 5.02 ТэВ центральных столкновений Pb+Pb. Затем, используя коэффициенты гидродинамического линейного отклика $k_{2,3}$ из работ [19, 20, 34, 35]), мы получили $v_2\{2\}/v_3\{2\} \approx 0.96 - 1.12$, что разумно согласуется с данными ALICE [18].

Одним из недостатков анализа [31] является то, что центральные столкновения Pb+Pb рассматривались как столкновения при нулевом прицельном параметре, т. е. вычисления работы [31] соответствуют *b*-центральности, в работе [36] определяемой в терминах прицельного параметра *b* (*c* = $\pi b^2 / \sigma_{in}^{AA}$ [37]). Однако экспериментально центральность столкновения обычно определяется через множественность заряженных частиц N_{ch} в определенной кинематической области. Эта *n*-центральность определяется как [36, 37]

$$c(N_{ch}) = \sum_{N=N_{ch}}^{\infty} P(N) , \qquad (4)$$

где P(N) есть вероятность наблюдения множественности N. Из-за флуктуаций множественности (при заданном прицельном параметре) существует некоторое несоответствие между b- и c-центральностями [36,37]. По этой причине можно обоснованно беспокоиться о влиянии этого несоответствия на результаты работы [31], где эффект размазывания *n*-центральности при заданной *b*-центральности был проигнорирован. Поэтому крайне желательно расширить вычисления [31] на случай *n*-центральности. Это наша главная цель в настоящей статье. Кроме того, мы расширим анализ [31] на случай октупольных флуктуаций. Исследование роли фильтрации положений нуклонов по октупольному моменту в МК-моделировании столкновений Pb+Pb представляет интерес, поскольку коллективные флуктуации грушевидной формы потенциально могут повлиять на триангулярность ϵ_3 файербола. Из имеющихся экспериментальных данных можно сделать вывод, что для флуктуаций октупольной формы среднеквадратичный октупольный момент ядра ²⁰⁸Pb может быть несколько больше, чем тот, который получается из МК-расчетов для модели WS (см. Приложение). Последняя возможность представляется очень интересной в контексте загадки v_2 -to- v_3 , потому что она должна приводить к увеличению ϵ_3 (аналогично случаю с деформацией грушевидной формы основного состояния [20]) и, следовательно, к меньшему значению отношения $\epsilon_2\{2\}/\epsilon_3\{2\}$. Отметим, что в отличие от анализа [31], в настоящей работе мы выполняем расчеты для всего диапазона центральности. Как и в [31], мы используем МК-модель Глаубера, разработанную в [38,39], которая позволяет учитывать наличие мезон-барионной компоненты в волновой функции нуклона на световом конусе.

План статьи следующий. В разд. 2 обсуждается теоретическая схема. В разд. 3 мы представляем численные результаты. Выводы приведены в разд. 4. В Приложении мы обсуждаем расчеты среднеквадратичных квадрупольного и октупольного моментов ядра ²⁰⁸Pb с использованием модели EWSR.

2. ТЕОРЕТИЧЕСКАЯ СХЕМА

В настоящем анализе для получения начальной плотности энтропии мы используем МК-подход Глаубера, разработанный в [38, 39]. Эта модель позволяет выполнять расчеты производства энтропии стандартным способом, когда каждый нуклон рассматривается как одночастичное состояние, а также с учетом наличия мезонного облака нуклона, когда волновая функция на световом конусе физического нуклона включает голый нуклон и мезонбарионные фоковские состояния. Результаты наших предыдущих анализов [39, 40] показывают, что для обеих версий предсказания этой модели для зависимости от центральности плотности заряженной множественности в центральной области быстрот очень хорошо согласуются с экспериментальными данными для столкновений Au+Au при энергии 0.2 ТэВ на RHIC и при энергиях 2.76 ТэВ, 5.02 ТэВ столкновений Pb+Pb и при энергии 5.44 ТэВ столкновений Xe+Xe на LHC.

2.1. Обзор МК-схемы Глаубера

В этом разделе мы кратко обрисуем алгоритм, используемый в нашей МК-модели Глаубера для версии без мезон-барионной компоненты (в этом случае наша схема аналогична МК-генератору Глаубера GLISSANDO [11]). Генерация энтропии происходит через поврежденные нуклоны (WN) и через жесткие бинарные столкновения (BC). Мы предполагаем, что для каждой пары сталкивающихся нуклонов поперечное сечение жесткого бинарного столкновения подавляется множителем α [41]. Полная плотность энтропии в поперечной плоскости записывается как (мы рассматриваем центральную область быстрот)

$$\rho_s(\boldsymbol{\rho}) = \sum_{i=1}^{N_{wn}} S_{wn}(\boldsymbol{\rho} - \boldsymbol{\rho}_i) + \sum_{i=1}^{N_{bc}} S_{bc}(\boldsymbol{\rho} - \boldsymbol{\rho}'_i), \quad (5)$$

где члены S_{wn} соответствуют источникам WN, а члены S_{bc} источникам BC, N_{wn} и N_{bc} это соответственно числа WN и BC. Мы записываем S_{wn} и S_{bc} как

$$S_{wn}(\boldsymbol{\rho}) = \frac{1-\alpha}{2} s(\boldsymbol{\rho}), \quad S_{bc}(\boldsymbol{\rho}) = s(\boldsymbol{\rho}), \quad (6)$$

где $s(\rho)$ есть распределение для источника энтропии. Мы используем для $s(\rho)$ гауссовскую форму

$$s(\boldsymbol{\rho}) = s_0 \exp\left(-\boldsymbol{\rho}^2/\sigma^2\right)/\pi\sigma^2, \qquad (7)$$

где s_0 дает полную энтропию источника, а σ — ширину источника. Мы предполагаем, что центр каждого источника энтропии WN совпадает с положением WN, а для каждого BC центр источника энтропии расположен посередине между сталкивающимися нуклонами.

Для каждого источника энтропии мы рассматриваем s_0 как случайную величину. Мы предполагаем, что расширение КГП является изэнтропийным. В этом приближении мы можем рассматривать каждый источник энтропии как источник заряженной множественности $n = as_0$ в единичном интервале псевдобыстроты $|\eta| < 0.5$ с $a \approx 7.67$ [42]. Мы описываем флуктуации n гамма-распределением

$$\Gamma(n, \langle n \rangle) = \left(\frac{n}{\langle n \rangle}\right)^{\kappa-1} \frac{\kappa^{\kappa} \exp\left[-n\kappa/\langle n \rangle\right]}{\langle n \rangle \Gamma(\kappa)}$$
(8)

с параметрами $\langle n \rangle$ и κ , подобранными для согласия с экспериментальной средней зарядовой множественностью и ее дисперсией в окне единичной псевдобыстроты $|\eta| < 0.5$ для столкновений pp.

Как и в анализах [39,40], в версии с мезон-барионной компонентой нуклона для общего веса MB-состояний в физическом нуклоне мы берем 40%, что позволяет описать данные DIS о нарушении правила суммы Готфрида [43]. В смысле источников энтропии расчет начальной плотности энтропии в этой версии аналогичен расчету для версии без MB-компоненты. Однако в этом случае источники энтропии могут рождаться в BB-, MB- и MM-столкновениях. Результаты работ [39,40] показывают, что обе версии дают аналогичные предсказания для плотности заряженной множественности при средних быстротах $dN_{ch}/d\eta$. Однако версия с компонентой MB требует несколько меньшего значения параметра α , чтобы соответствовать измеренной $dN_{ch}/d\eta$ в центральной области быстрот. В настоящем анализе мы используем значения $\alpha = 0.14(0.09)$ для версий без(с) мезон-барионной компонентой нуклона. Эти значения позволяют очень хорошо воспроизвести данные о зависимости от центральности $dN_{ch}/d\eta$ при $\eta = 0$ для столкновений Pb+Pb при энергиях 2.76 ТэВ и 5.02 ТэВ. Более подробную информацию о нашей MK-схеме Глаубера можно найти в работах [39,40].

2.2. Генерация позиций нуклонов

МК-модель Глаубера дает алгоритм расчета распределения энтропии при каждом АА-столкновении для заданных положений нуклонов в сталкивающихся ядрах. Она должна быть дополнена предписанием для МК-генерации положений нуклонов. Обычно при последовательном моделировании столкновений тяжелых ионов позиции нуклонов генерируются с использованием некоррелированного распределения WS (или распределения WS с ограничением на минимальное расстояние между двумя нуклонами [11, 44] для моделирования жесткого NN-кора). Однако эта процедура полностью игнорирует коллективный характер дальнодействующих флуктуаций ядерной плотности и может привести к неправильному описанию 3D-флуктуаций многочастичной плотности сталкивающихся ядер. Это может привести к неправильным предсказаниям для флуктуаций начального распределения энтропии в АА-столкновениях. Как уже упоминалось во Введении, с точки зрения столкновений тяжелых ионов наиболее важные коллективные флуктуации связаны с квадрупольными и октупольными модами колебаний. Их величина может быть охарактеризована квадратом *L*-мультипольного момента (мы обозначаем его как Q_L^2) для L = 2 и 3, определенных с помощью сферических гармоник (см. Приложение). В [31] мы предложили простой систематический метод вычисления среднеквадратичных мультипольных моментов, $\langle Q_L^2 \rangle$, для произвольного L из экспериментальных силовых функций с использованием EWSR (для полноты изложения в Приложении мы описываем это). Для моды L = 2 этот метод дает среднеквадратичный квадрупольный момент ядра ²⁰⁸Pb, который меньше, чем предсказывается МК-моделированием с ядерной плотностью WS, на коэффициент $r_2 \approx 2.25$ (см. Приложение). Можно ожидать, что завышение предсказаний для флуктуаций ядерной плотности 208 Pb с L = 2 может привести к завышению предсказаний эллиптичности ϵ_2 в МК-моделировании ультрацентральных столкновений Pb+Pb. В работе [31] мы предложили простой метод решения этой проблемы, выполняя МК-генерацию положений нуклонов с подходящим фильтром Q_2^2 , который должен гарантировать истинное значение $\langle Q_2^2 \rangle$ для окончательного набора положений нуклонов. В работе [31] мы выполнили вычисления, используя два разных фильтра Q_2^2 с плавной и резкой фильтрациями. В гладкой версии мы использовали фильтр Q_2^2 , который генерирует набор позиций нуклонов с распределением по Q_2^2 , которое равно масштабированному на коэффициент r_2 распределению по Q_2^2 для ядерной плотности WS. Во втором методе мы просто отбирали только конфигурации нуклонов с $Q_2^2\ <\ Q_{2max}^2$ с Q_{2max}^2 подобранным так, чтобы обеспечить для МК-выборки $\langle Q_2^2 \rangle$ равного его правильному EWSR-значению. Было обнаружено, что эти два очень разных фильтра дают практически одинаковые результаты для $\epsilon_{2,3}$ {2}.

Как и в работе [31], в настоящем анализе мы выполняем вычисления, используя плавные и разрывные Q_2^2 -фильтрации положений нуклонов. В первом случае мы используем в МК-генерации позиций нуклонов гладкий Q_2^2 -фильтр, который генерирует позиции нуклонов с распределением Q_2^2 , заданным формулой

$$P(Q_2^2) = C \exp(-(Q_2^2/a_2)^2) P_{WS}(Q_2^2), \qquad (9)$$

где P_{WS} есть распределение Q_2^2 для обычной нефильтрованной МК-выборки WS позиций нуклонов, C — константа нормировки, а a_2 — параметр, подобранный так, чтобы иметь $\langle Q_2^2 \rangle = \langle Q_2^2 \rangle_{WS}/r_2$. С точки зрения численных вычислений, анзац (9) с гауссовским коэффициентом подавления $\exp(-(Q_2^2/a_2)^2)$ проще, чем метод [31] с масштабированием исходного WS-распределения $P_{WS}(Q_2^2)$. Во втором способе, как и в [31], мы используем резкий фильтр с обрезанием $Q_2^2 < Q_{2max}^2$ с Q_{2max}^2 подобранным так, чтобы иметь $\langle Q_2^2 \rangle = \langle Q_2^2 \rangle_{WS}/r_2$. Как и в [31], мы обнаружили, что предсказания для $\epsilon_{2,3}$, полученные для гладких и резких Q_2^2 -фильтров, практически неразличимы.

В настоящем анализе в дополнение к влиянию квадрупольных колебаний, рассмотренных в [31], мы также изучаем влияние на коэффициенты анизотропии $\epsilon_{2,3}$ октупольных (L = 3) колебаний ядра ²⁰⁸Pb. Аналогично случаю квадрупольных флуктуаций 3D-плотности ядра, неправильное описание октупольных 3D-флуктуаций плотности ядра в МК-выборке положений нуклонов WS-распреде-

ления может вести к неправильным предсказаниям для 2D-флуктуаций начальной энтропии при столкновениях Pb+Pb. Разумно ожидать, что для ультрацентральных столкновений Pb+Pb изменения в октупольных 3D-флуктуациях плотности ядра в основном повлияют на триангулярность ϵ_3 .

К сожалению, в экспериментальных данных по октупольной силовой функции для ядра $^{208}\mathrm{Pb}$ имеются довольно большие неопределенности (см. Приложение), которые приводят к значительным неопределенностям в значении среднеквадратичного октупольного момента, получаемого с использованием EWSR. Расчеты с использованием EWSR и доступных данных по октупольной силовой функции ядра ²⁰⁸Pb показывают, что отношение среднеквадратичного октупольного момента, предсказываемого ядерной плотностью WS ²⁰⁸Pb, к истинному, скорее всего, должно находиться в диапазоне $0.7 < r_3 < 0.84$ (см. Приложение). Таким образом, в отличие от ситуации с квадрупольной модой, возможно, что ядерная плотность WS несколько недооценивает октупольные 3D-флуктуации для ядра ²⁰⁸Pb. Чтобы смоделировать влияние возможного усиления октупольных флуктуаций для ядра ²⁰⁸Pb на начальное распределение энтропии, мы используем, как и в случае квадрупольной моды, два типа фильтров при генерации положений нуклонов. В первом методе мы используем гладкий фильтр Q_3^2 , который генерирует позиции нуклонов с распределением по Q_3^2 , заданным формулой

$$P(Q_3^2) = C \left[1 - \exp(-(Q_3^2/a_3)^2) \right] P_{WS}(Q_3^2) \,. \tag{10}$$

Во втором методе мы используем резкий фильтр, который отбирает только конфигурации с $Q_3^2 > Q_{3min}^2$. Значения a_3 и Q_{2max}^2 подбираются так, чтобы иметь $\langle Q_3^2 \rangle = \langle Q_3^2 \rangle_{WS}/r_3$. Оба эти рецепта подталкивают $\langle Q_3^2 \rangle$ к более высоким значениям. Как и для моды L = 2, мы обнаружили, что предсказания для $\epsilon_{2,3}$, полученные для гладких и резких Q_3^2 -фильтров, практически идентичны. Стоит отметить, что, хотя наши $Q_{2,3}^2$ -фильтры дают значительные изменения в распределениях по $Q_{2,3}^2$ для сгенерированных наборов положений нуклонов, они оказывают практически нулевое влияние на распределение плотности для одного нуклона (т. е. после $Q_{2,3}^2$ -фильтрации мы получаем то же самое распределение плотности WS).

На рис. 1*a* показано распределение для квадрата L = 2 мультипольного момента, полученное для МК-генерации положений нуклонов для некоррелированной плотности WS ядра ²⁰⁸Pb без и с

Рис. 1. *a*) Распределение квадрата квадрупольного момента в терминах безразмерной переменной $q_2 = Q_2^2/AR_A^4$ для ядра ²⁰⁸ Pb, полученное с использованием обычной МК-генерации положений нуклонов для плотности ядра WS (сплошная кривая) и с фильтрацией положений нуклонов (штриховая кривая), которая дает среднеквадратическое значение квадрупольного момента, уменьшенное на коэффициент $r_2 \approx 2.25$. *б*) Распределение квадрата октупольного момента в терминах безразмерной переменной $q_3 = Q_3^2/AR_A^6$ для ядра ²⁰⁸ Pb, полученное с использованием обычной МК-генерации положений нуклонов с использованием обычной момента в терминах безразмерной переменной $q_3 = Q_3^2/AR_A^6$ для ядра ²⁰⁸ Pb, полученное с использованием обычной МК-генерации положений нуклонов для плотности ядра WS (сплошная) и с фильтрацией положений нуклонов, которая дает среднеквадратиченквадратичный октупольный момент, увеличенный на коэффициент $1/r_3$ для $r_3 = 0.84$ (штриховая кривая) и 0.7 (пунктир)

 Q_2^2 -фильтрованием (для гладкого Q_2^2 -фильтра, который соответствует $r_2 = 2.25$). На рис. 16 показаны аналогичные результаты для моды L = 3. Для этой моды представлены результаты для двух отфильтрованных распределений для $r_3 = 0.84$ и 0.7. На рис. 1 использованы безразмерные переменные $q_L = Q_L^2/AR_A^{2L}$, где R_A — радиус ядра в параметризации ядерной WS-плотности ²⁰⁸Pb (A.1).

Стоит отметить, что напи численные расчеты показывают, что $Q_2^2(Q_3^2)$ -фильтрация практически не влияет на распределение по $Q_3^2(Q_2^2)$. Это происходит потому, что с очень хорошей точностью исходное двумерное распределение по $Q_{2,3}^2$ для МК-выборки позиций нуклонов WS может быть записано в факторизованной форме:

$$P_{WS}(Q_2^2, Q_3^2) \approx P_{WS}(Q_2^2) P_{WS}(Q_3^2)$$
. (11)

При этом, как и в тех случаях, когда Q_2^2 - и Q_3^2 -фильтры применяются отдельно, наши численные расчеты показывают, что для одновременного использования Q_2^2 - и Q_3^2 -фильтров предсказания для $\epsilon_{2,3}$ оказываются практически идентичными для плавного и резкого фильтров.

Мы также исследовали влияние изменения распределения по изовекторному дипольному моменту. Для изовекторных дипольных флуктуаций МК-генерация ядерных конфигураций для ядерной WS-плотности приводит к среднеквадратичному дипольному моменту, который в 5-6 раз больше, чем полученный из параметров изовекторного дипольного резонанса [32, 45]. Изовекторный гигантский дипольный резонанс соответствует коллективным колебаниям протонов и нейтронов в противоположных направлениях [27, 28]. Эта мода может привести к удлиненной форме распределения нуклонов (т.е. оно генерирует некоторый квадрупольный момент), и, в принципе, неадекватное описание этой моды может повлиять на геометрию распределения энтропии при столкновениях Pb+Pb. Однако мы обнаружили, что влияние модификации МК-генерации положений нуклонов для изовекторной дипольной моды (так же, как мы делаем это для изосинглетной квадрупольной моды) на результаты для $\epsilon_{2,3}$ оказывается практически пренебрежимо малым. Физически это связано с очень малым статистическим весом (среди квадрупольных флуктуаций) флуктуаций с коллективным смещением всех протонов и всех нейтронов в противоположных направлениях. Поэтому изменение распределения по изовекторному дипольному моменту при MK-генерации нуклонных позиций дает для $\epsilon_{2,3}$ почти нулевой эффект.

Стоит отметить, что отбор положений нуклонов для WS-плотности ядра приводит к некоторому завышению чисто радиальных флуктуаций, соответствующих монопольной (L = 0) колебательной мо-

де, по сравнению с предсказанием EWSR на основе экспериментальной монопольной силовой функции (см. Приложение). Однако интуитивно можно было бы ожидать, что влияние радиальных колебаний должно быть несущественным для эксцентриситетов $\epsilon_{2,3}$ (особенно при небольших центральностях), и расхождение между моментом L = 0 для WS-выборки положений нуклонов с моментом, полученным из EWSR, не должны быть важными. Напии расчеты подтверждают это, мы действительно обнаружили, что добавление фильтрации для моды L = 0 практически не влияет на азимутальные коэффициенты $\epsilon_{2,3}$, поэтому мы не использовали никакого фильтра для моды L = 0.

Наконец, мы хотели бы подчеркнуть, что тот факт, что все наши предсказания для $\epsilon_{2,3}$ {2} для гладких и резких фильтров практически одинаковые, весьма обнадеживает с точки зрения нашей стратегии по имитации коллективных эффектов путем простых Q_{2,3}-фильтраций для позиций нуклонов. Действительно, наши плавные и резкие фильтры приводят к радикально различным распределениям по Q_2^2 и Q_3^2 . Ясно, что многочастичные плотности для этих фильтров также радикально различаются. Тем не менее мы получаем практически идентичные $\epsilon_{2,3}\{2\}$, если обе версии приводят к одинаковым значениям $\langle Q_2^2 \rangle$ и $\langle Q_3^2 \rangle$, а различие в других характеристиках (скажем, разница в значениях $\langle (Q_{2,3}^2)^2 \rangle$) оказывает незначительное влияние на $\epsilon_{2.3}\{2\}^{1}$. Эта особенность предсказаний модели Глаубера для $\epsilon_{2,3}$ {2} позволяет ожидать, что наши результаты для $\epsilon_{2,3}$ {2} должны быть близки к тем, к которым приводит истинная многочастичная плотность при условии, что мы используем $Q_{2,3}^2$ -фильтры, обеспечивающие правильные значения $\langle Q_2^2 \rangle$ и $\langle Q_3^2 \rangle$.

3. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ ДЛЯ $\epsilon_2\{2\}$ И $\epsilon_3\{2\}$

В этом разделе представлены наши численные результаты для RMS эллиптичности $\epsilon_2\{2\}$ и триангулярности $\epsilon_3\{2\}$ для энергии 5.02 ТэВ столкновений Pb+Pb²⁾. Результаты для энергии 2.76 ТэВ столкновений Pb+Pb очень близки к таковым для энергии 5.02 ТэВ, и поэтому мы их не показываем. Для версий с $Q_{2,3}^2$ -фильтрацией мы представляем результаты, полученные с помощью гладких фильтров (как мы уже говорили, результаты для версий с гладкими и резкими $Q_{2,3}^2$ -фильтрами практически неразличимы). Результаты были получены путем генерации примерно 6 · 10⁶ столкновений $\mathrm{Pb+Pb}$, т. е. мы имеем около $6\cdot 10^4$ событий в области $c \lesssim 1\%$, которая наиболее интересна в контексте загадки v2-to-v3. Проведены расчеты для схем Глаубера с мезон-барионной компонентой нуклона и без нее. Представлены результаты, полученные для источников энтропии с параметром ширины Гаусса $\sigma = 0.4$ фм. В области малых центральностей (не более 5–10%), которая интересна в контексте загадки v_2 -to- v_3 , предсказания для $\epsilon_{2,3}$ {2} обладают очень низкой чувствительностью к значению σ . Мы проверили это, выполнив вычисления для значения $\sigma = 0.7$ фм. В этом случае $\epsilon_{2,3}$ {2} становятся несколько меньше для больших центральностей (примерно на 5–7 % при $c \sim 50$ %), но при центральностях не более 5-10 % результаты очень близки к таковым для $\sigma = 0.4$ фм.

На рис. 2 представлены результаты для зависимости $\epsilon_{2,3}{2}$ от центральности для обычной МКвыборки WS-позиций нуклонов (т.е. без применения каких-либо $Q_{2,3}^2$ -фильтров). На рис. 2 видно, что результаты для $\epsilon_{2,3}$ {2} в версиях без и с мезонбарионной компонентой очень похожи. Для кривых, показанных на рис. 2, мы имеем в среднем $\epsilon_2\{2\}/\epsilon_3\{2\} \approx 0.94$ –0.95 при $c \lesssim 1$ %. На рис. 3 представлены $\epsilon_{2,3}\{2\}$, полученные с помощью МК-генерации позиций нуклонов с применением плавного Q_2^2 -фильтра, который дает для сталкивающихся ядер $\langle Q_2^2 \rangle = \langle Q_2^2 \rangle_{WS} / r_2$ с $r_2 = 2.25$, т.е. среднеквадратичный квадрупольный момент, соответствующий предсказываемому EWSR. Из сравнения результатов, показанных на рис. 2 и 3, видно, что наличие Q_2^2 -фильтра заметно уменьшает $\epsilon_2\{2\}$, но почти не влияет ϵ_3 {2}. Для кривых, показанных на рис. 3, мы имеем в среднем $\epsilon_2\{2\}/\epsilon_3\{2\} \approx 0.82-0.84$ при $c \leq 1\%$. Обратим внимание, что значение отношения $\epsilon_2\{2\}/\epsilon_3\{2\}$ при $c \lesssim 0.1\%$ для кривых, показанных на рис. 3, всего лишь примерно на 2 % больше, чем значение, полученное в работе [31] в аналогичных расчетах для нулевого прицельного параметра.

На рис. 4 показаны $\epsilon_{2,3}$ {2}, полученные с помощью МК-генерации положений нуклонов с одновременным применением гладких фильтров по Q_2^2 и Q_3^2 , которые дают для сталкивающихся ядер $\langle Q_{2,3}^2 \rangle$ =

¹⁾ Причина этого свойства $\epsilon_{2,3}$ {2} неясна. Это может быть связано с тем, что в модели Глаубера поврежденных нуклонов дисперсия ϵ_n (как и $\langle Q_{2,3}^2 \rangle$) зависит только от двухнуклонных корреляторов для сталкивающихся ядер. В то время как $\langle (Q_{2,3}^2)^2 \rangle$ зависят также и от четырехнуклонных корреляторов, которые вообще не важны для дисперсии ϵ_n .

²⁾ Отметим, что наши расчеты показывают, что Q_2^2 - и Q_3^2 -фильтрации дают почти нулевой эффект для высших гармоник ϵ_4 и ϵ_5 , и поэтому мы их не показываем.

Рис. 2. Азимутальные RMS-коэффициенты ϵ_2 {2} (сплошная) и ϵ_3 {2} (пунктир) в зависимости от центральности для столкновений Pb+Pb с энергией 5.02 ТэВ, полученные в рамках МК-модели Глаубера без (*a*) и с (*б*) мезон-барионной компонентой нуклона с использованием обычной МК-генерации положений нуклонов WS

Рис. 3. Азимутальные RMS-коэффициенты ϵ_2 {2} (сплошная) и ϵ_3 {2} (пунктир) в зависимости от центральности для столкновений Pb+Pb с энергией 5.02 ТэВ, полученные в рамках модели МК Глаубера без (*a*) и с (*б*) мезон-барионной компонентой нуклона с использованием МК-генерации положений нуклонов WS с плавным Q_2^2 -фильтром, который приводит к $\langle Q_2^2 \rangle = \langle Q_2^2 \rangle_{WS} / r_2$ с $r_2 = 2.25$

= $\langle Q_{2,3}^2 \rangle_{WS} / r_{2,3}$ с $r_2 = 2.25$ и $r_3 = 0.84$. Добавление Q_3^2 -фильтрации для $r_3 = 0.84$ увеличивает $\epsilon_3 \{2\}$ примерно на 2% при $c \leq 1$ %, так что в этой области центральностей мы имеем в среднем $\epsilon_2 \{2\} / \epsilon_3 \{2\} \approx 0.8$ –0.82. На рис. 5 представлены результаты, аналогичные показанным на рис. 4, но для $r_3 = 0.7$. В этой версии при $c \leq 1$ % мы имеем в среднем $\epsilon_2 \{2\} / \epsilon_3 \{2\} \approx 0.78 - 0.81$. Из сравнения результатов, показанных на рис. 3, с теми, что показаны на рис. 4 и 5, можно видеть, что Q_3^2 -фильтрация немного увеличивает $\epsilon_3 \{2\}$, без заметного эффекта для значения $\epsilon_2 \{2\}$. Результаты, показанные на рис. 3, 4, 5, демонстрируют, что влияние $Q_{2,3}^2$ -фильтров становится заметным только при $c \leq 10$ %. На рис. 3, 4, 5 можно видеть, что в наиболее интересной (в контексте загадки v_2 -to- v_3) области малых центральностей не более 1 %, модификация МК-отбора нуклонных позиций с Q_2^2 - и Q_3^2 -фильтрами увеличивает разницу $\epsilon_3\{2\} - \epsilon_2\{2\}$ на коэффициент, равный примерно трем. Обратим внимание, что наши значения для отношения $\epsilon_2\{2\}/\epsilon_3\{2\}$ при $c \leq 1$ % для версий с $Q_{2,3}^2$ -фильтрацией меньше на 15–20 %, чем те, которые были получены в модели МС-КLN в работе [19], и примерно на 10–15 %, чем полученные в схеме TRENTO в работе [20] (для октупольного параметра деформации $\beta_3 \sim 0$ –0.0375). По сравнению с рас-

Рис. 4. Азимутальные RMS-коэффициенты ϵ_2 {2} (сплошная) и ϵ_3 {2} (пунктир) в зависимости от центральности для столкновений Pb+Pb с энергией 5.02 ТэВ, полученные в рамках МК-модели Глаубера без (*a*) и с (*б*) мезон-барионной компонентой нуклона с использованием МК-генерации положений нуклонов WS с плавным Q_2^2 -фильтром, который приводит к $\langle Q_2^2 \rangle = \langle Q_2^2 \rangle_{WS}/r_2$ с $r_2 = 2.25$ и $\langle Q_3^2 \rangle = \langle Q_3^2 \rangle_{WS}/r_3$ с $r_3 = 0.84$

Рис. 5. То же самое что и на рис. 4, но для $r_3 = 0.7$

четами работы [46] в рамках модели МАGMA, наши значения отношения $\epsilon_2\{2\}/\epsilon_3\{2\}$ меньше на коэффициент примерно 1.65.

С точки зрения загадки v_2 -to- v_3 , интересно знать, каково отношение $k_2\epsilon_2\{2\}/k_3\epsilon_3\{2\}$. Гидродинамическое моделирование столкновений Pb+Pb при энергиях LHC дает $k_2/k_3 \approx 1.2 - 1.4$ [19,20,34,35] для малых центральностей ($c \leq 2\%$). Наши результаты, показанные на рис. 4 и 5, с МК-генерацией позиций нуклонов с одновременным Q_2^2 -фильтрованием (с $r_2 = 2.25$) и Q_3^2 -фильтрованием для центральности примерно 0.1–0.2% дают $\epsilon_2\{2\}/\epsilon_3\{2\} \approx 0.8(0.78)$ при $r_3 = 0.84(0.7)$. Эти значения $\epsilon_2\{2\}/\epsilon_3\{2\}$ приводят к 0.96(0.94) < $< k_2\epsilon_2\{2\}/k_3\epsilon_3\{2\} < 1.12(1.1)$ для $r_3 = 0.84(0.7)$ и 1.2 $< k_2/k_3 < 1.4$. Это разумно согласуется с результатом измерений ALICE [18] для энергий 2.76 ТэВ и 5.02 ТэВ соударений Рb+Pb, которые дают $v_2\{2\}/v_3\{2\} \approx 1.08 \pm 0.05$ при $c \to 0$.

Приведенные выше результаты были получены для некоррелированной WS-плотности ядра. Мы также выполнили расчеты, заменив ее ядерной WS-плотностью с жестким NN-отталкиванием для радиуса отталкивания $r_c = 0.9 \text{ фм}$ [44] и $r_c = 0.6 \text{ фм}$ [47]. Мы обнаружили, что твердый NN-кор немного изменяет значения $\epsilon_{2,3}$ для МК-моделирования без $Q_{2,3}^2$ -фильтрации. Однако для версии с одновременным $Q_{2,3}^2$ -фильтрованием предсказания для $\epsilon_{2,3}\{2\}$ очень близки к таковым для некоррелированной ядерной плотности WS. Этот факт показывает, что предсказания для $\epsilon_{2,3}\{2\}$ зависят в основном от крупномасштабных ($L \sim R_A$) свойств многочастичного распределения ядра, а его свойства на малых расстояниях ($L \sim r_c \ll R_A$) имеют второстепенное значение. Это можно рассматривать как еще один аргумент в пользу нашей основной идеи моделирования коллективных эффектов в ядре 208 Pb путем применения подходящих $Q_{2,3}^2$ -фильтрований положений нуклонов в МК-моделировании, которые гарантируют, что выбранный набор положений нуклонов в оспроизводит предсказания EWSR для $\langle Q_{2,3}^2 \rangle$.

В связи с моделированием эффекта жесткого NN-кора при МК-моделировании АА-столкновений стоит отметить, что неочевидно, что модели с исключенным объемом физически лучше обоснованы, чем моделирование с некоррелированной ядерной плотностью WS. Дело в том, что вполне возможно, что на самом деле «исключенный объем» не пуст. Действительно, короткодействующее NN-взаимодействие может быть успешно описано в дибарионной модели (см. обзоры [48, 49]), в которой область вытеснения не пуста, а занята 6q-кластером. В этом случае, аналогично hD-рассеянию [50], 6*q*-кластеры должны участвовать в обмене t-канальными глюонами между сталкивающимися ядрами и вносить вклад в производство энтропии при АА-столкновениях. Очевидно, что в этом сценарии использование некоррелированной ядерной WS-плотности более адекватно для моделирования начальных условий при столкновениях тяжелых ионов.

4. ВЫВОДЫ

Настоящее исследование является продолжением нашего предыдущего [31] анализа влияния коллективных квантовых эффектов в многочастичном распределении ядра на коэффициенты анизотропии $\epsilon_{2,3}$ в Pb+Pb-столкновениях при энергиях LHC, мотивированного загадкой v_2 -to- v_3 в ультрацентральных Pb+Pb-столкновениях. В отличие от наших предыдущих расчетов [31], где изучались только столкновения при нулевом прицельном параметре, мы выполняем вычисления для *n*-центральности и во всем диапазоне центральности. Моделируются коллективные эффекты в сталкивающихся ядрах Рь путем модификации МК-генерации положений нуклонов с помощью подходящих фильтров, которые гарантируют, что среднеквадратичные квадрупольные и октупольные моменты совпадают с теми, которые получены с использованием EWSR из данных о квадрупольных и октупольных силовых функциях ядра ²⁰⁸Pb. Мы обнаружили, что EWSR и экспериментальные данные ISGQR для ядра ²⁰⁸Pb приводят к среднеквадратичному квадрупольному моменту, который меньше, чем для некоррелированной ядерной WS-плотности, на множитель $r_2 \approx 2.25$. Для октупольной моды имеющиеся экспериментальные данные о силовой функции указывают на то, что отношение между среднеквадратичным октупольным моментом для некоррелированной ядерной плотности WS и значением, полученным с помощью EWSR, должно быть примерно 0.7–0.84.

Выполнены расчеты по МК-модели Глаубера с применением плавного и резкого $Q_{2,3}^2$ -фильтров для генерации выборки положений нуклонов. Мы обнаружили, что результаты для $\epsilon_{2,3}$ {2}, полученные с помощью гладкой и резкой $Q_{2,3}^2$ -фильтрации, практически идентичны. Наши численные результаты показывают, что влияние $Q_{2,3}^2$ -фильтрации позиций нуклонов на значения $\epsilon_{2,3}$ (2) становится заметным при $c \lesssim 10\,\%.$ Для центральностей $c \sim 0.1\text{--}1\,\%$ наша МК-модель Глаубера с модифицированной выборкой положений нуклонов дает $\epsilon_2\{2\}/\epsilon_3\{2\} \sim 0.8$, что на коэффициент примерно 1.2 меньше, чем для обычной МК-выборки позиций нуклонов для некоррелированной ядерной плотности WS. Такое значение соотношения $\epsilon_2\{2\}/\epsilon_3\{2\}$ позволяет достичь разумного согласия с отношением $v_2\{2\}/v_3\{2\} \approx$ $\approx 1.08 \pm 0.05$ при $c \rightarrow 0$, полученным для энергий 2.76 ТэВ и 5.02 ТэВ столкновений Pb+Pb коллаборацией ALICE [18] для отношения $k_2/k_3 \approx 1.35$, которое принадлежит интервалу 1.2 $< k_2/k_3 <$ < 1.4, получаемому в гидродинамических расчетах [19, 20, 34, 35].

Хотя наш анализ демонстрирует важность коллективных эффектов для начальной геометрии файербола КГП для сферических ядер, можно ожидать, что коллективные эффекты могут быть важны и для столкновения несферических ядер (например, для соударений ¹⁹⁷Au+¹⁹⁷Au и ²³⁸U+²³⁸U). Коллективные эффекты могут быть важны и для исследования формы ядер [51] и для интерпретации результатов отбора формы событий [52–54] в AA-столкновениях при энергиях RHIC и LHC и в области энергии NICA, где эффекты критической точки могут повлиять на расширение среды, и учет подавления квадрупольных флуктуаций для ядра Au особенно важен.

Благодарности. Я благодарен С. П. Камерджиеву за полезные обсуждения физики гигантских резонансов и нашего метода расчета квадратов *L*-мультипольных моментов.

Финансирование. Работа частично поддержана Российским фондом фундаментальных исследований (грант № 18-02-40069mega).

ПРИЛОЖЕНИЕ

Вычисление среднеквадратичных мультипольных моментов ядра ²⁰⁸Рb

Для полноты изложения мы кратко обсуждаем метод работы [31] вычисления среднеквадратичных мультипольных моментов ядра ²⁰⁸Pb с помощью EWSR [27, 33] и приводим отношения между среднеквадратичными мультипольными моментами, получаемыми с использованием обычного MK-отбора позиций нуклонов WS и рассчитанными с использованием EWSR.

Предполагается, что в основном состоянии ядро ²⁰⁸Pb сферичное. Запишем ядерную плотность в WS-форме:

$$\rho_A(r) = \frac{\rho_0}{1 + \exp[(r - R_A)/d]}$$
(A.1)

с $R_A = 6.62$ фм и d = 0.546 фм [55, 56]. Определим квадрупольный и октупольный моменты через шаровые функции, Y_{Lm} , с L = 2 и 3. Необходимый нам изосинглетный *L*-мультипольный оператор имеет вид (см., например, [27, 28, 30])

$$F_L = \sum_{i=1}^{A} r_i^L Y_{Lm}(\mathbf{n}_i) , \qquad (A.2)$$

где $\mathbf{n}_i = \mathbf{r}_i/|\mathbf{r}_i|$. Среднеквадратичный *L*-мультипольный момент $\langle Q_L^2 \rangle$ ядра в основном состоянии может быть определен квантово-механически как

$$\langle Q_L^2 \rangle = \langle 0|F_L^+ F_L|0 \rangle . \tag{A.3}$$

Классический расчет $\langle Q_L^2 \rangle$ для некоррелированной ядерной плотности WS дает³⁾

$$\langle Q_L^2 \rangle_{WS} = \langle F_L^+ F_L \rangle_{WS} = \frac{A(2L+1)\langle r^{2L} \rangle}{4\pi} .$$
 (A.4)

Конечно, эта формула становится несправедлива при учете корреляций малого радиуса от жесткого NN-кора. Но их эффект не очень велик (см. ниже). Для выполнения квантового вычисления $\langle Q_L^2 \rangle$ для

ядра ²⁰⁸Рb мы используем EWSR (см. обзор [33]) для силовой функции $S(\omega)$ оператора F_L . Она определяется как

$$S(\omega) = \sum_{n} |\langle n|F_L|0\rangle|^2 \delta(\omega - \omega_n), \qquad (A.5)$$

где $\omega_n = E_n - E_0$ и E_n — энергии состояний ядра. В терминах моментов силовой функции, определяемых как

$$m_k = \int_0^\infty d\omega \, \omega^k S(\omega) \,, \tag{A.6}$$

можно написать $\langle 0|F_L^+F_L|0\rangle = m_0$. Удобно переписать это в виде

$$\langle 0|F_L^+F_L|0\rangle = m_1/E_c\,,\qquad(A.7)$$

где

$$E_c = m_1/m_0 \tag{A.8}$$

— так называемая центральная энергия E_c , которую можно рассматривать как типичную энергию возбуждения для оператора F_L , действующего на основное состояние. Представление (А.7) более удобно, чем представление через m_0 , потому что экспериментальные ошибки в нормировке силовой функции не важны для отношения m_1/m_0 , а момент m_1 может быть точно рассчитан с помощью EWSR, которое для $L \geq 2$ [27, 30, 33] дает

$$m_1 = \frac{AL(2L+1)^2 \langle r^{2L-2} \rangle}{8\pi m_N} , \qquad (A.9)$$

где m_N — масса нуклона. Таким образом, мы получаем

$$\langle Q_L^2 \rangle_{EWSR} = \frac{AL(2L+1)^2 \langle r^{2L-2} \rangle}{8\pi m_N E_c} \,. \tag{A.10}$$

Сравнивая (А.10) с (А.4), мы видим, что отношение между среднеквадратичными мультипольными моментами для обычной МК-выборки положений нуклонов и для квантового расчета с помощью EWSR есть

$$r_L = \frac{\langle Q_L^2 \rangle_{WS}}{\langle Q_L^2 \rangle_{EWSR}} = \frac{2m_N E_c \langle r^{2L} \rangle}{L(2L+1) \langle r^{2L-2} \rangle} \,. \tag{A.11}$$

Центральная энергия вычисляется с помощью параметризации Брейта–Вигнера силовой функции. Поскольку силовая функция пропорциональна мнимой части поляризуемости (восприимчивости) α (которая, как обычно, должна удовлетворять соотношению $\alpha(-\omega^*) = \alpha^*(\omega)$ [57]) для оператора F_L , то для каждого резонанса должна использоваться

³⁾ В этом Приложении мы игнорируем очень малый эффект от нуклонных корреляций центра масс. Однако в наших численных расчетах они учитывались точно.

параметризация Брейта – Вигнера с двумя полюсами (с одинаковыми вычетами) в точках $\pm \omega_R - i\Gamma_R/2$ (см. формулу (20) в [32]). Для *N*-резонансов это дает

$$E_c = \left[\sum_{i=1}^{N} \frac{2f_i}{\pi\omega_i} \operatorname{arctg2}\omega_i / \Gamma_i\right]^{-1}, \qquad (A.12)$$

где f_i — относительная доля вклада резонанса i в EWSR.

Для изоскалярного оператора F₂ для ядра $^{208}\mathrm{Pb}$ EWSR практически исчерпывается изоскалярным гигантским квадрупольным резонансом с $\omega \approx 10.89$ МэВ и Г ≈ 3 МэВ [58]. Формула (A.12) с этими параметрами дает $E_c \approx 11.9$ МэВ, тогда из (А.11) можно получить $r_2 \approx 2.25$. Таким образом, мы видим, что вероятностная трактовка ядра ²⁰⁸Pb с WS-плотностью ядра переоценивает квадрупольные 3D-флуктуации. Понятно, что это может приводить также к неверным предсказаниям для 2D-флуктуаций начального файербола КГП в АА-столкновениях. Как и в [31], наша стратегия решения этой проблемы заключается в изменении МК-генерации положений нуклонов путем применения подходящего фильтра, который генерирует ядерные конфигурации со среднеквадратичным квадрупольным моментом, соответствующим EWSR.

Для вычисления r_3 нам необходима силовая функция для F_3 . Для ядра ²⁰⁸Pb функция $S(\omega)$ для оператора F_3 распределена в широкой области ω . Имеются несколько очень узких пиков в области низких энергий, $\omega \lesssim 7$ МэВ [59–61], в которой низколежащее 3⁻-состояние с $\omega \approx 2.615$ МэВ поглощает около 20-25% от EWSR [59-61] и еще несколько состояний в области 4.7 $\lesssim \omega \lesssim 7$ МэВ (так называемая область низкоэнергетического октупольного резонанса (LEOR)), которая поглощает около 8–13 % от EWSR [59,60]. В области высоких энергий имеется широкий резонанс при $\omega \sim 16 - 20$ МэВ с $\Gamma \sim 5$ –8 МэВ [58, 61–65]. Измеренная доля высокоэнергичного октупольного резонанса (HEOR) в EWSR варьируется примерно от 20-50 % [63, 64] до 60-90 % [58, 61, 62, 65]. Используя данные работы [60], где вклад в EWSR от 3⁻-состояния с энергией 2.615 МэВ составляет 21% и от LEOR-области 8.3%, вместе с параметрами НЕОК из работы [58] $(\omega~\approx~19.6\pm0.5$ МэВ, $\Gamma~\approx~7.4\pm0.6$ МэВ с долей в EWSR 70 ± 14 %) мы получаем $r_3 \approx 0.84$. Однако, если мы используем 25% для вклада в EWSR от состояния с энергией 2.615 МэВ, как было получено в [61], и параметры HEOR, полученные в [63] ($\omega = 16$ МэВ, $\Gamma = 6$ МэВ), тогда мы получаем $r_3 \approx 0.7$. Таким образом, мы видим, что экспериментальные данные по октупольной силовой функции ядра ²⁰⁸Pb свидетельствуют в пользу $r_3 \leq 1$. Но изза неопределенности в экспериментальных данных для октупольной силовой функции имеется неопределенность в значениях r_3 около 15–20%. В данном анализе мы выполняем расчеты для двух значений: $r_3 = 0.84$ и $r_3 = 0.7$.

Приведенные выше значения множителей r_2 и r_3 соответствуют МК-выборке положений нуклонов для некоррелированной ядерной плотности WS. Расчеты с использованием распределения WS с ограничением на минимальное расстояние между нуклонами для имитации жесткого NN-кора дают несколько иные значения $r_{2,3}$. Однако влияние жесткого NN-кора на $r_{2,3}$ относительно невелико: мы получили уменьшение r_2 на коэффициент 0.78(0.926) и уменьшение r_3 на коэффициент 0.81(0.928) для радиуса кора $r_c = 0.9(0.6)$ фм.

В настоящем анализе мы модифицируем МК-генерацию положений нуклонов только с помощью фильтров для изоскалярных моментов L = 2 и 3, которые соответствуют колебаниям формы ядра. Мы не используем фильтрование для моды L = 0, которая соответствует чисто радиальным колебаниям. Радиальные колебания могут характеризоваться квадратом момента для монопольного изоскалярного оператора

$$F_0 = \sum_{i=1}^{A} \left(r_i^2 - \langle r^2 \rangle \right).$$

EWSR для этого оператора дает $m_1 = 2\langle r^2 \rangle / m_N$ [66]. Используя эту формулу для некоррелированной ядерной плотности WS, мы получаем для аналога (A.11) в случае моды L = 0

$$r_0 = \frac{m_N E_c}{2} \left[\frac{\langle r^4 \rangle}{\langle r^2 \rangle} - \langle r^2 \rangle \right] \,. \tag{A.13}$$

Для изоскалярной моды L = 0 EWSR практически исчерпывается изоскалярным гигантским монопольным резонансом с $\omega \approx 13.6$ –13.9 МэВ и Г ≈ 3 МэВ [58,67]. Эти параметры дают $E_c \approx 15$ МэВ, а расчет с использованием (А.13) для распределения WS (А.1) дает $r_0 \sim 1.6$. Это означает, что для MK-выборки ядерных конфигураций с некоррелированной ядерной плотностью WS величина чисто радиальных флуктуаций несколько завышена по сравнению с величиной, получаемой из экспериментальной монопольной силовой функции. Однако мы обнаружили, что добавление фильтрации для моды L = 0, которая уменьшает среднеквадратичный момент L = 0 до его значения предсказываемого EWSR, практически не влияет на азимутальные коэффициенты $\epsilon_{2,3}$. Поэтому мы не используем фильтрование для флуктуаций L = 0.

ЛИТЕРАТУРА

- T. Hirano, P. Huovinen, K. Murase, and Y. Nara, Prog. Part. Nucl. Phys. **70**, 108 (2013) [arXiv:1204.5814].
- R. Derradi de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016) [arXiv:1506.03863].
- **3**. P. Romatschke and U. Romatschke, arXiv:1712. 05815.
- 4. J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
- F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 85, 024908 (2012) [arXiv:1111.6538].
- H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys. Rev. C 87, 054901 (2013) [arXiv:1212.1008].
- M. Luzum and H. Petersen, J. Phys. G 41, 063102 (2014) [arXiv:1312.5503].
- D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011) [arXiv:1010.1876].
- E. Retinskaya, M. Luzum, and J.-Y. Ollitrault, Nucl. Phys. A926, 152 (2014) [arXiv:1401.3241].
- 10. M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007) [nucl-ex/0701025].
- M. Rybczynski, G. Stefanek, W. Broniowski, and P. Bozek, Comput. Phys. Commun. 185, 1759 (2014) [arXiv:1310.5475].
- G. Policastro, D.T. Son, and A. O. Starinets, Phys. Rev. Lett. 87, 081601 (2001) [hep-th/0104066].
- G. Policastro, D. T. Son, and A. O. Starinets, JHEP 09, 043 (2002) [hep-th/0205052].
- J. S. Moreland, J. E. Bernhard, and S. A. Bass, Phys. Rev. C 92, 011901 (2015) [arXiv:1412.4708].
- B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012) [nucl-th/1202.6646].
- F. Gelis, G. Giacalone, Pablo Guerrero-Rodríguez, C. Marquet, and J.-Y. Ollitrault, arXiv:1907.10948.
- S. Chatrchyan et al. [CMS Collaboration], JHEP 1402, 088 (2014) [arXiv:1312.1845].

- S. Acharya et al. [ALICE Collaboration], JHEP 1807, 103 (2018) [arXiv:1804.02944].
- 19. C. Shen, Z. Qiu, and U. Heinz, Phys. Rev. C 92, 014901 (2015) [arXiv:1502.04636].
- P. Carzon, S. Rao, M. Luzum, M. Sievert, and J. Noronha-Hostler, arXiv:2007.00780.
- D. Kharzeev and E. Levin, Phys. Lett. B 523, 79 (2001) [arXiv:nucl-th/0108006].
- 22. D. Kharzeev, E. Levin, and M. Nardi, Nucl. Phys. A 747, 609 (2005) [arXiv:hep-ph/0408050].
- J.-B. Rose, J.-F. Paquet, G. S. Denicol, M. Luzum,
 B. Schenke, S. Jeon, and C. Gale, Nucl. Phys. A 931, 926 (2014) [arXiv:1408.0024].
- 24. P. Alba, V. Mantovani Sarti, J. Noronha, J. Noronha-Hostler, P. Parotto, I. Portillo Vazquez, and C. Ratti, Phys. Rev. C 98, 034909 (2018) [arXiv:1711.05207].
- 25. L. M. Robledo and G. F. Bertsch, Phys. Rev. C 84, 054302 (2011) [1107.3581].
- 26. S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C 93, 044304 (2016) [1603.03414].
- 27. A. Bohr and B. R. Mottelson, *Nuclear Structure*, Vol. II, W. A. Benjamin, Inc., New York (1975).
- W. Greiner and J. A. Maruhn, Nuclear Models, Springer, Berlin (1996).
- 29. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004) [nucl-th/0311058].
- 30. X. Roca-Maza and N. Paar, Prog. Part. Nucl. Phys. 101, 96 (2018) [1804.06256].
- **31**. B. G. Zakharov, JETP Lett. **112**, 393 (2020) [2008.07304].
- 32. B. G. Zakharov, JETP Lett. 108, 723 (2018) [arXiv:1810.08942].
- 33. E. Lipparini and S. Stringari, Phys. Rep. 175, 103 (1989).
- 34. G. Giacalone, J. Noronha-Hostler, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 97, 034904 (2018) [arXiv:1711.08499].
- 35. J. Noronha-Hostler, Li Yan, F. G. Gardim, and J.-Y. Ollitrault, Phys. Rev. C 93, 014909 (2016) [arXiv:1511.03896].
- 36. S. J. Das, G. Giacalone, P.-A. Monard, and J.-Y. Ollitrault, Phys. Rev. C 97, 014905 (2018) [arXiv:1708.00081].

- W. Broniowski and W. Florkowski, Phys. Rev. C 65, 024905 (2002) [nucl-th/0110020].
- 38. B. G. Zakharov, JETP Lett. 104, 6 (2016) [arXiv:1605.06012].
- **39**. Б. Г. Захаров, ЖЭТФ **151**, 1011 (2017) [arXiv:1611. 05825].
- 40. B. G. Zakharov, Eur. Phys. J. C 78, 427 (2018) [arXiv:1804.05405].
- D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001) [nucl-th/0012025].
- 42. B. Müller and K. Rajagopal, Eur. Phys. J. C 43, 15 (2005) [arXiv:hep-ph/0502174].
- 43. J. Speth and A. W. Thomas, Adv. Nucl. Phys. 24, 83 (1997).
- W. Broniowski and M. Rybczynski, Phys. Rev. C 81, 064909 (2010) [arXiv:1003.1088].
- 45. B. G. Zakharov, JETP Lett. 105, 785 (2017) [arXiv:1703.04271].
- 46. G. Kh. Eyyubova, V. L. Korotkikh, A. M. Snigirev, and E. E. Zabrodin, J. Phys. G 48, 095101 (2021) [arXiv:2107.00521].
- 47. K. A. Bugaev, A. I. Ivanytskyi, V. V. Sagun, B. E. Grinyuk, D. O. Savchenko, G. M. Zinovjev1, E. G. Nikonov, L. V. Bravina, E. E. Zabrodin, D. B. Blaschke, A. V. Taranenko, and L. Turko, Universe 5, 63 (2019) [arXiv:1810.00486].
- 48. M. I. Krivoruchenko, D. K. Nadyozhin, T. L. Rasinkova, Yu. A. Simonov, M. A. Trusov, and A. V. Yudin, Phys. Atom. Nucl. 74, 371 (2011), and references therein. [arXiv:1006.0570].
- 49. V. I. Kukulin, Phys. Atom. Nucl. 74, 1567 (2011), and references therein.
- B. G. Zakharov and B. Z. Kopeliovich, Sov. J. Nucl. Phys. 42, 677 (1985).
- 51. J. Jia, 2106.08768.
- J. Schukraft, A. Timmins, and S. A. Voloshin, Phys. Lett. B 719, 394 (2013) [arXiv:1208.4563].

- 53. L. Adamczyk, J. K. Adkins, G. Agakishiev et al. [STAR Collaboration], Phys. Rev. Lett. 115, 222301 (2015) [arXiv:1505.07812].
- 54. A. Goldschmidt, Z. Qiu, C. Shen, and U. Heinz, Phys. Rev. C 92, 044903 (2015) [arXiv:1507.03910].
- B. Alver, M. Baker, C. Loizides, and P. Steinberg, arXiv:0805.4411.
- 56. H. De Vries, C.W. De Jager, and C. De Vries, Atomic Data and Nuclear Data Tables 36, 495 (1987).
- 57. L. D. Landau and E. M. Lifshits, Statistical Physics Part 1 (Landau Course of Theoretical Physics Vol. 5), Oxford, Pergamon Press (1980).
- 58. D. H. Youngblood, Y. W. Lui, H. L. Clark, B. John, Y. Tokimoto, and X. Chen, Phys. Rev. C 69, 034315 (2004).
- 59. M. N. Harakeh, B. Van Heyst, K. Van Der Borg, and A. Van Der Woude, Nucl. Phys. A 327, 373 (1979).
- Y. Fujita, T. Shimoda, H. Miyatake, N. Takahashi, and M. Fujiwara, Phys. Rev. C 45, 993 (1992).
- 61. T. Yamagata, S. Kishimoto, K Yuasa, K. Iwamoto, B. Saeki, M. Tanaka, T. Fukuda, I. Miura, M. Inoue, and H. Ogata, Phys. Rev. C 23, 937 (1981) [Erratum: Phys. Rev. C 23, 2798 (1981)].
- R. Pitthan, F. R. Buskirk, E. B. Dally, J. N. Dyer, and X. K. Maruyama, Phys. Rev. Lett. 33, 849 (1974) [Erratum Phys. Rev. Lett. 34, 848 (1975)].
- 63. M. Sasao and Y. Torizuka, Phys. Rev. C 15, 217 (1977).
- 64. T. A. Carey, W. D. Cornelius, N. J. Digiacomo, J. M. Moss, G. S. Adams et al., Phys. Rev. Lett. 45, 239 (1980).
- 65. B. F. Davis, U. Garg, W. Reviol, M. N. Harakeh, A. Bacher et al., Phys. Rev. Lett. 79, 609 (1997).
- 66. J. P. Blaizot, Phys. Rep. 64, 171 (1980).
- 67. D. Patel, U. Garg, M. Itoh, H. Akimune, G. P. A. Berg et al., Phys. Lett. B 735, 387 (2014) [1406.6905].

ВЛИЯНИЕ НИЗКОЭНЕРГЕТИЧЕСКОГО ИОННОГО АССИСТИРОВАНИЯ НА СТРУКТУРУ И ОПТИЧЕСКОЕ ПОГЛОЩЕНИЕ КОМПОЗИТНЫХ ПОКРЫТИЙ а-CH:Ag

И. А. Завидовский^{*}, О. Ю. Нищак, Н. Ф. Савченко, О. А. Стрелецкий

Московский государственный университет им. М. В. Ломоносова, физический факультет 119991, Москва, Россия

> Поступила в редакцию 15 ноября 2021 г., после переработки 23 декабря 2021 г. Принята к публикации 24 декабря 2021 г.

Исследовано влияние изменения энергии и тока низкоэнергетической (100-600 эВ) ионной стимуляции на структуру углеродных гидрогенизированных покрытий с серебряными включениями (a-CH:Ag), синтезированных методом импульсно-плазменного осаждения. При помощи методов просвечивающей электронной микроскопии, электронной дифракции, спектроскопии характеристических потерь энергии электронов, рентгеновской фотоэлектронной спектроскопии, поглощения в УФ и видимой областях спектра показано влияние энергии и тока стимуляции на проявление ионно-индуцированных эффектов, таких как дефектообразование, селективное распыление серебра, поверхностная диффузия и сегрегация серебряных частиц.

DOI: 10.31857/S0044451022060037 **EDN:** DUCVXI

1. ВВЕДЕНИЕ

В настоящее время активно исследуются аморфные углеродные покрытия, в которые инкапсулированы металлические наночастицы [1–4]. Такие структуры имеют перспективы применения для широкого спектра задач. Например, внедрение различных металлических включений позволяет уменьшить внутренние напряжения углеродной матрицы и улучшить адгезию — ключевые характеристики упрочняющих покрытий [1]. Помимо этого, металлические наночастицы позволяют в широком диапазоне управлять различными свойствами пленок, например, варьировать их электрофизические и оптические характеристики [4,5].

Большой интерес представляют пленки, допированные серебром. Бактерицидные свойства серебра и его поверхностная сегрегация позволяют использовать углерод-серебряные пленки в качестве антимикробных покрытий [3]. В свою очередь, проявление поверхностного плазмонного резонанса при оптическом возбуждении серебряных наночастиц, а также химическая инертность углеродной матрицы позволяют изготавливать высокостабильные углерод-серебряные подложки для реализации эффекта поверхностно-усиленного комбинационного рассеяния (SERS-подложки) [4].

Вследствие структурного многообразия углеродных материалов для наименования углерод-серебряных пленок существует ряд терминов, отражающих свойства покрытия. Так, композиты, аморфная матрица которых преимущественно состоит из sp^3 -гибридизованных атомов, называют ta-C:Ag, ta-C/Ag, Ag-DLC или DLC-Ag (здесь DLC — diamond-like carbon, ta-C — tetrahedral amorphous carbon) [3, 6, 7]. Термины C/Ag и Ag/C соответствуют серебряным структурам, пассивированным слоем углерода, и углеродным структурам с серебряным покрытием [8]. В свою очередь, наиболее распространенным объектом исследования являются углерод-серебряные композиты типа а-С:Ад и a-CH:Ag. Для таких структур аморфная матрица а-С состоит преимущественным образом из *sp*²-гибридизованного углерода. Подобная структура покрытий является наиболее распространенной, поскольку внедрение серебра вызывает разупорядочение углеродной матрицы и, как правило, приводит к ее графитизации [9].

^{*} E-mail: ia.zavidovskii@physics.msu.ru

Доля и конфигурация атомов различной гибридизации, а также характеристики включений оказывают существенное влияние на оптические, электрофизические и механические свойства пленок а-С:Ад и а-СН:Ад. Вследствие этого представляет интерес исследование методов и параметров осаждения, позволяющих в широком диапазоне варьировать характеристики получаемых структур. Среди технологий вакуумного напыления можно выделить импульсно-плазменное осаждение. В число преимуществ данного метода входит возможность осуществлять послойное осаждение наноструктур и синтез метастабильных фаз углерода, а также отсутствие существенного нагрева, позволяющее осуществлять напыление на различные типы подложек [10, 11]. В свою очередь, введение ионного ассистирования (стимуляции) в процесс импульсно-плазменного осаждения позволяет управлять свойствами как углеродной матрицы, так и серебряных частиц [12, 13].

Однако для композитных материалов влияние ионного облучения существенно различается в зависимости от видов структур, токов, энергий и типов ионов [14]. Известно, что воздействие ионов пучка может вызывать химическую перестройку структуры, а также приводить к селективному распылению слабосвязанных атомов [12,15]. Помимо этого, взаимодействие ионов с растущей пленкой может сопровождаться их каналированием, образованием ударных волн, активацией поверхности и формированием центров зародышеобразования [12, 15–17]. Актуальной задачей в настоящее время является модификация наноструктур при помощи ионов низких (до тысяч килоэлектронвольт) и сверхнизких (ниже порога распыления) энергий [12,15,18]. Такого рода воздействие позволяет свести к минимуму нежелательные эффекты, ухудшающие качество структуры, такие как ионное перемешивание, имплантация ионов, распыление, разупорядочение [18, 19], и в то же время оказывает существенное влияние на морфологию пленок.

В настоящей работе представлены результаты исследования покрытий a-CH:Ag, изготовленных при различных энергиях и токах ионной стимуляции методом импульсно-плазменного распыления графитовой мишени с серебряными вставками.

2. МАТЕРИАЛЫ И МЕТОДЫ

Синтез покрытий a-CH:Ag осуществлялся методом импульсно-плазменного осаждения. Схема и принцип работы экспериментальной установки представлены в работах [2,12]. Распыляемая мишень состояла из графита марки МПГ-7. В ней изготавливались отверстия, в которые помещались вставки, состоящие из 99.99 % Ад. Распыляемая площадь серебра составляла около 10% от площади катода. Мощность разряда 0.5 кВт, длительность импульса около 1 мс, частота следования импульсов 1 Гц. Перед началом процесса распыления катода вакуумная камера откачивалась до давления 0.01 Па. Осаждение исследуемых образцов проводилось в атмосфере аргона при давлении 0.12 Па при различных энергиях и токах ионного ассистирования. Структуры, для которых выходной ток холловского ионного источника варьировался от 5 до 40 мА, осаждались при энергии ассистирования 100 эВ. С целью уменьшения распыления осаждаемого покрытия падающим ионным пучком были изготовлены образцы при энергии ионной стимуляции в диапазоне от 100 до 600 эВ при токе ионного пучка 5 мА. Значения тока разряда 5, 20 и 40 мА в исследуемом диапазоне параметров отвечают значениям ионного тока от источника ионов, которым соответствуют плотности ионного тока на поверхности осаждаемых образцов соответственно 15, 22 и 31 мкА/см².

В качестве подложек были использованы скол кристалла NaCl, полированный кремний и покровные стекла компании Deltalab.

Структура образцов исследовалась при помощи просвечивающей электронной микроскопии (ПЭМ), спектроскопии характеристических потерь энергии электронов (СХПЭЭ), рентгеновской фотоэлектронной спектроскопии (РФЭС) и электронной дифракции образцов. Все перечисленные измерения проводились на электронном микроскопе LEO 912 аb при ускоряющем напряжении электронов 100 кэВ. Подготовка образцов к исследованию осуществлялась путем растворения пластин NaCl с осажденной на них пленкой в дистиллированной воде и последующей высадки фрагментов пленки на медные сеточки.

РФЭС-спектры были получены на спектрометре РНІ VersaProbe II 5000. Использовалось монохроматизированное рентгеновское излучение AlK_{α} (1486.6 эВ), мощностью 50 Вт. Шкала энергии связи прибора была откалибрована по линиям Au4f(83.96 эВ) и $Cu2p_{3/2}$ (932.62 эВ). Спектры были сняты с пленок, нанесенных на кремний. Травление пленок перед снятием спектров не проводилось, поскольку ионное облучение вызывает структурную перестройку образцов. Исследования были выполнены в Центре коллективного пользования «Ма-

Рис. 1. ПЭМ-изображения пленок а-CH:Ag, изготовленных при различных энергиях (верхний ряд) и токах (нижний ряд) ионного ассистирования. На увеличенных фрагментах изображений показаны двойникование наночастиц (1), формирование огранки (2–4) и формирование полостей на поверхности покрытия (5)

териаловедение и металлургия» Московского института стали и сплавов (идентификатор проекта RFMEFI59414X0007).

Оптическое поглощение полученных структур в УФ и видимой областях спектра измерялось при нормальном падении светового потока от ксеноновой лампы с помощью спектрофотометра на базе монохроматора МДР-41. В качестве исследуемых образцов использовались пленки, нанесенные на покровные стекла.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. ПЭМ

На рис. 1 представлены ПЭМ-изображения для образцов, нанесенных при различных энергиях и токах ассистирования. На них можно видеть наноразмерные серебряные включения, инкапсулированные в аморфную углеродную матрицу. Стоит отметить, что разрешение используемого микроскопа составляет 2.0-3.4 Å, вследствие чего с помощью данного прибора не представляется возможным получить информацию о субнанометровых включениях. Характерной особенностью текстуры углеродной матрицы являются волнообразные неоднородности размером порядка нескольких десятков нанометров. Формирование схожих особенностей на поверхности типично для пленок, облучаемых ионным пучком под углом к поверхности, отличным от прямого [15]. Процесс появления волнообразной «ряби» связан с зависимостью коэффициента распыления от топографии поверхности, а также с диффузией и локальным распылением, вызванными ионным пучком [20].

Форма включений существенно изменяется в зависимости от условий осаждения: при увеличении

Рис. 2. (В цвете онлайн) Распределения по размерам серебряных наночастиц, инкапсулированных в матрицу аморфного углерода, полученные при различных энергиях (*a*) и токах (*б*) стимуляции. Указано количество частиц *N*, проанализированных для построения гистограмм

энергии ионной стимуляции они приобретают огранку, тогда как изменение тока ассистирования не оказывает подобного эффекта. В то же время для образцов, полученных при токах стимуляции 20 и 40 мА, наблюдается значительное число сдвоенных наночастиц. Это может быть связано с тем, что увеличение тока ассистирования приводит к увеличению поверхностной диффузии зародышей в процессе осаждения материала [19], а также со структурной релаксацией при агломерации наночастиц [21]. В пользу второй гипотезы говорит то, что менее выраженный эффект двойникования наблюдался и в углерод-серебряных композитах, полученных схожим методом без ионной стимуляции [22]. Наличие небольших (3-5 нм) серебряных наночастиц вызвано тем, что ионная стимуляция индуцирует формирование дефектов в растущей пленке. Данные дефекты, в свою очередь, являются предпочтительными центрами зародышеобразования [23].

Стоит также отметить особенности структуры образца, нанесенного при энергии стимуляции 100 эВ и токе стимуляции 40 мА. Увеличенное ПЭМ-изображение характерных неоднородностей данного покрытия представлено на фрагменте изображения 5 на рис. 1. По нашему предположению, неоднородности представляют собой полости на поверхности пленки, формирование которых обусловлено селективным распылением серебряных кластеров ассистирующим ионным пучком. Существенное влияние данного процесса на структуру покрытий может являться следствием поверхностной сегрегации серебра. Сегрегация серебра часто наблюдается как в процессе высокотемпературного осаждения, так и в результате «старения» синтезированных различными методами покрытий на основе аморфного углерода [24]. Общий характер явления позволяет предположить, что данный эффект имеет место для всех исследованных покрытий. Однако его наблюдение для большинства образцов может быть затруднено в силу того, что размер сегрегированных наночастиц не превышает разрешения прибора.

Таким образом, ионная стимуляция оказывает существенное влияние на концентрацию включений и их распределение по размерам. Для того чтобы оценить влияние различных процессов на характеристики серебряных наночастиц, с помощью программы Gwyddion было получено их распределение по размерам. Размер включений был вычислен как удвоенный радиус эквивалентного диска.

На рис. 2а представлено распределение частиц по размерам для образцов, полученных при различных энергиях стимуляции и токе стимуляции 5 мА. Можно видеть, что увеличение энергии стимуляции до 400 эВ приводит к увеличению числа наночастиц размером от 3 до 12 нм на единицу площади. Это может быть обусловлено ионно-индуцированным увеличением числа дефектов — предпочтительных центров образования зародышей с малым критическим размером [23]. В то же время снижение числа частиц, обладающих размером более 12 нм, может свидетельствовать об увеличении вклада селективного распыления серебра ассистирующими ионами, обусловленного тем, что коэффициент распыления серебра в исследуемом диапазоне энергий более чем в 10 раз превышает коэффициент распыления углерода [25]. Однако при дальнейшем росте энергии до 600 эВ происходит увеличение числа частиц, имеющих размер 13-23 нм, и уменьшение концентрации меньших частиц. Смещение распределения в область более крупных включений может быть связано с усилением вклада поверхностной диффузии с ростом энергии ассистирования. Однако стоит отметить, что в работе [12] увеличение энергии при большем токе стимуляции приводило к формированию большого числа мелких частиц за счет усиления дефектообразования на поверхности растущей пленки. Возможно, в структуре исследуемых в настоящей работе образцов присутствуют субнаноразмерные частицы, которые не удается разрешить с помощью используемого оборудования. Также уменьшение концентрации мелких частиц для образца, нанесенного при энергии стимуляции 600 эВ, может быть связано с селективным распылением серебра ионным пучком в процессе осаждения.

Изменение распределения частиц при увеличении тока стимуляции и энергии 100 эВ представлено на рис. 26. Распределение по размерам для образца, полученного при токе стимуляции 20 мА, подобно распределению для образца, полученного при энергии 600 эВ и токе 5 мА: в обоих случаях наблюдается большое число частиц размером 10-20 нм. Таким образом, увеличение плотности тока в 2 раза и возрастание энергии ассистирования в 6 раз приводит к схожему усилению поверхностной диффузии. По-видимому, это свидетельствует о том, что увеличение тока в меньшей степени способствует дефектообразованию и в большей степени стимулирует поверхностную диффузию по сравнению с увеличением энергии. Этот результат находится в соответствии с литературными данными, показывающими, что при энергиях, не превышающих 100 эВ, роль ионного ассистирования главным образом проявляется на поверхности (например, как увеличение подвижности адатомов), а увеличение энергии до 1000 эВ способствует объемной модификации структуры, имеющей место благодаря имплантации ионов, формированию дефектов и усилению распыления [19, 26, 27]. Дальнейшее увеличение тока до 40 мА привело к формированию частиц двух характерных размеров: примерно 5 и 20-30 нм.

Таким образом, увеличение как тока, так и энергии стимуляции приводит к разделению частиц по размерам на включения диаметром до 10 и 20–30 нм. Данный эффект обусловлен комбинацией различных факторов: распыления; поверхностной диффузии, которая обеспечивает коалесценцию частиц и приводит к росту размера включений; дефектообразования, способствующего появлению мелких частиц.

3.2. РФЭС

На рис. 3 представлен обзорный РФЭС-спектр покрытия, нанесенного при энергии стимуляции 100 эВ и токе стимуляции 20 мА. Спектры других образцов отличаются незначительно. Поскольку длина свободного пробега фотоэлектронов в твердом теле мала (0.5–3 нм) [28], существенное влияние на РФЭС-спектры оказывает поверхностный адсорбированный слой. Вследствие этого в элементном составе наблюдаются существенные доли кислорода (15–20%) и азота (2–4%), а также небольшая доля других атомов, что может быть связано с присутствием загрязнений.

В таблице представлен элементный состав, измеренный при помощи метода РФЭС для различных образцов. Стоит отметить, что малая концентрация серебра в приповерхностных слоях образцов, оцененная при помощи метода РФЭС, может объясняться распылением серебряных частиц, вызванным его поверхностной сегрегацией (см. разд. 3.1), что затрудняет объективную оценку доли серебра в объеме материала.

Измерялись РФЭС-спектры высокого разрешения в диапазоне, соответствующем выходу фотоэлектронов с остовных уровней углерода, серебра и кислорода. Ниже приведены спектры C1s, Ag3d, O1s, измеренные для образца, полученного при энергии стимуляции 100 эВ и токе 5 мА. Форма линий в спектрах для покрытий, нанесенных при других энергиях и токах стимуляции, отличались от представленных незначительно. Для всех линий было проведено вычитание фона методом Ширли при помощи программы OriginPro. Разложение пиков на гауссовы составляющие было проведено при помощи программы MagicPlot. На рис. 4 представлен пик C1s с сателлитом плазмонных потерь, отстоящим от основного пика на 23.2 эВ. Потери энергии на возбуждение $(\pi + \sigma)$ -плазмона варьируются в зависимости от плотности вещества [10]. При этом для графита характерно положение плазмона, равное 27 эВ, для алмаза — 34 эВ [29]. Более низкая энергия плазмона в диапазоне от 19.5 до 23.3 эВ характерна для аморфных пленок, содержащих в своем составе водород [30].

На вставке к рис. 4 представлено разложение C1*s*-линии спектра. В нем наблюдаются пики, отвечающие химическим сдвигам, положения которых соответствуют присутствию C–C, C=C, C–H

Рис. 3. Характерный обзорный РФЭС-спектр

Табл	ица. Элементный	состав образцов,	получ	енных	при	различнь	ых эне	ргиях	и токах	ионной	стимуляци	и
Γ	Энергия	Ток ионов,	G	Q	٨	M	0	64	NT	Ø	Другое,	

Энергия ионов, эВ	Ток ионов, мА	С, ат. %	Ад, ат. %	О, ат. %	N, ат. %	Другое, ат. %
100	5	75.7	0.5	16.6	3.8	3.4
100	20	76.8	1.1	15.1	3.8	3.2
100	40	75.3	1.0	16.0	4.0	3.7
400	5	70.3	1.0	20.4	3.1	5.2
600	5	84.2	1.6	8.9	2.7	2.6

(285 эВ) [31, 32], С-О, С-N (286.5 эВ) [33], а также С=О, О-С-О, N-С=N (288.2 эВ) [34, 35]. Существенная ширина пика при 288.2 эВ типична для структур на основе разупорядоченного углерода. По-видимому, она обусловлена тем, что для различных структурных фрагментов, содержащих связь С=О, положение РФЭС-линии может варьироваться от 287.5 эВ (-С=О) до 289.2 эВ (-СООН) [36,37].

На рис. 5 представлен спектр линии Ag3d. В силу спин-орбитального расщепления в данном спектре присутствуют два пика, отвечающие выходу электронов с уровней $Ag3d_{5/2}$ и $Ag3d_{3/2}$. Их максимумы расположены соответственно при 368.4 и 374.4 эВ. Такое положение свидетельствует о преимущественно металлическом состоянии серебра Ag^0 [38]. Однако положения линий, отвечающих металлическому и оксидированному серебру, отличаются на доли электронвольт, что затрудняет анализ химических связей атомов серебра по данным линиям [39].

Разложение спектра O1s (рис. 6) позволяет выделить три гауссовы составляющие. Первый пик, максимум которого расположен при 530.7 эВ, отвечает

Рис. 4. Характерный спектр C1s-линии углерода и ее сателлита неупругих потерь. На вставке представлено разложение C1s-линии

Рис. 5. Характерный РФЭС-спектр линии Ag3d

Рис. 6. Спектр линии ${\rm O1}s$ и его разложение на пики, отвечающие различным химическим связям

Рис. 7. Типичная картина электронной дифракции образцов. Стрелками отмечены рефлексы серебра и отвечающие им кристаллографические индексы

физически адсорбированному кислороду или связям О-С [40,41]. Наиболее интенсивная центральная линия при 532.1 эВ отвечает связям О-С-О, О=С или гидроксильным группам [42–44]. Третий максимум, расположенный при 533.6 эВ, может отвечать связям О-С [45]. Также его можно отнести к группам С-О-Н и О=С-О [46,47]. Стоит отметить, что линия, отвечающая связям О-Аg, должна быть расположена значительно ниже по энергиям (528.7 эВ) [48]. Ее отсутствие в исследуемых спектрах наряду с данными разложения спектра Ag3d свидетельствует об отсутствии оксидированного серебра. По-видимому, это связано с малыми концентрациями серебра в приповерхностных слоях, свидетельствующими о распылении серебра с поверхности ассистирующим пучком в процессе осаждения.

Наличие в приповерхностных слоях большого числа различных соединений углерода с кислородом, азотом и водородом свидетельствует о том, что в синтезированной структуре содержится большое число оборванных связей, которые насыщаются при контакте поверхности и воздуха. По-видимому, формирование таких связей связано с внедрением в структуру пленки серебра, не образующего связей с углеродом, но при этом приводящего к разупорядочению углеродной матрицы [9].

Рис. 8. Разложения профилограмм дифракционных линий, отвечающих аморфной субструктуре, для образцов, полученных при разных энергиях (a) и токах (b) стимуляции, а также отношения интенсивности дифракционной линии графитовой компоненты к интенсивности совокупной линии для структур, полученных при разных энергиях (в) и токах (г) стимуляции

3.3. Электронная дифракция

На рис. 7 приведена картина электронной дифракции полученных пленок при энергии стимуляции 100 эВ и токе 5 мА. Данная картина является типичной для всех полученных образцов. На ней можно видеть широкие гало, типичные для аморфных структур, а также яркие точечные рефлексы от отдельно стоящих кристаллитов, положения которых отвечают межплоскостным расстояниям серебра.

На рис. 8 представлены результаты фотометрирования дифракционной картины в окрестности линии, соответствующей межплоскостному расстоянию d = 2-5 Å, которое отвечает аморфному углероду. В данной линии можно выделить две составляющие: пик G(002) графитовой и пик D(111) алмазной структур с межплоскостными расстояниями соответственно 3.4 и 2.1 Å [49]. Для выявления вклада данных составляющих было проведено разложение линий на гауссовы компоненты. Стоит отметить, что положение пиков отличается от случая идеальной структуры и составляет 2.1–2.3 Å для алмазной компоненты (D(111) на рис. 8), и 3.1–3.2 Å для графитовой (G(002) на рис. 8). На рис. 86, г показаны отношения интенсивности линии с пиком на 3.1–3.2 Å, приписываемой графитовой компоненте, к интенсивности совокупного пика в диапазоне 2–5 Å.

Стоит отметить, что данное отношение лишь приблизительно позволяет судить о доле атомов различной гибридизации. Так, в дифракцию дают вклад лишь те кластеры, размер которых больше или равен области когерентного рассеяния. Согласно работе [50], дифракция становится различима для кластеров графита, количество атомов в кото-

Рис. 9. Спектры характеристических потерь энергии электронов для структур, нанесенных при различных энергиях (a) и токах (δ) ионной стимуляции, а также отношения интенсивностей линий, отвечающих переходам $1s \to \pi^*$ и $1s \to \sigma^*$, для структур, нанесенных при различных энергиях (a) и токах (c) и онной стимуляции

рых превышает 30. В то же время существенные изменения дифракционных картин подразумевают необходимость проведения дополнительного структурного анализа образов, который в нашем случае был осуществлен с помощью метода СХПЭЭ.

3.4. СХПЭЭ

На рис. 9a, 6 представлены спектры СХПЭЭ в диапазоне, отвечающем потерям энергии электронов на межзонный переход с остовного уровня 1sатома углерода в π^* - и σ^* -подзоны. Фон линий вычитался методом Тугарда, спектры были нормированы по интенсивности и приведены на графике с вертикальным сдвигом. На рис. 9e, s можно видеть отношения интенсивностей пиков, отвечающих структурам, нанесенным при различных энергиях и токах ионной стимуляции. Оценка данного отношения была проведена при помощи двухоконного метода. Ширина окон, отвечающих переходам $1s \to \pi^*$ и 1
 $s\to\sigma^*,$ была выбрана соответственно равной 3 и 10
эВ [51].

Наличие σ^* -подзоны характерно для атомов углерода с любой гибридизацией, в то время как π^* -подзона не наблюдается в зонной структуре sp^3 -гибридизованного углерода. Таким образом, отношение интенсивностей линий, отвечающих межзонным переходам $1s \to \pi^*$ и $1s \to \sigma^*$, позволяет качественно оценить изменение sp^2 - и sp^3 -компонент по соотношению пиков. Однако количественные оценки не представляются возможными в силу того, что наличие углерод-водородных связей оказывает влияние на СХПЭЭ. Вклад связанных с С–H-связью межзонных переходов лежит между переходами $1s \to \pi^*$ и $1s \to \sigma^*$, что осложняет оценки [51].

Можно видеть, что тенденция изменений СХПЭЭ, представленная на рис. 9*6,г*, достаточно хорошо коррелирует с данными, полученными путем фотометрирования картин электронной дифракции (см. рис. 86, c). Различие в поведении данных зависимостей при изменении энергии стимуляции от 400 до 600 эВ, возможно, связано с тем, что при увеличении энергии стимуляции в фазовом составе покрытия становится меньше кластеров с размером меньше области когерентного рассеяния, при этом соотношение sp^2 - и sp^3 -гибридизованного углерода изменяется незначительно.

Стоит отметить, что изменение тока и энергии стимуляции влияет на соотношение sp^2 - и *sp*³-компонент различным образом: увеличение энергии стимуляции приводит к увеличению доли sp^2 -гибрилизованного углерода, в то время как увеличение тока показывает минимум доли sp^2 -углерода при значении тока 20 мА и ее возрастание при увеличении энергии до 40 мА. Для интерпретации полученных результатов стоит принять во внимание, что при образовании аморфных углеродных структур гибридизация атомов зависит от их координационного числа. При теоретическом рассмотрении часто полагают, что условием формирования sp-, sp^2 - и sp^3 -гибридизациованных состояний атомов является наличие соответственно 2, 3 и 4 атомов на расстоянии не более 1.8–1.9 Å от частицы [52].

В свою очередь, ионная стимуляция может приводить как к уменьшению координационного числа атомов путем разупорядочения, так и к его увеличению вследствие увеличения поверхностной диффузии адатомов и отжига дефектов [19, 26, 27]. Как показали результаты ПЭМ, для исследуемых образцов возрастание тока ионного облучения привело к большему увеличению подвижности серебряных частиц, нежели рост энергии стимуляции. По-видимому, диффузия углерода также более эффективно стимулируется увеличением тока ассистирования. Таким образом, изменение тока стимуляции от 5 до 20 мА, по-видимому, приводит к отжигу дефектов, а также способствует тому, что конденсирующиеся атомы более эффективно находят «соседей», вследствие чего происходит формирование *sp*³-гибридизованных кластеров. Дальнейшее увеличение тока стимуляции до 40 мА ведет к тому, что дефектообразование и разупорядочение, индуцированные ионным пучком, способствуют образованию ненасыщенных связей.

В свою очередь, увеличение энергии в меньшей степени способствует росту поверхностной диффузии, но увеличивает число формируемых дефектов [19]. Вследствие этого рост энергии пучка не приводит к возрастанию координационного числа атомов углерода и способствует созданию sp^2 -гибридизованной компоненты. Полученные данные согласуются с результатами, свидетельствующими, что стимуляция ионами аргона с энергией 100 эВ является оптимальной для создания аморфных углеродных структур с высокой долей sp^3 -гибридизованных атомов, в то время как бо́льшая энергия приводит к разупорядочению материала [53].

3.5. Спектры поглощения в УФ и видимой областях спектра

На рис. 10 представлены спектры поглощения в УФ и видимой областях спектра для покрытий a-CH:Ag, изготовленных при различных энергиях и токах ионной стимуляции. Пик поверхностного плазмонного резонанса на 380-580 нм [9,12] наблюдается только для покрытий, нанесенных при энергии стимуляции 400 и 600 эВ. По-видимому, его ширина обусловлена существенным разбросом размеров серебряных наночастиц, а рост интенсивности данной линии с увеличением энергии ассистирования связан с формированием огранки серебряных наночастиц [12]. Данное предположение подтверждается отсутствием такого пика для образцов, полученных при различных токах стимуляции (рис. 10б) и имеющих схожий элементный состав, но без огранки.

Пик на 320–330 нм, характерный для всех исследуемых структур, может быть отнесен к межорбитальному $\pi \to \pi^*$ -переходу, характерному для sp^2 -гибридизованного углерода [54]. В то же время пики поглощения в случае аморфного графитоподобного углерода существенно шире, чем наблюдаемая в наших спектрах линия [9]. По нашему предположению, присутствие линии на 330–340 нм в спектрах связано с формированием цепочек на основе сопряженных полимеров, для которых положение линии варьируется от 300 до 330 нм в зависимости от длины цепочки [55].

Появление полимерной субструктуры в углеродных покрытиях нередко наблюдается экспериментально. Наиболее известным примером подобного эффекта является формирование транс-полиацетилена на границе раздела зерен CVD-алмаза [56] и в углерод-серебряных покрытиях [57]. Возможно также образование более сложных соединений, таких как поли-п-фениленвинилен [58] и гексабензокоронен [59]. По-видимому, в нашем случае на поверхности растущей пленки под действием ионного облучения происходит разложение остаточного водорода, которое в ходе взаимодействия с потоком

Рис. 10. Спектры поглощения в УФ и видимой областях спектра для структур а-CH:Ag, полученных при различных энергиях (*a*) и токах (*б*) стимуляции. Верхние шкалы отвечают энергии, соответствующей указанной на нижней шкале длине волны фотона

ионов углерода приводит к формированию полимерной субструктуры. Стоит отметить, что этот вывод подтверждается положением плазмонного сателлита C1s РФЭС-линии, которое свидетельствует о гидрогенизации углеродной матрицы.

Можно заметить, что при токе ассистирования 40 мА интенсивность линии, отвечающей полимерной фазе, снижается. Это может свидетельствовать как об уменьшении доли полимерной фазы в структуре пленки, так и о перестройке структуры полимера из полиацетиленовой (=CH-)_n в полиэтиленовую (-CH₂-)_n. При такой структурной перестройке уменьшится пик, отвечающий межорбитальному $\pi \to \pi^*$ -переходу.

Возможность ионно-индуцированного формирования огранки серебряных наночастиц, усиливающей их плазмонные свойства, может послужить основой для модификации углерод-серебряных структур, направленной на создание на их основе высокостабильных SERS-подложек. Помимо этого, форма и размер серебряных частиц оказывает существенное влияние на антибактериальные свойства материала на их основе, вследствие чего возможность их изменения при помощи ионного ассистирования может найти применение при создании биосовместимых углерод-серебряных покрытий с контролируемой биоактивностью. В то же время для создания эффективных функциональных материалов при помощи предложенного метода необходимо, чтобы эффекты распыления серебра вследствие поверхностной сегрегации и образования оптически-активной полимерной субструктуры были бы сведены к минимуму.

3.6. Выводы

В настоящей работе проанализировано влияние стимуляции ионами аргона с энергиями 100-600 эВ и токами 5–40 мА (плотности тока 15–31 мк A/cm^2) на структуру покрытий a-CH:Ag, синтезируемых методом импульсно-плазменного осаждения. Показано, что рост энергии ионной стимуляции приводит к формированию огранки серебряных наночастиц. Увеличение как энергии, так и тока ассистирующих ионов приводит к разделению серебряных включений по размерам на частицы диаметром около 5 нм и более 20 нм, что вызвано влиянием совокупности эффектов: селективного распыления серебра, поверхностной диффузии и дефектообразования. При этом увеличение энергии в большей степени способствует дефектообразованию, приводящему к формированию мелких частиц, в то время как увеличение тока способствует укрупнению серебряных включений, вызванному усилением поверхностной диффузии. Также выявлен эффект распыления серебряных наночастиц ассистирующим ионным пучком, проявляющийся вследствие поверхностной сегрегации. Установлено, что на спектры поглощения в УФ и видимой областях спектра структур а-CH:Ад оказывает влияние огранка серебряных наночастиц, а также присутствие в структуре пленки полимерной компоненты, вызванное разложением остаточного водорода на поверхности растущей пленки.

Благодарности. Один из авторов (И. А. З.) является стипендиатом Фонда развития теоретичес-

кой физики и математики «БАЗИС». Авторы благодарят С. С. Абрамчука за помощь в проведении исследований просвечивающей электронной микроскопии.

Финансирование. Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 20-32-90077.

ЛИТЕРАТУРА

- P. Guo, X. Li, L. Sun et al., Thin Solid Films 640, 45 (2017).
- I. A. Zavidovskiy, O. A. Streletskiy, O. Yu. Nishchak et al., Thin Solid Films 738, 138966 (2021).
- L. J. Wang, F. Zhang, A. Fong et al., Thin Solid Films 650, 58 (2018).
- Š. Meškinis, T. Tamulevičius, G. Niaura et al., J. Nanosci. Nanotechnol. 16, 10143 (2016).
- W.-C. Lan, S.-F. Ou, M.-H. Lin et al., Ceramics Internat. 39, 4099 (2013).
- H.-J. Seok, J.-K. Kim, and H.-K. Kim, Sci. Rep. 8, 13521 (2018).
- I. Yaremchuk, A. Tamulevičienė, T. Tamulevičius et al., Phys. Stat. Sol. (a) 211, 329 (2014).
- A. Ilie, C. Durkan, W. I. Milne et al., Phys. Rev. B 66, 045412 (2002).
- H. Zoubos, L. E. Koutsokeras, D. F. Anagnostopoulos et al., Sol. Energy Mater. Sol. Cells 117, 350 (2013).
- И. А. Завидовский, О. А. Стрелецкий, О. Ю. Нищак и др., ЖТФ 90, 489 (2020).
- O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak et al., Thin Solid Films 671, 31 (2019).
- O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak et al., Vacuum 175, 109286 (2020).
- M. A. Grushin, E. A. Kral'kina, P. A. Neklyudova et al., J. Phys.: Conf. Ser. **1328**, 012029 (2019).
- 14. V. V. Uglova, V. M. Anishchik, Y. Pauleau et al., Vacuum 70, 181 (2003).
- O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak et al., Thin Solid Films 701, 137948 (2020).
- M. B. Guseva, N. F. Savchenko, and V. G. Babaev, Radiat. Eff. 87, 215 (1986).
- 17. Yu. P. Kudryavtsev, R. B. Heimann, and S. E. Evsyukov, J. Mater. Sci. 31, 5557 (1996).

- L. Simonot, F. Chabanais, S. Rousselet et al., Appl. Surf. Sci. 544, 148672 (2021).
- 19. W. Ensinger, Nucl. Instrum. Methods Phys. Res. B 127–128, 796 (1997).
- 20. T. Škereň, K. Temst, W. Vandervorst et al., New J. Phys. 15, 093047 (2013).
- **21**. И. Н. Карькин, Ю. Н. Горностырев, Л. Е. Карькина, ФТТ **52**, 2 (2010).
- 22. A. Kolpakov, A. Poplavsky, M. Yapryntsev et al., East Eur. J. Phys. 3, 124 (2021).
- 23. V. O. Babaev, Ju V. Bykov, and M. B. Guseva, Thin Solid Films 38, 1 (1976).
- 24. J. L. Endrino, R. Escobar Galindo, H.-S. Zhang et al., Surf. Coat. 202, 3675 (2008).
- 25. N. Laegreid and G. K. Wehner, J. Appl. Phys. 32, 365 (1961).
- 26. K.-H. Müller, Phys. Rev. B 35, 7906 (1987).
- 27. J. S. Colligon, J. Vac. Sci. Technol. A 13, 1649 (1995).
- 28. M. P. Seah, Vacuum 34, 463 (1984).
- 29. H. Yamazaki and A. Uchiyama, Surf. Sci. 287–288, 308 (1993).
- J. Schäfer, J. Ristein, and L. Ley, J. Non-Cryst. Solids 164–166 1123 (1993).
- 31. A. Qureshi, S. Shah, S. Pelagade et al., J. Phys.: Conf. Ser. 208, 012108 (2010).
- 32. K. Nagakane, Y. Yoshida, I. Hirata et al., Dent. Mater. J. 25, 645 (2006).
- 33. О. А. Стрелецкий, И. А. Завидовский, О. Ю. Нищак и др., ФТТ 62, 1936 (2020).
- 34. A. Tóth, O. Faix, G. Rachor et al., Appl. Surf. Sci. 72, 209 (1993).
- 35. D. Gao, Q. Xu, J. Zhang et al., Nanoscale 6, 2577 (2014).
- 36. W. Guo, X. Li, J. Xu et al., Electrochim. Acta 188, 414 (2016).
- L. Cao, Z. Lin, J. Huang et al., Int. J. Hydrog. Energy 42, 876 (2017).
- 38. J. Zhang, X. Liu, X. Suo et al., Mater. Lett. 198, 164 (2017).
- 39. M. Cloutier, S. Turgeon, Y. Busby et al., ACS Appl. Mater. Interfaces 8, 21020 (2016).

- 40. V. Datsyuk, M. Kalyva, K. Papagelis et al., Carbon 46, 833 (2008).
- 41. Y. Jing, H. Wang, J. Zhao et al., Appl. Surf. Sci. 347, 499 (2015).
- 42. Q. Jiang, Y. Jing, Y. Ni et al., Microchem. J. 157, 105111 (2020).
- 43. N. Frese, S. Taylor Mitchell, A. Bowers et al., C–J. Carbon Res. 3, 23 (2017).
- 44. P. Stefanov, M. Shipochka, P. Stefchev et al., J. Phys.: Conf. Ser. 100, 012039 (2008).
- 45. F. Mendes, A. de Siervo, W. Reis de Araujo et al., Carbon 159, 110 (2020).
- 46. H. Derouiche, Dyes Pigm. 63, 277 (2004).
- 47. J. Y. Liu, Z. Wang, J Y. Chen et al., J. Nano Res. 30, 50 (2015).
- 48. A. I. Boronin, S. V. Koscheev, and G. M. Zhidomirov, J. Electron Spectrosc. Relat. Phenom. 96, 43 (1998).
- 49. P. S. DeCarli and J. C. Jamieson, Science 133, 1821 (1961).

- 50. Z. Czigány and L. Hultman, Ultramicroscopy 110, 815 (2010).
- 51. J. Bruley, D. B. Williams, J. J. Cuomo et al., J. Microscopy 180, 22 (1995).
- 52. M. A. Caro, G. Csányi, T. Laurila et al., Phys. Rev. B 102, 174201 (2020).
- J. Schwan, S. Ulrich, H. Roth et al., J. Appl. Phys. 79, 1416 (1996).
- S. A. R. Shahamirifard, M. Ghaedi, M. Montazerozohori et al., Photochem. Photobiol. Sci. 17, 245 (2018).
- 55. K. Akagi and H. Shirakawa, Macromol. Symp. 104, 137 (1996).
- 56. A.C. Ferrari and J. Robertson, Phys. Rev. B 63, 121405 (2001).
- 57. A. Jurkevičiūtė, G. Klimaitė, T. Tamulevičius et al., Adv. Eng. Mater. 22, 1900951 (2020).
- 58. M. Rybachuk and J. M. Bell, Carbon 47, 2481 (2009).
- 59. A. Habibi, S. M. Mousavi Khoie, F. Mahboubi et al., Surf. Coat. 309, 945 (2017).

ФРУСТРИРОВАННАЯ МОДЕЛЬ ПОТТСА С ЧИСЛОМ СОСТОЯНИЙ СПИНА q = 4 В МАГНИТНОМ ПОЛЕ

М. К. Рамазанов^{*}, А. К. Муртазаев, М. А. Магомедов

Институт физики Дагестанского федерального исследовательского центра Российской академии наук 367015, Махачкала, Россия

> Дагестанский федеральный исследовательский центр Российской академии наук 367000, Махачкала, Россия

> > Поступила в редакцию 6 декабря 2021 г., после переработки 16 декабря 2021 г. Принята к публикации 16 декабря 2021 г.

На основе репличного алгоритма методом Монте-Карло выполнены исследования магнитных структур основного состояния, фазовых переходов, магнитных и термодинамических свойств двумерной модели Поттса с числом состояний спина q=4 на гексагональной решетке с учетом взаимодействий первых и вторых ближайших соседей во внешнем магнитном поле. Исследования проведены в интервале величины магнитного поля $0 \le h \le 7.0$ с шагом 0.5. Построены магнитные структуры основного состояния. Установлено, что в интервалах значений магнитного поля 0 < h < 1.0 и $2.0 \le h \le 3.5$ наблюдается фазовый переход первого рода, а при значении поля h = 1.5 — фазовый переход второго рода. Показано, что в интервале $4.0 \le h \le 7.0$ магнитное поле снимает вырождение основного состояния, и фазовый переход размывается.

DOI: 10.31857/S0044451022060049 **EDN:** DUHOLM

1. ВВЕДЕНИЕ

В течение последних десятилетий наблюдается повышенный интерес к изучению эффектов фрустрации в спиновых решеточных моделях. Конкуренция обменных взаимодействий может привести к возникновению фрустраций в магнитных спиновых системах, которые не позволяют системе одновременно минимизировать все ее локальные взаимодействия, что приводит к бесконечно вырожденному основному состоянию [1–3]. Спиновые системы с фрустрациями обладают богатой природой фазовых переходов (ФП) и имеют особенности магнитного, термодинамического и критического поведения. Особый интерес имеет изучение влияния возмущений различной природы, таких как внешнее магнитное поле, взаимодействие вторых ближайших соседей, немагнитные примеси, тепловые и квантовые флуктуации и др., на физические свойства магнитных спиновых систем с фрустрациями. Включение этих возмущающих факторов может привести к совершенно новому физическому поведению таких систем [4–10]. Причина такого поведения заключается в высокой чувствительности фрустрированных систем к внешним возмущающим факторам. В данном исследовании нами изучается влияние внешнего магнитного поля на характер ФП, магнитные и термодинамические свойства двумерной модели Поттса с фрустрациями. При решении такого рода задач до сих пор ограничивались моделями Изинга и Гейзенберга. В настоящее время влияние внешних возмущающих факторов, в том числе и магнитного поля в модели Изинга и Гейзенберга, достаточно хорошо изучено [11-16]. Для фрустрированной модели Поттса существует совсем немного надежно установленных фактов. Большинство имеющихся результатов получены для двумерной модели Поттса с числом состояний спина q = 2 и q = 3 [17–23]. Эта модель изучена достаточно хорошо и получены интересные результаты. Модель Поттса демонстрирует температурный ФП первого или второго порядка в зависимости от числа состояний спина q, пространственной размерности и геометрии решетки. Критические свойства ферромагнитной модели Поттса известны лишь в двумерном случае [23, 24]. Двумерная модель Поттса с числом состояний спина q = 4 довольно уникальна и до сих пор мало

^{*} E-mail: sheikh77@mail.ru

изучена. Данная модель интересна и тем, что значение q = 4 является граничным значением интервала 2 < q < 4, где наблюдается $\Phi \Pi$ второго рода, и области значений q > 4, в которой $\Phi \Pi$ происходит как переход первого рода [24]. Результаты исследований двумерной ферромагнитной модели Поттса с числом состояний спина q = 4 на треугольной [25], гексагональной [26, 27] решетках и на решетке Кагоме [28], полученные методом Монте-Карло (МК), показывают, что в данной модели наблюдается ФП первого рода. Интерес к модели Поттса обусловлен еще и тем, что эта модель служит основой теоретического описания широкого круга физических свойств и явлений в физике конденсированных сред. К их числу относятся некоторые классы адсорбированных газов на графите, сложные анизотропные ферромагнетики кубической структуры, спиновые стекла, многокомпонентные сплавы и жидкие смеси [29]. На основе модели Поттса с различным числом состояний спина могут быть описаны структурные $\Phi\Pi$ во многих материалах [16]. Работ, посвященных изучению влияния внешнего магнитного поля как возмущающего фактора на $\Phi\Pi$, магнитные и термодинамические свойства модели Поттса с числом состояний спина q = 4, практически нет, и этот вопрос все еще остается открытым и малоизученным. В связи с этим, в данной работе нами предпринята попытка на основе метода МК изучить влияние внешнего магнитного поля на ФП, магнитные и термодинамические свойства двумерной модели Поттса с числом состояний спина q = 4 на гексагональной решетке с учетом обменных взаимодействий первых и вторых ближайших соседей. Исследования проводятся на основе современных методов и идей, что позволит получить ответ на ряд вопросов, связанных с характером и природой ФП фрустрированных спиновых систем.

2. МОДЕЛЬ И МЕТОД ИССЛЕДОВАНИЙ

Гамильтониан модели Поттса с учетом взаимодействия первых и вторых ближайших соседей, а также внешнего магнитного поля имеет следующий вид:

$$H = -J_1 \sum_{\langle i,j \rangle, i \neq j} S_i S_j - J_2 \sum_{\langle i,k \rangle, i \neq k} S_i S_k - h \times \\ \times \sum_{\langle i,j \rangle} S_i = -J_1 \sum_{\langle i,j \rangle, i \neq j} \cos \theta_{i,j} - \\ -J_2 \sum_{\langle i,k \rangle, i \neq k} \cos \theta_{i,k} - h \sum_{\langle i \rangle} S_i, \quad (1)$$

Рис. 1. Модель Поттса с числом состояний спина q = 4 на гексагональной решетке. Кружками одного и того же цвета обозначены спины, имеющие одинаковое направление. На вставке для каждого из четырех возможных направлений спина приведено соответствующее цветовое представление

где J_1 и J_2 — параметры обменных ферро- $(J_1 > 0)$ и антиферромагнитного $(J_2 < 0)$ взаимодействий соответственно для первых и вторых ближайших соседей, $\theta_{i,j}$, $\theta_{i,k}$ — углы между взаимодействующими спинами $S_i - S_j$ и $S_i - S_k$, h — величина магнитного поля (h приводится в единицах J_1). В данном исследовании рассматривается случай, когда $|J_1| = |J_2| =$ = 1. Величина внешнего магнитного поля менялась в интервале $0 \le h \le 7.0$ с шагом 0.5. Магнитное поле направлено вдоль одного из направлений спина.

Схематическое и цветовое представление модели представлено на рис. 1. Спины, обозначенные кружками одного и того же цвета, имеют одинаковое направление. На вставке приведены направления спинов для каждого из четырех значений спина и соответствующее цветовое представление. На рисунке также представлены взаимодействия между первыми и вторыми ближайшими соседями. Как видно на рисунке, у каждого спина есть три ближайших (сплошные жирные линии красного цвета) и шесть следующих ближайших (пунктирные линии синего цвета) соседей. Направления спинов заданы таким образом, что выполняется равенство

$$\theta_{i,j} = \begin{cases} 0, & \text{если } S_i = S_j, \\ 109.47^\circ, & \text{если } S_i \neq S_j. \end{cases}$$

или

$$\cos \theta_{i,j} = \begin{cases} 1, & \text{если } S_i = S_j, \\ -1/3, & \text{если } S_i \neq S_j. \end{cases}$$
(2)

Согласно уравнению (2) для двух спинов S_i и S_j энергия парного обменного взаимодействия $E_{i,j} = -J_1$, если $S_i = S_j$. В случае когда $S_i \neq S_j$, энергия $E_{i,j} = J_1/3$. Таким образом, энергия парного взаимодействия спинов равна одной величине при их одинаковом направлении и принимает другое значение при не совпадении направлений спинов. Для модели Поттса с числом состояний спина q = 4в трехмерном пространстве такое возможно только при ориентации спинов, как показано на рис. 1.

В настоящее время спиновые системы с фрустрациями на основе микроскопических гамильтонианов успешно изучаются на основе метода МК [9,10,30–37]. В последнее время разработано много новых вариантов алгоритмов метода МК. Одним из наиболее эффективных для исследования подобных систем является репличный обменный алгоритм [38]. Поэтому в данном исследовании мы использовали этот алгоритм.

Репличный обменный алгоритм был использован нами в следующем виде:

1. Одновременно моделируются N реплик X_1, X_2, \ldots, X_N с температурами T_1, T_2, \ldots, T_N .

2. После выполнения одного МК-шага/спин для всех реплик проводится обмен данными между парой соседних реплик X_i и X_{i+1} в соответствии со схемой Метрополиса с вероятностью

$$w(X_i \to X_{i+1}) = \begin{cases} 1, & \text{если } \Delta \le 0;\\ \exp(-\Delta), & \text{если } \Delta > 0. \end{cases}$$

где

$$\Delta = -(U_i - U_{i+1})(1/T_i - 1/T_{i+1}),$$

U_i и *U_{i+1}* — внутренние энергии реплик.

Главное преимущество этого алгоритма перед другими репличными алгоритмами в том, что вероятность обмена априори известна, тогда как для других алгоритмов определение вероятности — процедура достаточно длительная и отнимает много времени. В репличном обменном алгоритме для каждой реплики реализуется случайное блуждание по «температурному интервалу», которая, в свою очередь, стимулирует случайное блуждание в поле потенциальной энергии. Это облегчает решение проблемы «застревания» системы в многочисленных состояниях с локальной минимальной энергией, которая характерна для спиновых систем с фрустрациями. Для повышения эффективности этого метода необходимо увеличение числа реплик, что требует серьезного роста компьютерных мощностей. Современные компьютеры обладают достаточной мощностью, что позволяет моделировать необходимое количество реплик и получать результаты с высокой точностью.

Для анализа природы и характера ФП использовался гистограммный метод анализа данных. Для вывода системы в состояние термодинамического равновесия отсекался участок длиной $\tau_0 = 4 \cdot 10^5$ шагов МК на спин, что в несколько раз больше длины неравновесного участка. Усреднение термодинамических параметров проводилось вдоль марковской цепи длиной до $\tau = 500\tau_0$ шагов МК на спин. Расчеты проводились для систем с периодическими граничными условиями и линейными размерами $L \times L = N, L = 12$ –60, где L — линейный размер решетки, N — количество спинов в системе.

3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

На рис. 2 представлены магнитные структуры основного состояния при разных значениях магнитного поля. На этом рисунке спины, имеющие одинаковое направление, обозначены кружками одного и того же цвета. Магнитное поле направлено вдоль спина, обозначенного черным цветом. На рисунке видно, что при отсутствии внешнего магнитного поля (h = 0) в данной модели в основном состоянии реализуется димерная структура, т. е. наблюдается магнитное состояние, при котором спины упорядочиваются попарно. Более подробно магнитные

•	•	٠	•	٠	•	٠	•	٠	•	•		•	•	•	•	٠	•	•	•	•	•	٠
•	•	•	•	•	٠	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	•
•	•	٠	•	•	•	•	•	٠	•	•		٠	•	•	•	٠	•	•	•	•	•	•
•	٠	•	٠	•	٠	•	٠	•	•	•		•	•	•	٠	•	•	•	•	•	•	•
•	•	•	•	•	•	٠	•	٠	•	•		•	•	٠	•	٠	•	٠	•	•	•	٠
•	•	•	•	•	•	•	۰	•	٠	•		•	•	•	٠	•	•	•	•	•	•	•
				h =	= (0										h	=	: 2.	.0			
•	•	٠	•	٠	•	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	•
•	•	•	•	•	٠	•	•	•	•	•		•	•	•	•	•	•	•	•	•	٠	٠
•	•	•	•	•	•	•	•	•	•	٠		•	•	•	٠	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•		•	•	•	٠	•	•	•	•	•	•	•
•	•	۰	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	٠	•	٠
•	•	•	•	•	•	•	•	•	•	•		•	•	٠	•	•	•	•	٠	•	•	٠
			1	'i =	= 3	0.6										h	, =	: 4	.0			

Рис. 2. Магнитные структуры основного состояния. Кружками одного и того же цвета обозначены спины, имеющие одинаковое направление

Рис. 3. Температурные зависимости энтропии S

структуры, полученные для данной модели без поля, описаны в работах [39, 40]. Магнитные структуры в слабых магнитных полях ($h \leq 3.5$) представлены в работе [41]. Для поля h = 2.0 наблюдается увеличение числа кружков черного цвета. Это связано с увеличением числа спинов, ориентированных вдоль внешнего поля. При этом на рисунке появляются области с частичным упорядочением спинов. При значении поля h = 3.0 в системе наблюдается страйповое упорядочение. Наблюдается магнитное состояние, при котором спины выстраиваются в полосовую структуру. Включение сильных полей $(h \ge 4.0)$ приводит к упорядочению всех спинов в системе вдоль внешнего магнитного поля. Это свидетельствует о том, что внешнее магнитное поле приводит к изменению структуры магнитного упорядочения.

На рис. 3 приведены температурные зависимости энтропии S для различных значений магнитного поля при L = 24 (здесь и далее статистическая погрешность не превышает размеров символов, использованных для построения зависимостей). На рисунке видно, что с увеличением температуры энтропия для всех систем стремится к теоретически предсказанному значению ln 4. При низких температурах, близких к абсолютному нулю, энтропия стремится к ненулевому значению для всех значений поля. Ненулевая остаточная энтропия является следствием вырождения основного состояния. Такое поведение энтропии свидетельствует о возникновении в системе фрустраций.

Для наблюдения за температурным ходом поведения теплоемкости *С* мы использовали выражение [42]

Рис. 4. Температурные зависимости теплоемкости C/k_B для систем с различными линейными размерами

$$C = (NK^2)(\langle U^2 \rangle - \langle U \rangle^2), \qquad (3)$$

где $K = |J_1|/k_B T$, U — внутренняя энергия.

Рис. 5. Температурные зависимости теплоемкости C/k_B в интервале поля $0 \leq h \leq 3.5$

На рис. 4 представлены характерные зависимости теплоемкости С от температуры для систем с линейными размерами L = 12; 24 и 48 для различных значений магнитного поля. Отметим, что для поля h = 0 на зависимости теплоемкости C от температуры для всех систем вблизи критической температуры наблюдаются хорошо выраженные максимумы, которые увеличиваются с ростом числа спинов в системе, причем эти максимумы с ростом L смещаются в сторону низких температур. Для поля h = 1.5 максимумы теплоемкости не меняются с ростом L и в пределах погрешности приходятся на одну и ту же температуру. Такая же картина наблюдается для поля h = 4.0. На этом рисунке видно, что температурные зависимости теплоемкости не зависят от линейных размеров системы. Такая картина температурной зависимости теплоемкости обычно наблюдается для фрустрированных спиновых систем.

На рис. 5 и 6 представлены температурные зависимости теплоемкости С для различных значений магнитного поля при L = 24. На рис. 5 видно, что в интервале $0 \le h \le 3.5$ вблизи критической области наблюдаются хорошо выраженные максимумы теплоемкости, кроме значений поля h = 1.5 и h = 2.5. Отметим, что при значении поля h = 1.5 и h = 2.5для теплоемкости наблюдается необычное поведение, которое характеризуется отсутствием ярко выраженного пика. Максимумы теплоемкости в данном случае вместо острых пиков имеют сглаженные пики. Для значения поля h = 2.0 максимум теплоемкости становится более плавными. Можно предположить, что такое поведение теплоемкости связано

Рис. 6. Температурные зависимости теплоемкости C/k_B для поля $h \le 4.0$

с изменением структуры магнитного упорядочения. При включении слабого магнитного поля (h = 0.5)максимум теплоемкости смещается в сторону высоких температур. Дальнейший рост поля приводит к сдвигу максимума теплоемкости в сторону низких температур. Такое поведение теплоемкости объясняется тем, что увеличение величины магнитного поля приводит к быстрому упорядочению системы, уменьшению флуктуаций и соответственно уменьшению температуры ФП. На рис. 6 видно, что при значениях магнитного поля $h \ge 4.0$ характерные пики теплоемкости не наблюдаются. Это говорит о том, что дальнейшее увеличение величины магнитного поля приводит к подавлению ФП в системе.

Параметр порядка системы *m* вычислялся по формуле

$$m = \frac{1}{N} \frac{4N_{max} - N_1 - N_2 - N_3 - N_4}{3}, \qquad (4)$$

где N_1 , N_2 , N_3 , N_4 — число спинов, соответствующих одному из четырех направлений спина.

На рис. 7 и 8 представлены графики зависимости параметра порядка *m* от температуры для разных значений магнитного поля. При отсутствии внешнего магнитного поля в системе отсутствует порядок и значение параметра порядка близко к нулю. При включении поля в системе наблюдается частичное упорядочение и параметр порядка в низкотемпературной области имеет отличные от нуля значения. Это объясняется тем, что магнитное поле выстраивает спины вдоль своего направления и в системе возникает частичный порядок. С ростом величины магнитного поля увеличивается число спинов, которые выстраиваются вдоль внешнего поля. Этим

Рис. 7. Температурные зависимости параметра порядка в интервале поля $0 \le h \le 3.5$

Рис. 8. Температурные зависимости параметра порядка для поля $h \ge 4.0$

обусловлено то, что параметр порядка в низкотемпературной области растет с увеличением поля. При значениях поля $h \ge 5.0$ в низкотемпературной области параметр порядка m = 1.0. Это свидетельствует, о том, что при высоких значениях поля все спины в системе упорядочены вдоль внешнего поля.

На рис. 9 приведен график зависимости параметра порядка m от величины магнитного поля hв низкотемпературной области. На рисунке мы наблюдаем ступенчатую зависимость параметра порядка. Наблюдаются четыре ступеньки: I, II, III и IV. Ступенька I соответствует магнитному упорядочению, при котором только одно состояние спина (черный цвет) совпадает с направлением внешнего поля, а остальные три состояния спина направлены так,

Рис. 9. Фазовая диаграмма зависимости параметра порядка от магнитного поля. Магнитное поле h приводится в единицах J_1

как изображено на рис. 1. При увеличении внешнего магнитного поля (h = 1.5) еще одно состояние спина (второе) выстраивается вдоль внешнего поля. В системе возникает частичный порядок. Это приводит к возникновению ступеньки II на графике. При дальнейшем увеличении поля (h = 3.0) вдоль внешнего поля выстраивается еще одно состояние спина (третье). Этим обусловлено возникновение ступеньки III на графике. При значении поля h = 4.5 вдоль внешнего поля выстраивается следующее состояние спина (четвертое). С этим связано возникновение ступеньки IV на графике. Анализируя рис. 9, можно предположить, что поля h = 1.5, 2.5 и 4.0 являются для данной модели фрустрирующими полями. Это также подтверждается поведением температурной зависимости теплоемкости (рис. 5 и 6). Видно, что теплоемкость в этих полях пологая и значительно ниже, чем в остальных (нефрустрирующих) полях.

Для определения критической температуры T_C мы использовали метод кумулянтов Биндера четвертого порядка [43]:

$$V_L = 1 - \frac{\langle U^4 \rangle_L}{3 \langle U^2 \rangle_L^2},\tag{5}$$

$$U_L = 1 - \frac{\langle m^4 \rangle_L}{3 \langle m^2 \rangle_L^2},\tag{6}$$

где V_L — энергетический кумулянт, U_L — магнитный кумулянт.

Выражения (5) и (6) позволяют определить критическую температуру $T_{\rm C}$ с большой точностью для

Рис. 10. Гистограммы распределения энергии для поля h = 0. Здесь и далее энергия E приведена в единицах J_1

Рис. 11. Гистограммы распределения энергии для поля h=1.0

ФП соответственно первого и второго родов. Применение кумулянтов Биндера позволяет также хоропю тестировать тип ФП в системе. Однако результаты, полученные в работе [44], показывают, что для данной модели этим методом не удается однозначно определить тип ФП. Поэтому в данном исследовании для анализа рода ФП мы использовали гистограммный анализ данных метода МК [45, 46]. Этот метод позволяет надежно определить род ФП. Методика определения рода ФП этим методом подробно описана в работе [30].

Результаты, полученные на основе гистограммного анализа данных, показывают, что в данной модели для значений поля в диапазоне $0 \le h \le 3.5$ кроме значения поля h = 1.5 наблюдается ФП перво-

Рис. 12. Гистограммы распределения энергии для поля h=1.5

Рис. 13. Гистограммы распределения энергии для поляh=2.0

Рис. 14. Гистограммы распределения энергии для поля h=3.0

го рода. Это продемонстрировано на рис. 10-14. На этих рисунках представлены гистограммы распределения энергии для системы с линейными размерами L = 60 для значений поля h = 0, 1.0, 1.5, 2.0 и 3.0 . Графики построены при различных температурах близких критической температуре. На рис. 10-14 видно, что в зависимости вероятности P от энергии E для значений поля h = 0, 1.0, 2.0 и 3.0 наблюдаются два хорошо выраженных максимума, которые свидетельствует о ФП первого рода. Наличие двойного пика на гистограммах распределения энергии является достаточным условием для ФП первого рода. Двойные пики на гистограммах распределения для исследуемой модели наблюдаются для значений поля в интервале $0 \le h \le 3.5$, кроме значения поля h = 1.5. Это позволяет нам утверждать о том, что в рассмотренном интервале значений поля наблюдаются ФП первого рода. На рис. 12 видно, что для значения поля h = 1.5 наблюдается один максимум. Наличие одного максимума на гистограмме распределения энергии свидетельствует в пользу ФП второго рода. Можно предположить, что смена типа ФП связана с изменением магнитной структуры основного состояния под влиянием внешнего магнитного поля. Для значений поля $h \ge 4.0$ магнитное поле снимает вырождение основного состояния и ФП размывается.

4. ЗАКЛЮЧЕНИЕ

Исследование влияния магнитного поля на фазовые переходы, магнитные структуры основного состояния и термодинамические свойства двумерной модели Поттса с числом состояний спина q = 4на гексагональной решетке с взаимодействиями вторых ближайших соседей выполнено с использованием репличного обменного алгоритма метода Монте-Карло. На основе гистограммного метода проведен анализ характера фазовых переходов. Получены магнитные структуры основного состояния в широком интервале значений поля. Построена фазовая диаграмма зависимости параметра порядка от величины магнитного поля. Показано, что в интервале значений магнитного поля $0 \le h \le 3.5$, кроме значения h = 1.5, наблюдается фазовый переход первого рода. Для поля h = 1.5 наблюдается фазовый переход второго рода. Обнаружено, что при сильных полях $h \ge 4.0$ магнитное поле снимает вырождение основного состояния и фазовый переход в системе размывается.

ЛИТЕРАТУРА

- 1. G. Toulouse, Commun. Phys. 2, 115 (1977).
- 2. J. Villain, J. Phys. 46, 1840 (1985).
- H. T. Diep, *Frustrated Spin Systems*, World Scientific Publ. Co. Pte. Ltd., Singapore (2004).
- 4. С. Е. Коршунов, УФН 176, 233 (2006).
- A. Malakis, P. Kalozoumis, and N. Tyraskis, Eur. Phys. J. B 50, 63 (2006).
- С. С. Сосин, Л. А. Прозорова, А. И. Смирнов, УФН 175, 92 (2005).
- Л. Е. Свистов, А. И. Смирнов, Л. А. Прозорова и др., Письма в ЖЭТФ 80, 231 (2004).
- M. Kazuaki and O. Yukiyasu, Phys. Rev. B 101, 184427 (2020).
- R. Masrour and A. Jabar, Physica A 541, 123377 (2020).
- 10. R. Masrour and A. Jabar, Physica A 491, 926 (2018).
- 11. H. Kawamura, J. Phys. Soc. Jpn 61, 1299 (1992).
- M. Gvozdikova, P. Melchy, and M. Zhitomirsky, J. Phys.: Condens. Matter 23, 164209 (2011).
- A. Chubokov and D. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).
- 14. М. К. Рамазанов, А. К. Муртазаев, Письма в ЖЭТФ 106, 72 (2017).
- А. К. Муртазаев, М. А. Магомедов, М. К. Рамазанов, Письма в ЖЭТФ 107, 265 (2018).
- H. Kawamura, A. Yamamoto, and T. Okubo, J. Phys. Soc. Jpn. 97, 043301 (2018).
- N. Schreiber, R. Cohen, and S. Haber, Phys. Rev. E 97, 032106 (2018).
- D. P. Foster and C. Gérard, Phys. Rev. B 70, 014411 (2004).
- 19. I. Puha and H. T. Diep, J. Appl. Phys. 87, 5905 (2000).
- M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. 44, 837 (1980).
- J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rev. B 22, 2560 (1980).
- 22. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Physica A 521, 543 (2019).

- 23. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
- 24. R. J. Baxter, J. Phys. C 6, 445 (1973).
- 25. А. К. Муртазаев, Д. Р. Курбанова, М. К. Рамазанов, ФТТ 61, 2195 (2019).
- 26. А. К. Муртазаев, М. К. Рамазанов, М. К. Мазагаева, М. А. Магомедов, ЖЭТФ 156, 502 (2019).
- 27. M. K. Рамазанов, A. K. Муртазаев, M. A. Магомедов, M. K. Мазагаева, ΦΤΤ 62, 442 (2020).
- 28. M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, T. R. Rizvanova, and A. A. Murtazaeva, Low Temp. Phys. 47, 396 (2021).
- 29. E. Domany, M. Schick, and J. S. Walker, Phys. Rev. Lett. 38, 1148 (1977).
- 30. М. К. Рамазанов, А. К. Муртазаев, Письма в ЖЭТФ 109, 610 (2019).
- A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, Mat. Lett. 236, 669 (2019).
- 32. А. К. Муртазаев, Д. Р. Курбанова, М. К. Рамазанов, ЖЭТФ 156, 980 (2019).
- 33. A. K. Murtazaev, M. K. Badiev, M. K. Ramazanov, and M. A. Magomedov, Physica A 555, 124530 (2020).
- 34. R. Masrour, A. Jabar, A. Benyoussef, and M. Hamedoun, J. Magn. Magn. Mater. 401, 695 (2016).

- 35. A. A. Gangat and Y.-J. Kao, Phys. Rev. B 100, 094430 (2019).
- 36. V. T. Ngo, D. T. Hoang, and H. T. Diep, J. Phys.: Cond. Matt. 23, 226002 (2011).
- **37**. А. О. Сорокин, Письма в ЖЭТФ **111**, 34 (2020).
- 38. A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Science) 60, 96 (2001).
- 39. A. K. Муртазаев, Μ. Κ. Мазагаева, Μ. Κ. Рамазанов, Μ. Α. Магомедов, Α. Α. Муртазаева, ΦΤΤ 63, 622 (2021).
- 40. A. K. Муртазаев, Μ. Κ. Мазагаева, Μ. Κ. Рамазанов, Μ. Α. Магомедов, ΦΜΜ 122, 460 (2021).
- 41. М. К. Рамазанов, А. К. Муртазаев, М. А. Магомедов, М. К. Мазагаева, Письма в ЖЭТФ 114, 762 (2021).
- 42. P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).
- 43. K. Binder, D. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, Springer, Berlin, Heidelberg (2010).
- 44. М. К. Рамазанов, А. К. Муртазаев, М. А. Магомедов, М. К. Мазагаева, М. Р. Джамалудинов, ФТТ 64, 237 (2022).
- 45. F. Wang and D. P. Landau. Phys. Rev. E 64, 0561011-1 (2001).
- 46. F. Wang and D. P. Landau. Phys. Rev. Lett. 86, 2050 (2001).

ВЛИЯНИЕ МАЛЫХ ПРЕДВАРИТЕЛЬНЫХ ДЕФОРМАЦИЙ И НАЧАЛЬНОЙ ТЕМПЕРАТУРЫ НА СОПРОТИВЛЕНИЕ ВЫСОКОСКОРОСТНОМУ ДЕФОРМИРОВАНИЮ АРМКО-ЖЕЛЕЗА В УДАРНЫХ ВОЛНАХ И ВОЛНАХ РАЗРЕЖЕНИЯ

А. С. Савиных^{*}, Г. В. Гаркушин, С. В. Разоренов

Институт проблем химической физики Российской академии наук 142432, Черноголовка, Московская обл., Россия

Объединенный институт высоких температур Российской академии наук 125412, Москва, Россия

> Поступила в редакцию 6 декабря 2021 г., после переработки 19 января 2022 г. Принята к публикации 19 января 2022 г.

Проведены измерения эволюции упруго-пластических волн ударного сжатия и разгрузки в Армко-железе в отожженном состоянии и после предварительной деформации сжатием на 0.6 % и 5.5 % и его откольной прочности в диапазоне давлений 2–9 ГПа при комнатной и повышенной до 600 °C температуре. Показано, что предварительная деформация 0.6 % и 5.5 % приводит к существенному уменьшению динамического предела текучести и незначительному увеличению откольной прочности. Получены зависимости скорости деформирования в пластической ударной волне и откольной прочности от скорости деформирования в волне разрежения для всех исследованных состояний Армко-железа.

DOI: 10.31857/S0044451022060050 **EDN:** DUKXEI

1. ВВЕДЕНИЕ

Высокоскоростное пластическое деформирование твердых тел при длительностях нагрузки порядка микросекунды или менее осуществляется ударом пластины, взрывом, или воздействием мощного импульсного лазера [1–3]. Для анализа импульсов одномерного сжатия, генерируемых в образце исследуемого материала, проводится регистрация профилей массовой скорости u(t) или скорости свободной поверхности $u_{fs}(t)$ от времени t. Как правило, при ударном нагружении упруго-пластического материала происходит расщепление волны сжатия с выделением упругого предвестника. Максимальное напряжение в упругой волне сжатия — упругом предвестнике пропорционально величине предела текучести материала при соответствующей скорости деформации. Формирование упругого пред-

4 ЖЭТФ, вып. 6

вестника наблюдается также в волне разгрузки из ударно-сжатого состояния материала после некоторой предшествующей деформации в пластической волне сжатия. В работе [4] предложен способ оценки предела текучести ударно-сжатого материала по измеренному единичному профилю скорости свободной поверхности. В работах [5–7] способ оценки предела текучести ударно-сжатого материала апробирован на алюминии, меди и титане при комнатной и повышенной температурах.

В ударно-волновых экспериментах с железом, имеющим ОЦК-структуру, с ростом начальной температуры образцов регистрируется падение динамического предела текучести [8–11] в отличие от металлов со структурой ГЦК [12–15] и ГПУ [16,17], у которых обнаружено его аномальное возрастание. Аномальное поведение при росте начальной температуры металлов со структурой ГЦК и ГПУ также проявляется в увеличении времени возрастания скорости свободной поверхности в пластической ударной волне, т. е. времени релаксации напряжений или характерной вязкости материала. Кроме того, на вели-

^{*} E-mail: savas@ficp.ac.ru

чину динамического предела текучести влияет увеличение плотности дислокаций, связанное, например, с пластической деформацией материала. Так, в работе [18] предварительная пластическая деформация титана ВТ1-0 0.6 % радикально изменила кинетику деформирования и понизила величину динамического предела текучести. В работе [19] показано, что предел текучести алюминия в зависимости от увеличения плотности дислокаций увеличивается на полтора порядка. Эксперименты с медью М1 и аустенитной нержавеющей сталью [20] показали рост динамического предела текучести и откольной прочности с увеличением плотности дислокаций при ударно-волновом нагружении.

Откольная прочность железа и стали при повышенных начальных температурах до 1000 К измерялась в работах [21, 22], где было показано, что с ростом температуры откольная прочность убывает.

С целью изучения влияния предварительной деформации и связанное с ней увеличение плотности дислокаций проведены измерения откольной прочности, напряжений пластического течения в процессе ударного сжатия и при разгрузке из ударносжатого состояния Армко-железа при комнатной и повышенной температурах, а также в отожженном состоянии и в состоянии после предварительной деформации сжатия. Данная информация будет полезной для построения детальных физических моделей и определяющих соотношений о поведении материалов при сжатии и разгрузке из ударно-сжатого состояния [23, 24].

2. МАТЕРИАЛ И ПОСТАНОВКА ЭКСПЕРИМЕНТОВ

Эксперименты проведены с образцами Армко-железа толщиной 2 ± 0.01 мм, имеющими форму прямоугольных плоскопараллельных пластин размером 13×22 мм². Для снятия деформационного упрочнения заготовки образцы диаметром 100 мм предварительно отжигались в вакууме при температуре 700 °C в течение двух часов. После отжига материал остывал вместе с печью. Кроме того, отжиг проводился для того, чтобы материал имел одну и ту же структуру в экспериментах при комнатной и повышенной до 600 °C температурах. После отжига из одной заготовки с помощью электроэрозионного метода вырезались образцы, две другие до изготовления образцов предварительно подвергались деформационной осадке на 0.6 % и 5.5 %. Образцы шлифовались и

полировались для обеспечения необходимой отражательной способности в экспериментах с лазерным интерферометром. Плотность образцов, измеренная методом гидростатического взвешивания, составила $\rho_0 = 7.880 \ r/cm^3$. Измеренная продольная скорость звука *c*_l для образцов после отжига составила 5883 ± 10 м/с, после деформационной осадки 0.6%и 5.5 % соответственно 5772 ± 10 м/с и 5675 ± 10 м/с. Эти измерения косвенно указывают на увеличение концентрации деформационных дефектов в объеме деформированного материала. Для обработки экспериментальных данных при комнатной температуре использовалась ударная адиабата Армко-железа в виде $U_S = 4.63 + 1.33 u_n$. Эксперименты при повышенной до 600 °C температуре проводились только с недеформированными образцами. При их обработке использовалась ударная адиабата в виде $U_S = 4.314 + 1.33 u_p$. Значения объемной скорости звука сь при температуре 600 °С (первый член ударной адиабаты), плотности $\rho_0 = 7.68 \ r/cm^3$ и продольной скорости звука $c_l = 5441$ м/с получены с использованием данных [25].

Эксперименты по ударно-волновому нагружению образцов проводились с использованием пневматической пушки калибром 50 мм. Скорость ударников измерялась электроконтактными датчиками и составила 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с. Для предотвращения прогиба в процессе разгона ударники, изготовленные из меди толщиной 0.47 мм и диаметром 48 мм, наклеивались на диск из полиметилметакрилата толщиной 5 мм, располагаемый на торце метаемого алюминиевого цилиндрического снаряда. Предварительный нагрев образцов примерно до 600 °C осуществлялся с помощью резистивных нагревателей, размещенных у тыльной стороны образца. Контроль температуры осуществлялся с помощью двух хромельалюмелевых термопар, установленных на торцевых поверхностях образца. Скорость нагрева составляла около 1 °C/с, разница показаний термопар не превышала 2-3 °С. Максимальное давление ударного сжатия в железе при комнатной температуре и скорости ударника 490 ± 10 м/с не превышало 9.2 ГПа, что ниже $\alpha - \varepsilon$ -фазового превращения, наблюдающегося примерно при 13 ГПа [10, 26, 27]. При начальной температуре образца 600 °С и скорости ударника 335 ± 10 м/с максимальное давление сжатия составило 5.9 ГПа, что ниже α - ε -фазового превращения, проходящего при температуре 630 °C при давлении 8 ГПа [9].

Информацию о сопротивлении образцов Армко-железа высокоскоростному деформированию и

Рис. 1. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм после отжига при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с

Рис. 2. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм после деформационной осадки 0.6 % при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с

разрушению получали из регистрации и анализа эволюции (формоизменения) волны сжатия при ее распространении по образцу. Во всех экспериментах регистрировалась скорость свободной поверхности образца как функция времени $u_{fs}(t)$ в процессе выхода на поверхность волн сжатия. Измерения проводились с использованием лазерного доплеровского интерферометрического измерителя ско-

Рис. 3. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм после деформационной осадки 5.5 % при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с, 335 ± 10 м/с и 490 ± 10 м/с

Рис. 4. Профили скорости свободной поверхности образцов Армко-железа толщиной 2 мм при температуре $600~^\circ\mathrm{C}$ при нагружении медным ударником толщиной 0.47 мм со скоростями (снизу вверх) 155 ± 10 м/с, 244 ± 10 м/с и 335 ± 10 м/с

рости VISAR [28] с временным разрешением примерно 1–1.5 нс.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

На рис. 1–4 представлены профили скорости свободной поверхности образцов Армко-железа после отжига, предварительной деформационной осадки 0.6% и 5.5% и при температуре 600 °C. На всех профилях фиксируется выход на поверхность упругого предвестника с амплитудой u_{HEL} и затем пластической волны сжатия. После достижения максимальных значений скорости свободной поверхности регистрируется выход на поверхность волны разрежения и процессы, связанные с откольным разрушением образца. Поскольку соотношение толщины ударника и образца в этих экспериментах составляло около 1/4, затухание ударной волны на этих толщинах образцов не происходит, волна имеет трапециевидную форму с плато при максимальной скорости, а регистрируемое время между выходом на поверхность пластической волны и выходом волны разгрузки от тыльной стороны ударника составляет примерно 100 нс. На рис. 1 видно, что в пластической волне сжатия фиксируется небольшой скачок скорости в виде ступеньки RR, которая является следствием отражения упругого предвестника от свободной поверхности и взаимодействия образовавшейся отраженной упругой волны разгрузки с пластической ударной волной. Такое формирование переотраженной упругой волны наблюдается не у всех материалов и связано с релаксационными свойствами материала в состоянии перед пластической ударной волной, более детальный анализ этого явления можно найти в работе [29]. В экспериментах с деформированными образцами и при начальной температуре образцов 600 °C выход на свободную поверхность переотраженной упругой волны не регистрируется.

Сравнение волновых профилей показывает, что с увеличением предварительной деформационной осадки и повышением начальной температуры форма и амплитуда упругого предвестника (см. рис. 1-4) значительно изменяются. В экспериментах при комнатной температуре с образцами после отжига регистрируется отчетливо выраженная упругая волна сжатия с волновым фронтом 8-10 нс. Амплитуда упругого предвестника составляет $u_{HEL} = 67$ м/с за исключением экспериментов со скоростью удара 155 ± 10 м/с, когда ее величина была несколько ниже — $u_{HEL} = 49$ м/с. В экспериментах с другими исходными состояниями Армко-железа зависимости амплитуды упругого предвестника от давления ударного сжатия не выявлено. В опытах с образцами после деформационной осадки на 0.6 % наблюдается уменьшение амплитуды упругого предвестника до $u_{HEL} = 29$ м/с и значительное увеличение времени нарастания параметров в упругой волне. Деформационная осадка 5.5% приводит к росту амплитуды упругого пред-

Таблица. Динамический предел упругости и динамический предел текучести Армко-железа в различных состояниях

Состояние материала	$\sigma_{HEL}, \Gamma \Pi a$	$ σ_T, ΓΠa $
Отжиг	1.54	0.88
Отжиг, 600 °С	0.99	0.55
Осадка 0.6 %	0.65	0.35
Осадка 5.5 %	1.17	0.59

вестника в сравнении с образцами, подвергнутыми деформационной осадке 0.6 %, до $u_{HEL} = 52$ м/с. Нагрев образцов до 600 °C уменьшает амплитуду упругого предвестника до 48 м/с.

По измеренной амплитуде упругого предвестника определяется динамический предел упругости материала HEL (Hugoniot elastic limit): $\sigma_{HEL} =$ = $0.5 u_{HEL} \rho_0 c_l$, который связан при этих условиях нагружения с динамическим пределом текучести соотношением

$$\sigma_T = \frac{3}{2} \,\sigma_{HEL} \left(1 - \frac{c_b^2}{c_l^2} \right). \tag{1}$$

Рассчитанные таким образом параметры упругопластического перехода в Армко-железе представлены в таблице. В таблице представлены средние значения по трем или четырем экспериментам, проведенным при различных давлениях. Наибольшие значения динамического предела текучести у отожженного Армко-железа можно объяснить наименьшим значением плотности дислокаций. Предварительная деформация до 0.6 % увеличивает плотность подвижных дислокаций и приводит к значительному уменьшению регистрируемого динамического предела текучести. Увеличение предварительной деформации образцов до 5.5% приводит к еще большей плотности дислокаций, когда подвижные дислокации начинают блокировать друг друга, что проявляется в увеличении регистрируемого предела текучести по сравнению с образцами после предварительной деформации 0.6 %.

На профилях скорости свободной поверхности, представленных на рис. 1–4, не наблюдается четкого выделения упругого предвестника конечной амплитуды при разгрузке. Вместо этого регистрируется квазиупругая волна разгрузки, в которой скорость распространения возмущения плавно уменьшается от продольной скорости звука c_l до скорости звука c_b , соответствующей объемной сжимаемости ма-

Рис. 5. Результаты расчета предела текучести Армко-железа в упругом предвестнике и в ударно-сжатом состоянии в волне разгрузки после отжига после предварительной деформации 0.6 % и 5.5 % и при повышенной температуре

териала. В работах [4, 5] предложен и реализован упрощенный способ оценки напряжения пластического течения при разгрузке. Данный способ оценки основан на приближении простой волны и включает аппроксимацию квазиупругой части волны прямой линией 1–2, как показано на рис. 1, предположение о постоянстве коэффициента Пуассона и линейное соотношение между скоростью звука в лагранжевых координатах и массовой скоростью. Разность в величинах сдвиговых напряжений, соответствующих значениям массовой скорости на фронте квазиупругой волны разгрузки u_{p1} (точка 1 на рис. 1) и в ее конце u_{p2} (точка 2) в приближении простой волны описывается соотношением [30]

$$\tau(u_{p1}) - \tau(u_{p2}) = = \frac{3}{4} \rho_0 \int_{u_{p2}}^{u_{p1}} \left[a^2(u_p) - a_b^2(u_p) \right] \frac{du_p}{a(u_p)}, \quad (2)$$

где a — скорость распространения возмущений в квазиупругой волне в координатах Лагранжа (т. е. отнесена к начальной плотности материала ρ_0), a_b — объемная скорость звука.

Соотношение (2) фактически определяет предел текучести ударно-сжатого материала, так как при разгрузке из ударно-сжатого состояния сдвиговое напряжение переходит через нуль и выходит на напряжение пластического течения с обратным знаком. На рис. 5 значение пределов текучести в упругом предвестнике, рассчитанные с помощью соотношения (1), сопоставлены со значениями напряжения пластического течения в волне разгрузки, полученными из анализа ее квазиупругой части. На рисунке видно, что наблюдается резкое уменьшение предела текучести непосредственно за ударной волной для всех исследованных состояний, включая эксперименты при температуре 600 °С. Причиной такого падения предела текучести Армко-железа за ударной волной является пластическая деформация при сжатии в ударной волне. Полученные значения напряжения пластического течения за ударной волной практически не зависят от исходного состояния материала и находятся в диапазоне 50-80 МПа при 2.5 ГПа. Подобное падение предела текучести было зарегистрировано для титанового сплава BT1-0 в работе [7]. В данной работе получено десятикратное уменьшение предела текучести ударно-сжатого отожженного и предварительно деформированного до 5.5% Армко-железа. В экспериментах с предварительной деформацией 0.6 % и начальной температурой 600 °C наблюдалось уменьшение предела текучести в ударно-сжатом состоянии соответственно в 4 и 8 раза. С ростом давления имеет место возрастание предела текучести ударно-сжатого Армко-железа во всех исследованных состояниях. Возрастание предела текучести как отожженных, так и предварительно деформированных образцов и образцов Армко-железа при температуре 600 °C приблизительно одинаково и объясняется как непосредственно действием давления, так и деформационным упрочнением.

По измеренным профилям скорости свободной поверхности, представленных на рис. 1-4, определялись максимальные скорости сжатия в пластических ударных волнах. На рис. 6 показаны результаты оценки скорости сжатия в зависимости от максимального напряжения сжатия σ_x на «плато» за пластической ударной волной для Армко-железа в отожженном и предварительно деформируемом до 0.6% и 5.5% состояниях и при повышенной до 600 °C температуре. Скорость сжатия определялась как $\dot{\varepsilon}_x = \dot{u}_{fs}/2U_S$, где \dot{u}_{fs} — максимальное ускорение поверхности в пластической ударной волне, U_S — скорость распространения пластической ударной волны. Предполагалось, что пластическая ударная волна стационарна или близка к стационарности. Как видно на рисунке, с ростом давления ударного сжатия в пластической волне для всех исследованных состояний Армко-железа скорость сжатия изменяется подобным образом и может быть описана степенной зависимостью от давления $\dot{\varepsilon}_x = A(\sigma_{peak}/\sigma_0)^{\beta}$ ($\sigma_0 = 1$ ГПа). Для Армко-же-

Рис. 6. Зависимость скорости сжатия Армко-железа в пластической ударной волне от конечного напряжения сжатия за волной. Представлены данные для отожженного, предварительно деформированного до 0.6 % и 5.5 % и при начальной температуре 600 °C. Аппроксимационная прямая построена для Армко-железа после отжига

леза после отжига в диапазоне давлений 2–9 ГПа коэффициент $\beta = 2.05$, а A = 19500. Для предварительно деформированных состояний и при повышенных температурах коэффициенты β и A изменяются незначительно.

После отражения импульса сжатия от свободной поверхности внутри образца генерируются растягивающие напряжения, в результате чего инициируется его разрушение — откол. Декремент скорости поверхности Δu_{fs} (рис. 1) при ее убывании от максимума до значения перед фронтом откольного импульса пропорционален величине разрушающего напряжения — откольной прочности материала. В линейном (акустическом) приближении откольная прочность материала рассчитывается как

$$\sigma_{sp} = \frac{1}{2}\rho_0 c_b (\Delta u_{fs} + \delta), \qquad (3)$$

где δ — поправка на искажение профиля скорости вследствие различия скоростей упругого фронта откольного импульса и скорости пластической части падающей волны разгрузки перед ним [31].

На рис. 7 представлены зависимости откольной прочности Армко-железа от скорости деформирования в различных начальных состояниях. Расчет откольной прочности осуществлялся с помощью соотношения (3). Скорость деформирования в волне разрежения рассчитывалась как $\dot{V}/V_0 = \dot{u}_{fsr}/2c_b$ [3], где \dot{u}_{fsr} — измеренная скорость уменьшения скорости свободной поверхности испытуемого образца

Рис. 7. Зависимость откольной прочности Армко-железа после отжига, после деформационной осадки 0.6 % и 5.5 % и при начальной температуре 600 °C от скорости деформирования в волне разрежения падающего импульса сжатия. На рисунке представлены данные [32] для монокристаллического железа (треугольники) и Армко-железа в состоянии поставки (квадраты)

в разгрузочной части импульса ударного сжатия. На рис. 7 видно, что полученные данные согласуются с ранними измерениями откольной прочности монокристаллов железа и Армко-железа в состоянии поставки при давлениях не превышающих давление фазового превращения $\alpha - \varepsilon$ [32]. Представленные значения откольной прочности монокристаллов железа лежат выше, чем измеренные для поликристаллов в данной работе, что объясняется практически бездефектной структурой монокристалла. В работе [32] варьирование скорости деформирования проводилось изменением толщины образца и ударника, но при одном давлении. В данной работе толщина образцов и ударников не менялась, изменялось только максимальное давление. С ростом максимального давления увеличивалась скорость деформирования в волне разгрузки. Судя по наклонам зависимостей откольной прочности от скорости деформирования отожженного и деформированного Армко-железа в сравнении с Армко-железом в состоянии поставки [32] и монокристаллическим железом [32], в скорость роста откольной прочности от скорости деформирования вносит существенный вклад увеличение давления. Подобные измерения откольной прочности от давления проводились для титанового сплава [33] и стали [34], где были выявлены более крутые зависимости откольной прочности от скорости деформирования от давления в сравнении с зависимостью откольной прочности от скорости деформирования при одном давлении.

На вставке рис. 7 видно, что наименьшие значения откольной прочности реализуются у образцов Армко-железа после отжига. Максимальные значения откольной прочности среди исследованных состояний регистрируются у образцов после предварительной деформации 0.6 %. Рост значений откольной прочности в сравнении с отожженным материалом при тех же скоростях деформирования составил примерно 10%. Значения откольной прочности после предварительного деформирования 5.5% расположены между отожженным материалом и после предварительной деформации 0.6%. Поскольку механизмом откольного разрушения пластического материала является зарождение и рост микротрещин или пор [35], то возможно, что при повышенной плотности дислокаций, наведенных в результате предварительной деформации, они начинают блокировать друг друга, тем самым образование пор в плоскости откола инициируется при более высоких растягивающих напряжениях.

4. ЗАКЛЮЧЕНИЕ

Проведены измерения эволюции упруго-пластических волн ударного сжатия и разгрузки Армко-железа в отожженном и предварительно деформированном до 0.6% и 5.5% состояниях в диапазоне давлений 2-9 ГПа. Показано, что предварительная пластическая деформация 0.6% значительно понижает величину динамического предела текучести и в то же время незначительно увеличивает откольную прочность Армко-железа. При росте предварительной деформации до 5.5% образцы демонстрируют промежуточные значения динамического предела текучести и откольной прочности между отожженным состоянием и после предварительной деформации 0.6%. Изменение начальной плотности дислокаций практически не повлияло на скорость сжатия в пластической ударной волне и на предел текучести ударно-сжатого материала. При разгрузке от 2.5 ГПа как в отожженном состоянии, так и после предварительной пластической деформации 0.6% и 5.5% наблюдалось резкое падение динамического предела текучести до значений примерно 70 МПа. При дальнейшем росте давления до 9 ГПа регистрировалось незначительное увеличение динамического предела текучести ударно-сжатого Армко-железа, которое можно связать с деформационным упрочнением и действием давления. Увеличение начальной температуры образцов Армко-железа до температуры 600 °C ожидаемо привело к уменьшению его динамического предела текучести и откольной прочности. Динамический предел текучести ударносжатого Армко-железа при температуре 600 °C с ростом давления меняется так же, как и в отожженном материале при комнатной температуре. Не выявлено влияние амплитуды ударного сжатия на динамический предел упругости и текучести во всех исследованных состояниях Армко-железа, за исключением экспериментов с отожженным материалом при наименьшем давлении. Регистрируется незначительный рост откольной прочности с увеличением давления во всех исследованных начальных состояниях Армко-железа. Наибольшие значения откольной прочности получены у образцов после предварительной деформации 0.6 %.

Финансирование. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-02-00416А), а также в рамках Госзадания, номер госрегистрации ААА-А19-119071190040-5. Эксперименты проведены с использованием оборудования Московского регионального взрывного центра коллективного пользования Российской академии наук.

ЛИТЕРАТУРА

- 1. Я. Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, Наука, Москва (1966).
- Г. И. Канель, Е. Б. Зарецкий, С. В. Разоренов и др., УФН 187, 525 (2017).
- Г. И. Канель, Ударные волны в физике твердого тела, Физматлит, Москва (2018).
- Г. И. Канель, А. С. Савиных, Доклады РАН. Физика, технические науки 490, 29 (2020).
- G. I. Kanel, A. S. Savinykh, G. V. Garkushin et al., J. Appl. Phys. **127**, 035901 (2020).
- G. I. Kanel, A. S. Savinykh, G. V. Garkushin et al., J. Appl. Phys. 128, 115901 (2020).
- Г. И. Канель, А. С. Савиных, Г. В. Гаркушин и др., ЖЭТФ 159, 524 (2021).
- B. Gurrutxaga-Lerma, M. A. Shehadeh, D. S. Balint et al., Int. J. Plasticity 96, 135 (2017).

- E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 117, 195901 (2015).
- 10. E. B. Zaretsky, J. Appl. Phys. 106, 023510 (2009).
- 11. P. L. Hereil, J. Phys. Colloques 49, C3-77 (1988).
- 12. E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 114, 083511 (2013).
- 13. E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 110, 073502 (2011).
- 14. H. Shu, S. Fu, X. Huang et al., J. Appl. Phys. 116, 033506 (2014).
- 15. B. Zuanetti, S. D. McGrane, C. A. Bolme et al., J. Appl. Phys. 123, 195104 (2018).
- 16. G. I. Kanel, G. V. Garkushin, A. S. Savinykh et al., J. Appl. Phys. 116, 143504 (2014).
- G. I. Kanel, S. V. Razorenov, and G. V. Garkushin, J. Appl. Phys. **119**, 185903 (2016).
- Г. И. Канель, Г. В. Гаркушин, А. С. Савиных и др., ЖЭТФ 154, 392 (2018).
- 19. М. А. Мейерс, Л. Е. Мурр, Ударные волны и явления высокоскоростной деформации металлов, Металлургия, Москва (1984).
- 20. С. В. Разоренов, Г. В. Гаркушин, Е. Г. Астафурова и др., Физическая мезомеханика 20, 43 (2017).
- 21. T. de Resseguier, E. Lescoute, and D. Loison, Phys. Rev. B 86, 214102 (2012).
- 22. Zhuowei Gu, Xiaogang Jin, and Guoqing Gao, J. Mater. Sci. 35, 2347 (2000).

- 23. A. E. Mayer, K. V. Khishchenko, P. R. Levashov et al., J. Appl. Phys. 113, 193508 (2013).
- 24. Songlin Yao, Xiaoyang Pei, Zhanli Liu et al., Mech. Mater. 140, 103211 (2020).
- 25. M. W. Guinnan and D. J. Steinberg, J. Phys. Chem. Sol. 35, 1501 (1974).
- 26. D. Bancroft, E. L. Peterson, and S. Minshall, J. Appl. Phys. 27, 291 (1956).
- L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 45, 4872 (1974).
- L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
- 29. Г. И. Канель, А. С. Савиных, Г. В. Гаркушин и др., Доклады РАН. Физика, технические науки 496, 5 (2021).
- 30. J. L. Brown, C. S. Alexander, J. R. Asay et al., J. Appl. Phys. 114, 223518 (2013).
- **31**. Г. И. Канель, ПМТФ **42**, 194 (2001).
- 32. S. V. Razorenov, G. I. Kanel, A. S. Savinykh et al., in Shock Compression of Condensed Matter – 2005, ed. by M. D. Furnish, M. Elert, T. P. Russell et al., AIP CP 845, 650 (2006).
- 33. R. L. Whelchel, D. S. Mehoke, K. A. Iyer et al., J. Appl. Phys. 119, 115901 (2016).
- 34. C. Li, B. Li, J. Y. Huang et al., Mater. Sci. Eng. A 660, 139 (2016).
- 35. M. A. Meyers and C. T. Aimone, Prog. Mater. Sci. 28, 1 (1983).

АНИЗОТРОПНАЯ НАМАГНИЧЕННОСТЬ ПЛЕНКИ NbN

Д. М. Гохфельд^{а,b*}, Н. Е. Савицкая^с, С. И. Попков^d,

Н. Д. Кузьмичев^е, М. А. Васютин^е, Д. А. Балаев^{а,b}

^а Институт физики им. Л. В. Киренского, Красноярский научный центр Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660041, Красноярск, Россия

^с Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт» 188300, Гатчина, Ленинградская обл., Россия

> ^d Красноярский электровагоноремонтный завод 660021, Красноярск, Россия

^е Мордовский государственный университет 430000, Саранск, Россия

Поступила в редакцию 7 декабря 2021 г., после переработки 1 февраля 2022 г. Принята к публикации 1 февраля 2022 г.

Проведено исследование структурных и магнитных свойств пленки нитрида ниобия (NbN), изготовленной методом реактивного распыления на кварцевую подложку. Методом сканирующей электронной микроскопии показано, что пленка имеет столбчатую структуру с диаметром кристаллитных столбцов около 50 нм. Измерены петли намагниченности пленки для ориентации поля параллельно и перпендикулярно ее поверхности. На основе полученных данных сделана оценка величин плотности критического тока пленки для обоих случаев. Для случая поля, параллельного поверхности пленки, оценка дает величину $6.5 \cdot 10^4$ A/cm² при температуре жидкого гелия. Для случая поля, перпендикулярного поверхности пленки, оценка дает величину $0.5 \cdot 10^4$ A/cm² при температуре жидкого гелия. Для случая поля, перпендикулярного поверхности пленки, плотность критического тока близка к величине плотности тока распаривания 10^7 A/cm². Анализ полученных результатов с применением различных моделей пиннинга магнитных вихрей в сверхпроводниках показывает, что в первом случае пиннинг происходит на границах столбцов в объеме образца, а во втором случае он обусловлен влиянием поверхностного барьера.

DOI: 10.31857/S0044451022060062 **EDN:** DULCVQ

1. ВВЕДЕНИЕ

Благодаря своим физическим свойствам, таким как относительно высокая критическая температура и значительная величина верхнего критического поля, а также высокая устойчивость к химическим и радиационным воздействиям, нитрид ниобия (NbN) является важным представителем технологических сверхпроводников, применяемых в устройствах микроэлектроники и измерительных датчиках. В настоящее время наиболее развиты технологии создания пленок NbN. Магнитные и транспортные свойства получаемых пленок определяются их морфологией [1]. В частности, неоднократно показано, что именно специфика строения пленок отвечает за анизотропию величин критического тока и верхнего критического поля, причем величина анизотропии различается для пленок, полученных различными методами [2–4]. Благодаря этой практически важной особенности, свойства пленок NbN можно менять в широких пределах, управляя структурой пленок при синтезе, например, при помощи выбора материала или регулировки температуры подложки [5–7].

^{*} E-mail: gokhfeld@iph.krasn.ru

Несмотря на то, что пленки NbN используются давно и их свойства подробно исследованы, до сих пор нет однозначного ответа на вопрос, как именно структура пленки влияет на механизмы пиннинга магнитного потока, которые отвечают за возникновение анизотропии критических величин в ней. Для изучения данного вопроса в настоящей работе были проведены измерения петель гистерезиса намагниченности пленок NbN для случаев, когда внешнее магнитное поле Н приложено перпендикулярно $(\mathbf{H} \parallel \mathbf{e}_z)$ и параллельно $(\mathbf{H} \parallel \mathbf{e}_x)$ плоскости пленки $(\mathbf{e}_x \mathbf{u} \mathbf{e}_z - \mathbf{o}$ рты осей $x \mathbf{u} z)$. Проведенный анализ позволил получить оценки значений критического тока для указанных случаев и установить физические причины наблюдаемой анизотропии критического тока.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Пленка NbN получена методом реактивного катодного распыления на кварцевую подложку [8,9]. Толщина подложки 1.58 мм, толщина напыленной пленки около 687 нм (по данным сканирующей электронной микроскопии).

Изображения сканирующей электронной микроскопии получены на микроскопе Hitachi TM 3000. Магнитные измерения проводились на вибрационном магнетометре Quantum Design PPMS-9T для двух ориентаций пленки относительно внешнего магнитного поля (см. вставку на рис. 1): 1) $\mathbf{H} \parallel \mathbf{e}_z$, поле \mathbf{H} направлено перпендикулярно плоскости пленки; 2) $\mathbf{H} \parallel \mathbf{e}_x$, поле \mathbf{H} направлено параллель-

Рис. 1. Типичная микрофотография пленки NbN, полученная методом сканирующей электронной микроскопии. На вставке показана схема измерений намагниченности

но плоскости пленки. Совпадение результатов разных измерений служило критерием точности ориентации осей образца относительно внешнего поля. Петли гистерезиса намагниченности образцов с разной площадью совпадают для одинаковых ориентаций. В работе приведены результаты, полученные на образце площадью 0.32×0.37 см².

Для того чтобы убрать магнитный вклад от подложки, из петель гистерезиса намагниченности пленки, измеренных при T = 4.2 К и T = 10 К, вычиталась зависимость намагниченности этой же пленки, измеренная для соответствующей ориентации $\mathbf{H} \parallel \mathbf{e}_x$ или $\mathbf{H} \parallel \mathbf{e}_z$ при T = 20 К, т. е. заведомо выше критической температуры T_c .

Температурные зависимости магнитного момента измерялись в режиме ZFC (образец охлаждался без поля, затем включалось внешнее поле 0.01 Тл и проводились измерения намагниченности) и FC (образец охлаждался в поле 0.01 Тл, затем проводились измерения намагниченности).

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

На рис. 1 показана микрофотография пленки NbN. Определенная из микрофотографий толщина пленки равна 687±22 нм. Микрофотографии показывают столбчатую структуру пленки. Столбчатые кристаллиты ориентированы перпендикулярно плоскости пленки, их диаметр около 50 нм.

На рис. 2 показаны температурные зависимости магнитного момента пленки, измеренные в поле 0.01 Тл. В режиме ZFC магнитный момент m увеличивается от $-4.2 \cdot 10^{-7}$ А · м² при 4.2 К до $-0.06 \cdot 10^{-7}$ А · м² при 15.2 К для **Н** || **е**_x

Рис. 2. Температурные зависимости магнитного момента

Рис. 3. (В цвете онлайн) Магнитные петли гистерезиса для $\mathbf{H} \parallel \mathbf{e}_{z}$ (*a*) и $\mathbf{H} \parallel \mathbf{e}_{x}$ (*б*)

и от $-9.5 \cdot 10^{-7} \text{ A} \cdot \text{м}^2$ до $-0.03 \cdot 10^{-7} \text{ A} \cdot \text{м}^2$ для **H** || **e**_z. Температура 15.2 K, при которой намагниченность перестает увеличиваться, соответствует температуре сверхпроводящего перехода T_c для NbN. В режиме FC намагниченность отрицательная $(m = -0.1 \cdot 10^{-7} \text{ A} \cdot \text{m}^2)$ для **H** || **e**_x и положительная (до $3 \cdot 10^{-7} \text{ A} \cdot \text{m}^2$) для **H** || **e**_z.

Магнитные петли гистерезиса при 4.2 и 10 К приведены на рис. 3. Для $\mathbf{H} \parallel \mathbf{e}_z$ петли симметричны относительно оси M = 0. Для $\mathbf{H} \parallel \mathbf{e}_x$ наблюдается отчетливая асимметрия петель относительно оси M = 0.

4. ОБСУЖДЕНИЕ

Зависимости магнитного момента от температуры в ZFC-режиме свидетельствуют о проникновении магнитного потока в пленку при увеличении температуры (см. рис. 2). Различия в значениях магнитного момента связаны с тем, что размагничивающий фактор пленки для $\mathbf{H} \parallel \mathbf{e}_z$ больше, чем для $\mathbf{H} \parallel \mathbf{e}_x$. Значение магнитного поля у краев пленки из-за размагничивающего фактора значительно превышает величину приложенного поля 0.01 Тл. Положительная намагниченность в режиме FC для $\mathbf{H} \parallel \mathbf{e}_z$ наблюдалась ранее для такой же геометрии измерений на пленках из Nb, NbN и высокотемпературных сверхпроводников [10]. Такой парамагнитный эффект Мейснера может быть вызван сжатием магнитного потока на неоднородностях [10–12].

Мы ожидали, что гранулярная структура пленки приведет к заметному равновесному вкладу в поле-

вую зависимость намагниченности, как это происходит для гранулярных высокотемпературных сверхпроводников [13, 14]. Это привело бы, во-первых, к заметной асимметрии петли относительно оси M == 0 [15], а также к смещению максимума петли гистерезиса из H = 0 в область H > 0 для $\mathbf{H} \parallel \mathbf{e}_z$ [16]. Однако экспериментальные петли гистерезиса намагниченности для $\mathbf{H} \parallel \mathbf{e}_z$ (рис. 3*a*) имеют максимум при H = 0 и незначительную асимметрию относительно оси M = 0. Это говорит о том, что токи, определяющие намагниченность, циркулируют в пленке между столбчатыми кристаллитами, а не внутри этих кристаллитов. Масштаб циркуляции токов совпадает с размером пленки в плоскости xy [15]. Используем формулу Бина из модели критического состояния [17] для оценки критической плотности тока пластины,

$$j_c = \frac{2\Delta M}{L_x(1 - L_x/3L_y)},$$

где L_x и L_y — размеры пленки по осям x и y (см. вставку на рис. 1). Из петли гистерезиса для $\mathbf{H} \parallel \mathbf{e}_z$ при T = 4.2 К получаем значения $j_c = 6.5 \cdot 10^4 \text{ A/cm}^2$ в нулевом поле и $j_c = 4.4 \cdot 10^4 \text{ A/cm}^2$ в поле 5 Тл, а при T = 10 К — значения $j_c = 3.4 \cdot 10^4 \text{ A/cm}^2$ в нулевом поле и $j_c = 1.6 \cdot 10^4 \text{ A/cm}^2$ в поле 5 Тл. Транспортные измерения, проведенные на аналогичной пленке NbN при T = 13.6 К [18], дают достаточно близкую к полученным нами оценкам величину $j_c \approx 1.7 \cdot 10^4 \text{ A/cm}^2$ в поле 5 Тл.

Значение критического тока образца определяется его способностью удерживать магнитный поток.

Рис. 4. Полевые зависимости силы пиннинга для $\mathbf{H} \parallel \mathbf{e}_z$

Таким образом, из полученных петель намагниченности мы можем также получить полевую зависимость силы пиннинга для нашей пленки. Плотность силы пиннинга F_p определяется, как $F_p = \mu_0 j_c H$. Полученные значения F_p при температурах 4.2 и 10 К для **H** || \mathbf{e}_z приведены на рис. 4.

Для того чтобы определить, какие именно механизмы отвечают за пиннинг магнитных вихрей в рассмотренном случае, мы используем скейлинговое соотношение Дью-Хьюджа [19]:

$$f_p(h) = \frac{h^p (1-h)^q}{h_0^p (1-h_0)^q},$$

где

$$f_p = \frac{F_p(H,T)}{F_{max}(T)}, \quad h = \frac{H}{H_{c2}(T)}, \quad h_0 = \frac{p}{p+q},$$

 F_{max} — максимум зависимости $F_p(H,T), H_{c2}$ второе критическое поле. На рис. 4 показано, что полученные из петель гистерезиса намагниченности зависимости $F_p(H)$ успешно описываются скейлинговой формулой (сплошные линии) при H_{c2} = $T=1.2\cdot 10^7$ A/м для T=4.2 K, $H_{c2}=8.1\cdot 10^6$ A/м для T = 10 К и с коэффициентами p = 1, q = 1. Использованные значения скейлинговых коэффициентов характерны для пиннинга на объемных дефектах с пространственным изменением длины свободного пробега нормальных электронов [19, 20]. Такой тип пиннинга называется δl -пиннингом [21]; также используется обозначение ΔK -пиннинг [20]. Мы полагаем, что в качестве δl -центров пиннинга выступают границы между столбцами-кристаллитами NbN в пленке.

Далее рассмотрим магнитный гистерезис пленки для $\mathbf{H} \parallel \mathbf{e}_x$ (см. рис. 36). Ширина намагниченности ΔM петли гистерезиса для $\mathbf{H} \parallel \mathbf{e}_x$ уменьшается с ростом внешнего поля быстрее, чем для $\mathbf{H} \parallel \mathbf{e}_z$. Для данной ориентации достигнуто поле необратимости H_{irr} , т. е. значение внешнего поля, при котором ширина намагниченности ΔM становится равной 0 или сравнимой с уровнем шума, $\mu_0 H_{irr} = 0.9 \pm 0.1$ Тл при 4.2 К и $\mu_0 H_{irr} = 0.51 \pm 0.04$ Тл при 10 К. Отсутствие заметного вклада от перпендикулярной компоненты намагниченности при $H > H_{irr}$ является подтверждением достаточно точной ориентации пленки относительно внешнего поля.

Асимметрия петель гистерезиса для $\mathbf{H} \parallel \mathbf{e}_x$ и малая величина поля необратимости $H_{irr} \ll H_{c2}$ свидетельствует о заметном равновесном вкладе в намагниченность [13]. Такой равновесный вклад связан с приповерхностными областями пленки, в которых циркулирует мейснеровский ток. Из-за малой толщины пленки их влияние оказывается значительным.

Используя для оценки плотности критического тока при $\mathbf{H} \parallel \mathbf{e}_x$ формулу Бина из модели критического состояния для соответствующей геометрии, при T = 4.2 К получим

$$j_c = \frac{2\Delta M}{w(1 - w/3L_y)} = 4.0 \cdot 10^7 \ \frac{A}{cm^2}$$

где w — толщина пленки (см. вставку на рис. 1). Это значение критического тока в 513 раз больше, чем значение j_c для **H** \parallel **e**_z. Сравним полученное значение j_c с плотностью тока распаривания j_d для исследуемого материала. Плотность тока распаривания определяется выражением [22, 23]

$$j_d = \frac{\Phi_0}{3\sqrt{3}\pi\mu_0\lambda^2\xi},$$

где Φ_0 — квант магнитного потока. Для пленок NbN, полученных реактивным распылением, глубина проникновения $\lambda \sim 300$ —600 нм [24], длина когерентности $\xi \approx 5$ нм [25, 26], что дает

$$j_d = 5.6 \cdot 10^6 - 2.2 \cdot 10^7 \text{ A/cm}^2$$

Ток распаривания является верхним пределом для тока сверхпроводников, выше значения которого происходит разрушение куперовских пар. Таким образом, оцененное значение j_c для **H** || **e**_x превышает плотность тока распаривания NbN. Этот парадоксальный результат говорит о том, что в данном случае некорректно использование формулы Бина и необходим иной подход.

Особенности критического состояния в сверхпроводящих пленках, толщина которых сравнима с лондоновской глубиной проникновения, в случае, когда внешнее поле направлено вдоль поверхности пленки, были рассмотрены в работе [27] Предположение, положенное в основу расчетов [27], состоит в том, что в рассматриваемом случае основную роль в пиннинге вихрей играет поверхностный барьер. В такой ситуации распределение вихрей внутри пленки определяется из условия равновесия действующих на них сил: силы притяжения «образа» вихря к границе образца и действия мейснеровских токов, способствующих проталкиванию вихря в объем образца. В результате энергетически выгодным становится выстраивание вихрей в цепочки, параллельные поверхности образца. Количество вихревых цепочек, находящихся в равновесии в образце, определяется величинами внешнего магнитного поля и транспортного тока, а также физическими свойствами образца, такими как лондоновская глубина проникновения λ и длина когерентности ξ , и его геометрическими характеристиками L_x, L_y, w . Исходя из этих предположений, в работе [27] показано, что критическая плотность тока в малых магнитных полях близка к величине тока распаривания, что соответствует экспериментальным наблюдениям [28,29].

Проведем оценку плотности критического тока нашей пленки для $\mathbf{H} \parallel \mathbf{e}_x$, основываясь на подходе работы [27]. Значение остаточной намагниченности M_{rem} , определенное из петли гистерезиса при 4.2 K, равно 5.6 · 10⁴ A/м. Это значение соответствует захваченному полю B = 0.07 Тл и захваченному потоку $\Phi = 1.5 \cdot 10^{-10}$ Вб. Отсюда оцениваем число захваченных в образце вихрей $N = \Phi/\Phi_0 \approx 7.5 \cdot 10^4$ квантов. Допустим, что вихри выстраиваются в цепочку вдоль образца. Тогда расстояние между соседними вихрями можно оценить как $\Delta l_y = L_y/N \approx 49$ нм. Заметим, что это расстояние соответствует диаметру столбцов, т.е. мы получаем картину, когда несверхпроводящие сердцевины вихрей располагаются на границах между столбцами.

Величину максимального протекающего тока можно найти из условия потери равновесия образовавшейся цепочки вихрей (формула (19) работы [27]):

$$j_t = \frac{w}{2\mu_0\lambda^2} \left(\mu_0 H - \frac{\Phi_0}{\Delta l_y w}\right) \left(\frac{2\Delta l_z}{w} - 1\right),$$

где j_t — плотность протекающего тока, Δl_z — расстояние цепочки вихрей от границы пленки в направлении оси z. Приняв, что внешнее магнитное поле уменьшено до нуля, а выведенная из равновесия цепочка вихрей сдвигается к границе образца, получаем соответствующую плотность критического тока

$$j_c \approx \frac{\Phi_0}{2\mu_0 \lambda^2 \Delta l_y} = \frac{1.5\sqrt{3}\pi\xi}{\Delta l_y} j_d$$

Для рассматриваемой пленки NbN оцениваем $j_c \approx 0.83 j_d \approx 4.7 \cdot 10^6 - 1.9 \cdot 10^7 \text{ A/cm}^2$. Эта оценка является верхней границей плотности критического тока для **H** \parallel **e**_x.

Однако для пленки с $w \gg \Delta l_y$ одна цепочка вихрей неустойчива [30, 31]. Рассмотрим ситуацию, когда в рассматриваемой пленке при уменьшении внешнего поля до нуля вихри выстраиваются в две цепочки. Расстояние между вихрями в цепочке в этом случае

$$\Delta l_{y2} = \frac{L_y}{N/2} \approx 98 \text{ нм.}$$

Критический ток для такой конфигурации можно записать в виде

$$j_c = \frac{Bw}{2\mu_0\lambda^2} \left(1 - \frac{2\Delta l_z}{w}\right)^2$$

(формулы (37) и (41) в [27]), где Δl_z — расстояние между цепочками вихрей в направлении оси z. Приравняем поле B к захваченному полю,

$$B = \frac{2L_y}{\Delta l_{y2}} \frac{\Phi_0}{wL_y} = \frac{2\Phi_0}{w\Delta l_{y2}},$$

и получим

$$j_c = \frac{\Phi_0}{\mu_0 \lambda^2 \Delta l_{y2}} \left(1 - \frac{2\Delta l_z}{w} \right)^2 =$$
$$= \frac{3\sqrt{3}\pi\xi}{\Delta l_{y2}} \left(1 - \frac{2\Delta l_z}{w} \right)^2 j_d.$$

Для равновесия двух цепочек вихрей требуется $\Delta l_z \approx 0.33 w$ (формула (44) в [27]), следовательно для пленки с двумя цепочками имеем

$$j_c \approx \frac{3\pi\xi}{\Delta l_{y2}} j_d.$$

Для рассматриваемого образца оцениваем

$$j_c \approx 0.48 j_d \approx 2.7 \cdot 10^6 - 1.1 \cdot 10^7 \text{ A/cm}^2.$$

Существование трех цепочек вихрей в исследуемой пленке при уменьшении внешнего поля до нуля маловероятно, так как в этом случае $\Delta l_{y3} \approx \Delta l_z$.

Таким образом, значительное различие критических значений плотности тока для случаев $\mathbf{H} \parallel \mathbf{e}_z$ и $\mathbf{H} \parallel \mathbf{e}_x$ объясняется, в первую очередь, различными механизмами пиннинга магнитного потока для разных ориентаций поля. Кроме того, можно предположить, что свой вклад вносит и анизотропия, связанная с ориентацией столбчатых кристаллитов. Для $\mathbf{H} \parallel \mathbf{e}_z$ сердцевины вихрей, по всей видимости, располагаются в границах между столбцами, а вихревые линии параллельны столбцам. Для $\mathbf{H} \parallel \mathbf{e}_x$ сердцевины вихрей также располагаются в границах между столбцами, но вихревые линии вынуждены огибать множество столбцов. Такая конфигурация вихревых линий также приводит к усилению пиннинга и, соответственно, к увеличению плотности критического тока для $\mathbf{H} \parallel \mathbf{e}_x$ по сравнению со случаем, когда $\mathbf{H} \parallel \mathbf{e}_z$.

5. ЗАКЛЮЧЕНИЕ

Проведено исследование намагниченности пленки NbN для ориентации внешнего поля вдоль и перпендикулярно плоскости пленки. В слабых полях, сравнимых с первым критическим полем H_{c1} пленки NbN, намагниченность определяется размагничивающим фактором образца. Для гистерезисных петель намагниченности, измеренных до $H \gg H_{c1}$, анизотропия намагниченности вызвана не только геометрией пленки, но и разными механизмами пиннинга магнитного потока.

Для $\mathbf{H} \parallel \mathbf{e}_z$ критическое значение плотности тока, полученное из данных по намагниченности на основе модели критического состояния по формуле Бина, совпадает с результатами измерений данной величины в экспериментах с транспортным током [18] и дает величину до $6.5 \cdot 10^4$ A/см². Это говорит о том, что в данном случае пиннинг магнитного потока происходит на дефектах в объеме образца, по-видимому, на межгранульных границах. Для случая $\mathbf{H} \parallel \mathbf{e}_x$ такая оценка не состоятельна, но критическая плотность тока адекватно оценивается в предположении, что пиннинг магнитного потока обусловлен поверхностным барьером. Тогда полученная оценка для критической плотности тока дает величину 10⁷ A/см², близкую к току распаривания для NbN, что также согласуется с экспериментальными данными для тонких пленок [28,29].

Благодарности. Мы благодарны И. В. Немцеву за измерения на сканирующем электронном микроскопе, С. А. Скоробогатову за помощь в проведении магнитных измерений (сканирующая электронная микроскопия и магнитные измерения выполнялись в Красноярском региональном центре коллективного пользования ФИЦ «Красноярский научный центр СО РАН»).

ЛИТЕРАТУРА

- D. Hazra, N. Tsavdaris, S. Jebari, A. Grimm, F. Blanchet, F. Mercier, E. Blanquet, C. Chapelier, and M. Hofheinz, Supercond. Sci. Technol. 29, 105011 (2016).
- Y. Saito and T. Anayama, J. Appl. Phys. 44, 5111 (1973).
- J. R. Gavaler, A. T. Santhanam, A. I. Bragmski, M. Ashkin, and M. A. Janocko, IEEE Trans. Magn. 17, 573 (1981).
- D. Rudman, J. Juang, R. van Dover, S. Nakahara, S. Capone, and J. Talvacchio, IEEE Trans. Magn. 87, 831 (1987).
- H. K. Kundu, K. R. Amin, J. Jesudasan, P. Raychaudhuri, S. Mukerjee, and A. Bid, Phys. Rev. B 100, 174501 (2019).
- Б. А. Гурович, Б. В. Гончаров, К. Е. Приходько, Л. В. Кутузов, Л. В. Столяров, Е. М. Малиева, ФТТ 63, 1238 (2021).
- N. V. Porokhov, A. P. Sirotina, E. A. Pershina, M. V. Shibalov, G. D. Diudbin, A. M. Mumlyakov, E. R. Timofeeva, I. V. Trofimov, A. M. Tagachenkov, Y. V. Anufriev, E. V. Zenova, and M. A. Tarkhov, Supercond. Sci. Technol. 21, 115016 (2021).
- Н. Д. Кузьмичев, Г. П. Мотулевич, ЖЭТФ 84, 2316 (1983).
- **9**. Д. Р. Джураев, Г. П. Мотулевич, ФТТ **27**, 2640 (1985).
- 10. M. S. Li, Phys. Rep. 376, 133 (2003).
- W. A. Ortiz, P. N. Lisboa-Filho, W. A. C. Passos, and F. M. Araújo-Moreira, Physica C 361, 267 (2001).
- 12. G. F. Zharkov, Phys. Rev. B 63, 214502 (2001).
- 13. Д. М. Гохфельд, ФТТ 56, 2298 (2014).
- **14**. Д. М. Гохфельд, Д. А. Балаев, ФТТ **62**, 1017 (2020).
- 15. Д. М. Гохфельд, Письма в ЖТФ 45, 3 (2019).
- D. V. Shantsev, M. R. Koblischka, Y. M. Galperin, T. H. Johansen, L. Pust, and M. Jirsa, Phys. Rev. Lett. 82, 2947 (1999).
- 17. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
- **18**. М. А. Васютин, Н. Д. Кузьмичев, Д. А. Шилкин, ФММ **121**, 1045 (2020).
- 19. D. Dew-Hughes, Phil. Mag. 30, 293 (1974).

- 20. D. Dew-Hughes, Low Temp. Phys. 27, 713 (2001).
- R. Griessen, W. Wen Hai-hu, A. J. J. van Dalen, B. Dam, J. Rector, H. G. Schnack, S. Libbrecht, E. Osquiguil, and Y. Bruynseraede, Phys. Rev. Lett. 72, 1910 (1994).
- 22. В. Л. Гинзбург, ДАН СССР 118, 464 (1958).
- 23. J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
- 24. S. Kubo, M. Asahi, M. Hikita, and M. Igarashi, Appl. Phys. Lett. 44, 258 (1998).
- 25. S. P. Chockalingam, M. Chand, J. Jesudasan, V. Tripathi, and P. Raychaudhuri, Phys. Rev. B 77, 214503 (2008).
- 26. М. А. Васютин, Н. Д. Кузьмичев, Д. А. Шилкин, ФТТ 58, 231 (2016).

- 27. Y. Mawatari and K. Yamafuji, Physica C 228, 336 (1994).
- 28. J. M. Murduck, D. W. Capone, I. K. Schuller, S. Foner, and J. B. Ketterson, Appl. Phys. Lett. 52, 504 (1998).
- 29. G. Stejic, A. Gurevich, E. Kadyrov, D. Christen, R. Joynt, and D. C. Larbalestier, Phys. Rev. B 49, 1274 (1994).
- 30. J. Guimpel, L. Civale, F. De La Cruz, J. M. Murduck, and I. K. Schuller, Phys. Rev. B 38, 2342 (1988).
- 31. S. H. Brongersma, E. Verweij, N. J. Koeman, D. G. De Groot, R. Griessen, and B. I. Ivlev, Phys. Rev. Lett. 71, 2319 (1993).

ФРУСТРАЦИИ В РАЗБАВЛЕННОМ ИЗИНГОВСКОМ МАГНЕТИКЕ НА РЕШЕТКЕ БЕТЕ

С. В. Сёмкин, В. П. Смагин, В. С. Тарасов*

Владивостокский государственный университет экономики и сервиса 690014, Владивосток, Россия

> Поступила в редакцию 24 января 2022 г., после переработки 24 января 2022 г. Принята к публикации 28 февраля 2022 г.

Рассмотрено нахождение энтропии изинговского ферромагнетика с немагнитными примесями, случайно расположенными по узлам или связям решетки. Рассмотрен изинговский магнетик на решетке Бете. На такой решетке не различаются ситуации случайного немагнитного разбавления по узлам и связям. Для вычисления энтропии используется намагниченность, найденная в псевдохаотическом приближении. В этом приближении получено значение энтропии как функции температуры, концентрации магнитных атомов и внешнего магнитного поля. Обнаружено, что при нулевом внешнем поле система фрустрирована в том смысле, что энтропия основного состояния не равна нулю. Найдена величина этой энтропии при концентрациях магнитных атомов как ниже, так и выше перколяционного порога.

DOI: 10.31857/S0044451022060074 **EDN:** DULWYZ

1. ВВЕДЕНИЕ

Настоящая работа посвящена вычислению свободной энергии и энтропии разбавленного изинговского магнетика на решетке Бете. Решетка Бете представляет собой бесконечный граф без замкнутых путей, в котором каждый узел связан с координационным числом q другими узлами [1]. На такой решетке можно задать модель Изинга, поместив в каждый узел изинговский «спин», принимающий значения +1 и -1. С каждой парой соседних спинов σ_i и σ_j связано слагаемое в гамильтониана $J_{ij}\sigma_i\sigma_j$, моделирующее обменное взаимодействие, J_{ij} — заданные константы. В случае, когда все J_{ij} одинаковы и положительны, можно построить точное решение для произвольного q [1].

Если теперь заменить некоторые из спинов немагнитными атомами, располагая их в решетке случайно и без корреляции, получим модель разбавленного по узлам магнетика, если же немагнитные примеси располагаются на связях решетки, блокируя обменное взаимодействие на этой связи, получим модель разбавленного по связям магнетика [2,3]. Для решетки Бете модели с разбавлением по узлам и связям формально не различаются [4]. Можно получить точное решение для модели Изинга с разбавлением для q = 2 (одномерная цепочка) [5], однако для произвольного q точного решения этой задачи нет.

В наших работах [4,6,7] предлагается подход к анализу свойств разбавленных магнетиков с немагнитными примесями, основанный на следующих соображениях. Вместо того, чтобы с самого начала полагать, что примеси распределены в решетке случайно, рассмотрим магнетик, в котором магнитные атомы и атомы примеси могут перемещаться и находятся в термодинамическом равновесии. Энергия такой системы определяется не только ориентацией магнитных моментов, но и расположением атомов примеси по узлам решетки. Таким образом, гамильтониан той или иной модели магнетика с подвижными примесями будет состоять из слагаемых, связанных с обменным взаимодействием магнитных атомов и слагаемых, связанных с межатомным взаимодействием в кристаллической решетке, причем равновесное распределение атомов примеси зависит от параметров, характеризующих оба этих взаимодействия. Тогда для каждого значения температуры, внешнего магнитного поля и концентрации (доли) магнитных атомов b в системе можно подобрать значения параметров межатомного взаимодействия с таким расчетом, чтобы равновесное распределение

 $^{^{\}ast}$ E-mail: vals.tarasov@gmail.com

атомов примеси было бы как можно ближе к случайному [4, 6, 7]. В качестве условия близости распределения атомов примеси к случайному можно, например, использовать равенство нулю корреляции в расположении атомов примеси для двух ближайших узлов, что и является основой псевдохаотического приближения, использованного в настоящей работе. В этом приближении мы вычисляем свободную энергию и энтропию разбавленного изинговского ферромагнетика на решетке Бете и делаем выводы относительно возможных фрустрированных состояний в этой системе.

2. СВОБОДНАЯ ЭНЕРГИЯ И ЭНТРОПИЯ РАЗБАВЛЕННОГО ИЗИНГОВСКОГО МАГНЕТИКА

В соответствии с принципами статистической физики и термодинамики полная свободная энергия термодинамической системы [1,8]

$$F = -kT\ln Z,\tag{1}$$

где k — постоянная Больцмана, T — абсолютная температура, Z — статистическая сумма системы. Зная свободную энергию как функцию температуры, можно выразить внутреннюю энергию U и энтропию S следующим образом [8]:

$$U = -T^2 \frac{\partial}{\partial T} \left(\frac{F}{T}\right), \quad S = -\frac{\partial F}{\partial T}.$$
 (2)

Простой и часто встречающейся моделью магнитной системы является модель Изинга [1]. В этой модели магнитный атом представлен локализированной в месте расположения этого атома (в узле решетки) переменной σ , принимающей значения +1 и -1 (так называемый «изинговский спин»). Для модели Изинга на произвольной решетке

$$Z = \sum_{\Omega} \exp\left(-\frac{1}{kT} \mathcal{H}(\Omega, H)\right).$$
(3)

Гамильтониан системы $\mathcal{H}(\Omega, H)$ зависит от внешнего поля H и конфигурации изинговских спинов Ω , а суммирование в (3) проводится по всем таким конфигурациям. Для моделей с парным взаимодействием

$$\mathcal{H}(\Omega, H) = \sum_{(i,j)} J_{ij}\sigma_i\sigma_j - H\sum_i \sigma_i.$$
 (4)

Первое суммирование в этом выражении проводится по всем упорядоченным парам спинов, а второе — по всем спинам решетки, J_{ij} — энергия обменного взаимодействия *i*-го и *j*-го спинов. Для гамильтониана такого вида полная намагниченность системы

$$\sum_{i} M_{i} = -\frac{\partial F}{\partial H},\tag{5}$$

где $M_i = \langle \sigma_i \rangle$ — термодинамическое среднее *i*-го спина, т. е. локальная намагниченность узла *i*. Вычислим свободную энергию системы с помощью рассуждения, аналогичного приведенному в [1]. При очень большом внешнем поле, т. е. при $H \to \infty$, наибольший вклад в сумму (3) вносит слагаемое, в котором все спины $\sigma_i = +1$. В этом пределе

$$F = -\sum_{(ij)} J_{i,j} - HN.$$
(6)

Здесь N — число узлов решетки. Учитывая асимптотическое равенство (6) и полагая, что все $M_i \to 1$ при $H \to \infty$, получим, интегрируя (5),

$$F(H_0, T) = -\sum_{(i,j)} J_{ij} - H_0 N + \int_{H_0}^{\infty} \left(\sum_i M_i - N \right) dH. \quad (7)$$

Дифференцируя это выражение по T получим, согласно (2), энтропию системы

$$S(H_0,T) = -\sum_i \int_{H_0}^{\infty} \frac{\partial M_i(H.T)}{\partial T} \, dH. \tag{8}$$

Будем считать, что взаимодействуют только спины ближайших узлов, причем константы обменного взаимодействия $J_{ij} = J$ для ближайших соседей и равны нулю во всех остальных случаях. Тогда

$$\sum_{(i,j)} J_{ij} = J\overline{q}\frac{N}{2},$$

где \overline{q} — среднее по решетке координационное число. Для простой решетки с координационным числом q очевидно $\overline{q} = q$ для чистого магнетика. В случае некоррелированного немагнитного разбавления по узлам или связям $\overline{q} = qb$, где b — концентрация магнитных атомов или связей [4].

Разделив теперь (7) и (8) на NkT и вводя удельные (на магнитный атом) свободную энергию f = F/N, энтропию s = S/N и намагниченность

$$M = \frac{\sum_i M_i}{N}$$

получим

$$\frac{f(h_0, K)}{kT} = -\frac{1}{2}\overline{q}K - h_0 + \int_{h_0}^{\infty} (M(h) - 1) \, dh, \qquad (9)$$

$$\frac{s(h_0, K)}{kT} = -\int_{h_0}^{\infty} \frac{\partial M(h)}{\partial T} dh.$$
 (10)

Здесь K = J/kT и h = H/kT.

Из формул (9) и (10) следует, что если известна средняя намагниченность M как функция температуры, внешнего магнитного поля и концентрации магнитных атомов или связей, можно найти свободную энергию и энтропию.

3. РЕШЕТКА БЕТЕ И ПСЕВДОХАОТИЧЕСКОЕ ПРИБЛИЖЕНИЕ

В наших работах [4, 6, 7] показано, что приближенное значение намагниченности разбавленного изинговского магнетика на решетке с координационным числом q может быть найдено так:

$$M = \operatorname{th}(Kq\mu + h),\tag{11}$$

где μ определяется из уравнения

$$th(Kq\mu + h) = (1 - b) th(K(q - 1)\mu + h) + + b \frac{sh(2K(q - 1)\mu + 2h)}{ch(2K(q - 1)\mu + 2h) + e^{-2K}}.$$
 (12)

Оказывается [4], что приближение (11) для чистого магнетика (b = 1) является точным решением для модели Изинга на решетке Бете, а при b < 1 его можно рассматривать как «псевдохаотическое» приближение для модели Изинга с немагнитным разбавлением на решетке Бете [4]. Псевдохаотическое приближение получается из решения задачи с подвижными немагнитными примесями при наложении дополнительного условия равенства нулю корреляции в расположении примесей в соседних узлах решетки [6]. Ситуации разбавления по узлам и связям на решетке Бете не различаются, поэтому b можно понимать и как концентрацию магнитных атомов, и как вероятность того, что связь с соседними узлами будет не разорванной.

В (11) и (12) введем обозначения

$$z = Kq\mu + h, \quad w = K(q-1)\mu + h, \quad \eta = e^{-2K},$$
$$\beta = \frac{q-1}{q}, \quad x = h/q.$$

Рис. 1. Диаграмма состояний разбавленного изинговского магнетика на решетке Бете

Тогда (11) и (12) примет вид

$$M = \operatorname{th}(z),$$

$$M = (1-b)\operatorname{th}(w) + b\frac{\operatorname{sh}(2w)}{\operatorname{ch}(2w) + \eta},$$

$$w = \beta z + x$$
(13)

или $M = \partial \psi / \partial w$, где

$$\psi(w) = (1-b)\ln(\operatorname{ch}(w)) + \frac{b}{2}\ln(\operatorname{ch}(2w) + \eta).$$

Уравнения (13) можно записать в виде одного уравнения относительно намагниченности M

$$M = (1-b)\frac{(1+M)^{\beta} - \xi(1-M)^{\beta}}{(1+M)^{\beta} + \xi(1-M)^{\beta}} + b\frac{(1+M)^{2\beta} - \xi^2(1-M)^{2\beta}}{(1+M)^{2\beta} + \xi^2(1-M)^{2\beta} + 2\xi\eta(1-M^2)^{\beta}}, \quad (14)$$

где $\xi = e^{-2x}$.

При выводе уравнений (13) или (14) предполагается, что среднее значение спина (локальная намагниченность) одинаково для всех внутренних узлов решетки и равна M в термодинамическом пределе. Иными словами, в системе не образуется магнитных подрешеток. Это предполагает, что либо в системе ферромагнитное обменное взаимодействие, т. е. K > 0, либо K < 0, но внешнее поле H достаточно велико, для того чтобы препятствовать образованию подрешеток при любой температуре.

Для того чтобы конкретизировать область применимости уравнения (14), рассмотрим фазовую диаграмму основного состояния (T = 0) разбавленного изинговского магнетика на решетке Бете с координационным числом q (рис. 1).

Рис. 2. Спонтанная намагниченность разбавленного изинговского ферромагнетика на решетке Бете (q = 4) как функция концентрации магнитных атомов (или связей). Кривая $1 - \eta = 0$, кривая $2 - \eta = 0.15$ и кривая $3 - \eta = 0.35$ $(\eta = \exp(-2K))$

Переходя в (14) к пределу $T \to 0$, получим, что при условии H > 0 и J > -H/q (область I на рис. 1) $M \to 1$, а при H < 0 и J > H/q (область II на рис. 1) $M \to 1$. Таким образом, в областях I и II основное состояние системы ферромагнитное. Граница этих областей (линия 1 на рис. 1) — зона, в которой происходят ферромагнитные фазовые переходы. Как показывает анализ уравнений (13) [4], при $T \to 1$ и $b < b_c = 1/(q-1)$ на линии 1 M = 0. При $b > b_c$, т.е. при концентрации магнитных атомов, превышающей порог протекания решетки Бете, в системе возникает спонтанная намагниченность M_0 , которую можно найти из уравнения

$$M_{0} = (1-b)\frac{(1+M_{0})^{\beta} - (1-M_{0})^{\beta}}{(1+M_{0})^{\beta} + (1-M_{0})^{\beta}} + b\frac{(1+M_{0})^{2\beta} - (1-M_{0})^{2\beta}}{(1+M_{0})^{2\beta} + (1-M_{0})^{2\beta}}.$$
 (15)

График функции $M_0(b)$ приведен на рис. 2 (кривая 1). При T > 0 спонтанная намагниченность возникает при концентрации, превышающей значение $b_K = b_c(1 + \eta)/(1 - \eta) = b_c \operatorname{cth}(K)$ [4] (рис. 2 кривые 2 и 3).

В области III на рис. 1 основное состояние системы не является ферромагнитным, что, как уже было сказано, делает невозможным применение уравнений (13) или (14) в этой области. На границе об-

Рис. 3. Намагниченность разбавленного изинговского антиферромагнетика на решетке Бете (q = 4) во внешнем поле H = -qJ как функция концентрации магнитных атомов (или связей). Кривая $1 - \eta = \infty$, кривая $2 - \eta = 10/3$ и кривая $3 - \eta = 2$ $(\eta = \exp(-2K))$

ластей I и III (линия 2 на рис. 1) пр
и $T \to 0$ намагниченность Mстремится к значению

$$\widetilde{M}_0 = \frac{1 - y^q}{1 + y^q}$$

где у определяется из уравнения

$$(2-b)y^q + y - b = 0.$$
 (16)

График функции $\widetilde{M}_0(b)$ приведен на рис. 3 (кривая 1). При q = 2 и b = 1, т.е. для одномерной изинговской цепочки без немагнитного разбавления, из (16) получается результат, совпадающий с полученным в работе [9]. При T > 0 намагниченность на линии 2 диаграммы рис. 1 монотонно падает с ростом концентрации b, так и температуры T (кривые 2 и 3 на рис. 3), т.е. в этой области не происходит ни концентрационных, ни температурных фазовых переходов.

4. РЕЗУЛЬТАТ РАСЧЕТА

Проведем теперь, основываясь на выражениях (9) и (10), расчет свободной энергии и энтропии разбавленного изинговского магнетика на решетке Бете в псевдохаотическом приближении. Перейдем в (9) к переменной x:

$$\frac{f(x_0,K)}{qkT} = -\frac{1}{2}bK - x_0 + \int_{x_0}^{\infty} (M(x) - 1) \, dx \qquad (17)$$

и, используя $dx=dw-\beta dz=dw-\beta({\rm arcth}(M))'dM,$ получим

$$\frac{f(x_0, K)}{qkT} = -\frac{1}{2}bK - x_0 + \int_{w_0}^{\infty} (M(w) - 1) \, dw - \beta \int_{M_0}^{1} (M - 1)(\operatorname{arcth}(M))' \, dM$$

или (отбрасывая после интегрирования индекс «0»)

$$\frac{f(w,K)}{qkT} = -\frac{1}{2}Kb - x + w - \psi(w) - \beta \ln(1+M) - \left(1 - \frac{b}{2} - \beta\right) \ln 2.$$

Используя равенство $w-x=\beta \operatorname{arcth}(M),$ окончательно запишем

$$\frac{f(w,K)}{qkT} = -\frac{1}{2}Kb - \psi(2) - \frac{\beta}{2}\ln(1-M^2) - \left(1 - \frac{b}{2} - \beta\right)\ln 2. \quad (18)$$

При b = 1 (18) приводится к виду

$$\frac{f(w,K)}{kT} = -\frac{qK}{2} + \frac{1}{2}(q-2)\ln(2\operatorname{ch}(2w) + 2\eta) - \frac{1}{2}(q-1)\ln(1+2\eta\operatorname{ch}(2w) + \eta^2),$$

что совпадает (после перехода к соответствующим переменным) с результатом, полученным в [1] для чистого магнетика на решетке Бете. Поскольку при $T \rightarrow 0$ удельная свободная энергия f совпадает с удельной энергией основного состояния u_0 , из (18) получим

$$u_{0} = \frac{1}{2}bqJ - \\ -\lim_{T \to 0} \left(qkT\psi(w) + \frac{\beta}{2}qkT\ln(1-M^{2})\right). \quad (19)$$

Вычисляя входящий в (19) предел, можно показать, что в областях I и II (рис. 1) и на их границе 1

$$u_0 = -\frac{1}{2}bqJ - |H|,$$

т.е. энергия основного состояния совпадает с минимально возможной энергией на один атом u_{min} . В работе [10] используется количественная мера фрустрации, равная

$$p_f = \frac{u_0 - u_{min}}{u_{max} - u_{min}},\tag{20}$$

где $u_{max} = -u_{min}$. Таким образом, во всех внутренних точках областей I и II и линии 1 на фазовой диаграмме (рис. 1) мера (20) равна нулю. Однако, как будет показано ниже, энтропия на линии 1 не равна нулю при $T \to 0$, если $b \neq 1$. На линиях 2 и 3 диаграммы и (19) получим

$$u_0 = qJ\left(1 - \frac{b}{2}\right),$$
$$u_{min} = qJ\left(1 + \frac{b}{2}\right),$$

что в соответствии с (20) приводит к

$$p_f = \frac{b}{b+2}.\tag{21}$$

Таким образом, в соответствии с критерием (21) на границах 2 и 3 диаграммы рис. 1 система оказывается фрустрированной, причем максимальное значение, равное 1/3 (21), принимает для чистого магнетика b = 1.

Энтропию разбавленного магнетика можно теперь получить, дифференцируя свободную энергию (19) по температуре или непосредственно по формуле (8):

$$s(H_0,T) = -\int_{H_0}^{\infty} \frac{\partial M(H,T)}{\partial T} \, \partial H.$$

Переходя к переменным x и K и учитывая, что

$$\frac{\partial x}{\partial T} = -\frac{x}{T}, \quad \frac{\partial K}{\partial T} = -\frac{K}{T},$$

получим

$$\frac{s(x_0, K)}{qk} = \int_{x_0}^{\infty} \left(X \frac{\partial M}{\partial x} + K \frac{\partial M}{\partial K} \right) dx =$$
$$= (I_1 + I_2)|_{x_0}^{\infty}, \quad (22)$$
$$I_1 = \int X \frac{\partial M}{\partial x} dx, \quad I_2 = \int K \frac{\partial M}{\partial K} dx;$$
$$I_1 = \int W \frac{\partial M}{\partial x} \partial x - \beta \int \operatorname{arcth}(M) \frac{\partial M}{\partial x} \partial x$$

или

$$I_1 = (1-b)w \operatorname{th}(w) + \frac{bw \operatorname{sh}(2w)}{\operatorname{ch}(2w) + \eta} - \psi(w) - \frac{\beta}{2}((1+M)\ln(1+M) + (1-M)\ln(1-M)).$$

Для вычисления I_2 перейдем в этом интеграле к переменной w. Тогда

$$I_2 = K \int \frac{\partial M}{\partial K} dw = -\frac{bK\eta}{\operatorname{ch}(2w) + \eta}.$$

Таким образом, удельная энтропия разбавленного магнетика вычисляется так:

$$\frac{s(x,K)}{qk} = \left(1 - \frac{b}{2} - \beta\right)\ln(2) - I,\qquad(23)$$

где

$$I = (1-b)w \operatorname{th}(w) + \frac{b(w \operatorname{sh}(2w) - K\eta)}{\operatorname{ch}(2w) + \eta} - \psi(w) - \frac{\beta}{2}((1+M)\ln(1+M) + (1-M)\ln(1-M)).$$

Из (23) следует, что во всех внутренних точках областей I и II на фазовой диаграмме (рис. 1) энтропия при T = 0 обращается в нуль.

При H = 0 (x = 0) параметр w равен нулю, если

$$b < b_K = b_c \frac{(1+\eta)}{(1-\eta)}.$$

В этом случае энтропия

$$\frac{s(0,K)}{k} = \left(1 - \frac{qb}{2}\right)\ln(2) + \frac{qb}{2}\left(\ln(1+\eta) - \frac{\eta\ln(\eta)}{1+\eta}\right).$$

Если же $b > b_K$, то энтропия как функция концентрации магнитных атомов может быть вычислена из выражений (13) и (23) следующим образом:

$$\frac{s(0,K)}{k} = \left(1 - \frac{qb(w)}{2}\right)\ln(2) - qI(w),$$

$$b(w) = \frac{\operatorname{sh}(b_c w)}{\operatorname{sh}(w)} \frac{\operatorname{ch}(2w) + \eta}{(1 - \eta)\operatorname{ch}((1 + b_c)w)},$$

$$M(w) = \operatorname{th}((1 + b_c)w).$$

На рис. 4 показаны графики удельной энтропии (в единицах k) в зависимости от концентрации магнитных атомов (связей) при различных температурах. Кривая 1 — энтропия основного состояния (T = 0). Кривые 2 и 3 — энтропии при значениях температурного параметра $\eta = \exp(-2J/kT)$ равного соответственно 0.15 и 0.35. При b = 0, когда система представляет собой парамагнетик в нулевом внешнем поле, энтропия при любой температуре равна $\ln(2)$, а при b > 0 монотонно падает с ростом b. При T > 0 энтропия как функция концентрации b

Рис. 4. Энтропия разбавленного изинговского ферромагнетика на решетке Бете (q = 4) в нулевом внешнем поле как функция концентрации магнитных атомов (или связей). Кривая $1 - \eta = 0$, кривая $2 - \eta = 0.15$ и кривая $3 - \eta = 0.35$ $(\eta = \exp(-2K))$

имеет, как видно на рис. 4, разрыв первой производной при $b = b_K$ (кривые 2 и 3 на рис. 4). При T = 0такого разрыва нет (кривая 1 на рис. 4).

В соответствии с критерием (20) на линии 1 диаграммы состояния (рис. 1) система не является фрустрированной. Однако авторы работы [11] полагают, что фрустрированным можно считать состояние, в котором энтропия при T = 0 не равна нулю. Если следовать этому критерию, то система на линии 1 (рис. 1) будет фрустрированной при b < 1.

Рассмотрим энтропию на линиях 2 и 3 диаграммы рис. 1. На линии 2 выполняется условие K+x = 0. Учитывая это условие, найдем предел (23) при $T \to 0$, который после некоторых преобразований, можно представить в виде

$$\widetilde{S}_0 = \frac{bq}{2}\ln\frac{b}{y} + \left(1 - \frac{2-b}{2}q\right)\ln\frac{2-y}{2-b},\qquad(24)$$

где y определяется из уравнения (16). График $\tilde{S}_0(b)$ приведен на рис. 5 (кривая 1).

При b = 1 и q = 2

$$\widetilde{S}_0 = \ln \frac{\sqrt{5}+1}{2},$$

что совпадает с расчетом, проведенным в работе [9], авторы которой используют метод трансферматрицы для одномерной цепочки спинов. На этом же рисунке приведены графики концентрационной зависимости энтропии при ненулевых значениях температуры (кривые 2 и 3, рис. 5).

Рис. 5. Энтропия разбавленного изинговского антиферромагнетика на решетке Бете (q = 4) во внешнем поле H = -qJ как функция концентрации магнитных атомов (или связей). Кривая $1 - \eta = \infty$, кривая $2 - \eta = 10/3$ и кривая $3 - \eta = 2$ $(\eta = \exp(-2K))$

5. ЗАКЛЮЧЕНИЕ

Таким образом, учет немагнитного разбавления в псевдохаотическом приближении [4] позволяет рассчитать не только концентрационную зависимость намагниченности (рис. 2 и 3), но и энтропию (рис. 4 и 5) и свободную энергию разбавленного магнетика на произвольной решетке Бете. Анализ концентрационной зависимости энтропии показывает, что при J > 0 и H = 0 (линия 1 на диаграмме рис. 1) и нулевой температуре энтропия не равна нулю, убывает с ростом b и не имеет разрыва первой производной по b (кривая 1 на рис. 4) во всем интервале концентраций. Но при ненулевой температуре имеется разрыв первой производной при $b = b_K$, т. е. при значении b, соответствующем возникновению спонтанной намагниченности.

Наш расчет показывает (рис. 4) что даже при T = 0 (кривая 1) энтропия линии 1 не обращается в нуль, что по мнению некоторых авторов [9,11] может считаться критерием фрустрированности системы. Впрочем следует отметить, что отличие энтропии основного состояния от нуля в нулевом внешнем поле имеет в данном случае «парамагнитную» природу — при немагнитном разбавлении в системе

возникают изолированные «островки» спинов, которые могут менять свою спонтанную намагниченность без изменения энергии. Согласно критерию фрустрированности (20) [10], который на линии 1равен нулю при любом b, состояние системы в этой области нельзя считать фрустрированным.

Если J < 0 (антиферромагнитное обменное взаимодействие), но внешнее поле H = -qJ (линия 2 на диаграмме рис. 1), система оказывается фрустрированной и в смысле неравенства нулю остаточной энтропии (рис. 5, кривая 1) и в смысле критерия (20). В этой области нет ни концентрационных, ни температурных фазовых переходов.

ЛИТЕРАТУРА

- Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, Москва (1985).
- Р. Фольк, Ю. Головач, Т. Яворский, УФН 173, 175 (2003).
- А. К. Муртазаев, А. Б. Бабаев, Г. Я. Азнаурова, ФТТ 50, 703 (2008).
- С. В. Сёмкин, В. П. Смагин, Приближенные методы в теории чистых и разбавленных магнетиков, ВГУЭС, Владивосток (2019).
- С. В. Сёмкин, В. П. Смагин, Е. Г. Гусев, ТМФ 201, 280 (2019).
- **6**. С. В. Сёмкин, В. П. Смагин, ФТТ **57**, 926 (2015).
- **7**. С. В. Сёмкин, В. П. Смагин, ЖЭТФ **148**, 729 (2015).
- 8. И. А. Квасников, *Термодинамика и статистичес*кая физика: *Теория равновесных систем*, Едиториал УРСС, Москва (2002).
- Е. С. Цуварев, Ф. А. Кассан-Оглы, А. И. Прошкин, ЖЭТФ 158, 504 (2020).
- Y. Shevchenko, A. Makarov, and K. Nefedev, Phys. Lett. A 381, 428 (2017).
- **11**. А. В. Зарубин, Ф. А. Кассан-Оглы, А. И. Прошкин и др., ЖЭТФ **155**, 914 (2019).

ФАЗОВЫЕ ПЕРЕХОДЫ В ДВУМЕРНЫХ МОДЕЛЯХ ПОТТСА НА ГЕКСАГОНАЛЬНОЙ РЕШЕТКЕ

A. K. Mypmasaee^a, A. E. Eafaee^{a,b^*}

^а Институт физики им. Х. И. Амирханова Дагестанского федерального исследовательского центра Российской академии наук 367003, Махачкала, Россия

^b Дагестанский федеральный исследовательский центр Российской академии наук 367000, Махачкала, Россия

> Поступила в редакцию 31 января 2022 г., после переработки 5 февраля 2022 г. Принята к публикации 7 февраля 2022 г.

Методом компьютерного моделирования проведены исследования фазовых переходов в двумерных моделях Поттса с числом состояний спина q = 4 и q = 5 на гексагональной решетке. Рассмотрены системы с линейными размерами L, где L = 21-180. Полученные численные данные свидетельствуют о том, что в двумерной модели Поттса на гексагональной решетке наблюдается фазовый переход первого рода для числа состояний спина q = 5 и фазовый переход второго рода при q = 4.

DOI: 10.31857/S0044451022060086 **EDN:** DUMNTF

1. ВВЕДЕНИЕ

Фазовые переходы ($\Phi\Pi$) и связанные с ними критические явления чрезвычайно широко распространены в конденсированных средах. При определенных условиях во всех конденсированных средах происходят один или несколько фазовых переходов. На разработку эффективной теории фазовых переходов и критических явлений были затрачены колоссальные усилия, и к настоящему моменту времени в этом направлении достигнут существенный прогресс [1]. Флуктуационная теория фазовых переходов, а также идеи, заложенные в гипотезах скейлинга, универсальности и в теории ренормализационной группы лежат в основе современного понимания физики этих явлений [2,3].

Следует отметить, что большой успех в теоретическом исследовании ФП имеет изучение точно решаемых моделей, которые обладают нетривиальным поведением, претерпевая ФП первого или второго рода, и в то же время позволяют получить точную статистическую сумму. Такие модели обычно не допускают непосредственного сравнения с экспериментом, но полезны для понимания физики фазо-

вого перехода [4]. К настоящему времени получено несколько точно решаемых моделей, среди которых двумерная модель Изинга на квадратной [5], треугольной и гексагональной [6] решетках и на решетке кагоме [7]. В то же время, несмотря на огромные усилия, затраченные в этой области, для моделей Поттса до сегодняшнего дня не имеется ни одного точного решения. Изучение магнитных и тепловых свойств этих моделей на различных двумерных решетках имеет важное фундаментальное и прикладное значение. Это связано с тем, что многие объекты и явления, наблюдаемые в физике конденсированных сред, в частности, интеркаляция атомов шелочных металлов в решетку графита, описываются моделью Поттса с числом состояний спина q = 4, а адсорбция инертных газов на адсорбентах типа графита достаточно хорошо описывается низкоразмерными моделями Поттса с q = 4 и q = 5 на треугольной и гексагональной решетках [8,9], и их исследование к настоящему времени является своевременным. Модель Поттса на квадратной решетке эквивалентна модели типа льда на линии ФП, и для нее в работе [10] вычислена свободная энергия. Кроме того, для модели Поттса на квадратной, треугольной и гексагональной решетках, исходя из аргумента дуальности, получены полиномиальные выражения, позволяющие получить значения критических

^{*} E-mail: b albert78@mail.ru

ЖЭТФ, том **161**, вып. 6, 2022

точек [11, 12]. Отдельно модель Поттса с q = 4 интересна тем, что значение q = 4 является граничным, выше которого должен наблюдаться ФП первого рода. Однако к настоящему моменту при изучении этой модели внимание в основном уделялось системам на квадратной и треугольной решетках, и особенности критического и термодинамического поведения этой модели на гексагональной решетке практически не изучались.

2. МОДЕЛЬ И МЕТОД ИССЛЕДОВАНИЯ

При построении модели Поттса, в частности с числом состояний спина q = 4, необходимо иметь в виду следующие особенности: в узлах гексагональной решетки расположены спины S_i , которые могут ориентироваться в четырех симметричных направлениях гипертетраэдра в пространстве размерности q-1, так что углы между любыми двумя направлениями спинов равны (см. рис. 1); энергия связи между двумя узлами равна нулю, если они находятся в разных состояниях (безразлично, в каких именно) и равна J, если взаимодействующие узлы находятся в одинаковых состояниях (опять же все равно, в каких именно). С учетом этих особенностей микроскопический гамильтониан такой системы может быть представлен в виде [9]

$$H = -\frac{J}{2} \sum_{i,j} \delta(S_i S_j), \quad S_i = 1, 2, 3, 4, 5, \qquad (1)$$

где

$$\delta(S_{i,j}) = \begin{cases} 1, & \text{если } S_i = S_j, \\ 0, & \text{если } S_i \neq S_j. \end{cases}$$

Рис. 1. Двумерная модель Поттса с числом состояний спина q = 4 на гексагональной решетке

Исследования проводились на основе высокоэффективного кластерного алгоритма Вольфа [13]. Методика реализации этого алгоритма приведена в работе [14]. Расчеты проводились для систем с периодическими граничными условиями для систем с линейными размерами L = 10-180 и числом узлов $N = 2 \times p \times L \times L/3$. Изначально конфигурации задавались таким образом, чтобы все спины были упорядочены вдоль одной из осей X, Y или Z. Усреднение термодинамических параметров осуществлялось по трем независимым марковским цепям, каждая из которых стартует из разных случайных начальных конфигураций. Причем для контроля точности вычислений число случайных начальных конфигураций доводилось и до десяти. Для вывода системы в равновесное состояние отсекался неравновесный участок длиной τ_0 для системы с линейными размерами L. Этот неравновесный участок отбрасывался. В каждой цепи усреднение проводилось по участку марковской цепи длиной $\tau = 160\tau_0$. Для самой большой системы $L = 180, \tau_0 = 2 \cdot 10^3$ МК шагов/спин. В конце полученные данные по независимым марковским цепям усреднялись и между собой.

3. РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

Наблюдение за температурным ходом энергии U, намагниченности m_F , теплоемкости C и восприимчивости χ осуществлялось с использованием следующих выражений [15,16]:

$$U = \frac{1}{N} [\langle U \rangle], \tag{2}$$

$$m_F = \frac{q \left(N_{max}/N \right) - 1}{q - 1},\tag{3}$$

$$C(T) = (NK^2) \left(\left\langle U^2 \right\rangle - \left\langle U \right\rangle^2 \right), \tag{4}$$

$$\chi = (NK) \left(\left\langle m_F^2 \right\rangle - \left\langle m_F \right\rangle^2 \right), \tag{5}$$

где $K = |J|/k_BT$), $N_{max} = \max[N_1, N_2, N_3, N_4, N_5]$, N_i — число спинов в состоянии с q = i, N — число узлов решетки, угловые скобки обозначают термодинамическое усреднение.

На рис. 2 представлены температурные зависимости энергии U для моделей Поттса с числом состояний спина q = 4 и q = 5 для спиновых систем с линейными размерами L = 45. Здесь и далее на всех рисунках погрешность данных не превышает

Рис. 2. Температурная зависимость энергии U для двумерных моделей Поттса

Рис. 3. Температурная зависимость восприимчивости χ для двумерных моделей Поттса

размеров символов, используемых для обозначения зависимости. Как видно на рис. 2, температурные зависимости энергии для модели Поттса с q = 5 демонстрируют поведение, характерное для фазового перехода первого рода (в точке фазового перехода T_l проявляется отчетливый скачок энергии), в то время как для модели Поттса с q = 4 такого скачка не проявляется. На рис. 3 и 4 представлены характерные температурные зависимости восприимчивости χ и теплоемкости C для спиновых систем, описываемых двумерными моделями Поттса с q = 4 и q = 5 на гексагональной решетке. Как видно на рис. 3 и 4,

Рис. 4. Температурная зависимость теплоемкости *С* для двумерных моделей Поттса

в зависимостях восприимчивости χ и теплоемкости C от температуры T для двумерной модели Поттса с q = 5 в точке фазового перехода проявляются «всплески», которые характерны для фазового перехода первого рода. В случае модели Поттса с q = 4 такие резкие «всплески» не наблюдаются. При компьютерном моделировании ФП для определения температуры фазового перехода T_l часто используют метод кумулянтов Биндера четвертого порядка [17,18]:

$$V_L(T,p) = 1 - \frac{\langle E^4 \rangle}{3 \langle E^2 \rangle_L},\tag{6}$$

$$U_L(T,p) = 1 - \frac{\left\langle m_F^4 \right\rangle}{3 \left\langle m_F^2 \right\rangle_L},\tag{7}$$

где E — энергия, и m_F — намагниченность системы с линейным размером L. Выражения (6) и (7) позволяют определить температуру фазового перехода $T_l(p)$ с большой точностью соответственно в фазовых переходах первого и второго рода. Так же данный метод хорошо зарекомендовал себя и при определении рода ФП. Анализ численных данных с применением этого метода представлен в работах [19–22]. Отличительные черты, характерные для ФП [23]: для ФП первого рода характерно то, что усредненная величина $V_L(T, p)$ стремится к некоторому нетривиальному значению V^* согласно выражению

$$V_L(T,p) = V^* + bL^{-d}$$
(8)

Рис. 5. Температурная зависимость кумулянтов Биндера $V_L(T)$ для двумерной модели Поттса с числом состояний спина q = 5 на гексагональной решетке

Рис. 6. Температурная зависимость кумулянтов Биндера $U_L(T)$ для двумерной модели Поттса с числом состояний спина q=5 на гексагональной решетке

при $L \to \infty$ и $T = T_l(L)$, где $V^* \neq 2/3$, что и продемонстрировано на рис. 5 (см. вставку) для модели Поттса с q = 5. Характерные зависимости кумулянтов Биндера $U_L(T)$ для двумерной феромагнитной модели Поттса с q = 5 от температуры для систем с разными линейными размерами L приведены на рис. 6. Как видно на рис. 6, кумулянты Биндера не имеют ярко выраженной точки пересечений в области фазового перехода, что является характерным признаком ФП первого рода. В то же время для модели Поттса с q = 4 наблюдается противоположная

Рис. 7. Температурная зависимость кумулянтов Биндера $V_L(T)$ для двумерной модели Поттса с числом состояний спина q = 4 на гексагональной решетке

Рис. 8. Температурная зависимость кумулянтов Биндера $U_L(T)$ для двумерной модели Поттса с числом состояний спина q = 4 на гексагональной решетке

картина: усредненная величина кумулянта Биндера $V_L(T)$ (см. рис. 7) при $L \to \infty$ и $T = T_l(L)$, V^* стремится к 2/3, что характерно для ФП второго рода, а температурные зависимости $U_L(T)$ в критической области пересекаются в одной точке T_l , что также закономерно для ФП второго рода (см. рис. 8). Как видно на рис. 8, температура ФП $T_l = 0.620$ в единицах J/k_B и достаточно хорошо согласуется с аналитическим значением $T_l = 1/\ln(5) \approx 0.6213$, полученным по формуле $T_l = 1/\ln(1 + v)$, в которой v = 4 согласно полиномиальному выражению $q^2 + v$

Рис. 9. Гистограмма распределении энергии двумерной модели Поттса с числом состояний спина q = 5 на гексагональной решетке при $T = T_l$

 $+ 3qv = v^3$, выведенному из соображений дуальности гексагональной решетки [12].

Отдельно нами проводился гистограммный анализ данных для моделей Поттса с q = 4 и q = 5 на гексагональной решетке. В гистограммном анализе данных вероятность обнаружения системы со значением энергии U и параметром порядка m_F определяется выражением [24]

$$\overline{P(U, m_F)} = \frac{1}{Z(K)} W(U, m_F) \exp[KU], \qquad (9)$$

где $W(U, m_F)$ — число конфигураций с энергией Uи параметром порядка m_F , Z(K) — функция распределения энергии всей системы, а K — обратная температура.

Гистограммный анализ данных, проведенный нами для двумерной ферромагнитной модели Поттса с числом состояний спина q = 5 на гексагональной решетке, также свидетельствует о наличии $\Phi\Pi$ первого рода. Это продемонстрировано на рис. 9 для спиновой системы с линейным размером L = 120. На этом рисунке представлены гистограммы распределения энергии для трех различных значений температуры вблизи T_l . Как видно на рисунке, на зависимости вероятности Р от энергии системы U наблюдаются два хорошо выраженных максимума для всех рассмотренных значений температур. Наличие бимодальности в распределении энергии является достаточным признаком ФП первого рода. Соответствующий гистограммный анализ данных был проведен и для двумерной ферромагнитной модели Поттса с q = 4 на гексагональной решетке вблизи

Рис. 10. Гистограмма распределении энергии для двумерной модели Поттса с числом состояний спина q=4 на гексагональной решетке при $T=T_l$

точки фазового перехода T_l , но бимодальность в гистограмме распределения энергии для этой модели обнаружить не удалось. В этом случае в зависимости вероятности P от энергии системы U с достаточно большим линейным размером L для трех различных значений температуры вблизи T_l наблюдается один хорошо выраженный максимум (см. рис. 10), что характерно для $\Phi\Pi$ второго рода.

Таким образом, напи данные, полученные на основе метода кумулянтов Биндера четвертого порядка и методом гистограммного анализа данных, свидетельствуют о том, что в двумерной ферромагнитной модели Поттса с q = 5 наблюдается ФП первого рода в соответствии с предсказаниями аналитических теорий [9,12], в то время как в случае модели Поттса с $q = 4 - \Phi\Pi$ второго рода. Выяснение рода ФП в рассмотренных нами моделях Поттса в зависимости от немагнитного беспорядка — предмет отдельного исследования.

4. ЗАКЛЮЧЕНИЕ

В данной работе с соблюдением единой методики на основе метода Монте-Карло рассмотрены фазовые переходы в двумерных ферромагнитных моделях Поттса с числом состояний спина q = 4 и q = 5на гексагональной решетке. Полученные данные в результате наших исследований свидетельствуют о том, что в двумерной модели Поттса с q = 5 на гексагональной решетке наблюдается фазовый переход первого рода в соответствии с предсказаниями аналитических теорий [9], а в модели Поттса с q = 4 -ФП второго рода. Финансирование. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-02-00153.

ЛИТЕРАТУРА

- 1. Г. Стенли, Фазовые переходы и критические явления, Мир, Москва (1973).
- А. З. Паташинский, В. А. Покровский, Флуктуационная теория фазовых переходов, Наука, Москва (1982).
- 3. Вик. С. Доценко, УФН 165, 481 (1995).
- И. К. Камилов, А. К. Муртазаев, Х. К. Алиев, УФН 169, 773 (1999).
- 5. L. Onsager, Phys. Rev. 65, 117 (1944).
- 6. R. M. F. Houtappel, Physica 16, 425 (1950).
- K. Kanô and S. Naya, Prog. Theor. Phys. 10, 158 (1953).
- 8. Г. В. Уймин, Письма в ЖЭТФ 35, 473 (1982).
- 9. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
- R. J. Baxter, J. Phys. C: Solid. State Phys. 6, L445 (1973).
- R. J. Baxter, H. N. V. Temperley, and S. E. Ashley, Proc. Roy. Soc. A 358, 535 (1978).

- 12. F. Y. Wu, Exactly Solved Models: A Journey in Statistical Mechanics, World Scientific, London (2009).
- 13. U. Wolff, Phys. Lett. 62, 361 (1989).
- A. B. Babaev and A. K. Murtazaev, Mathematical Models and Computer Simulations 11, 575 (2019).
- 15. Р. Бекстер, Точно решаемые модели в статистической механике, Мир, Москва (1985).
- P. Peczac, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).
- D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge (2014).
- 18. K. Eichhorn and K. Binder, J. Phys.: Condens. Matter 8, 5209 (1996).
- **19**. А. К. Муртазаев, А. Б. Бабаев, ЖЭТФ **159**, 1041 (2021).
- 20. A. K. Муртазаев, Α. Б. Бабаев, ΦΤΤ 63, 1644 (2021).
- 21. A. K. Murtazaev and A. B. Babaev, Mater. Lett. 258, 126771 (2020).
- 22. A. K. Murtazaev and A. B. Babaev, J. Magn. Magn. Mater. 440, 101 (2017).
- 23. D. Loison and K. D. Schotte, Euro. Phys. J. B 5, 735 (1998).
- 24. N. A. Alves, B. A. Berg and R. Villanova, Phys. Rev. B 41, 383 (1990).

МАГНИТНЫЙ РЕЗОНАНС В МЕТАЛЛ-ДИЭЛЕКТРИЧЕСКИХ НАНОГРАНУЛЯРНЫХ КОМПОЗИТАХ С ПАРАМАГНИТНЫМИ ИОНАМИ В ИЗОЛИРУЮЩЕЙ МАТРИЦЕ

А. Б. Дровосеков ^{а*}, Н. М. Крейнес^а, О. А. Ковалев^{а,b},

А. В. Ситников ^{с,d}, С. Н. Николаев ^d, В. В. Рыльков ^{d,e}

^а Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

^b Национальный исследовательский университет «Высшая школа экономики» 101000, Москва, Россия

> ^с Воронежский государственный технический университет 394026, Воронеж, Россия

^d Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

^е Фрязинский филиал Института радиотехники и электроники им. В. А. Котельникова Российской академии наук 141190, Фрязино, Московская обл., Россия

> Поступила в редакцию 9 марта 2022 г., после переработки 9 марта 2022 г. Принята к публикации 10 марта 2022 г.

Методом магнитного резонанса при комнатной температуре исследованы спектры пленок металлдиэлектрических наногранулярных композитов $(CoFeB)_x(LiNbO_3)_{100-x}$ и $(CoFeB)_x(Al_2O_3)_{100-x}$ с различным содержанием ферромагнитной металлической фазы x вблизи порога перколяции. Особенностью изучаемых систем является высокая концентрация парамагнитных ионов, диспергированных в матрице изолятора между ферромагнитными гранулами. Обнаружено, что в таких пленках помимо обычного сигнала ферромагнитного резонанса, в более слабых полях наблюдается дополнительный пик поглощения. В отличие от обычного ферромагнитного резонанса, возбуждаемого поперечным высокочастотным магнитным полем, дополнительный пик демонстрирует слабую зависимость амплитуды от геометрии возбуждения резонанса. Положение этого пика зависит от состава нанокомпозита, а также от частоты возбуждения резонанса (f = 7-38 ГГц) и ориентации магнитного поля относительно плоскости пленки. Наблюдаемая особенность связывается с парамагнитным резонансом ионов Fe³⁺, присутствующих в матрице изолятора и взаимодействующих с ферромагнитными гранулами.

DOI: 10.31857/S0044451022060098 **EDN:** DUMVIC

1. ВВЕДЕНИЕ

Магнитные металл-диэлектрические нанокомпозиты (HK) $M_x D_{100-x}$ представляют собой массив ферромагнитных (ФМ) наногранул, хаотически расположенных в диэлектрической матрице. Такие системы интересны возможностью реализации в них различных типов магнитного упорядочения в зависимости от содержания ФМ-фазы x. Так, выше порога перколяции, $x > x_p$, сильное обменное взаимодействие между гранулами приводит к ФМ-упорядочению НК. Ниже порога перколяции, $x < x_p$, межгранульный обмен, как правило, резко падает и НК начинает проявлять суперпарамагнитные свойства. При этом наличие беспорядочных магнитодипольных взаимодействий между гранулами может приводить к возникновению эффектов спинового стекла в области низких температур [1].

^{*} E-mail: drovosekov@kapitza.ras.ru

Особый интерес представляют НК, для которых существенная часть металлической фазы оказывается «растворенной» в виде отдельных атомов в изолирующем пространстве между ФМ-гранулами. Наличие таких диспергированных атомов может приводить к существенному усилению электронного туннелирования между гранулами ниже порога перколяции x_p . В этой ситуации можно ожидать роста межгранульных обменных взаимодействий, проявления эффектов суперферромагнитного упорядочения и сдвига перехода к суперпарамагнитному поведению гранулированной системы в область более низких содержаний металла, $x < x_p$ [1,2].

Примером подобных систем являются наногранулярные композиты $(CoFeB)_x(LiNbO_3)_{100-x}$ и $(CoFeB)_x(Al_2O_3)_{100-x}$, свойства которых изучались нами в последние несколько лет [2] (здесь и далее сокращение CoFeB обозначает ФМ-сплав Со₄₀Fe₄₀B₂₀). Наличие высокой концентрации парамагнитных (ПМ) ионов в тонких пленках таких НК подтверждалось резким ростом их магнитной восприимчивости в области низких температур. Исследования электропроводности пленок показали, что с увеличением содержания в них металлической ФМ-фазы х переход изолятор-металл происходит при концентрациях x_c заметно ниже порога перколяции x_p. При этом в области концентраций $x_c < x < x_p$ НК демонстрируют необычную логарифмическую температурную зависимость проводимости, $\sigma \propto \ln T$, что можно объяснить в рамках модели [3] наличием сильной туннельной связи между гранулами. Для системы $(CoFeB)_x(LiNbO_3)_{100-x}$ такое поведение наблюдалось при концентрациях $x \approx 43-48$ ат. %, а для системы (CoFeB)_x(Al₂O₃)_{100-x} — при $x \approx 49-56$ ат. %.

В работе [4] методом ферромагнитного резонанса (ФМР) при комнатной температуре исследовались свойства пленок (CoFeB)_x(LiNbO₃)_{100-x} с различной концентрацией x. Оказалось, что существенное изменение формы линии ФМР пленок происходит при переходе через границу $x_c \approx 43$ ат. %, которая соответствует переходу изолятор-металл в изучаемой системе. Было показано, что при $x < x_c$ форма линии ФМР определяется неоднородностью пленок из-за разброса магнитной анизотропии гранул. При $x > x_c$ поведение ширины линии ФМР описывалось в рамках модели двухмагнонного рассеяния, свидетельствуя о формировании магнитно-однородной пленки.

Наблюдаемые особенности можно объяснить высокой концентрацией ионов Fe и Co, диспергированных в матрице LiNbO₃. Наличие таких ионов приводит к существенному усилению межгранульного туннелирования выше $x_c \approx 43$ ат. %, что сопровождается также значительным ростом обменных взаимодействий между гранулами и изменением механизмов магнитной релаксации НК при переходе через границу $x_c \approx 43$ ат. %.

Косвенное подтверждение наличия ПМ-ионов, диспергированных в матрице диэлектрика и обменно-связанных с ФМ-подсистемой, было также обнаружено в работе [5] при исследовании температурной зависимости ФМР пленок (CoFeB)_x(LiNbO₃)_{100-x}. В области низких температур пик ФМР демонстрировал особенности поведения, характерные для так называемого эффекта медленной ионной релаксации, проявляющегося при наличии в системе взаимодействующих ФМ- и ПМ-подсистем.

В настоящей работе проводятся детальные исследования магнитного резонанса при комнатной температуре для HK-систем (CoFeB)_x(LiNbO₃)_{100-x} и (CoFeB)_x(Al₂O₃)_{100-x}. Помимо обычного сигнала ФМР мы сообщаем о наблюдении дополнительного более слабого резонансного пика, который может являться прямым свидетельством наличия ПМ-ионов в матрице изолятора и их обменного взаимодействия с ФМ-гранулами.

2. ОБРАЗЦЫ

Пленки НК $M_x D_{100-x}$ толщиной около 1 мкм синтезированы методом ионно-лучевого распыления на ситалловых подложках с использованием составных мишеней из литых пластин сплава $Co_{40}Fe_{40}B_{20}$ и оксидов Al_2O_3 , либо LiNbO₃ (подробности см. в [2,6]).

Структурные исследования пленок, выполненные методами электронной микроскопии, показали, что НК представляет собой ансамбль кристаллических наногранул сплава СоFe с ОЦК-структурой, находящихся в аморфной оксидной матрице [7, 8]. В случае НК (СоFeB)_x(Al₂O₃)_{100-x} гранулы имеют округлую форму с диаметром 2–4 нм, тогда как в НК (СоFeB)_x(LiNbO₃)_{100-x} гранулы оказываются вытянутыми в направлении роста НК до 10–15 нм при поперечных размерах 2–4 нм.

Отметим, что согласно результатам [7,8] значительная часть Со, Fe и B присутствует в диэлектрической матрице в виде отдельных атомов. В этой ситуации используемое значение x для концентрации ФМ-фазы CoFeB лишь отражает номинальный ато-

Рис. 1. Схема измерения (*a*) и два вида используемой геометрии возбуждения резонанса в пленке (*б*,*в*)

марный состав НК. При этом количество изолированных магнитных ионов, находящихся вне ФМ-гранул, сопоставимо с числом таких ионов в самих гранулах.

Магнитный резонанс НК (CoFeB)_x(LiNbO₃)_{100-x} изучался в диапазоне концентраций ФМ-фазы x == 32–48 ат. %, а для НК (CoFeB)_x(Al₂O₃)_{100-x} — в диапазоне концентраций x = 47-56 ат. %. Исследуемые образцы пленок имели прямоугольную форму размером около 5 × 5 мм², либо форму двойного холловского креста на подложках размером около 4 × 6 мм² [6].

3. МЕТОДИКА ЭКСПЕРИМЕНТА

Магнитный резонанс исследовался при комнатной температуре в диапазоне частот 7–38 ГГц на лабораторном спектрометре проходного типа (рис. 1*a*). Образец размещался внутри полого резонатора между полюсами электромагнита, создающего горизонтальное магнитное поле до 17 кЭ. При этом поворотом магнита вокруг вертикальной оси можно было менять направление поля в горизонтальной плоскости (*xy*).

В качестве резонансной полости в области низких частот до 15 ГГц использовался прямоугольный резонатор, в котором возбуждалась одна из собственных мод E_{011} , E_{012} , E_{013} с частотами соответственно 7.65, 10.2 и 13.5 ГГц. На более высоких частотах применялся перестраиваемый цилиндрический резонатор, позволяющий непрерывно менять собственную частоту от 15 ГГц. При этом в диапазоне частот 15–27 ГГц в резонаторе возбуждалась одна из собственных мод H_{01n} (n = 1-4). На более высоких частотах $(f > 27 \Gamma \Gamma \mathfrak{q})$ использовались высшие моды колебаний, идентификация которых была затруднена.

При указанных условиях имелась возможность проводить эксперименты в двух геометриях (рис. 16, в). В первом случае (рис. 16) образец размещался в горизонтальной плоскости на дне резонатора вблизи пучности магнитного СВЧ-поля **h**. При этом внешнее поле **H** лежало в плоскости пленки, и поворотом магнита можно было изменять его ориентацию относительно **h**, т. е. непрерывно менять геометрию возбуждения резонанса от **h** \perp **H** (при $\varphi_H = 0$) до **h** \parallel **H** (при $\varphi_H = 90^\circ$).

Во втором случае (рис. 1*6*) образец размещался в вертикальной плоскости на боковой стенке прямоугольного резонатора, либо вблизи оси симметрии цилиндрического резонатора. В этой ситуации СВЧ-поле **h** ориентировано вертикально, а поворотом магнита можно изменять направление внешнего поля **H** относительно плоскости пленки (угол θ_H). При этом независимо от угла θ_H реализуется поперечная геометрия возбуждения резонанса **h** \perp **H**.

Для регистрации эффекта резонансного поглощения измерялась полевая зависимость сигнала на СВЧ-детекторе $U_{out}(H)$, пропорционального мощности, прошедшей через резонатор с образцом. На рис. 2a приведены примеры записей сигнала ФМР, наблюдаемого в виде провала на зависимости $U_{out}(H)$, для одного из образцов в геометрии рис. 16.

Отметим, что при $\mathbf{h} \perp \mathbf{H}$ в пике поглощения ФМР наблюдается сильное (в разы) падение сигнала U_{out} . В геометрии $\mathbf{h} \parallel \mathbf{H}$ пик ФМР существенно ослабевает, однако не исчезает полностью. Это связано со сложностью практической реализации строгого условия $\mathbf{h} \parallel \mathbf{H}$ из-за конечных размеров образца и неоднородности поля \mathbf{h} в резонаторе (особенно цилиндрическом).

Большая амплитуда сигнала ФМР в геометрии $\mathbf{h} \perp \mathbf{H}$ приводит к искажению формы кривой $U_{out}(H)$ по сравнению с высокочастотной восприимчивостью образца $\chi(H)$, которая характеризует поглощаемую в нем мощность $P \sim \chi f h^2$. В рассматриваемой схеме измерения восприимчивость χ связана с U_{out} соотношением $\chi \propto 1/\sqrt{U_{out}}$ (с точностью до постоянного слагаемого) [9]. На рис. 26 показаны кривые $\chi(H)$, полученные соответствующим пересчетом из экспериментальных кривых $U_{out}(H)$. Указанная процедура позволяет в значительной мере устранить искажение исходных спектральных ли-

Рис. 2. *а*) Экспериментальные записи сигнала ФМР в поперечной ($\mathbf{h} \perp \mathbf{H}$) и продольной ($\mathbf{h} \parallel \mathbf{H}$) геометрии возбуждения резонанса для пленки (CoFeB)₅₁($\mathrm{Al}_2\mathrm{O}_3$)₄₉ на частоте f = 20.4 ГГц. Штриховой линией показан спектр для $\mathbf{h} \parallel \mathbf{H}$ в увеличенном масштабе. δ) Нормированная высокочастотная восприимчивость $\chi \propto 1/\sqrt{U_{out}}$ в двух геометриях

ний. В частности, форма кривых $\chi(H)$ в геометриях $\mathbf{h} \perp \mathbf{H}$ и $\mathbf{h} \parallel \mathbf{H}$ практически совпадает, в отличие от исходных кривых $U_{out}(H)^{1}$.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

4.1. Пленки (CoFeB) $_x$ (LiNbO $_3$) $_{100-x}$

Исследования спектров магнитного резонанса пленочных НК в случае поля, ориентированного в плоскости пленки, показали, что помимо обычного сигнала ФМР в более слабых полях присутствует дополнительный пик поглощения. При этом, в отличие от обычного ФМР, возбуждаемого попереч-

Рис. 3. Экспериментальные спектры поглощения для образца (CoFeB)₃₂(LiNbO₃)₆₈ на частоте f = 25.0 ГГц при изменении геометрии возбуждения резонанса от поперечной (φ_H =0) до продольной (φ_H =90°)

ным СВЧ-полем, дополнительный пик демонстрирует слабую зависимость амплитуды от геометрии возбуждения резонанса. Наиболее ярко этот пик проявляется при продольном возбуждении резонанса, когда сигнал обычного ФМР существенно подавлен (рис. 3). Заметим, что наблюдаемая форма спектров поглощения не меняется при изменении мощности СВЧ-накачки в широком диапазоне порядка 30 дБ, что свидетельствует об отсутствии нелинейных эффектов при возбуждении резонанса.

Дополнительный пик наблюдается для всех образцов (CoFeB)_x(LiNbO₃)_{100-x} в диапазоне концентраций x = 32-48 ат. % (рис. 4). С увеличением содержания ФМ-фазы пик слегка сдвигается в сторону слабых полей. При этом происходит его уширение и уменьшение интенсивности, в отличие от обычного сигнала ФМР, интенсивность которого, наоборот, растет с увеличением x.

Положение дополнительного пика зависит как от частоты возбуждения резонанса, так и от ориентации поля относительно плоскости пленки. Далее на рис. 5–10 мы приводим экспериментальные данные для образца (CoFeB)₃₂(LiNbO₃)₆₈. Результаты для остальных пленок выглядят похожим образом.

В случае ориентации магнитного поля в плоскости пленки по мере увеличения частоты возбуждения резонанса дополнительный пик сдвигается в более высокие поля (рис. 5). В области низких частот он исчезает.

¹⁾ Небольшой сдвиг пика поглощения (~ 30 Э), наблюдаемый при изменении ориентации внешнего поля φ_H (рис. 2 δ), может быть связан с присутствием небольшой наведенной ростовой анизотропии в плоскости пленки. Этот эффект, однако, слаб, и в дальнейшем им можно пренебречь по сравнению с интересующими нас более сильными эффектами.

Рис. 4. Экспериментальные спектры поглощения для пленок (CoFeB)_x(LiNbO₃)_{100-x} (x = 32-48 ат. %) на частоте f = 24.5 ГГц в касательном поле при продольном возбуждении резонанса ($\mathbf{h} \parallel \mathbf{H}$). Для сравнения показаны спектры подложки при $\mathbf{h} \parallel \mathbf{H}$ и $\mathbf{h} \perp \mathbf{H}$

Результирующие частотно-полевые зависимости (рис. 6) для основного пика ФМР $f_1(H)$ хорошо описываются известной формулой Киттеля

$$f_1(H) = \gamma_1 \sqrt{H(H + 4\pi M)},\tag{1}$$

где гиромагнитное отношение γ_1 имеет значение $\gamma_1 \approx 2.97 \ \Gamma \Gamma \Pi / \kappa \Im$, типичное для сплавов CoFeB, а величина поля размагничивания $4\pi M$ зависит от содержания ФМ-фазы x. С ростом x от 32 до 48 ат. % величина $4\pi M$ монотонно увеличивается от 4.77 до 5.8 кЭ (см. также [4]).

Зависимость $f_2(H)$ для дополнительного пика имеет существенно другой характер. Она с хорошей точностью ложится на прямую линию:

$$f_2(H) = \gamma_2 H + f_0, \tag{2}$$

где эффективное гиромагнитное отношение $\gamma_2 \approx 6.0 \ \Gamma \Gamma \mu / \kappa \Im$ примерно в 2 раза больше обычного гиромагнитного отношения для электронного спина. Частота в нулевом поле f_0 слегка растет с увеличением концентрации ФМ-фазы — от $f_0 \approx 7.8 \ \Gamma \Gamma \mu$ при x = 32 ат. % до $f_0 \approx 9.0 \ \Gamma \Gamma \mu$ при x = 48 ат. %.

При отклонении магнитного поля из плоскости пленки дополнительный пик сдвигается в сторону высоких полей, аналогично обычному пику ФМР (рис. 7).

Рис. 5. Экспериментальные спектры поглощения для пленки $(CoFeB)_{32}(LiNbO_3)_{68}$ в касательном поле на разных частотах при продольном возбуждении резонанса $h \parallel H$. Для частоты f = 7.65 ГГц показан также спектр в случае $h \perp H$

В случае ориентации магнитного поля нормально пленке, так же как и в касательной геометрии, дополнительный пик возникает на частотах выше $f_0 \sim 10$ ГГц и по мере увеличения частоты сдвигается в высокие поля (рис. 8).

Результирующие частотно-полевые зависимости f(H) обоих наблюдаемых пиков для пленки (CoFeB)₃₂(LiNbO₃)₆₈ в нормальной геометрии показаны на рис. 9.

В области высоких частот зависимость $f_1(H)$ для пика ФМР описывается линейной функцией в соответствии с формулой Киттеля

$$f_1(H) = \gamma_1(H - 4\pi M) \tag{3}$$

(кривая 1 на рис. 9). Однако при низких частотах наблюдается отклонение $f_1(H)$ от линейной зависи-

Рис. 6. Частотно-полевые диаграммы пиков магнитного резонанса для пленки (CoFeB)₃₂(LiNbO₃)₆₈ в касательном поле. Точки — эксперимент, сплошная линия — формула Киттеля (1), штриховая — линейная зависимость (2)

мости. Это отклонение может быть вызвано магнитной неоднородностью пленки и эффектами суперпарамагнетизма. В этом случае величина $4\pi M$, входящая в формулу (3), не является константой, а зависит от магнитного поля.

На рис. 10 показана зависимость $4\pi M(H)$, полученная с помощью формулы (3) из экспериментальных данных по $f_1(H)$. Видно, что вместо резкого линейного выхода на постоянное значение $4\pi M_S \approx$ \approx 4.77 кЭ, которое ожидалось бы для «идеальной» ФМ-пленки, имеется плавное приближение к насыщению. Поведение статической намагниченности (см. вставку к рис. 10), измеренное с помощью СКВИД-магнитометра, хорошо коррелирует как по форме, так и по величине с зависимостью $4\pi M(H)$, найденной из измерений ФМР. Форма кривой $4\pi M(H)$ определяется совокупностью многих факторов: суперпарамагнитизмом наногранул, разбросом их размеров и анизотропии, наличием межгранульных взаимодействий (см., например, [10]). Последовательный учет всех этих факторов чрезмерно сложен. Для дальнейших целей ради простоты мы аппроксимируем зависимость $4\pi M(H)$ эмпирической функцией

Рис. 7. а) Экспериментальные спектры поглощения HK $(CoFeB)_{32}(LiNbO_3)_{68}$ на частоте 31.7 ГГц при разной ориентации поля относительно плоскости пленки. б) Результирующие угловые зависимости поля резонанса $H_{res}(\theta_H)$. Точки — эксперимент, линии — расчет

с параметрами $n \approx 3.0$ и $H_S = 4\pi M_S \approx 5.0$ к \Im^{2}).

Аппроксимация зависимости $f_1(H)$ для пика ФМР формулой Киттеля (3) с учетом полевой зависимости $4\pi M(H)$ согласно (4) показана на рис. 9 (кривая 2).

Оказалось, что зависимость $f_2(H)$ для дополнительного пика в нормальном поле можно описать формулой, аналогичной формуле (2) для случая касательного поля, с теми же значениями γ_2 и f_0 , но

²⁾ Выбранная функция (4) обладает «подходящими» свойствами, характерными для экспериментальных зависимостей $4\pi M(H)$: ее производная в нуле равна 1, а при больших H она приближается к насыщению как $1/H^{n-1}$. При $n \to \infty$ функция (4) описывает поведение для «идеальной» ФМ-пленки с резким выходом на насыщение в поле H_S .

Рис. 8. Экспериментальные спектры поглощения для пленки (CoFeB)₃₂(LiNbO₃)₆₈ на разных частотах в поле, ориентированном нормально плоскости

с учетом замены поля H на $H - 4\pi M$:

$$f_2(H) = \gamma_2(H - 4\pi M) + f_0.$$
 (5)

На рис. 9 показаны соответствующие расчетные зависимости $f_2(H)$ для образца (CoFeB)₃₂(LiNbO₃)₆₈ в приближении «идеальной» ФМ-пленки с $4\pi M \approx 4.77$ кЭ (кривая 3) и с учетом полевой зависимости $4\pi M(H)$ по формуле (4) (кривая 4). Как видим, во втором случае имеется приемлемое согласие с экспериментальными данными.

4.2. Происхождение дополнительного пика

Чтобы понять природу наблюдаемого дополнительного пика, прежде всего заметим, что найденное нами для него гиромагнитное отношение $\gamma_2 \approx 6.0 \ \Gamma \Gamma \Pi / \kappa \Im$ соответствует эффективному *g*-фактору $g \approx 4.3$. Это значение характерно для элект-

Рис. 9. Частотно-полевые диаграммы для пленки $(CoFeB)_{32}(LiNbO_3)_{68}$ в нормальном поле. Точки — эксперимент, линии — расчет с использованием формул из текста: 1 — формула Киттеля (3), 2 — формула Киттеля с учетом зависимости $4\pi M(H)$ (4), 3 — формула (5), 4 формула (5) с учетом (4)

Рис. 10. Зависимость $4\pi M(H)$, полученная из данных ФМР для пленки (CoFeB)₃₂(LiNbO₃)₆₈ в нормальном поле (точки). Штриховая линия — теоретическая зависимость для «идеальной» ФМ-пленки, сплошная линия аппроксимация функцией (4). На вставке показана кривая $4\pi M(H)$ в нормальном поле по данным магнитометрии

(точки) и ее аппроксимация функцией (4) (линия)

Рис. 11. Сравнение спектров магнитного резонанса для пленок (CoFeB)₄₁(LiNbO₃)₅₉ (1) и Co₄₁(LiNbO₃)₅₉ (2) на частоте 24.5 ГГц в касательном поле ($\mathbf{h} \parallel \mathbf{H}$). В случае структуры Co₄₁(LiNbO₃)₅₉ спектр демонстрирует экспоненциальный рост поглощения вблизи H = 0 (пунктирная линия), на фоне которого видна широкая линия ФМР гауссовой формы (штриховая линия)

ронного парамагнитного резонанса (ЭПР) ионов переходных элементов с электронной конфигурацией $3d^5$ в аморфных твердотельных матрицах (стеклах, керамиках и т. п.) [11–13]. В нашем случае в качестве таких ионов могут выступать ионы Fe³⁺, присутствующие в диэлектрической среде в промежутках между ФМ-гранулами. Отметим, что в отличие от ионов Fe³⁺, ЭПР ионов Fe²⁺ и Co²⁺, как правило, не проявляется при комнатной температуре [12–14].

Для дополнительной проверки нашего предположения мы провели сравнение спектров магнитного резонанса пленок НК на основе диэлектрической матрицы LiNbO3 с различным составом металлической ФМ-фазы — CoFeB и Co (структурные и магнитные свойства образцов $Co_x(LiNbO_3)_{100-x}$ подробно обсуждаются в работе [15]). Спектры образцов $Co_x(LiNbO_3)_{100-x}$ демонстрируют сильно уширенную линию ФМР и значительное поглощение вблизи H = 0 (рис. 11). Эти особенности можно связать с существенно возросшим магнитным гистерезисом для структур $Co_x(LiNbO_3)_{100-x}$ по сравнению с $(CoFeB)_x(LiNbO_3)_{100-x}$ [15]. В то же время, дополнительный пик поглощения, наблюдаемый для пленок $(CoFeB)_x(LiNbO_3)_{100-x}$, в случае $Co_x(LiNbO_3)_{100-x}$ отсутствует. Данный факт свидетельствует в пользу предположения, что этот пик обусловлен ЭПР ионов Fe^{3+} .

Линия ЭПР с изотропным g-фактором $g \approx 4.3$ ранее наблюдалась для различных аморфных оксидных матриц, допированных ионами Fe, включая интересующие нас LiNbO₃ и Al₂O₃ [16,17]. В нашем случае, однако, линия с $g \approx 4.3$ не является «изотропной» — положение пика поглощения зависит от ориентации магнитного поля относительно плоскости пленки. Кроме того, частотно-полевая зависимость демонстрирует дополнительную спектральную «щель» в нулевом поле, т.е. конечную частоту резонанса при H = 0.

Эти особенности поведения пика с $g \approx 4.3$ можно объяснить наличием взаимодействия ПМ- и ФМ-подсистем, сосуществующих в пленке НК, т.е. подсистем ПМ-ионов и ФМ-гранул. Можно предположить, что частота резонанса в ПМ-подсистеме определяется эффективным полем H_{eff} , действующим на нее со стороны ФМ-подсистемы:

$$f_2 = \gamma_2 H_{eff}.$$
 (6)

Помимо внешнего поля H, поле H_{eff} должно включать поле размагничивания и эффективное обменное поле, создаваемое ФМ-подсистемой. Формально выражение для H_{eff} можно получить, рассмотрев магнитную энергию системы в виде суммы энергий зеемановского расщепления, магнитной анизотропии формы и обменного взаимодействия:

$$E = -\mathbf{H}(\mathbf{M} + \mathbf{m}) + 2\pi(\mathbf{M} + \mathbf{m}, \mathbf{n})^2 - J\mathbf{M}\mathbf{m},$$

где **М** и **m** — намагниченности ФМ- и ПМ-подсистем (|**m**| \ll |**M**|), 2π — размагничивающий фактор, **n** — нормаль к плоскости пленки, J — обменная константа. Тогда искомое поле

$$\mathbf{H}_{eff} = -\partial E / \partial \mathbf{m} \approx \mathbf{H} - 4\pi (\mathbf{M}, \mathbf{n})\mathbf{n} + J\mathbf{M}.$$

Подставляя абсолютную величину H_{eff} в (6), получаем формулу для частоты ЭПР:

$$f_2 = \gamma_2 H_0 + f_0, \tag{7}$$

где

$$H_0 = \sqrt{H^2 \cos^2 \theta_H + (H \sin \theta_H - 4\pi M \sin \theta)^2},$$

где θ — угол отклонения намагниченности **M** из плоскости пленки. При этом спектральная щель в нулевом поле f_0 определяется обменным взаимодействием Φ M- и ПМ-подсистем:

$$f_0 = \gamma_2 J M. \tag{8}$$

В «касательной» ($\theta_H = \theta = 0$) и «нормальной» ($\theta_H = 90^\circ$) геометрии выражение (7) приводит к обсуждавшимся выше формулам соответственно (2) и (5). При произвольной ориентации вектора **H** относительно плоскости пленки равновесное направление вектора **M** определяется известным соотношением [18]:

$$2H\sin(\theta_H - \theta) = 4\pi M \sin 2\theta. \tag{9}$$

В этом случае величину резонансного поля $H_{res}(\theta_H)$ для ПМ-пика при заданной частоте f можно найти из уравнений (7) и (9) в явном виде:

$$H_{res}(\theta_H) = \left[\frac{\cos^2 \theta_H}{H_0^2} + \frac{\sin^2 \theta_H}{(H_0 + 4\pi M)^2}\right]^{-1/2}, \quad (10)$$

где $H_0 = (f - f_0) / \gamma_2$.

В то же время для пика ФМР поле $H_{res}(\theta_H)$ определяется численно из условия (9) и известных соотношений для частоты резонанса [18]:

$$f_1 = \gamma_1 \sqrt{H_1 H_2},$$

где

$$H_1 = H \cos(\theta_H - \theta) - 4\pi M \sin^2 \theta,$$

$$H_2 = H \cos(\theta_H - \theta) + 4\pi M \cos 2\theta.$$

На рис. 76 показано сравнение экспериментальных и расчетных зависимостей $H_{res}(\theta_H)$ для ФМи ПМ-пиков в пленке (CoFeB)₃₂(LiNbO₃)₆₈ на частоте 31.7 ГГц. Используемые параметры $\gamma_1 =$ = 2.97 ГГц/кЭ, $\gamma_2 = 6.0$ ГГц/кЭ, $f_0 = 7.8$ ГГц и $4\pi M = 4.7$ кЭ (для ФМ-пика) совпадают с параметрами, полученными при аппроксимации частотнополевых зависимостей в касательной и нормальной геометриях. Для ПМ-пика использовано уменьшенное значение $4\pi M = 4.0$ кЭ с учетом обсуждавшейся выше поправки на неполное насыщение пленки в нормальном поле. Как видно на рис. 76, расчетные угловые зависимости $H_{res}(\theta_H)$ хорошо согласуются с экспериментом.

Экспериментально полученная величина f_0 позволяет сделать оценку обменного взаимодействия ФМ- и ПМ-подсистем. Для исследованных НК $(CoFeB)_x(LiNbO_3)_{100-x}$ средняя энергия обмена ПМ-ионов с ФМ-гранулами составляет $\varepsilon = hf_0 \approx 0.03$ мэВ (здесь h — постоянная Планка). Небольшой рост f_0 , наблюдаемый при увеличении концентрации x, можно объяснить усилением обмена между ФМ-гранулами и ПМ-ионами изза уменьшения среднего расстояния между ними.

Беспорядок в расположении ФМ-гранул и ПМ-ионов в диэлектрической матрице должен приводить к существенному разбросу величины ε . Этот разброс $\Delta \varepsilon$ можно оценить из ширины линии

ПМ-резонанса ΔH . В области низких частот имеем $\Delta H \sim 1$ кЭ, что дает разброс по частоте $\Delta f = \gamma_2 \Delta H \sim f_0$. В итоге получаем оценку $\Delta \varepsilon \sim \varepsilon$, что можно считать ожидаемым результатом, учитывая высокую степень беспорядка в системе.

Резюмируя сказанное выше, можно сказать, что предлагаемая интерпретация дополнительного пика как ЭПР ионов Fe³⁺, диспергированных в диэлектрической матрице, выглядит правдоподобной. До сих пор мы оставляли за скобками вопрос, почему в рассматриваемом случае интенсивность линии ЭПР слабо зависит от геометрии возбуждения резонанса. Причиной такого не совсем обычного поведения могут являться обменные и магнитодипольные взаимодействия межлу ПМ-ионами. Известно, что такие взаимодействия могут приводить к модификации правил отбора и условий возбуждения для переходов между различными уровнями энергии ПМ-ионов. В частности, возникает конечная вероятность вынужденных переходов под действием продольного возбуждающего поля [14].

Заметим, что при описанном сценарии также становятся возможными «запрещенные» переходы внутри спиновых мультиплетов ПМ-ионов с изменением проекции спина $\Delta m_S = \pm 2$. Если спектральный фактор расщепления мультиплетов близок к электронному $g_e \approx 2.0$ (например, в случае ионов Fe³⁺ в слабом кристаллическом поле), то такие переходы также могут приводить к появлению линии поглощения с эффективным *g*-фактором $g \approx 2g_e \approx 4$.

4.3. Структуры $(CoFeB)_x(Al_2O_3)_{100-x}$

Особенности спектров магнитного резонанса, наблюдаемые в системах на основе диэлектрической матрицы LiNbO₃, воспроизводятся и для HK-пленок (CoFeB)_x(Al₂O₃)_{100-x}. Такие структуры также показывают присутствие дополнительного пика магнитного резонанса в полях меньших поля ФМР, который возбуждается с одинаковой интенсивностью как поперечным, так и продольным полем. В отличие от образцов (CoFeB)_x(LiNbO₃)_{100-x}, изучавшихся выше, пленки (CoFeB)_x(Al₂O₃)_{100-x} в исследуемом диапазоне $x \approx 47-56$ ат. % демонстрируют гораздо более выраженную концентрационную зависимость положения дополнительного пика (рис. 12).

На рис. 13 показаны результирующие частотнополевые диаграммы f(H) для трех пленок с $x \approx$ $\approx 47-56$ ат. % в магнитном поле, приложенном в плоскости пленки. В случае линии ФМР экспериментальные зависимости f(H) описываются стан-

Рис. 12. Экспериментальные спектры поглощения для пленок (CoFeB)_x(Al₂O₃)_{100-x} с содержанием ФМ-фазы $x \approx$ $\approx 47, 51$ и 56 ат. %, полученные на разных частотах при продольном возбуждении резонанса $\mathbf{h} \parallel \mathbf{H}$ в магнитном поле, приложенном в плоскости пленки. Виден интенсивный пик ФМР и более слабый дополнительный пик (показан стрелками)

Таблица. Параметры аппроксимации кривых f(H) на рис. 13 для пленок (CoFeB) $_x$ (Al₂O₃) $_{100-x}$

<i>х</i> , ат. %	$\gamma_1, \ \Gamma \Gamma$ ц/кЭ	$4\pi M,$ кЭ	$\gamma_2,\ \Gamma\Gamma$ ц/кЭ	$f_0,$ ГГц
47 51 56	2.92 $(g \approx 2.1)$	5.8 7.0 8.1	6.0 $(g \approx 4.3)$	9.0 13.8 19.8

дартной формулой Киттеля (1) (параметры аппроксимации приведены в таблице).

Рис. 13. Частотно-полевые диаграммы для пленок $(CoFeB)_x(Al_2O_3)_{100-x}$ в касательном поле. Точки — эксперимент, сплошные линии построены по формуле Киттеля (1), штриховые линии — линейные зависимости (2) с эффективным *g*-фактором g = 4.3 (подгоночные параметры приведены в таблице)

Дополнительный пик демонстрирует линейную зависимость f(H) типа (2) с эффективным g-фактором g = 4.3, что подтверждает его связь с ЭПР ионов Fe³⁺. При этом величина спектральной щели f_0 растет с увеличением содержания ФМ-фазы x, в согласии с предложенной выше интерпретацией. Действительно, при приближении к порогу перколяции $x_p \approx 56$ ат. % вполне естественно ожидать существенного усиления обменных взаимодействий между ПМ-ионами и ФМ-гранулами, что и приводит к значительному росту величины f_0 (см. формулу (8)).

В геометрии «поле нормально плоскости» помимо интенсивного сигнала ФМР пленки демонстрируют еще три дополнительных более слабых пика поглощения (рис. 14). Результирующие частотно-полевые диаграммы f(H) и угловые зависимости $H_{res}(\theta_H)$ для этих пиков показаны на рис. 15 и 16.

Поведение низкополевого пика (№ 1 на рис. 14) описывается в рамках предложенной модели ЭПР с g = 4.3 (формулы (5), (10)) с параметрами, приведенными в таблице. При этом, как и в случае образцов (CoFeB)_x(LiNbO₃)_{100-x}, лучшее согласие с моделью достигается при учете поправки на неполное насыщение $4\pi M$ в области низких полей (с ис-

Рис. 14. Экспериментальные спектры поглощения для пленок (CoFeB)_x(Al₂O₃)_{100-x} на частоте 25.0 ГГц в нормальном поле. Помимо основной линии ФМР, видны более слабые пики 1–3

пользованием описанной выше процедуры аппроксимации данных ФМР эмпирической функцией (4), см. рис. 17).

Оказывается, что поведение пика № 2 на рис. 14 также можно описать формулами (5), (10), если положить в них $\gamma_2 = 2.80 \ \Gamma \Gamma \Pi / \kappa \Im (g = 2.0)$. Таким образом, можно предположить, что этот пик также связан с ПМ-центрами в диэлектрической матрице, демонстрирующими обычный электронный фактор спектрального расщепления $g_e = 2.0$. В качестве таких центров могут выступать как изолированные ионы Fe³⁺, так и малые кластеры сильно связанных ФМ-атомов [13]. Пик с g = 2.0 удается наблюдать лишь при ориентации магнитного поля вблизи нормали к плоскости и лишь для образцов с $x \approx 51$ и 56 ат. %. Только в этом случае его удается разрепить на фоне интенсивного, но достаточно узкого пика ФМР (см. рис. 16).

Величина спектральной щели f_0^* для пика № 2 оказывается несколько меньше значений f_0 для пика № 1 (g = 4.3), приведенных в таблице. Для пленки с $x \approx 51$ ат. % эта величина составляет $f_0^* \approx 8.0$ ГГц, а для пленки с $x \approx 56$ ат. % – $f_0^* \approx 9.0$ ГГц. В

Рис. 15. Частотно-полевые диаграммы для пленок $(CoFeB)_x(Al_2O_3)_{100-x}$ в нормальном поле. Точки — эксперимент, линии — расчет

то же время интересно отметить, что эффективное обменное поле $H_{ex} = JM$, пересчитанное из f_0 по формуле (8) — $H_{ex} = f_0/\gamma_2$, имеет близкие значения для пиков с g = 4.3 (H_{ex}) и g = 2.0 (H_{ex}^*). Так, для пленки с $x \approx 51$ ат. % получаем $H_{ex} \approx 2.3$ кЭ, $H_{ex}^* \approx 2.9$ кЭ, а для пленки с $x \approx 56$ ат. % — $H_{ex} \approx 3.3$ кЭ, $H_{ex}^* \approx 3.2$ кЭ.

Происхождение узкого пика справа от основной линии ФМР (№ 3 на рис. 14) до конца не ясно. Подобный пик наблюдался нами ранее и для образцов (CoFeB)_x(LiNbO₃)_{100-x} с достаточно высоким содержанием ФМ-фазы x > 43 ат. % [4]. Этот пик также проявляется только при ориентации магнитного поля вблизи нормали к плоскости пленки. Одно из возможных его объяснений — возбуждение по-

Рис. 16. Угловые зависимости поля резонанса $H_{res}(\theta_H)$ для пленок (CoFeB)_x(Al₂O₃)_{100-x} на частоте 25.0 ГГц. Точки — эксперимент, линии — расчет

верхностных мод спин-волнового резонанса, для которых характерно наблюдаемое поведение. Однако не исключено и более тривиальное объяснение такого пика неоднородностью пленки (см. обсуждение и ссылки в работе [4]).

5. ЗАКЛЮЧЕНИЕ

Методом магнитного резонанса исследованы пленки металл-диэлектрических наногранулярных композитов (CoFeB)_x(LiNbO₃)_{100-x} и (CoFeB)_x(Al₂O₃)_{100-x} с концентрацией металлической ФМ-фазы CoFeB вблизи и несколько ниже порога перколяции $x \leq 56$ ат. %. Магниторезонанс-

Рис. 17. Зависимости $4\pi M(H)$, полученные из данных ФМР для пленок (CoFeB)_x(Al₂O₃)_{100-x} в нормальном поле (точки). Штриховые линии — теоретические зависимости для «идеальной» ФМ-пленки, сплошные линии — аппроксимация функцией (4)

ные свойства структур изучены при комнатной температуре в широком диапазоне частот 7–38 ГГц при различных ориентациях магнитного поля относительно плоскости пленки.

Обнаружено, что экспериментальные спектры содержат линию ФМР, а также дополнительный более слабый пик резонансного поглощения, демонстрирующий ряд необычных свойств. Частотно-полевая зависимость f(H) для этого пика в области высоких частот имеет линейный характер с эффективным *g*-фактором *g* = 4.3, что позволяет связать его с ЭПР ионов Fe³⁺, присутствующих в аморфной диэлектрической матрице LiNbO₃, либо Al₂O₃. В то же время, в нулевом поле зависимость f(H)демонстрирует наличие спектральной щели, величина которой увеличивается с ростом концентрации ФМ-фазы х. Появление такой щели мы связываем с наличием обменного взаимодействия ПМ-ионов с Φ М-гранулами, которое растет с увеличением x. Помимо концентрации x положение пика ЭПР зависит также от угла приложения поля относительно плоскости пленки. Этот эффект мы объясняем влиянием поля размагничивания, создаваемого массивом ФМ-гранул. Наконец, еще одной особенностью наблюдаемого пика является слабая зависимость его амплитуды от геометрии возбуждения резонанса, что может быть связано с наличием обменных, либо магнитодипольных взаимодействий между ПМ-ионами.

Таким образом, обнаруженные особенности спектров магнитного резонанса исследуемых структур свидетельствуют о присутствии в диэлектрической матрице ПМ-ионов, связанных обменным взаимодействием с системой ФМ-гранул. Полученные результаты подтверждают существенную роль таких ионов в формировании ФМ-порядка в изучаемых пленках нанокомпозитов с содержанием ФМ-фазы ниже порога перколяции.

Финансирование. Работа выполнена в рамках государственного задания при поддержке Российского научного фонда (проект № 22-29-00392) в части исследования магниторезонансных и электрофизических свойств нанокомпозитных образцов, а также Российского фонда фундаментальных исследований в части синтеза нанокомпозитных пленок (проект № 19-29-03022).

ЛИТЕРАТУРА

- S. Bedanta, O. Petracic, and W. Kleemann, Handbook of Magnetic Materials. Chapter 1 Supermagnetism, ed. by K. H. J. Buschow, Vol. 23, Elsevier (2015), p. 1.
- В. В. Рыльков, А. В. Емельянов, С. Н. Николаев, К. Э. Никируй, А. В. Ситников, Е. А. Фадеев, В. А. Демин, А. Б. Грановский, ЖЭТФ 158, 164 (2020).
- K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).
- A. B. Drovosekov, N. M. Kreines, A. S. Barkalova, S. N. Nikolaev, V. V. Rylkov, and A. V. Sitnikov, J. Magn. Magn. Mater. 495, 165875 (2020).
- А. Б. Дровосеков, Н. М. Крейнес, А. С. Баркалова, С. Н. Николаев, А. В. Ситников, В. В. Рыльков, Письма в ЖЭТФ 112, 88 (2020).
- В. В. Рыльков, С. Н. Николаев, В. А. Демин, А. В. Емельянов, А. В. Ситников, К. Э. Никируй, В. А. Леванов, М. Ю. Пресняков, А. Н. Талденков,

А. Л. Васильев, К. Ю. Черноглазов, А. С. Веденеев, Ю. Е. Калинин, А. Б. Грановский, В. В. Тугушев, А. С. Бугаев, ЖЭТФ **153**, 424 (2018).

- V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).
- V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, and A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).
- 9. Г. Д. Богомолов, Прикладная электродинамика: учебное пособие, МФТИ, Долгопрудный (1979).
- A. B. Drovosekov, N. M. Kreines, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, Phys. Stat. Sol. (c) 3, 109 (2006).
- H. H. Wickman, M. P. Klein, and D. A. Shirley, J. Chem. Phys. 42, 2113 (1965).
- T. Castner Jr., G. S. Newell, W. C. Holton, and C. P. Slichter, J. Chem. Phys. 32, 668 (1960).
- 13. D. L. Griscom, J. Non-Cryst. Sol. 40, 211 (1980).
- 14. С. А. Альтшулер, Б. М. Козырев, Электронный парамагнитный резонанс соединений элементов промежуточных групп, Наука, Москва (1972).
- Е. А. Фадеев, М. А. Шахов, Е. Лахдеранта, А. Н. Талденков, А. Л. Васильев, А. В. Ситников, В. В. Рыльков, А. Б. Грановский, ЖЭТФ 160, 903 (2021).
- 16. C. D. Fierro-Ruiz, O. Sánchez-Dena, E. M. Cabral-Larquier, J. T. Elizalde-Galindo, and R. Farías, Crystals 8, 108 (2018).
- 17. R. Stösser and G. Scholz, Appl. Magn. Reson. 15, 449 (1998).
- **18**. Р. Суху, *Магнитные тонкие пленки*, Мир, Москва (1967).

СПИНОВЫЙ ТРАНСПОРТ В ПОЛУПРОВОДНИКАХ InSb С РАЗЛИЧНОЙ ПЛОТНОСТЬЮ ЭЛЕКТРОННОГО ГАЗА

Н. А. Виглин^{а*}, Ю. В. Никулин^{b,c}, В. М. Цвелиховская^a,

Т. Н. Павлов^а, В. В. Проглядо^а

^а Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

> ^b СФИРЭ им. В. А. Котельникова Российской академии наук 410019, Саратов, Россия

> > ^с СГУ им. Н. Г. Чернышевского 410012, Саратов, Россия

Поступила в редакцию 2 декабря 2021 г., после переработки 11 декабря 2021 г. Принята к публикации 22 декабря 2021 г.

В латеральных спиновых устройствах, изготовленных на полупроводниках InSb с различной концентрацией электронов, исследовались величина спин-индуцированного напряжения при эффекте Ханле и значение коэффициента спиновой поляризации электронов. Установлено, что с увеличением концентрации электронов величины как напряжения, так и коэффициента поляризации уменьшаются.

DOI: 10.31857/S0044451022060104 **EDN:** DUNZVZ

1. ВВЕДЕНИЕ

В течение последних нескольких десятилетий интенсивно исследуются спин-зависимые явления в полупроводниках в контексте их применения в электронике [1]. Одну из основных составляющих этих явлений представляет электрическая спиновая инжекция — прямой метод создания неравновесной спиновой населенности в системе электронов проводимости полупроводников. Метод был предложен Ароновым и Пикусом еще в 70-х годах прошлого века [2]. С тех пор сделано много важных достижений как в области управления спиновой поляризацией электрического тока с помощью магнитного поля, так и наоборот, управления магнетизмом электрическими средствами [3-6], однако надежный эффект инжекции спина в полупроводники долго не был достигнут [7–9]. Основной причиной, вызывающей подавление спиновой поляризации электронов в полупроводнике при электрической инжекции спинов из ферромагнитного металла является эффект «несоответствия проводимостей» (conductivity mismatch) [10]. Значительно ослабить этот эффект можно, если разместить в интерфейсе между ферромагнитным металлом и полупроводником дополнительный слой, фильтрующий ток спинов, например, монослой графена [11]. Фильтрующими свойствами обладают тонкие диэлектрические пленки, образующие туннельный барьер, а также барьеры Шоттки. Понадобилось почти два десятилетия, для того чтобы результаты спиновой инжекции были существенно улучшены. Появились сообщения о регистрации величины спиновой поляризации в полупроводнике $P_n \approx 40 \%$ при электрической инжекции спинов в вырожденный GaAs с концентрацией электронов $n = 6 \cdot 10^{16} \text{ см}^{-3}$ из магнитного полупроводника (Ga, Mn)As через барьер Шоттки [12] и в вырожденный Si $(n = 1 \cdot 10^{19} \text{ см}^{-3})$ через слой графена из ферромагнитного сплава NiFe [11]. В невырожденном полупроводнике InSb $(n = 1.2 \cdot 10^{14} \text{ см}^{-3})$ был достигнут $P_n = 25\%$ при инжекции спинов из ферромагнитного сплава СоFe через туннельный барьер, созданный в слое диэлектрика MgO с низким содержанием дефектов [13].

Отметим, что высокие значения спиновой поляризации получены как для вырожденных, так и для невырожденных полупроводников, имеющих суще-

^{*} E-mail: viglin@imp.uran.ru

ственно различные концентрации электронов. Поскольку результаты получены в различных спиновых устройствах с разными полупроводниками и инжекторами, представляется актуальным исследовать зависимость P_n от n для одного и того же полупроводника, например InSb.

2. ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ И ЗАДАЧИ ИССЛЕДОВАНИЙ

Коэффициент спиновой поляризации электронов проводимости

$$P_n^{(\lambda)} = s/n,\tag{1}$$

где индекс λ обозначает материал, например, $\lambda = F$ для ферромагнетика или $\lambda = N$ для немагнитного полупроводника, n_{\uparrow} и n_{\downarrow} — концентрации электронов проводимости со спином вверх и со спином вниз в соответствующих материалах, $s = (n_{\uparrow} - n_{\downarrow})$ — концентрация спинов, общая концентрация электронов $n = (n_{\uparrow} + n_{\downarrow})$. Определим также поляризацию спиновой проводимости $P_{\sigma}^{(\lambda)} = \sigma_s / \sigma$, где спиновая проводимость $\sigma_s = (\sigma_{\uparrow} - \sigma_{\downarrow})$ и проводимость $\sigma = (\sigma_{\uparrow} + \sigma_{\downarrow}),$ а σ_{\uparrow} и σ_{\perp} — составляющие проводимости для электронов соответственно со спином вверх и со спином вниз. Аналогично определим поляризацию спинового тока $P_j^{(\lambda)} = j_s/j$, где плотность тока спинов $j_s = (j_{\uparrow} - j_{\downarrow})$ и плотность тока зарядов $j = (j_{\uparrow} + j_{\downarrow})$, а j_{\uparrow} и j_{\downarrow} — составляющие плотности тока для электронов соответственно со спином вверх и со спином вниз.

При электрической инжекции спин-поляризованных электронов из F в N (см. рис. 1) поляризация электронов P_n^N в полупроводнике оценивается по величине спин-индуцированного напряжения, возникающего на ферромагнитном детекторе. Природа этого напряжения связана с изменением электрохимического потенциала электронного газа в немагнитном проводнике вследствие поляризации в нем электронов по спину. Существует несколько подходов для расчета этого напряжения. В исторически первой модели «спин-зарядовой связи» Джонсона и Силсби [14] напряжение на детекторе рассматривается как напряжение, необходимое для установления электрохимического равновесия в электронных системах ферромагнитного и немагнитного металлов. Модель имеет недостаток, заключающийся в том, что не позволяет проводить прямое вычисление спиновой поляризации тока [15]. В дрейф-диффузионной модели, предложенной в работе [16], спин-индуцированное напряжение рассматривается как следствие изменения контакт-

Рис. 1. а) Схема устройства для измерения электрических сигналов, обусловленных диффузией спин-поляризованных электронов. Ферромагнитные электроды F1, F3, F4, F6, намагниченные вдоль оси *y*, расположены на поверхности полупроводникового канала, в котором происходит спиновый транспорт. Между контактами и полупроводником — тонкая прослойка диэлектрика (на схеме не показана). Ток I_e течет от F1 к F3. Под F3 затемнением с разной контрастностью условно показано облако поляризованных по спину электронов, степень поляризации которых убывает по мере дрейфа в направлении к F1 и диффузии во всех направлениях. Измерение напряжения, индуцированного диффундирующими электронами, проводится между контактами F4 и F6, расположенными вне цепи тока. б) Фотография устройства с латеральными контактами. Вертикальная полоска — полупроводник InSb, который виден в окне, сделанном в слое фоторезиста. Размер окна 50~ мкм imes 1.8~ мм. Канал из полупроводника пересекают шесть ферромагнитных горизонтальных контактов, состав и структура которых описаны в тексте. К ферромагнитным контактам подведены переходные, заканчивающиеся контактными площадками (на фотографии не видны). Контакты F2 и F3 использовались в качестве инжекторов, а F3, F4 и F5 — как детекторы

ной разности потенциалов между F и N при отклонении спиновой системы полупроводника от равновесия. В основу этой модели заложена непрерывность спиновых и зарядовых токов, протекающих через контакт между N и F. В рамках модели напряжение на детекторе рассчитывается с помощью выражения

$$V_D(d) = \pm e^{-1} P_n^F P_n^N [n/\partial n/\partial \zeta] \exp\left(-d/L_s^N\right). \quad (2)$$

Здесь e — заряд электрона, L_s^N — длина спиновой диффузии в N, n — концентрация электронов в N, величина множителя $[n/\partial n/\partial \zeta]$ порядка энергии Ферми для вырожденного полупроводника и составляет порядка k_BT для невырожденного [16], ζ — химический потенциал в N, k_B — постоянная Больцмана, T — температура. Знак перед выражением за-

висит от взаимного направления намагниченности инжектора и детектора. Спиновая поляризация

$$P_n^N = P_j w \tau_s j / 2ne(L_s^N)^2. \tag{3}$$

Здесь
 $\mathcal W$ — ширина инжектора, P_j — поляризация спинового тока, τ_s — время спиновой релаксации, L_s^N — длина спиновой диффузии, $j = I_e/A$ — плотность тока, I_e — ток зарядов, A — площадь инжектора. Параметры P_i, τ_s и L_s^N находятся при подгонке экспериментальных данных, полученных при эффекте Ханле, к теоретическим. Модель неплохо описывает поведение поляризации электронов P_n^N в зависимости от плотности тока *j*. Однако поведение P_n^N в зависимости от n можно оценить только качественно из-за отсутствия в этой модели влияния величин сопротивлений F, N и контакта между ними на поляризацию спинового тока P_i . В явном виде зависимость P_i от сопротивлений ферромагнетика, контакта и немагнитного материала представлена в модели так называемого квазихимического потенциала, предложенной в работе [17]. Под квазихимическим потенциалом подразумевается добавка к химическому потенциалу, обусловленная спиновой поляризацией электронов проводимости. Согласно этой модели химический потенциал претерпевает скачок в области контакта, а напряжение на детекторе пропорционально падению квазихимического потенциала на дистанции между инжектором и детектором.

В модели, предложенной в работе [17], инжекция спин-поляризованных электронов из F в N осуществляется через тонкий диэлектрический слой, имеющий эффективное сопротивление R_C . На ферромагнитном контакте-детекторе, расположенном на расстоянии d от инжектора, индуцируется напряжение $V_D(d)$, зависящее от величин спиновой поляризации P_n^N , возникшей в немагнитном полупроводнике, от концентрации электронов n в N, от дистанции d и от поляризации спинового тока P_j в системе ферромагнетик–контакт–полупроводник:

$$V_D(d) = \pm e^{-1} P_j P_n^N[n/\partial n/\partial \zeta] \exp\left(-d/L_s^N\right). \quad (4)$$

Поляризация спинового тока P_j зависит от соотношения эффективных сопротивлений диэлектрической прослойки R_C , ферромагнетика $R_F = \rho_F L_s^F/A$ и полупроводника $R_N = \rho_N L_s^N/A$, где ρ_F и ρ_N удельные сопротивления F и N, а также от поляризации проводимости P_{σ}^F ферромагнетика и P_{σ}^C контакта [17]:

$$P_j = (R_F P_{\sigma}^F + R_C P_{\sigma}^C) / (R_F + R_C + R_N).$$
 (5)

Спиновая поляризация P_n^N определяется следующим выражением [17]:

$$P_n^N = P_j j e R_N [(\partial n / \partial \zeta) / n].$$
(6)

В модели прозрачного контакта при инжекции электронов из ферромагнитного металла в немагнитный полупроводник, когда $R_C \ll R_F \ll R_N$, поляризация спинового тока

$$P_{j} \approx (R_{F}/R_{N})P_{\sigma}^{F} \ll P_{\sigma}^{F},$$
$$P_{n}^{N} \approx P_{\sigma}^{F} jeR_{F}[\partial n/\partial \zeta)/n].$$

Фактор $[n/(\partial n/\partial \zeta)]/e$ имеет размерность напряжения, обозначим его V_0 . Величина V_0 зависит от *n*. Ниже мы рассчитаем $n/(\partial n/\partial \zeta)$ и покажем, что напряжение V_0 увеличивается с ростом концентрации электронов. Падение напряжения на эффективном сопротивлении ферромагнетика обозначим $V_F = jR_F$, тогда в прозрачном контакте $P_n^N =$ $= P_{\sigma}^F V_F/V_0$. В туннельном контакте, когда $R_C \gg$ $\gg R_F, R_N$, поляризация тока $P_j \approx P_{\sigma}^C$ и $P_n^N \approx$ $\approx P_{\sigma}^C V_N/V_0$, где $V_N = jR_N$.

Видно, что величина P_n^N в туннельном контакте выше, чем в прозрачном, поскольку напряжение $V_N \gg V_F$ при $R_F \ll R_N$. Характер зависимости P_n^N от *n* в прозрачном и туннельном контактах различаются, поскольку в прозрачном контакте от концентрации электронов зависит только $1/V_0$, а в туннельном контакте — отношение V_N/V_0 .

Вид зависимости P_n^N от n определяется соотношением сопротивлений R_F и R_N , а также R_C , которое зависит от свойств интерфейса между ферромагнитными контактами и полупроводником. В свою очередь, характеристики интерфейса между F и N зависят от состояния поверхностей этих материалов и наличия дефектов в промежуточном диэлектрическом слое [18]. Поэтому окончательные свойства интерфейсов и характер зависимости P_n^N от nмы установим экспериментально.

Нашей задачей было экспериментальное исследование зависимости величин напряжения $V_D(d)$ и P_n^N от концентрации электронов n в четырех полупроводниковых спиновых устройствах, изготовленных на пленках полупроводника InSb с концентрацией электронов n, варьирующейся от $4 \cdot 10^{16}$ до $4 \cdot 10^{17}$ см⁻³ и одном устройстве, сформированном на пластине InSb с $n = 1.2 \cdot 10^{14}$ см⁻³.

3. МАТЕРИАЛЫ, МЕТОДЫ И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Измерения проводились в латеральном спиновом устройстве, представляющем собой планарную микросхему с набором узких, параллельных друг другу

Таблица. Параметры полупроводников и сформированных на них латеральных спиновых устройств: номер устройства, тип подложки, толщина пленки, концентрация электронов при комнатной температуре и при T = 77 K, подвижность электронов, поляризация тока в каждом устройстве, удельное сопротивление диэлектрического слоя в интерфейсе, время спиновой релаксации и длина спиновой диффузии, отношение концентрации электронов к плотности состояний для каждого устройства

N⁰	Подложка	t, мкм	$n_{293}, \mathrm{cm}^{-3}$	n_{77}, cm^{-3}	$\mu_{293},\mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$	P_j	$\rho_C,\Omega{\cdot}\mathrm{cm}$	τ_s , HC	L_s^N , мкм	$rac{n}{\partial n/\partial \zeta}$
1	GGG	0.45	$5\cdot 10^{17}$	$4\cdot 10^{17}$	$0.8\cdot 10^4$	0.027	2.5	0.8	50	$15.3k_BT$
2	GGG	0.9	$1.1\cdot 10^{17}$	$8.8\cdot 10^{16}$	$1.75\cdot 10^4$	0.028	5	1.1	60	$5.6k_BT$
3	AlN	1.05	$1\cdot 10^{17}$	$8\cdot 10^{16}$	$2.6\cdot 10^4$	0.036	4.5	1.5	80	$5.2k_BT$
4	${ m Si/SiO_2}$	0.5	$5\cdot 10^{16}$	$4\cdot 10^{16}$	$3.6\cdot 10^4$	0.041	13	1.0	45	$3.3k_BT$
5	Пластина InSb	400		$1.2\cdot 10^{14}$	$6.2\cdot 10^5$	0.013	30	1.5	25	$1.02k_BT$

ферромагнитных контактов, пересекающих под прямым углом полупроводниковый канал (рис. 1).

Полупроводниковые латеральные спиновые устройства предполагают совершенные интерфейсы между металлическими контактами и каналом из полупроводника, в котором происходит спиновый транспорт. Для этих целей используются пластины из монокристалла полупроводника с высококачественной (Epi-ready) полировкой поверхности или эпитаксиальные пленки, выращенные методом молекулярно-лучевой эпитаксии (MBE). Методом MBE получаются эпитаксиальные пленки GaAs, Si, а также InSb [19]. Однако мы исследовали пленки InSb, полученные методом взрывного термического испарения в вакууме, поскольку эти пленки были у нас в наличии, а концентрация электронов в этих пленочных образцах находилась в интересуюшем нас лиапазоне $n \sim 10^{16} - 10^{17} \text{ см}^{-3}$.

Исследовались четыре образца с пленками InSb толщиной t от 0.5 до 1 мкм, синтезированных на подложках из гадолиний-галлиевого граната Gd₃Ga₅O₂ (GGG), AlN и Si/SiO₂ (см. таблицу). Исследовалось также спиновое устройство, изготовленное на пластине полупроводника с концентрацией электронов $n = 1.2 \cdot 10^{14} \text{ см}^{-3}$ при T = 77 K, соответствующее номеру 5 в таблице. Рентгеноструктурные исследования показали, что пленки неоднородны и массовая концентрация компонентов: InSb — 90%, In — 10 %. Пленки поликристалличны со средним размером кристаллитов 250 нм, ориентированных перпендикулярно плоскости подложки вдоль направления [111]. Средняя квадратичная шероховатость поверхности пленок, измеренная на атомном силовом микроскопе, составляла около 45 нм. Определение концентрации *n* в пленках InSb были сделаны для комнатной температуры при измерении эффекта Холла. Значения концентрации носителей при комнатной температуре, n_{293} , приведены в таблице, там же даны ориентировочные значения концентрации n_{77} для температуры T = 77 К. Эти значения получены на основании данных измерения при двух температурах эффекта Холла в еще одной пленке InSb толщиной 750 нм, синтезированной на подложке GGG. Было определено, что в этом образце при T=293К плотность носителе
й $4\cdot 10^{17}~{\rm cm}^{-3}$ и $2.7\cdot 10^{17}~{\rm cm}^{-3}$ при T = 8 К. Видно, что концентрация носителей уменьшается с изменением температуры от комнатной до T = 8 К приблизительно на 30%. Мы предположили, что при температуре T = 77 К в исследованных нами образцах концентрация носителей n_{77} уменьшится приблизительно на 20% по сравнению со значениями n_{293} .

Методами фотолитографии на поверхности пластины и образцов с пленками InSb были изготовлены латеральные спиновые устройства, содержащие по шесть Co_{0.9}Fe_{0.1} ферромагнитных контактов F1, F2 шириной по 35 мкм и F3-F6 шириной по 15 мкм, пересекающих под прямым углом полупроводниковый канал шириной 50 мкм (см. рис. 1). Расстояния между центральными осями контактов F1 и F2, F5 и F6 по 0.64 мм. Расстояние между соседними центральными осями контактов F3, F4, F5 составляло 50 мкм , а контактов F2 и F3 — 60 мкм. Перед нанесением ферромагнитных контактов с поверхности пластины и пленок удалялись слои оксидов путем травления ионами Ar. Ферромагнитные контакты наносились на пластину полупроводника методом магнетронного напыления. Состав и толщина слоев, образующих контакт (в порядке нанесения): слой диэлектрика из MgO (1.8 нм), ферромагнитный слой из $Co_{0.9}Fe_{0.1}$ (80 нм) и закрывающий слой из Au (3 нм). Переходы и контактные площадки, состоят (в порядке нанесения) из слоев Ni (3 нм), Cu (10 нм) и Ag (60 нм). Слои из Ni и Cu фабриковались магнетронным, а из Ag — резистивным испарениями.

Величина напряжения, возникающего на детекторе при спиновой инжекции, оценивалась при измерениях эффекта Ханле. Напряжение регистрировалось на детекторах F3, F4 или F5 относительно удаленного электрода F6. В качестве инжектора использовались контакты F2 или F3. Для этого между одним из них и F1 пропускался постоянный ток. Для измерения эффекта Ханле использовались источник постоянного тока на химических элементах, нановольтметр, криостат и электромагнит с программируемым источником питания. При измерениях ферромагнитные контакты намагничивались полем 400 Гс, направленным вдоль их пролольной оси (см. рис. 1). Затем поле снижалось до нуля, и все устройство поворачивалось в криостате на 90° так, чтобы направление поля стало перпендикулярным плоскости контактов. При регистрации эффекта Ханле проводилась медленная развертка поперечного магнитного поля B в диапазоне ± 20 Гс. Отметим, что эти поля по величине много меньше поперечного поля анизотропии плоского ферромагнитного контакта, которое для Co_{0.9}Fe_{0.1} составляет порядка 1.5 Тл. Поэтому поперечное поле В не оказывает существенного влияния на продольную намагниченность контактов. Спин-зависимое нелокальное напряжение $V_H(d, B)$ при эффекте Ханле может быть записано [16,17] как

$$V_{H}(d, B) = \pm P_{j}^{2} R_{N} j \exp\left(-\alpha d/L_{s}^{N}\right) \times \\ \times \frac{\alpha \cos\left(\beta d/L_{s}^{N}\right) - \beta \sin\left(\beta d/L_{s}^{N}\right)}{\alpha^{2} + \beta^{2}}, \qquad (7)$$
$$\alpha = \frac{\sqrt{\sqrt{1 + (\omega_{L}\tau_{s})^{2} + 1}}}{\sqrt{2}}, \qquad (7)$$
$$\beta = \frac{\sqrt{\sqrt{1 + (\omega_{L}\tau_{s})^{2} - 1}}}{\sqrt{2}},$$

где частота Лармора $\omega_L = g\mu_B B/\hbar$, g есть g-фактор электронов проводимости в N, B — поперечное магнитное поле, \hbar — постоянная Планка, d — дистанция между инжектором и детектором, μ_B — магнетон Бора, τ_s — время релаксации спина в N. При расчете осуществляется подгонка теоретической зависимости напряжения $V_H(d, B)$ к экспериментально полученной. Подгоночными параметрами являются L_s^N , τ_s и P_i . Эффективность спиновой инжекции P_i , как видно из ее определения (5), зависит от соотношения сопротивлений R_C , R_F и R_N , а также от поляризации проводимости P^F_{σ} ферромагнетика и P_{σ}^{C} контакта. Сопротивление $R_{F} = \rho_{F} L_{s}^{F} / A$, где $\rho_F = 7 \cdot 10^{-10}$ Ом · см, $L_s^F = 1.2 \cdot 10^{-6}$ см для ферромагнетика Co_{0.9}Fe_{0.1} [20], А — площадь контакта, $R_N = \rho_N L_s^N / A$ рассчитывается на основании данных измерений Холла для каждого образца. Мы предположили, что в ферромагнетике Со_{0.9}Fe_{0.1}, который применялся в качестве инжектора, поляризация проводимости приблизительно равна поляризации электронов, $P_{\sigma}^{F} \approx P_{n}^{F} = 0.224$ [16]. Нам ничего не известно о величине поляризации проводимости контакта P_{σ}^{C} , поэтому в качестве начального, «затравочного», значения мы приняли, что $P_{\sigma}^{C} \approx 0.5$ как величина промежуточная между максимальным и минимальным значениями. Таким образом, при подгонке мы подбирали значение $R_C = \rho_C \Lambda / A$, где Λ — толщина, а ρ_C — удельное сопротивление слоя, разделяющего F и N. Вилно, что в поле B = 0напряжения, рассчитанные с помощью выражений (4) и (7), совпадают, $V_H(d, B) = V_D(d)$.

При расчете величин $V_D(d)$ и P_n^N в полупроводниках с различной концентрацией электронов необходимо вычислять значения $n/(\partial n/\partial \zeta)$. Для расчета воспользуемся соотношением, связывающим концентрацию носителей n в зоне проводимости с интегралом Ферми с индексом 1/2 [21]:

$$n = N_c \Phi_{1/2}(\zeta^*), \tag{8}$$

где N_c — эффективная плотность состояний; $\Phi_{1/2}(\zeta^*)$ — интеграл Ферми с индексом 1/2, $\zeta^* = \zeta/k_BT$ — приведенная энергия Ферми, ζ — энергия Ферми,

$$\Phi_{1/2}(\zeta^*) = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{x^{1/2} dx}{1 + \exp(x - \zeta^*)},$$
(9)

 $\Phi_{1/2}(\zeta^*)$ рассчитывается численными методами. Эффективная плотность состояний рассчитывается по формуле

$$N_c = 2(m_n k_B T / 2\pi \hbar^2)^{3/2}.$$
 (10)

Здесь m_n — эффективная масса электрона. Для InSb $m_n = 0.013m_0$, где m_0 — масса свободного электрона. При T = 77 К для InSb величина $N_c =$ $= 4.82 \cdot 10^{15}$ см⁻³. С помощью соотношения (8) выразим множитель $n/(\partial n/\partial \zeta)$ через интеграл Ферми $\Phi_{1/2}(\zeta^*)$:

$$n/(\partial n/\partial \zeta) = \Phi_{1/2}(\zeta^*)k_B T/(\partial \Phi_{1/2}(\zeta^*)/\partial \zeta^*).$$
(11)

Рис. 2. Зависимость напряжения $-V_H(d, B)$ при эффекте Ханле от плотности тока j, протекающего через инжектор. Поперечное магнитное поле B = 0, расстояние между инжектором и детектором d = 50 мкм. Цифры, помечающие символы на рисунке, соответствуют номерам образцов в таблице

Рис. 3. Зависимость P_n^N от плотности тока j, протекающего через инжектор. Поперечное магнитное поле B = 0, расстояние между инжектором и детектором d = 50 мкм. Цифры, помечающие символы на рисунке, соответствуют номерам образцов в таблице

Значения $n/(\partial n/\partial \zeta)$ приведены в таблице. Видно, что $n/(\partial n/\partial \zeta)$ растет с увеличением n.

В предельных случаях $\Phi_{1/2}(\zeta^*)$ выражается простыми функциями. Для невырожденного полупроводника $\Phi_{1/2}(\zeta^*) = \exp(\zeta^*)$, в случае вырождения $\Phi_{1/2}(\zeta^*) = (4/3)\pi^{1/2}(\zeta^*)^{3/2}$.

На рис. 2 изображена зависимость напряжения $V_H(d, B)$ эффекта Ханле при B = 0 от плотности

Рис. 4. Зависимость напряжения $-V_H$ при эффекте Ханле от n для $j \approx 13$ А/см² (кружки). Штриховая линия функция $y = 0.36 - 0.0084 \ln(x + 6 \cdot 10^{13}), x = n \cdot см^3$

Рис. 5. Зависимость поляризации электронов в полупроводнике P_n^N от n для $j \approx 13$ А/см² (кружки). Штриховая линия — функция $y = 0.29 - 0.0074 \ln(x + 6.34 \cdot 10^{14}), x = n \cdot \text{см}^3$

тока j, протекающего через инжектор. Цифры, обозначающие символы, соответствуют номерам полупроводников, перечисленным в таблице. Нарастание спин-индуцированного напряжения при увеличении плотности тока в полупроводниках с низкой концентрацией электронов более быстрое.

На рис. 3 приведена зависимость величины поляризации P_n^N от плотности тока j, протекающего через инжектор. Величина поляризации P_n^N в полупроводниках рассчитывалась при подгонке теоретических значений напряжения при эффекте Ханле (уравнение (7)) к экспериментальным. Подгоночными параметрами являются ρ_C , τ_s и L_s . Видно, что P_n^N нарастает при увеличении плотности тока. Также заметно, что скорость нарастания выше в полупроводниках с меньшей концентрацией электронов n.

На рис. 4 изображена зависимость напряжения V_H от n, а на рис. 5 зависимость поляризации P_n^N от n для плотности тока в инжекторе $J \approx 13 \text{ A} \cdot \text{см}^{-2}$. Видно, что величина спиновой поляризации электронов P_n^N в полупроводниках n-InSb уменьшается при росте концентрации электронов n. Напряжение эффекта Ханле V_H также убывает при увеличении n.

4. ЗАКЛЮЧЕНИЕ

Мы исследовали величину спин-индуцированного напряжения V_H при эффекте Ханле и значение коэффициента спиновой поляризации электронов P_n^N в латеральных спиновых устройствах, изготовленных на полупроводниках InSb с различной концентрацией электронов *n*. Самые высокие значения спиновой поляризации были достигнуты в устройствах с полупроводниками, обладающими наименьшими концентрациями носителей заряда. В устройствах, изготовленных на пластине InSb $(n = 1.2 \cdot 10^{14} \text{ cm}^{-3})$ и на пленке InSb $(n = 4 \cdot 10^{16} \text{ см}^{-3})$, при плотности тока инжектора около 13 ${
m A/cm^2}$ значения P_n^N равны соответственно 5.2 % и 0.7 %. В устройствах, которые были изготовлены на пленках полупроводников с $n = 8 \cdot 10^{16}$, $8.8\cdot 10^{16}$ и $4\cdot 10^{17}~{\rm cm}^{-3},$ значения P_n^N равны соответственно 0.13, 0.11 и 0.013 %. Уменьшение P_n^N согласуется с уменьшением сопротивления полупроводников R_N и множителя $[(\partial n/\partial \zeta)/n]$ при увеличении концентрации n (см. (6)), а также коэффициента спиновой поляризации тока P_i , который уменьшается от $4.1\,\%$ до $2.7\,\%$ при росте концентрации от $4 \cdot 10^{16}$ см⁻³ до $4 \cdot 10^{17}$ см⁻³ (см. таблицу). Более низкое значение $P_j~=~1.3\,\%$ для образц
а $N^{\!_{\rm D}}5$ может быть за счет более высокого в этом образце удельного сопротивления диэлектрического слоя, $\rho_C = 30 \text{ Ом} \cdot \text{см}$. Как следует из таблицы, в пленочных образцах № 1-№ 4 удельное сопротивление контакта ρ_C существенно ниже, чем в образце № 5, поскольку шероховатость пленок значительно выше, чем шероховатость пластины InSb. Тем не менее за счет самых высоких значений R_N и $[(\partial n/\partial \zeta)/n]$ величина P_n^N в образце № 5 наибольшая. Таким образом, величина спиновой поляризации P_n^N уменьшается с увеличением плотности электронов. При том соотношении сопротивлений R_N , R_F и R_C , которое

было получено в наших спиновых устройствах, наблюдается спад $P_n^N \sim \ln(1/n).$

Спин-индуцированное напряжение $V_H = V_D(d)$ (уравнение (5)) также убывает при росте концентрации *n* в соответствии с уменьшением P_i и P_n^N . Уменьшение V_H несколько нивелируется за счет роста множителя $n/(\partial n/\partial \zeta)$ при увеличении n (см. таблицу). Заметим, что спад напряжения V_H при росте *п* соответствует уменьшению контактной разности потенциалов в паре F и N. Контактная разность потенциалов ϕ_C между F и N зависит от разности работ выхода из F и N, которые определяются положением уровней Ферми ζ_F и ζ_N в каждом из этих материалов, $\phi_C = (\zeta_F - \zeta_N)/e$. Для вырожденного полупроводника $\zeta_N = k_B T \ln(n/N_c)$ [21]. Видно, что ζ_N увеличивается как $\ln n$ при росте плотности электронов в N, а контактная разность потенциалов ϕ_C уменьшается пропорционально $\ln(1/n)$.

Для спиновых устройств, изготовленных на тонких пленках, мы получили значения длины спиновой диффузии L_s^N в 2–3 раза более высокие, чем в устройстве, изготовленном на монокристаллической пластине InSb (см. таблицу). Корреляцию величины L_s^N в зависимости от толщины пленок, материала подложки или концентрации электронов мы не обнаружили. Можно предположить, что аномальные значения длины спиновой диффузии связаны с неоднородным составом пленок, представляющих собой гетеросистемы.

Финансирование. Работа выполнена в рамках государственного задания Министерства науки и высшего образования России (тема «Спин», № АААА-А18-118020290104-2) при частичной поддержке Российского фонда фундаментальных исследований (проекты №№ 19-02-00038, 20-07-00968).

ЛИТЕРАТУРА

- J. Fabian and I. Žutić, Phys. Rev. B 69, 115314 (2004).
- 2. А. Г. Аронов, Г. Е. Пикус, ФТП 10, 1177 (1976).
- V. V. Osipov, N. A. Viglin, and A. A. Samokhvalov, Phys. Lett. A 247, 353 (1998).
- P. R. Hammar and M. Johnson, Phys. Rev. Lett. 88, 066806 (2002).
- R. Fiederling, M. Kleim, G. Reuscher et al., Nature (London) 402, 787 (1999).

- Y. Ohno, D. K. Young, B. Beschoten et al., Nature (London) 402, 790 (1999).
- A. T. Filip, B. H. Hoving, F. J. Jedema et al., Phys. Rev. B 62, 9996 (2000).
- F. G. Monzon, D. S. Patterson, M. L. Roukes, J. Magn. Magn. Mater. 198, 632 (1999).
- C. M. Hu, J. Nitta, A. Jensen et al., Phys. Rev. B 63, 125333 (2001).
- 10. G. Schmidt, D. Ferrand, L. W. Molenkamp et al., Phys. Rev. B 6, R4790(R) (2000).
- O. M. J. van't Erve, A. L. Friedman, E. Cobas et al., Nat. Nanotechnol. 7, 737 (2012).
- M. Ciorga, A. Einwanger, U. Wurstbauer et al., Phys. Rev. B 79, 165321 (2009).
- 13. N. A. Viglin, V. M. Tsvelikhovskaya, N. A. Kulesh et al., JETP Lett. 110, 273 (2019).

- 14. M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
- M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987).
- N. A. Viglin, V. V. Ustinov, S. O. Demokritov et al., Phys. Rev. B 96, 235303 (2017).
- 17. J. Fabian, A. Matos-Abiague, C. Ertler et al., Acta Phys. Slov.57, 565 (2007).
- 18. Н. А. Виглин, И. В. Грибов, В. М. Цвелиховская и др., ФТП 53, 280 (2019).
- **19**. А. К. Бакаров, А. К. Гутаковский, К. С. Журавлев и др., ЖТФ **87**, 900 (2017).
- 20. J. Bass and W. P. Pratt Jr., J. Phys.: Condens. Matter 19, 183201 (2007).
- **21.** К. Зеегер, Физика полупроводников, Мир, Москва (1977).

ЭЛЕКТРОННАЯ СТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА Ti₅Si₃

Л. С. Чумакова^a, А. В. Бакулин^{a*}, С. Е. Кулькова^{a,b}

^а Институт физики прочности и материаловедения Сибирского отделения Российской академии наук 634055, Томск, Россия

> ^b Национальный исследовательский Томский государственный университет 634050, Томск, Россия

> > Поступила в редакцию 25 января 2022 г., после переработки 1 февраля 2022 г. Принята к публикации 2 февраля 2022 г.

Методом проекционных присоединенных волн в рамках теории функционала электронной плотности рассчитаны атомная и электронная структуры, модули упругости, вибрационные частоты и термодинамические характеристики силицида титана Ti_5Si_3 . Рассчитана поверхность Ферми и оценена скорость электронов на всех ее четырех листах. Анализ пространственной зависимости линейной сжимаемости и модулей Юнга и сдвига показал их слабую анизотропию, тогда как анизотропия коэффициента Пуассона является более выраженной. Рассчитан фононный спектр силицида титана и проведена оценка термодинамических характеристик. Показано, что в целом результаты расчетов находятся в хорошем согласии с экспериментом.

DOI: 10.31857/S0044451022060116 **EDN:** DUUZAV

1. ВВЕДЕНИЕ

Повышенный интерес к изучению физико-химических и механических свойств силицидов обусловлен их технологическими приложениями. Прежде всего, это было связано с масштабным производством компьютеров на основе кремния в 80-х годах, когда силициды использовались в основном в качестве омических контактов из-за низкого электрического сопротивления и термической совместимости с кремнием [1,2]. Последняя достигается за счет использования фаз, находящихся в термодинамическом равновесии с кремнием, а именно дисилицидов, среди которых наиболее полезными свойствами обладают TiSi₂, CoSi₂ и WSi₂ [1–5].

Вторая область применения силицидов связана с ограничением использования металлических сплавов в качестве конструкционных материалов при высоких температурах. Известно, что суперсплавы, являющиеся основными материалами для данных приложений, быстро теряют сопротивление ползучести и стойкость к окислению при температурах выше 1100 °С. Поэтому считается, что конструкционный материал, который будет выдерживать температуры от 1300 до 1600 °C, окажет такое же большое влияние на мировую экономику, как и микроэлектронная промышленность. Необходимость повышения рабочей температуры с сохранением хороших механических свойств привела к интенсивным исследованиям интерметаллических сплавов, которые продолжаются и в настоящее время. Изначально интерметаллиды привлекали такими свойствами, как высокая температура плавления (для некоторых — выше 2000 °C), низкая удельная плотность (ниже 7 г/см³) и широкие возможности легирования. Поскольку количество интерметаллических соединений очень велико, большая часть ранних исследований была связана с нахождением наиболее перспективных материалов на основе анализа ряда характеристик. Были сформулированы необходимые требования к свойствам материалов для высокотемпературных приложений, которые включали высокое сопротивление ползучести и стойкость к окислению при температурах выше 1000 °C, низкую плотность, сохранение прочности при повышенных температурах, а также возможность понижения хрупкости, присущей некоторым интерметаллическим соединениям, путем легирования. Наиболее

^{*} E-mail: bakulin@ispms.tsc.ru

перспективными в этом ключе оказались алюминиды и силициды переходных металлов. Были установлены также наиболее важные аспекты синтеза таких материалов. В частности было показано, что легирующие добавки даже в очень малых количествах, а также способ обработки могут существенно влиять на их свойства [6–8].

Известно, что γ-TiAl и сплавы на его основе обладают целым комплексом уникальных механических свойств, в том числе отмеченных выше, что делает их перспективными материалами для применения в аэрокосмической, автомобильной, судостроительной промышленности. Однако стойкость к окислению алюминидов титана при высоких температурах остается недостаточно высокой [9], что ограничивает их технологические приложения. Считается, что легирование кремнием сплава *γ*-TiAl улучшает коррозионную стойкость. Например, в работе [10] теоретическими методами было показано, что примесь кремния способствует локальному повышению концентрации титана в сплаве *γ*-TiAl путем образования Ті-антиструктурных атомов. Последнее приводит к повышению химической активности алюминия и, как следствие, способствует образованию защитного слоя Al₂O₃. Кроме того, в [11] было установлено, что примесь Si, а также Nb, Ta и W, замещая Ті в пленке ТіО₂, понижает коэффициент диффузии кислорода, что также должно повышать коррозионную стойкость TiAl. В работе [12] экспериментально было показано, что образование пленки силицида титана состава Ti₅Si₃ и слоев, обогащенных алюминием, приводит к образованию Al₂O₃, который подавляет дальнейшее окисление и, следовательно, способствует значительному повышению коррозионной стойкости сплава. Однако противоположный вывод о влиянии кремния был сделан в работе [13]. Авторы считают, что образование хрупкой фазы Ti₅Si₃ приводит к растрескиванию и отслаиванию оксидной шкалы. Недавно в работе [14] путем холодного напыления Al-40Si (масс. %) на поверхность сплава *γ*-TiAl было создано новое диффузионное покрытие Ti(Al,Si)₃, которое значительно повысило стойкость сплава к окислению. В процессе окисления образовался стабильный диффузионный барьер, состоящий из фазы Ti₅Si₃, который, как показали авторы [14], может тормозить интердиффузию между покрытием и подложкой и способствовать формированию оксидной шкалы Al₂O₃.

Силициды со стехиометрией M₅Si₃ обладают многими преимуществами по сравнению с другими силицидами. Кристаллическая структура является гексагональной, если M = Sc, Y, Ti, Mn, и объемно-центрированной тетрагональной в случае M = V, Mo, W. B отличие от других силицидов возможности легирования этих структур выражены в большей степени. Кроме того, гексагональная структура может вместить до 11 ат.% небольших атомов, таких как B, C, O и др., т. е. эти соединения также обладают значительными возможностями междоузельного легирования, которые не наблюдаются для силицидов любой другой стехиометрии. Другие преимущества включают более высокую температуру плавления (например, 2130 °C в случае Ti₅Si₃) и потенциал для вязкого упрочнения [15, 16].

К недостаткам идеальных соединений M_5Si_3 следует отнести недостаточную стойкость к окислению, низкую вязкость разрушения и высокую анизотропию свойств. Последние являются результатом анизотропной кристаллической структуры, что приводит к появлению при обработке остаточных напряжений и микротрещин [7]. Следует отметить, что обработка силицидов затруднена, поскольку углерод, кислород, азот и другие примеси стремятся заполнить междоузельное пространство.

Для того чтобы понять на микроскопическом уровне влияние формирования фазы Ti₅Si₃ на диффузию кислорода и интерфейсную прочность, необходимо, прежде всего, изучить его электронную и фононную структуру, а также физико-химические и механические свойства, что и является целью настоящей работы. Кроме того, проводятся оценки ряда термодинамических характеристик силицида титана, а также коэффициент теплового расширения.

2. МЕТОД РАСЧЕТА

Расчеты атомной и электронной структур соединения Ti₅Si₃ проводились методом проекционных присоединенных волн (PAW) в плоско-волновом базисе [17, 18] с обобщенным градиентным приближением для обменно-корреляционного функционала в форме PBE [19]. Энергия обрезания была равна 550 эВ. Оптимизация электронной структуры проводилась с точностью 10^{-6} эВ. Релаксация атомной структуры проводилась методом сопряженных градиентов с использованием полной оптимизационной схемы, допускающей изменение положения атомов, формы и размера ячейки. Сходимость считалась достигнутой, когда силы, действующие на атомы, не превышают 10^{-4} эВ/Å. В расчетах использовалась Г-центрированная сетка *k*-точек 7 × 7 × 9.

Зарядовые состояния атомов и заселенность перекрывания орбиталей оценивались с помощью

Рис. 1. Равновесная атомная структура соединения $\mathrm{Ti}_5\mathrm{Si}_3$ (*a*), локальное окружение атомов Ti_{4d} , Ti_{6q} и Si (б)

Таблица 1. Параметры решетки соединения Ti_5Si_3 в сопоставлении с имеющимися экспериментальными и теоретическими данными. В скобках приведено отличие от экспериментальных значений в процентах

Структурные параметры	$a, \mathrm{\AA}$	$c, \mathrm{\AA}$	c/a	x_{Ti}	$x_{\rm Si}$
Harmogrania Dodyny marty (DAW DDE)	7.466	5.108	0.684	0.2502	0.6081
пастоящие результаты (гАШ г ВЕ)	(+0.07)	(-0.83)	(-0.87)	(+1.17)	(+0.30)
Эксперимент [23]	7.461	5.151	0.690	0.2473	0.6063
Теория (NCPP LDA) [24]	7.377	5.084	0.689	0.2473	0.6063
Теория (PP GGA) [25]	7.472	5.132	0.687	_	_

метода DDEC6 [20], который представляет собой уточнение электростатического химического метода, основанного на электронной плотности (Density Derived Electrostatic and Chemical approach). Заселенность кристаллических орбиталей Гамильтона (COHP) рассчитывалась с помощью программы LOBSTER [21, 22].

Функция локализации электронов (ELF) рассчитывалась по следующей формуле:

$$ELF = \frac{1}{1 - (D/D_h)^2},$$
 (1)

где *D* — плотность кинетической энергии Паули электронного газа со спином «вверх»:

$$D = \frac{1}{2} \sum_{i} |\nabla \varphi_i|^2 - \frac{1}{8} \frac{|\nabla \rho_{\uparrow}|^2}{\rho_{\uparrow}}, \qquad (2)$$

где φ_i — орбитали Кона–Шема, ρ_{\uparrow} — плотность электронов со спином «вверх»; а D_h — плотность кинетической энергии однородного газа электронов со спином «вверх»:

$$D_h = \frac{3}{10} (2\pi^2 \rho_{\uparrow})^{5/3}.$$
 (3)

Необходимо отметить, что по определению функция ELF может принимать значения от 0 до 1, при этом в области ELF $\rightarrow 1$ наблюдается локализация электронных пар, кинетическая энергия которых стремится к нулю. Области ELF = 1/2 соответствуют полной делокализации электронов, например, в случае однородного электронного газа. Наконец, значения ELF $\rightarrow 0$ характерны для областей, разделяющих электронные пары, где плотность кинетической энергии высока.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Атомная и электронная структуры

Соединение Ti_5Si_3 имеет гексагональную структуру $D8_8$ и характеризуется пространственной группой $P6_3/mcm$ (№ 193). Атомы титана занимают два типа позиций Вайкоффа (Wyckoff positions) 4d (1/3, 2/3, 0) и 6g (x, 0, 1/4), атомы кремния также занимают 6g-позиции (рис. 1a). Равновесные параметры решетки и смещения атомов Ті и Si в 6g-позициях приведены в табл. 1. Видно, что рассчитанные структурные параметры Ti_5Si_3 находятся в согласие с результатами ранних теоретических и экспериментальных работ.

На рис. 16 показано локальное окружение атомов каждого типа и приведены обозначения для межатомных связей, которые будут использоваться далее. Видно, что атомы Ti_{4d} образуют две связи d_1 (2.55 Å) с соседними атомами Ti_{4d} и шесть связей d_2 (2.63 Å) с атомами кремния. Другие атомы Ti_{6g} пятикратно координированы атомами кремния, при этом две связи d_3 , лежащие в плоскости (0001), имеют наименьшую длину 2.57 Å. Связь d_4 (2.67 Å) также расположена в плоскости (0001), но ориентирована вдоль кристаллографического направления $\langle \overline{2}110 \rangle$ или $\langle 1\overline{1}00 \rangle$. Только две связи d_5 (2.76 Å) обусловливают взаимодействие Ti_{6g} -Si между атомными слоями. Таким образом, каждый атом кремния образует четыре связи d_2 с атомами Ti_{4d} и пять связей с атомами Ti_{6g} : две из них d_3 -типа, одна — d_4 и две — d_5 .

На рис. 2а, на котором приведен электронный энергетический спектр Ti₅Si₃, видно, что соединение является проводником, поскольку кривые дисперсии пересекают уровень Ферми (E_F) вдоль разных направлений в неприводимой части зоны Бриллюэна. Отметим, что приведенные состояния вблизи E_F позволяют интерпретировать рассчитанные листы поверхности Ферми, которые обсуждаются ниже. На рис. 26 видно, что валентная зона состоит из двух подзон: первая, расположенная при энергиях от -10.2 до -6.3 эВ, образована преимущественно s-состояниями Si, вторая, расположенная выше -5.0 эВ, обусловлена преимущественно *p*-состояниями Si, а при энергиях выше -3.6 эВ - d-состояниями Ті. При этом электронная структура атомов Ti_{4d} и Ti_{6q} отличается только высотой отдельных пиков, тогда как их расположение на энергетической шкале совпадает. Кроме того, положение пиков на кривых плотности электронных состояний атомов Ті двух типов хорошо коррелирует с соответствующими пиками на кривой плотности электронных состояний Si, что указывает на сильное взаимодействие этих атомов. На рис. 26 видно, что на кривой полной плотности электронных состояний уровень Ферми находится в локальном минимуме, что, согласно критерию Ямашиты [26], указывает на стабильность силицида. На рис. 26 приведены кривые СОНР для всех пяти типов связей в соединении Ti_5Si_3 . Видно, что только в случае d_1 -связи между атомами Ti_{4d} связующие орбитали являются частично заполненными, тогда как для остальных типов связей уровень Ферми отделяет связующие состояния от разрыхляющих. Последнее указывает на ковалентный вклад в механизм химической связи.

Все характеристики связей, включая зарядовое состояние взаимодействующих атомов, приведены в табл. 2. Площадь под кривой СОНР (–ICOHP), так

Рис. 2. Электронный энергетический спектр соединения ${
m Ti}_5{
m Si}_3(a)$, полная и локальные плотности электронных состояний (б), а также кривые СОНР для всех типов связей (e)

же как и заселенность перекрывания орбиталей (θ), рассчитанная методом DDEC6, могут служить мерой ковалентности химической связи. Однако первая величина измеряется в электронвольтах, тогда как вторая в электронах, что делает невозможным их прямое сопоставление, хотя корреляция между

Характеристика	$d_1, { m \AA}$	$d_2, { m \AA}$	$d_3, { m \AA}$	$d_4, { m \AA}$	$d_5, { m \AA}$
Связь Х-У	${ m Ti}_{4d} - { m Ti}_{4d}$	${ m Ti}_{4d}$ –Si	${ m Ti}_{6g}-{ m Si}$	${ m Ti}_{6g} ext{-}{ m Si}$	${ m Ti}_{6g}$ –Si
Ориентация	[0001]	mix	(0001)	$\langle \overline{2}110 \rangle, \langle 1\overline{1}00 \rangle$	mix
Длина, Å	2.55	2.63	2.57	2.67	2.76
—ICOHP, эВ	1.50	1.84	2.15	1.55	1.44
heta, эл.	0.24	0.34	0.45	0.33	0.30
q(X), эл.	0.74	0.74	0.63	0.63	0.63
q(Y), эл.	0.74	-1.12	-1.12	-1.12	-1.12

Таблица 2. Характеристики связей в соединении ${\rm Ti}_5{
m Si}_3$

Рис. 3. Распределение разности зарядовой плотности (*a*): области аккумуляции и ухода заряда показаны соответственно синим и красным цветом; функции локализации электронов (*б*): области локализации электронных пар и их разделения показаны соответственно фиолетовым и зеленым цветом

ними имеет место. Из табл. 2 следует, что уменьшение длины связи Ti–Si коррелирует с увеличение значений –ICOHP и θ . В то же время атомы Ti_{6g} отдают меньший заряд атомам Si, чем Ti_{4d}, что указывает на бо́льшую ионность связей в последнем случае. Очевидно, что d_1 -связь (Ti_{4d}–Ti_{4d}) является преимущественно металлической с незначительной примесью ковалентности. Поскольку она может формироваться с помощью только d_{z^2} -орбиталей Ti, которые практически не заполнены, то заселенность перекрывания орбиталей в этом случае минимальна.

На рис. За приведено распределение разности зарядовой плотности ($\Delta \rho$), которое рассчитывалось как разность между суммой атомных электронных плотностей ρ_{at} всех атомов и самосогласованной электронной плотностью соединения ρ_{sc} :

$$\Delta \rho(\mathbf{r}) = \sum \rho_{at}(\mathbf{r}) - \rho_{sc}(\mathbf{r}). \tag{4}$$

Отметим, что отрицательные значения $\Delta \rho$ соответствуют областям пространства, где происходит аккумуляция заряда при образовании соединения, а положительные — областям его ухода. Видно, что электронная плотность локализуется в области вокруг атомов кремния, при этом она имеет наибольшую ширину на связях d_2 между атомами Si и Ti_{4d}. Это указывает на больший зарядовый перенос к кремнию именно от этих атомов титана, что согласуется с данными из табл. 2. Напротив, d₄-связи (Si-Ti_{6a}, ориентированные вдоль кристаллографических направлений $\langle \overline{2}110 \rangle$ и $\langle 1\overline{1}00 \rangle$) демонстрируют лишь небольшие области ухода заряда вблизи атомов Ті_{6а}. Отметим, что области с высокими значениями функции локализации электронов, ELF (более 0.75), показанные на рис. 36, соответствуют локализации обобществленных электронов атомов Ті и Si. Их смещение в сторону кремния отражает наличие ионного вклада в химическую связь. Значения за-

Рис. 4. Полная поверхность Ферми ${
m Ti}_5{
m Si}_3(a)$ и ее четыре отдельных листа (б-d) с указанием значений скорости Ферми на термометре

Модель	$C_{11},$ ГПа	$C_{12},$ ГПа	$C_{13},$ ГПа	<i>C</i> ₃₃ , ГПа	$C_{44},$ ГПа	P_1 , ГПа	$P_2, \Gamma \Pi a$
Настоящий расчет	283.9	109.2	57.4	265.8	91.8	21.9	-33.4
Эксперимент [29]	285	106	53	268	93	16.7	-39.6
Теория [25] US PBE	282.6	107.9	54.0	271.6	94.2	_	_

Таблица 3. Упругие константы соединения ${\rm Ti}_5{\rm Si}_3$

рядов, ушедших с атомов титана к кремнию, приведены в табл. 2, а сам факт такого переноса обусловлен большей электроотрицательностью кремния по сравнению с титаном: Si — $1.90 \ \text{sB}^{1/2}$, Ti — $1.54 \ \text{sB}^{1/2}$ [27]. Области, где значения функции ELF ниже 0.05, также показанные на рис. 36, локализованы вокруг атомов титана и соответствуют высоким значениям кинетической энергии валентных *d*-электронов. В целом расчеты показали, что химическая связь в силициде титана имеет сложный характер.

Представленная на рис. 4а поверхность Ферми образована четырьмя листами. Первые два листа, соответствующие 31 и 32 зонам, являются дырочными замкнутыми поверхностями, локализованными вокруг точки А неприводимой части зоны Бриллюэна (рис. 46, в). Третий лист представляет собой многосвязную поверхность, при этом электроны локализованы вокруг точек М и К, тогда как области в центре зоны Бриллюэна (точка Г) и вокруг точек A, L и H заполнены дырками (рис. 4ϵ). Наконец, четвертый лист, образованный 34 зоной, является замкнутой электронной поверхностью типа гантели (рис. 4*д*). На рис. 4*б*–*д* видно, что скорость Ферми (v_F) достигает наибольшего значения порядка 15 эВ·Å на первом и втором листах поверхности Ферми, тогда как низкие значения $v_F \sim 5 \ \mathrm{sB} \cdot \mathrm{\AA}$ соответствуют некоторым областям на втором и четвертом листах. Скорость электронов, чей волновой

вектор соответствует третьему листу поверхности Ферми, практически везде равна среднему значению 9–11 эВ·Å и достигает 13 эВ·Å лишь в отдельных областях вблизи границы зоны Бриллюэна.

3.2. Механические свойства

Известно, что в случае гексагонального кристалла имеются пять независимых упругих постоянных (модулей податливости) [28], результаты расчетов которых приведены в табл. 3. Полученные результаты находятся в хорошем согласии с экспериментальными и теоретическими данными [25,29], что позволяет также воспроизвести корректно ряд упругих характеристик Ti_5Si_3 на их основе. Несмотря на то, что упругие постоянные рассчитываются для монокристалла, они позволяют оценить поликристаллические модули упругости. Объемный модуль упругости и модуль сдвига для поликристаллического образца, согласно теориям Фойгта, Ройсса и Хилла [30–32], могут быть записаны следующим образом:

$$B_{V} = (2C_{11} + 2C_{12} + 4C_{13} + C_{33})/9,$$

$$G_{V} = (3.5C_{11} + C_{33} - 2.5C_{12} - 2C_{13} + 6C_{44})/15,$$

$$B_{R} = 1/(2S_{11} + S_{33} + 2S_{12} + 4S_{13}),$$

$$G_{R} = 15/(14S_{11} + 4S_{33} - 10S_{12} - 8S_{13} + 6S_{44}),$$

$$B_{H} = (B_{V} + B_{R})/2,$$

$$G_{H} = (G_{V} + G_{R})/2.$$
(5)

Модель	B, ΓΠα	G, ГПа	$E, \Gamma \Pi a$	ν	$A^B, \%$	$A^G, \%$	$A^E,\%$	A^U
Теория [30]	144.6	93.2	230.1	0.23				
Теория [31]	142.6	91.4	226.0	0.24	0.70	0.95	0.91	0.11
Теория [32]	143.6	92.3	228.0	0.24				
Эксперимент [29]	140	96	234	0.22	_	_	_	_
Эксперимент [34]	_	_	146	_	_	_	_	_
Эксперимент [35]	_	_	268	_	_	_	_	_
Teopия [25] US PBE	140.32	95.82	237.16	0.36	_	_	_	_

Таблица 4. Изотропные (поликристаллические) модули упругости, коэффициент Пуассона и коэффициенты анизотропии для ${\rm Ti}_5{
m Si}_3$

Модуль Юнга и коэффициент Пуассона можно рассчитать по следующим формулам:

$$E = \frac{9BG}{3B+G}, \quad \nu = \frac{3B-2G}{6B+2G}.$$
 (6)

где B и G берутся в соответствие с одним из трех приближений. Упругая анизотропия объемного модуля, модулей сдвига и Юнга, а также универсальный коэффициент анизотропии рассчитывались по формулам

$$A^{B} = \frac{B_{V} - B_{R}}{B_{V} + B_{R}} \cdot 100 \%,$$

$$A^{G} = \frac{G_{V} - G_{R}}{G_{V} + G_{R}} \cdot 100 \%,$$

$$A^{E} = \frac{E_{V} - E_{R}}{E_{V} + E_{R}} \cdot 100 \%,$$

$$A^{U} = \frac{B_{V}}{B_{R}} + 5 \frac{G_{V}}{G_{R}} - 6.$$
(7)

Значения давления Коши могут быть оценены как

$$P_1 = C_{12} - C_{66}, \quad P_2 = C_{13} - C_{44}. \tag{8}$$

Из табл. 3 следует, что в целом рассчитанные характеристики хорошо согласуются с экспериментальными значениями и результатами ранних расчетов. Отметим, что отрицательное значение давления Коши (P_2 в случае Ti₅Si₃) указывает на направленность химических связей в соединении [33]. Поликристаллические модули упругости, рассчитанные по формулам (5), (6), приведены в табл. 4. Видно, что полученные значения находятся в хорошем согласии с данными из работы [29], в которой упругие константы измерялись методом резонанса прямоугольного параллелепипеда. Отметим, что значения модуля Юнга из работ [34, 35] существенно отличаются как от полученных в настоящей работе, так и значений из [29]. В работе [34] модуль Юнга измерялся путем сжатия образца, тогда как в [35] он определялся методом наноиндентирования. В последнем случае авторы предположили, что переоценка модуля Юнга может быть обусловлена микропористостью образца. Авторы [29] объяснили наблюдаемое в некоторых экспериментальных работах занижение модуля Юнга поликристаллического Ti₅Si₃ образованием межзеренных мягких фаз, например Ті. Кроме отмеченных выше работ имеются также другие экспериментальные статьи, в которых изучались упругие свойства Ti₅Si₃. В целом имеет место достаточно большой разброс экспериментальных значений модуля Юнга — от 146 ГПа до 268 ГПа. Напомним, что в настоящей работе поликристаллические модули упругости оценивались по упругим константам, рассчитанным для монокристалла, поэтому значения, приведенные в табл. 4, относятся к идеальному поликристаллическому Ti₅Si₃ без дополнительных фаз и включений.

Близкие к единице значения коэффициентов A^G и A^E , рассчитанных по формулам (7), отражают слабую анизотропию модулей сдвига и Юнга. В то же время анизотропия объемного модуля упругости более выражена, что, в свою очередь, отражается на зависимости линейной сжимаемости β от направления (рис. 5*a*). Отметим, что низкое значение коэффициента Пуассона (0.22) указывает на хрупкость данного соединения. Кроме того, отношение B/Gравно 1.56, что меньше критического значения 1.75, и, согласно критерию Пью [36], также свидетельствует о хрупком характере разрушения силицида титана. В целом теоретические значения хорошо согласуются с экспериментальными данными.

Рис. 5. Зависимость линейной сжимаемости (β), модуля Юнга (E), модуля сдвига (G) и коэффициента Пуассона (ν) от направления деформации. Нижние индексы «1» и «2» в случае двух последних характеристик соответствуют наименьшему и наибольшему их значению при фиксированном направлении

Кроме упомянутых выше поликристаллических упругих характеристик нами были рассчитаны их значения в зависимости от направления в кристалле. Соответствующие формулы и детальное описание можно найти, например, в [28, 37]. Рассчитанные упругие модули как функции направления приведены на рис. 5. Соответствующие проекции на базальную и призматическую плоскости показаны на рис. 6. Напомним, что базальная плоскость является плоскостью изотропии, поэтому модули упругости не зависят от направления в этой плоскости. Видно, что наибольшее значение линейной сжимаемости β (2.87 ТГц) соответствует направлению [0001]. Этому же направлению соответствует максимальное значение модуля Юнга Е (249.4 ГПа). При этом минимальное значение β (2.07 ТГц) соответствует деформации в базальной плоскости (0001), а E (219.7 ГПа) — в направлении около 52° к оси c, что согласуется с экспериментом [29]. Минимальное значение модуля сдвига G в плоскости (0001), равное 82.4 ГПа, соответствует одной из плоскостей скольжения, характерной для соединения Ti₅Si₃ [29]. Наибольшее значение G (105.2 ГПа) получено для направления, ориентированного под углом около 45° к оси с. В отличие от других упругих параметров коэффициент Пуассона существенно зависит от направления и изменяется в три раза: от минимального значения 0.13 до максимального 0.39, при этом оба значения достигаются для направления в плоскости (0001). Таким образом, расчеты показывают, что анизотропия упругих свойств силицида титана с гексагональной структурой выражена в меньшей степени, чем ожидалось, что является положительным фактором для его технологического применения.

3.3. Вибрационные, термодинамические и тепловые свойства

На рис. 7 приведены фононный энергетический спектр и локальные фононные плотности состояний. Видно, что структура Ti_5Si_3 является динамически стабильной, поскольку на спектре отсутствуют мнимые вибрационные частоты. Поскольку атомы кремния легче атомов титана, частоты выше 8.4 ТГц обусловлены преимущественно ими, тогда как низкие частоты соответствуют колебаниям атомов Ti_{6g} , а частоты колебаний атомов Ti_{4d} являются промежуточными и находятся в диапазоне 5.5–10.7 ТГц.

На рис. 8 показаны рассчитанные термодинамические характеристики Ti₅Si₃ в сопоставлении с экспериментальными данными. Видно, что теплоем-

Рис. 6. Зависимость β (*a*), *E* (δ), *G* (*b*), ν (*c*) Ti₅Si₃ от направления в плоскости {2110} (верхний полукруг) и (0001) (нижний полукруг)

Рис. 7. Энергетический спектр (слева) и плотность фононных состояний (справа) ${\rm Ti}_5{\rm Si}_3$

Рис. 8. Зависимость теплоемкости (a), энтропии (b), энтальпии (b) и свободной энергии (c) Ti_5Si_3 от температуры

кость при постоянном давлении (C_P) хорошо согласуется с экспериментом [38, 39], проведенным для разных интервалов температур, при этом низкотемпературное поведение теплоемкости при постоянном объеме (C_V) имеет зависимость пропорциональную T^3 . Напомним, что в рамках гармонической теории кристалла данные характеристики рассчитывались по следующим формулам:

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V, \quad C_P = C_V + \alpha^2 BVT,$$

$$S = -\frac{\partial F}{\partial T}, \quad F = -k_B T \ln(Z),$$
(9)

где Е — энергия фононов, равная

$$E = \sum_{\mathbf{q},s} \hbar \omega(\mathbf{q},s) \left[\frac{1}{2} + \frac{1}{\exp(\hbar \omega(\mathbf{q},s)) - 1} \right], \quad (10)$$

 α_V — объемный коэффициент теплового расширения, F — свободная энергия, S — энтропия, а Z — статистическая сумма, которая оценивалась по формуле

$$Z = \prod_{\mathbf{q},s} \frac{\exp(-\hbar\omega(\mathbf{q},s)/2k_BT)}{1 - \exp(-\hbar\omega(\mathbf{q},s)/k_BT)}.$$
 (11)

Температурные зависимости энтальпии (H), свободной энергии и вибрационного вклада в энтропию также находятся в хорошем согласии с экспериментом [38]. Известно, что существует противоречие между теоретическими и экспериментальными результатами, заключающееся в предсказании фазы силицида, которая должна находиться в термодинамическом равновесии с твердым раствором Si в матрице α -Ti. Согласно фазовой диаграмме Ti–Si, основанной на экспериментальных данных, тетрагональная фаза Ti₃Si должна находиться в термодинамическом равновесии с твердым раствором ниже температуры эвтектоидной реакции [40]. С другой стороны, теоретические расчеты показывают, что фаза Ti₃Si может распадаться на Ti₅Si₃ [41] или Ti₂Si и

Рис. 9. Зависимость коэффициента линейного теплового расширения (a) и полного параметра Грюнайзена (δ) ${
m Ti}_5{
m Si}_3$ от температуры

 α -Ті [42,43]. Причиной этих расхождений может являться пренебрежение вкладом колебательных степеней свободы в термодинамические свойства фаз. Как видно на рис. 8*г*, вибрационная свободная энергия действительно достаточно быстро меняется с ростом температуры, особенно при *T* выше примерно 100 К. В этой связи, полученные термодинамические характеристики могут быть полезны в дальнейших исследованиях фазовой стабильности в силицидах титана.

В заключение, на рис. 9 приведены зависимости коэффициентов линейного теплового расширения (α_a , α_c) и полного параметра Грюнайзена (γ), которые рассчитывались по следующим формулам:

$$\alpha_l = \frac{1}{l_{298}} \left(\frac{\partial l}{\partial T}\right)_P,\tag{12}$$

$$\gamma = \frac{\sum_{\mathbf{q},s} \gamma_{\mathbf{q},s} C_V(\mathbf{q},s)}{\sum_{\mathbf{q},s} C_V(\mathbf{q},s)},\tag{13}$$

где l_{298} — линейный размер (параметр *a* или *c*) при T = 298 K; $C_V(\mathbf{q}, s)$ — вклад в теплоемкость C_V нормальной моды \mathbf{q}, s , а $\gamma_{\mathbf{q},s}$ — параметр Грюнайзена для фононной моды моды \mathbf{q}, s , равный

$$\gamma_{\mathbf{q},s} = -\frac{\partial(\ln\omega(\mathbf{q},s))}{\partial(\ln V)}.$$
(14)

Из рис. 9*a* видно, что теоретические значения параметра α_c согласуются с экспериментальными значениями [44] в интервале температур от 300 K до 900 K, но превышают их при T > 900 K. Отметим, что в [45] коэффициент α_c в отличие от результатов, полученных в работе [44], практически не зависит от температуры. Коэффициент теплового расширения вдоль оси *a* существенно меньше, чем α_c , при этом его функциональная зависимость от температуры согласуется с экспериментом: как и в работах [44, 45] он практически не зависит от температуры и слегка понижается при T > 900 K, как и в эксперименте [44]. В то же время, теоретические значения α_a примерно на $2 \cdot 10^{-6} \text{ K}^{-1}$ меньше экспериментальных [44, 45]. Оценка анизотропии теплового расширения α_c/α_a достигает 3.55–4.36 в интервале температур 200-1000 К, что превышает экспериментальное значение 2.7 [44,45]. Такое расхождение обусловлено преимущественно недооценкой коэффициента α_a . Коэффициент линейного теплового расширения для поликристаллического образца при этих же температурах равен $(6.61-9.76) \cdot 10^{-6} \text{ K}^{-1}$, тогда как экспериментальное значение, приведенное в работе [46], составляет $7.1 \cdot 10^{-6} \text{ K}^{-1}$.

Полный параметр Грюнайзена (рис. 96), который в среднем характеризует зависимость фононных частот от объема, может быть также рассчитан по формуле

$$\gamma = \frac{\alpha_V B}{C_V \rho},\tag{15}$$

где α_V , *B*, C_V и ρ — соответственно коэффициент объемного теплового расширения, объемный модуль упругости, теплоемкость при постоянном объеме и плотность силицида, которые зависят от температуры. Отметим, что в случае гексагональной структуры $\alpha_V \approx 2\alpha_a + \alpha_c$. Поскольку все четыре
множителя в формуле (15) зависят от температуры $(1/f \ \partial f/\partial T \approx 10^{-4} - 10^{-3})$, где $f = \alpha_V$, B, C_V или ρ), то γ также меняется с температурой даже в высокотемпературной области. Теоретические значения параметра Грюнайзена равны 1.40 - 1.46 в интервале температур от 300 K до 1300 K, что согласуется с экспериментальным значением 1.44 [46]. В целом тепловые свойства идеального силицида титана Ti_5Si_3 воспроизводятся удовлетворительно в настоящих расчетах, что позволит в дальнейшем использовать данную методику для оценки этих характеристик в случае легированного силицида.

4. ЗАКЛЮЧЕНИЕ

Методом проекционных присоединенных волн рассчитана атомная и электронная структуры, и термодинамические механические свойства силицида титана Ті₅Si₃. Анализ особенностей химических связей между атомами показал, что взаимодействие Ti-Si носит металло-ковалентный характер с существенным ионным вкладом. При этом атомы кремния выступают в роли анионов и получают заряд порядка 1.12 эл. Только связи Ti-Ti, ориентированные вдоль оси [0001], демонстрирует ярко выраженный металлический характер. Рассчитана поверхность Ферми силицида титана и оценены скорости электронов на ее листах. Показано, что скорости электронов на поверхности Ферми зависят от направления, а ее сложная структура указывает на анизотропию электронных транспортных свойств. Рассчитаны упругие константы и поликристаллические модули упругости. Проведен расчет упругих характеристик Ti₅Si₃ в зависимости от направления в кристалле. Показано, что наибольшие значения модуля Юнга и линейной сжимаемости соответствуют деформации вдоль оси (0001), тогда как наименьшее значение модуля сдвига получено для деформации в базальной плоскости. Коэффициент Пуассона при деформации в базальной плоскости может принимать значение в диапазоне от 0.13 до 0.39, что указывает на его анизотропию, тогда как анизотропия упругих свойств Ti₅Si₃ выражена в меньшей степени. Низкие значения коэффициента Пуассона и отношения B/G < 1.75 указывают на хрупкое поведение материала при разрушении. Расчет фононного спектра подтвердил динамическую стабильность Ті₅Sі₃ и позволил рассчитать термодинамические характеристики, такие как теплоемкость, энтропия, энтальпия и свободная энергия и другие. Показано,

что свободная энергия существенно изменяется с температурой, что указывает на необходимость учета вибрационного вклада в энергию Гиббса при изучении стабильности силицидов титана. Теоретические коэффициенты линейного теплового расширения находятся в хорошем согласии с экспериментом, хотя значения α_a в рассмотренном интервале температур недооцениваются. В целом получена значительная анизотропия коэффициента теплового расширения, что согласуется с экспериментом. Параметр Грюнайзена также находится в согласии с экспериментальным значением и имеет несущественную зависимость от температуры.

Финансирование. Работа выполнена при поддержке Российского научного фонда (проект № 22-23-00078). Численные расчеты проводились на суперкомпьютере СКИФ Суberia в Томском государственном университете.

ЛИТЕРАТУРА

- J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998).
- 2. L. J. Chen, Silicide Technology for Integrated Circuits, IEE, London (2009).
- L. N. Lie, W. A. Tiller, and K. C. Saraswat, J. Appl. Phys. 56, 2127 (1984).
- H. Jeon, C. A. Sukow, J. W. Honeycutt et al., J. Appl. Phys. 71, 4270 (1992).
- F. La Via, F. Mammoliti, G. Corallo et al., Appl. Phys. Lett. 78, 1864 (2001).
- T. Takasugi, Mater. Res. Soc. Symp. Proc. 213, 403 (1991).
- H. J. Grabke and G. H. Meier, Oxid. Met. 44, 147 (1995).
- M. K. Meyer and M. Akinc, J. Amer. Ceram. Soc. 79, 938 (1996).
- 9. Z. Li and W. Gao, in *Intermetallics Research Prog*ress, ed. by Y. N. Berdovsky, Nova Sci. Publ., New York (2008), p. 1.
- 10. А. В. Бакулин, С. Е. Кулькова, ЖЭТФ 154, 1136 (2018).
- А. В. Бакулин, Л. С. Чумакова, С. Е. Кулькова, ЖЭТФ 160, 206 (2021).
- X. Y. Li, S. Taniguchi, Y. Matsunaga et al., Intermetallics 11, 143 (2003).

- 13. H. R. Jiang, Z. L. Wang, W. S. Ma et al., Trans. Nonferrous Met. Soc. China 18, 512 (2008).
- 14. J. Huang, F. Zhao, X. Cui et al., Appl. Surf. Sci. 582, 152444 (2022).
- Z. Tang, A. J. Thom, and M. Akinc, Intermetallics 14, 537 (2006).
- 16. L. Zhang and J. Wu, Acta Mater. 46, 3535 (1998).
- 17. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- 18. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- 19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 20. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).
- R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).
- 22. S. Maintz, V. L. Deringer, A. L. Tchougreeff et al., J. Comput. Chem. 37, 1030 (2016).
- P. Villars and L. D. Calvert, *Pearson's Handbook of Crystallographic Data for Intermetallic Phases*, ASM, Metals Park, OH (1985).
- 24. J. J. Williams, Y. Y. Ye, M. J. Kramer et al., Intermetallics 8, 937 (2000).
- 25. P. F. Zhang, Y. X. Li, and P. K. Bai, IOP Conf. Series: Mater. Sci. Eng. 284, 012013 (2017).
- 26. J. Yamashita and S. Asano, Prog. Theor. Phys. 48, 2119 (1972).
- 27. W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th Edition, CRC Press/Taylor and Francis, Boca Raton, FL (2015), p. 9-97.
- F. J. Nye, *Physical Properties of Crystals*, Clarendon Press, Oxford (1985).

- 29. K. Kishida, M. Fujiwara, H. Adachi et al., Acta Mater. 58, 846 (2010).
- W. Voigt, *Physical Properties of Crystals*, 2nd ed., Teubner, Leipzig (1928), p. 716.
- 31. A. Reuss and Z. Angew, Math. Mech. 9, 49 (1929).
- 32. R. Hill, Proc. Phys. Soc. London, Sect. A 65, 349 (1952).
- 33. D. G. Pettivor, Mater. Sci. Technol. 8, 345 (1992).
- 34. L. Zhang and J. Wu, Scr. Mater. 38, 307 (1998).
- 35. K. Kasraee, M. Yousefpour, and S. A. Tayebifard, J. Alloys Compd. 779, 942 (2019).
- 36. S. F. Pugh, Philos. Mag. 45, 823 (1954).
- 37. T. C. T. Ting, J. Elast. 81, 271 (2005).
- 38. D. G. Archer, J. Chem. Eng. Data 41, 571 (1996).
- 39. S. Agarwal, E. J. Cotts, S. Zarembo et al., J. Alloys Compd. 314, 99 (2001).
- 40. H. Seifert, H. Lukas, and G. Petzow, Z. Metallkd. 87, 2 (1996).
- D. O. Poletaev, A. G. Lipnitskii, A. I. Kartamyshev et al., Comput. Mater. Sci. 95, 456 (2014).
- C. Colinet and J. C. Tedenac, Intermetallics 18, 1444 (2010).
- 43. C. Colinet and J. C. Tedenac, Calphad 37, 94 (2012).
- 44. T. Nakashima and Y. Umakoshi, Philos. Mag. Lett. 66,317 (1992).
- 45. G. Rodrigues, C. A. Nunes, P. A. Suzuki et al., Intermetallics 14, 236 (2006).
- 46. G. Frommeyer and R. Rosenkranz, in *Metallic Materials with High Structural Efficiency*, ed. by O. N. Senkov, D. B. Miracle, S. A. Firstov, Kluwer Academic Publishers, New York (2004), p. 287.

ОСОБЕННОСТИ ГЕНЕРАЦИИ ЛАЗЕРНО-ИНДУЦИРОВАННОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ И ЕГО ВОЗДЕЙСТВИЯ НА ВЕЩЕСТВО ПРИМЕНИТЕЛЬНО К ЗАДАЧАМ ЛАЗЕРНОГО ТЕРМОЯДЕРНОГО СИНТЕЗА

Г. А. Вергунова ^{а*}, С. Ю. Гуськов ^а, И. Ю. Вичев ^b,

А. С. Грушин^b, Д. А. Ким^b, А. Д. Соломянная^b

^а Федеральное государственное бюджетное учреждение науки Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

^b Федеральное государственное учреждение «Федеральный исследовательский центр Институт прикладной математики им. М. В. Келдыша Российской академии наук» 125047, Москва, Россия

> Поступила в редакцию 22 октября 2021 г., после переработки 22 октября 2021 г. Принята к публикации 12 ноября 2021 г.

На основании результатов численных расчетов исследуются особенности термодинамического состояния высокотемпературной излучающей лазерной плазмы. Обсуждаются зависимости характеристик лазерно-индуцированного рентгеновского излучения от длины волны и интенсивности воздействующего импульса Nd-лазера в диапазонах изменения их значений, отвечающих схеме сжатия мишени инерциального термоядерного синтеза импульсом рентгеновского излучения. Исследуются особенности термодинамического рентгеновского излучения из значений, отвечающих схеме сжатия мишени инерциального термоядерного синтеза импульсом рентгеновского излучения. Исследуются особенности термодинамического состояния плазмы, образованной в результате воздействия импульса лазерно-индуцированного рентгеновского излучения на плоские мишени из легких материалов, наиболее востребованных в качестве материалов внешнего слоя термоядерной мишени — аблятора, в котором происходит образование давления, сжимающего мишень. Представлено сравнение термодинамических характеристик плазмы, образованной при воздействии лазерного импульса, и плазмы, образованной при воздействии лазерно-индуцированного ниндуцированного рентгеновского импульса.

DOI: 10.31857/S0044451022060128 **EDN:** DUWAQY

1. ВВЕДЕНИЕ

В основе выбора длины волны излучения лазерного драйвера установки инерциального термоядерного синтеза (ИТС) лежит сравнительный анализ зависимостей от длины волны энергетических эффективностей собственно процесса генерации излучения и его воздействия на термоядерную мишень. В качестве драйвера действующей [1–3] и строящихся [4–7] лазерных установок, предназначенных для зажигания термоядерной мишени — получения термоядерной энергии, превышающей лазерную — используется лазер на неодимовом стекле, способный в настоящее время обеспечить максимальную энергетику установки. Применительно к Nd-лазеру речь идет об использовании лазерного импульса основной, второй и третьей гармоник излучения с длинами волн соответственно $\lambda = 1.06$ мкм, 0.53 мкм и 0.35 мкм. Энергетическая эффективность преобразования излучения основной гармоники Nd-лазера в излучение второй гармоники составляет около 60 %, а третьей — около 40 %. С другой стороны, с уменьшением длины волны воздействие излучения становится более эффективным с точки зрения различных аспектов сжатия мишени как при прямом облучении мишени лазерным излучением, так и при непрямом облучении рентгеновским излучением, в которое предварительно преобразуется лазерное излучение. С уменьшением длины волны увеличивается коэффициент поглощения излучения, медлен-

 $^{^{\}ast}$ E-mail: vergunovaga@lebedev.ru

нее развиваются плазменные неустойчивости, ответственные за генерацию быстрых электронов, которые могут осуществить нежелательный предварительный прогрев мишени.

В случае прямого облучения, когда лазерное излучение воздействует непосредственно на внешний слой мишени — аблятор, материалом которого служат легкие материалы, такие как пластик, бериллий или углерод повышенной плотности — зависимости термодинамических величин образующейся плазмы от интенсивности и длины волны воздействующего лазерного импульса достаточно подробно исследованы и теоретически, и экспериментально. Основным фактором, который регулирует термодинамическое состояние лазерной плазмы легких материалов, является поглощение лазерного излучения в области плазменного резонанса с плотностью, близкой к критической плотности плазмы, $ho_{cr} \ [\Gamma/cm^3] = 1.83 \cdot 10^{-3} A/Z \lambda_{\mu}^2 \ (A$ и Z — атомный номер и зарядовое число ионов плазмы, λ_{μ} [мкм] длина волны лазерного излучения). Этот факт приводит к хорошо известным зависимостям температуры и плотности от длины волны λ и интенсивности I_{las} лазерного импульса [2,8]:

$$T \propto (I_{las}/\rho_{cr})^{2/3} \propto (I_{las}\lambda^2)^{2/3},$$
$$P \propto \rho_{cr} (I_{las}/\rho_{cr})^{2/3} \propto (I_{las}/\lambda)^{2/3}.$$

В схеме непрямого сжатия на термоядерную капсулу воздействует импульс рентгеновского излучения, который образуется при воздействии лазерного импульса на внутреннюю стенку оболочкиконвертера, в геометрическом центре которого помещается термоядерная капсула. На действующей мегаджоульной лазерной установке NIF (LLNL, США) [2, 3] используется конвертер цилиндрической формы. Для обеспечения высокой степени конверсии лазерного излучения в рентгеновское в качестве материала конвертера используются вещества с большими зарядовыми числами, такие как золото и обедненный уран [9]. В результате при непрямом облучении конечное энергетическое воздействие на аблятор термоядерной капсулы имеет комплексный характер, который определяется термодинамическими свойствами как плазмы конвертора, так и плазмы аблятора, а также нелинейными зависимостями пробегов рентгеновского излучения от температуры и плотности в той и другой плазме. В частности, по этой причине в большинстве ранее опубликованных работ, посвященных физике непрямого облучения, результаты представлены в виде итогового заключения о работе

конкретной схемы лазер-конвертер-капсула. Такие данные применительно к условиям облучения на установке NIF суммированы в работах [2, 3] и относятся к облучению капсулы с аблятором из пластика рентгеновским импульсом, образованным при облучении внутренней поверхности конвертора из золота излучением третьей гармоники Nd-лазера.

Вместе с тем для детального понимания конечного результата комплексного процесса непрямого воздействия представляется важным исследование его составных частей в различных условиях облучения. Такие расчетно-теоретические исследования, выполненные в данной работе, относятся к изучению термодинамического состояния и излучательных свойств плазмы конвертера, образованной воздействием излучения первых трех гармоник Nd-лазера, и термодинамического состояния плазмы аблятора, образованной воздействием импульса лазерно-индуцированного рентгеновского излучения.

Расчеты были проведены по 1D-программе RADIAN [10]. В основу кода RADIAN положена физико-математическая модель, содержащая уравнения двухтемпературной радиационной гидродинамики. Учитывается электрон-ионный обмен, классическая или уменьшенная электронная теплопроводность. Лазерное излучение поглощается обратно-тормозным способом. Уравнения газовой динамики решаются совместно с многогрупповым уравнением переноса собственного излучения плазмы. В рамках представленной работы использовались уравнения состояния вещества (УРС) и спектральные коэффициенты поглощения излучения из базы данных THERMOS [11, 12]. В области высоких температур и низких плотностей рассматриваемой задачи УРС, как правило, близко к УРС идеального газа.

В разд. 2 представлены результаты численного моделирования взаимодействия импульсов излучения первой, второй и третьей гармоник Nd-лазера с интенсивностями в диапазоне 10^{13} – 10^{15} BT/см² с плоской мишенью из золота. Особое внимание уделяется случаю импульса второй гармоники Nd-лазера, использование которого предполагается в проекте российской мегаджоульной установки [5]. Обсуждаются особенности образования плазмы и ее излучательных свойств, связанных с переносом энергии собственным излучением плазмы. Проводится сравнительный анализ термодинамических характеристик, относящихся к излучающей лазерной плазме мишени из золота, образованной лазерным излучением первой, второй и третьей гармоник Nd-лазера. В разд. 3 представлены результаты численного моделирования взаимодействия лазерно-индуцированного рентгеновского излучения с плоскими мишенями из легких материалов — пластика и высокоплотного углерода, которые используются в качестве материалов аблятора термоядерных мишеней. Обсуждаются особенности образования плазмы, связанные с поглощением и переносом воздействующего рентгеновского излучения. Проводится сравнительный анализ термодинамических характеристик, относящихся к лазерной плазме одного и того же материала при облучении импульсами лазерного и рентгеновского излучения.

2. ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ ВЫСОКОТЕМПЕРАТУРНОЙ ИЗЛУЧАЮЩЕЙ ЛАЗЕРНОЙ ПЛАЗМЫ

Численные расчеты взаимодействия импульсов излучения первой, второй и третьей гармоник Nd-лазера, интенсивности которых лежали в диапазоне 10¹³–10¹⁵ Вт/см², с плоскими мишенями из золота были выполнены с использованием оптических констант, рассчитанных в отсутствие локального термодинамического равновесия (ЛТР) в плазме [11], и с учетом ограничения потока электронной теплопроводности. Ограничение потока электронной теплопроводности моделировалось введением коэффициента ограничения $f_e = 0.03-0.08$, что давало возможность согласовать результаты расчета с экспериментальными результатами по конверсии лазерного излучения в рентгеновское. Отсутствие ограничения теплопроводности приводит к расчетным значениям конверсии, значительно превышающим экспериментальные данные.

На рис. 1 представлены результаты расчета воздействия лазерного импульса с постоянной интенсивностью $I_{las} = 3 \cdot 10^{14} \ {
m Bt/cm^2}$ и длиной волны $\lambda = 0.53$ мкм на плоскую мишень из золота толщиной 30 мкм. Приведены зависимости от пространственной координаты плотности и температуры плазмы, а также плотности потока электронной теплопроводности и лучистой теплопроводности плазмы на момент времени t = 0.5 нс. Лазерное излучение поглощается в испаренной части мишени — короне — за счет обратно-тормозного механизма и достигает областей с критической плотностью $ho_{cr} \approx 0.017$ г/см³ при $Z \approx 62$. (На рис. 1 координата х отсчитывается от левой границы мишени, лазерное излучение падает на мишень справа.) С течением времени критическая плотность плазмы удаля-

Рис. 1. а) Зависимости от пространственной координаты плотности ρ (линия 1), температуры T_e (линия 2), потока электронной теплопроводности F_e (линия 3) и радиационного потока F_{rad} (линия 4). б) Зависимости от пространственной координаты скорости удельного (в единице объема) энерговыделения лазерной энергии q_{las} (линия 5) и излучательной способности J (линия 6) плазмы. Рисунки относятся к моменту времени t=0.5 нс, лазерному импульсу с постоянным потоком $I_{las}=3\cdot10^{14}~{\rm Bt/cm^2},$ $\lambda=0.53$ мкм на плоскую мишень из золота. Начальное положение мишени $0\leq x\leq30~{\rm мкм}$, лазерное излучение падает на мишень справа

ется от начального положения границы мишени: к 0.5 нс она располагается на расстоянии 24 мкм от начальной границы слоя золота, в точке с координатой $x \approx 54$ мкм. Бо́льшая часть лазерного излучения поглощается в области с критической плотностью (рис. 1, кривая 5). Из области поглощения лазерного излучения энергия потоком электронной теплопроводности (кривая 3 на рис. 1*a*) переносится вглубь золотого слоя. Это приводит к прогреву плотных слоев мишени, где формируется область генерации собственного излучения плазмы. В расчетах с учетом ограничения потока электронной теплопроводности образуются более резкие профили плотности и температуры, чем в расчетах без ограничения потока электронной теплопроводности.

Электронная теплопроводность переносит тепло в менее плотной части короны в области с координатами x > 45 мкм (линия 3 на рис. 1*a*). Радиационный поток (линия 4 на рис. 1а) является более эффективным механизмом переноса энергии вглубь мишени, чем поток электронной теплопроводности. Рентгеновское излучение эффективно поглощается (отрицательные значения потока рентгеновского излучения на кривой 4) вблизи границы неиспаренного золота ($x \approx 30$ мкм), прогревая и испаряя новые слои золота. В результате распределения плотности и температуры вблизи области испарения характеризуются значительными градиентами этих величин. Так, при изменении пространственной координаты на 6 мкм (45.5 мкм < x < 51.5 мкм) плотность ρ увеличивается от $\rho_{cr} \approx 0.017 \text{ г/см}^3$ до $10\rho_{cr} \approx 0.17$ г/см³, электронная температура уменьшается от $T_e \approx 1.8$ кэВ до $T_e \approx 400$ эВ, средний заряд уменьшается от 62 до 47. При изменении пространственной координаты на 2 мкм (43.5 мкм < < x < 45.5 мкм) плотность увеличивается от 10 ρ_{cr} до $50\rho_{cr}$ (около 0.65 г/см³). То есть в соответствии с [13] плотность на фронте абляции уменьшается практически по экспоненциальному закону. Температура от фронта абляции до области с критической плотностью растет как $T \propto x^{2/5}$.

Излучательная способность плазмы приближенно может быть представлена как [14, 15]

$$\begin{split} J = 1.5 \cdot 10^{10} \overline{Z^2 Z} \sqrt{T_e} \left(\frac{\rho}{A}\right)^2 \times \\ \times \left(1 + \frac{2.4I}{T_e}\right) \ \text{Дж/cm}^3 \cdot \text{с}, \end{split}$$

где *I* — средний потенциал ионизации вещества. Первое слагаемое в скобках определяет вклад тормозного излучения свободных электронов, второе вклад связанно-связанных и свободно-связанных переходов. При этом в высокотемпературной плазме легких элементов основной вклад в излучательную способность вносит первое слагаемое. Для плазмы многозарядных ионов I/T_e оказывается в диапазоне 4-10, и основной вклад в излучательную способность вносит второе слагаемое. В плазме с установившимся зарядовым составом излучательная способность зависит от температуры как $T_e^{1/2}$, от плотности — как ρ^2 . Такая зависимость приводит к тому, что максимум рентгеновского излучения (кривая 6, рис. 16) приходится на область с плотностью $(4-10)\rho_{cr}$ и температурой 400 эВ и смещен приблизительно на 3 мкм от максимума поглощения лазерного излучения вглубь твердых слоев плазмы.

На рис. 2 для сравнения представлены пространственные распределения плотности ρ , температуры T_e , скорости удельного энерговыделения лазерной

890

Рис. 2. Сформированные в золотом слое к моменту 0.5 нс под действием излучения первой (линии 1, 4), второй (линии 2, 5) и третьей (линии 3, 6) гармоник Nd-лазера с $I_{las} = 3 \cdot 10^{14} \text{ Bt/cm}^2$. a) Зависимости от пространственной координаты плотности ρ (линии 1, 2, 3) и температуры T_e (линии 4, 5, 6). б) Удельное энерговыделение q_{las} лазерного излучения (линии 1, 2, 3) и излучательная способность плазмы J (4, 5, 6). Начало координат совпадает с левой границей мишени. В начальный момент времени правая граница мишени расположена на расстоянии 30 мкм от начала координат

энергии q_{las} и излучательной способности плазмы J в момент времени 0.5 нс, сформированные при воздействии первой, второй и третьей гармоник лазерного излучения на плоский слой золота. Приведены результаты расчетов с коэффициентом ограничения электронной теплопроводности $f_e = 0.03$. Лазерное излучение поглощается в области плазмы с плотностью вплоть до критической плотности плазмы, соответствующей длине волны воздействующего лазерного излучения. С уменьшением длины волны уменьшается ширина области поглощения: излучение первой гармоники поглощается в относительно протяженной области с шириной около 28 мкм, излучение второй гармоники — в области шириной около 16 мкм, третьей — около 5 мкм. Зависимость $N_{e,cr} \propto \lambda^{-2}$ приводит к тому, что области погло**Таблица 1.** Значения координаты поверхности с критической плотностью плазмы, x_{cr} , критической плотности ρ_{cr} , а также температуры T_e и среднего заряда Z в области критической плотности в момент времени 0.5 нс при воздействии на плоскую мишень из золота лазерного излучения с потоком $I_{las} = 3 \cdot 10^{14} \text{ Вт/см}^2$ на первой ($\lambda = 1.06 \text{ мкм}$), на второй ($\lambda = 0.53 \text{ мкм}$) и на третьей ($\lambda = 0.35 \text{ мкм}$) гармониках

λ , MKM	x_{cr} , MKM	$ ho_{cr},$ г/см 3	T_e , кэВ	Z
0.35	50	0.045	1	60
0.53	54	0.017	1.8	62
1.06	91	0.0038	3.9	66

щения лазерного излучения с меньшей длиной волны расположены ближе к поверхности абляции. При этом в области поглощения плотность плазмы тем выше, а температура тем ниже, чем меньше длина волны лазерного излучения. В табл. 1 приведены значения координаты поверхности с критической плотностью, x_{cr} , критической плотности ρ_{cr} , а также температуры T_e и средней степени ионизации Z плазмы в области критической плотности в момент времени 0.5 нс при воздействии постоянного потока лазерного излучения $I_{las} = 3 \cdot 10^{14} \text{ Вт/см}^2$ с длинами волн 1.06 мкм, 0.53 мкм и 0.35 мкм на плоский слой золота. Начальное положение границы мишени, на которую действует лазерное излучение, 30 мкм.

Перенос энергии электронной и лучистой теплопроводностью в более плотные по сравнению с критической плотностью области мишени приводит к формированию крутых градиентов плотности и температуры, особенно плотности в короне вблизи абляционной поверхности. Перенос энергии внутрь мишени волной лучистой теплопроводности (волна Маршака) описывается решением, приведенным в [14, 16, 17]. С использованием рассчитанного в [11] росселандова пробега коэффициент поглощения излучения в золоте в диапазоне плотностей 0.1–1 г/см³ и температур 0.01–0.5 кэВ может быть аппроксимирован формулой

$$k_R = rac{1}{l_R} pprox \delta rac{
ho^lpha}{T_e^eta} \; \mathrm{CM}^2/\Gamma$$

где $\delta = 5.3$, $\alpha = 0.3$, $\beta = 2$, ρ в г/см³, T_e в кэВ. В предположении, что из области поглощения лазерного излучения плазма прогревается постоянным потоком излучения I_{rad} , зависимость координаты фронта тепловой волны определяется как

$$x_{rw} \propto \rho^{-(\alpha+\beta+4)/(\beta+5)} I_{rad}^{(\beta+3)/(\beta+5)} t^{(\beta+4)/(\beta+5)}$$
.

В условиях рассматриваемой задачи

$$x_{rw} \propto \rho^{-0.9} I_{rad}^{0.71} t^{0.86}$$

Из этого соотношения следует, что скорость прогрева холодного золота медленно уменьшается со временем и растет с увеличением греющего потока излучения. К моменту времени t = 0.5 нс рентгеновское излучение, образованное в области поглощения лазерного излучения второй гармоники с интенсивностью $I_{las} = 3 \cdot 10^{14} \text{ Br/см}^2$, прогревает приблизительно 3 мкм первоначально твердого золота. Следует отметить, что при той же интенсивности лазерного излучения рентгеновское излучение, образованное при воздействии лазерного излучения третьей гармоники, проникает в холодное золото на 0.22 мкм глубже, чем при воздействии излучения второй гармоники, и на 0.36 мкм глубже, чем при воздействии излучения первой гармоники, поскольку интенсивность рентгеновского излучения, образованного под действием излучения третьей гармоники выше, чем при воздействии излучения первой и второй гармоник.

Максимум излучательной способности плазмы смещен в область с плотностью, превышающей критическую плотность, и соответственно с температурой, меньшей температуры в области поглощения лазерного излучения. Наименьшее смещение — около 3 мкм — имеет место для случая третьей гармоники. Для второй гармоники оно составляет 9 мкм, для первой — 44 мкм. В результате (с учетом расположения областей поглощения лазерного излучения) максимумы излучательной способности оказываются локализоваными примерно на одинаковом расстоянии от абляционной поверхности. Их значения тем больше, чем меньше длина волны лазерного излучения за счет более высокой плотности в области излучения. При этом, однако, ширина области излучения уменьшается с уменьшением длины волны за счет более высоких градиентов плотности и температуры. Это приводит к тому, что доля лазерного излучения, конвертируемая в собственное излучение плазмы, растет незначительно с уменьшением длины волны воздействующего лазерного излучения.

На рис. 3 приведена зависимость от времени конверсии лазерного излучения в рентгеновское излучение на плоском слое золота при воздействии постоянного лазерного импульса $3\cdot 10^{14}$ BT/см² с различ E_{rad}/E_{las}

0.6

0.5

Рис. 3. Зависимость конверсии постоянного лазерного импульса $I_{las} = 3 \cdot 10^{14} \text{ Вт/см}^2$ в рентгеновское излучение от времени. Кривые подписаны номерами гармоник: I — $\lambda = 1.06 \text{ мкм}$, II — $\lambda = 0.53 \text{ мкм}$, III — $\lambda = 0.35 \text{ мкм}$

ными длинами волн. С течением времени масса прогретой плазмы и, как следствие, конверсия в рентгеновское излучение увеличиваются. После ~ 0.5 нс рост конверсии замедляется. После этого момента времени относительно больше поглощенной энергии переходит во внутреннюю и кинетическую энергию плазмы, вклад в потери на излучение уменьшается.

Конверсия относительно слабо растет с уменьшением длины волны лазерного импульса: примерно от 0.38 при $\lambda = 1.05$ мкм до 0.45 при $\lambda = 0.35$ мкм. Эти данные находятся в хорошем согласии с опубликованными данными экспериментов, которые для интенсивности лазерного импульса 10^{14} – 10^{15} лежат в достаточно узком диапазоне 0.3–0.5. Так, в экспериментах [18–21] значение конверсии составило около 0.4 для излучения первой гармоники, около 0.44 для излучения второй гармоники и около 0.48 для излучения третьей гармоники и около 0.48 для излучения третьей гармоники. Результаты численного моделирования согласуются с экспериментальными данными по конверсии при учете ограничения потока электронной теплопроводности с коэффициентом $f_e = 0.03$.

Весьма высокая конверсия излучения первых трех гармоник Nd-лазера в рентгеновское излучение в «открытой» геометрии облучения плоской мишени на уровне 0.3–0.5 является причиной того, что в «закрытой» геометрии облучения лазерным импульсом внутренней стенки конвертера при переизлучении и перепоглощении рентгеновского излучения увеличивается масса нагретого золота, а степень конверсии достигает значений вплоть до 80 % [3,22].

3. ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ ПЛАЗМЫ, НАГРЕВАЕМОЙ ЛАЗЕРНО-ИНДУЦИРОВАННЫМ РЕНТГЕНОВСКИМ ИЗЛУЧЕНИЕМ

Термодинамическое состояние плазмы, которая образуется при нагреве лазерно-индуцированным рентгеновским излучением плоской мишени, исследовалось на основе численных расчетов взаимодействия импульса рентгеновского излучения, генерируемого в конвертере из золота, с мишенями из пластика (плотность 1.07 г/см³) и высокоплотного углерода HDC (high density carbon, плотность 3.5 г/см³). На рис. 4a на момент времени 1 нс приведены пространственные распределения температуры, плотности и давления в плазме мишени из пластика при воздействии на нее импульса рентгеновского излучения с интенсивностью *I*_{rad} = $= 2.5 \cdot 10^{14} \text{ Br/cm}^2$, который генерировался от импульса излучения второй гармоники Nd-лазера с интенсивностью $I_{las} = 3.3 \cdot 10^{14} \text{ Bt/cm}^2$. Соответствующая этой интенсивности рентгеновского импульса радиационная температура составляет T_{rad} = = $(I_{rad} \sigma)^{1/4}$ = 246 эВ, где σ — постоянная Стефана-Больцмана, *I_{rad}* — интегральный по спектру поток излучения. Планковский спектральный поток излучения имеет максимум при энергии квантов $h\nu \sim 2.72 T_{rad} \approx 700$ эВ. Генерируемое рентгеновское излучение золота в диапазоне энергий, больших 2 кэВ, имеет локальные пики, обусловленные линиями на переходах на М-оболочку (энергия излучения линии $M_{\alpha 1}$ составляет 2.1 кэВ) и рекомбинационными скачками в этом же диапазоне.

В начальный момент времени правая граница пластикового слоя, на которую воздействует внешнее рентгеновское излучение, находится при x [мкм] = 0. Абляционное давление, которое приводит к генерации ударной волны внутрь мишени, образуется в области короны, прогретой рентгеновским излучением до температуры около 150 эВ, расположенной на расстоянии -84 мкм от границы облучения. Плотность в этой области составляет около 0.8 г/см³. Величина абляционного давления в расчете составляет около 60 Мбар. Известный из работ [2,3] скейлинг для абляционного давления при воздействии рентгеновского излучения на мишень из пластика $P[M \text{бар}] = 170 I_{rad(15)}^{7/8}$ при потоке $I_{rad} =$ $= 2.5 \cdot 10^{14} \text{ Br/см}^2$ дает значение около 50 Мбар, что хорошо согласуется с результатом численных расче-TOB.

Излучение высокоэнергетичной части спектра прогревает мишень перед фронтом ударной волны.

Рис. 4. а) Пространственные распределения плотности ρ (линия 1), температуры T_e (линия 2), давления P (линия 3), сформированные в пластиковом слое к 1 нс под действием падающего справа радиационного потока $I_{rad} = 2.5 \cdot 10^{14}$ Вт/см², радиационный поток F_{rad} — линия 4. F_{rad} на внешней границе x_{bound} равен греющему радиационному потоку I_{rad} ($F_{rad}(x = x_{bound}) = I_{rad}$). б) Пространственные распределения плотности ρ (линия 1), температуры T_e (линия 2), давления P (линия 3), потока электронной теплопроводности F_e (линия 4), сформированные в пластиковом слое под действием лазерного импульса $I_{las} = 2.5 \cdot 10^{14}$ Вт/см², $\lambda = 0.53$ мкм в t = 1 нс. Линия 5 — вклад лазерного излучения q_{las}

Так, излучение с энергиями квантов, превышающими 2.1 кэВ, проникает в мишень приблизительно на расстояние 10 мкм (от -90 мкм до -100 мкм), где формирует область, прогретую до температуры около 10 эВ. Более жесткое излучение с энергией, превосходящей 3.4 кэВ (выше энергии связи *М*-электронов), проникает еще глубже, прогревая плазму перед фронтом ударной волны до ~ 1 эВ (на рис. 4aкоордината x = (-200)-(-100) мкм). Тем не менее ударная волна является сильной. Плотность за ее фронтом составляет около 4.6 г/см³, давление около 100 Мбар. К моменту времени 1 нс ударная волна распространяется на расстояние ≈ 103 мкм.

На рис. 46 представлены пространственные распределения в момент времени t = 1 нс температуры, плотности и давления в плазме мишени из пластика (CH), образованной при воздействии импульса излучения второй гармоники Nd-лазера с той же интенсивностью $I_{las} = 2.5 \cdot 10^{14} \text{ Bt/cm}^2$, что и в расчете с импульсом лазерно-индуцированного рентгеновского излучения. В этот момент времени лазерное излучение наиболее эффективно поглощается при $x \approx 100$ мкм в области критической плотности ($\approx 0.012 \ r/cm^3$), температура в короне достигает 1.7 кэВ. Из области поглощения лазерного излучения потоком электронной теплопроводности плазма прогревается до областей с координатой $x \approx$ ≈ -17 мкм от первоначальной границы вещества. Величина абляционного давления составляет около 30 Мбар. Аналитические зависимости температуры и давления полностью ионизованной плазмы от интенсивности и длины волны излучения лазерного импульса, воздействующего на мишень легких элементов, даются известными скейлингами [2,8]:

$$T \ [\kappa \ni B] = \frac{1}{C_V} \left[\frac{2(\gamma - 1)}{3\gamma - 1} \right]^{2/3} (I_{las} / \rho_{cr})^{2/3} \approx \\ \approx 12 I_{las(15)}^{2/3} \lambda_{\mu}^{4/3},$$

$$P [M \text{6ap}] = \left[\frac{2(\gamma - 1)}{3\gamma - 1}\right]^{2/3} \rho_{cr} \left(I_{las}/\rho_{cr}\right)^{2/3} \approx \\ \approx 35 I_{las(15)}^{2/3} \lambda_{\mu}^{-2/3}.$$

Здесь $I_{las(15)}$ — интенсивность лазерного излучения в единицах 10^{15} Вт/см², C_V = $(Z + 1)k_B/A(\gamma - 1)m_p$ — удельная теплоемкость нагреваемого вещества, k_B — постоянная Больцмана, m_p — масса протона, γ — показатель адиабаты.

Скейлинг дает близкие к расчетным значения характерной температуры в области нагрева плазмы лазерным излучением — около 1.2 кэВ, и абляционнного давления — около 22 Мбар. Ударная волна с давлением за фронтом 32 Мбар к моменту времени 1 нс достигает области с координатой около -62 мкм.

Представленные данные позволяют провести количественное сопоставление характеристик термодинамического состояния плазмы, образованной воздействием лазерного импульса второй гармоники Nd-лазера и импульса лазерно-индуцированного излучения при одинаковых интенсивностях обоих импульсов. Рентгеновское излучение нагревает

	$I_{rad}, \ 10^{14} { m ~Bt/cm^2}$	λ , MKM	$dm/dt, \ 10^6 ~{ m r/cm\cdot c}$	<i>Р_{abl}</i> , Мбар	$ ho_{abl},$ г/см 3	$V_{abl}, \ 10^6 \mathrm{cm/c}$	$D_{sw}, \ 10^6 { m cm/c}$
CH	0.63	1.06	1.33	20	0.3	0.31	5.63
CH	2.52	0.53	3.8	59	0.47	0.88	10.8
CH	5.74	0.35	6.7	103	0.7	1.56	16
HDC	0.63	1.06	1.33	23	0.55	0.1	3.07
HDC	2.52	0.53	4.1	72	1	0.29	5.84
HDC	5.74	0.35	7.8	142	1.3	0.56	8.47

Таблица 2. Зависимости от плотности потока греющего рентгеновского импульса скорости абляции вещества мишени dm/dt, давления P_{abl} и плотности ρ_{abl} на границе абляции, скорости распространения фронта абляции по мишени $V_{abl} = (dm/dt)/\rho$ и скорости ударной волны D_{sw}

корону СН-мишени до температуры 100–200 эВ, примерно на порядок более низкой, чем в случае нагрева лазерным излучением. Вместе с тем характерная плотность в области нагрева рентгеновским импульсом 0.5–0.8 г/см³ в 40–60 раз превосходит плотность плазмы в области нагрева лазерным излучением, которая в этом случае близка к критической плотности плазмы — 0.012 г/см³. В результате абляционное давление и давление за фронтом ударной волны в неиспаренной части мишени в случае рентгеновского нагрева примерно в 3 раза выше, чем в случае лазерного нагрева.

Из теоретических и экспериментальных исследований известно (см., например, [23]), что при воздействии лазерного потока I_{las} с длиной волны λ на вещество классический обратнотормозной механизм поглощения, при котором энергия лазерного импульса передается тепловым электронам плазмы, преобладает при значениях параметра взаимодействия $I_{las}\lambda^2$ < 10^{14} Вт·мкм $^2/{
m cm}^2$. При $I_{las}\lambda^2$ > $> 10^{14} \text{ Вт} \cdot \text{мкm}^2/\text{сm}^2$ увеличивается роль бесстолкновительных механизмов поглощения, которые сопровождаются трансформацией лазерной энергии в энергию быстрых электронов. Для того чтобы избежать нежелательного эффекта генерации быстрых электронов при одной и той же величине $I_{las}\lambda^2$, например 10¹⁴ Вт·мкм²/см², при меньшей длине волны может быть использован лазерный импульс с большей интенсивностью $I_{las} \propto \lambda^{-2}$. Применительно к непрямому сжатию это означает, что при одной и той же величине $I_{las}\lambda^2$ увеличивается радиационная температура в конвертере и тем самым увеличивается поток излучения на внутреннюю капсулу. Если $I_{las}\lambda^2 = 10^{14}~{
m Bt\cdot mkm^2/cm^2},$ при длине

волны лазерного излучения $\lambda = 1.06$ мкм допустимый поток лазерного излучения на конвертор $I_{las} = 0.89 \cdot 10^{14} \text{ Bt/cm}^2$, а при длине волны $\lambda = 0.35$ мкм допустимый поток лазерного излучения увеличивается до $I_{las} = 8.16 \cdot 10^{14} \text{ Bt/cm}^2$. Таким образом, при заданном значении параметра взаимодействия с уменьшением длины волны лазерного излучения радиационный поток растет примерно как $I_{rad} \propto \lambda^{-2}$, а радиационная температура — как $T_{rad} \propto \lambda^{-1/2}$, что приводит к увеличению абляционного давления и скорости абляции.

Регулировка интенсивностей лазерных импульсов излучения различных гармоник в соответствии с условием $I_{las}\lambda^2 = 10^{14} \text{ Вт-мкм}^2/\text{см}^2$ была использована для сравнительных расчетов взаимодействия импульса лазерно-индуцированного рентгеновского излучения с мишенями из пластика и высокоплотного углерода HDC. Некоторые результаты этих расчетов приведены в табл. 2. Высокоплотный углерод как материал аблятора для термоядерных мишеней обладает рядом преимуществ по сравнению с СН-пластиком. Основное из них состоит в том, что за счет значительно более высокой плотности (более чем в 3 раза) ударная волна, при прочих равных условиях, нагревает вещество до меньшей температуры, что позволяет достичь более высокой степени сжатия мишени. При этом HDC-материал, состоящий из углерода — элемента с относительно низким зарядовым числом, остается материалом с незначительными потерями энергии на собственное излучение плазмы. В приведенных расчетах конверсия лазерного излучения в рентгеновское составляет 70 %-80 % и слабо зависит от длины волны (разница составляет 5%) рентгенообразующего лазерного

Рис. 5. Скорость абляции вещества мишени (а) и абляционное давление для аблятора (б) из пластика СН (сплошные черные линии) и высокоплотного углерода HDC (штриховые линии) в зависимости от потока греющего рентгеновского излучения. Аналитические выражения из [2] на графиках — сплошные красные линии

излучения. Во втором и третьем столбцах табл. 2 указаны интенсивности рентгеновского импульса и длины волн излучения рентгенообразующего лазерного импульса. В табл. 2 приведены усредненные по времени значения скорости абляции вещества мишени dm/dt, давления P_{abl} и плотности ρ_{abl} на границе абляции, скорости распространения фронта абляции по мишени $V_{abl} = (dm/dt)/\rho$ (где ρ – плотность за фронтом ударной волны) и скорости ударной волны D_{sw} .

На рис. 5 построены графики зависимости скорости абляции dm/dt и абляционнного давления от падающего радиационного потока для пластика и высокоплотного углерода. Результаты расчетов для пластика хорошо совпадают с формулами

Рис. 6. Пространственное распределение давления в моменты времени 0.5 нс (жирные линии) и 1 нс (тонкие линии), характеризующие распространение ударной волны в мишенях СН (штриховые линии) и HDC (сплошные линии), при воздействии потока рентгеновского излучения $2.5 \cdot 10^{14} \text{ Bt/cm}^2$, генерируемого в золотом конверторе при его облучении лазерным импульсом второй гармоники с интенсивностью $3.56 \cdot 10^{14} \text{ Bt/cm}^2$

$$\begin{split} P_{abl} \left[\text{M6ap} \right] &= 170 \; I_{rad(15)}^{7/8}, \\ dm/dt \left[\text{$\Gamma/\text{cm}^2/\text{c}$} \right] &= 10^7 \; I_{rad(15)}^{3/4}, \end{split}$$

работы [2]. Скорость абляции dm/dt и абляционное давление с увеличением греющего рентгеновского потока для HDC растет сильнее, чем для пластика. Результаты расчетов для HDC могут быть интерполированы как

$$P [ext{M6ap}] = 214 \ I_{rad(15)}^{0.84},$$

 $dm/dt \ [ext{r/cm}^2/ ext{c}] = 1.2 \cdot 10^7 \ I_{rad(15)}^{0.8},$

На рис. 6 приведены профили давления, формируемые в плазме пластика и HDC в различные моменты времени при воздействии импульса рентгеновского излучения $I_{rad} = 2.5 \cdot 10^{14} \text{ Bt/cm}^2$. Значения давления в сформированной ударной волне ~ 100 Мбар оказываются близкими в пластике и HDC, скорость распространения ударной волны в пластике выше в 1.9 раза. При одной и той же массе толщина аблятора из HDC меньше толщины пластикового аблятора примерно в 3 раза. Поэтому несмотря на то, что скорость прохождения ударной волны ниже, используемый лазерный импульс для сжатия капсул с аблятором из HDC может быть выбран как минимум в 1.5 раза короче, что выгодно с точки зрения развития гидродинамических неустойчивостей.

4. ЗАКЛЮЧЕНИЕ

Выполненные расчетно-теоретические исследования показали, что при облучении плоской мишени из золота плазмообразующим лазерным импульсом степень конверсии энергии лазерного излучения в энергию рентгеновского излучения весьма слабо зависит от длины волны лазерного излучения. Ее значение для первых трех гармоник излучения Nd-лазера лежит в диапазоне 0.4-0.5. В закрытой геометрии облучения конвертора это приводит к увеличению конверсии вплоть до 80 %. Из-за слабой зависимости конверсии от длины волны преимущество использования излучения третьей гармоники Nd-лазера может состоять в возможности использования более высокой интенсивности рентгенообразующего лазерного импульса для сохранения низкого уровня генерации быстрых электронов и ВРМБ-рассеяния. Однако в схеме непрямого облучения размер термоядерной капсулы значительно меньше размеров конвертора, что минимизирует негативное влияние быстрых электронов на сжатие капсулы. В свою очередь, ВРМБ-рассеяние может не приводить к значительным отрицательным последствиям, поскольку рассеянное лазерное излучение будет в значительной степени перепоглощаться в конверторе. В таком случае использование импульса излучения второй гармоники Nd-лазера с интенсивностью, близкой к интенсивности импульса излучения третьей гармоники, может быть в конечном счете более энергетически выгодным по сравнению со случаем третьей гармоники с учетом более высокой эффективности преобразования излучения основной гармоники Nd-лазера в излучение второй гармоники по сравнению с преобразованием в излучение третьей гармоники.

Благодарности. Авторы статьи признательны И. Я. Доскочу за полезные обсуждения и помощь в подготовке статьи.

Финансирование. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 19-02-00299А).

ЛИТЕРАТУРА

- 1. J. Nuckolls and L. Wood, Nature 239, 139 (1972).
- 2. J. Lindl, Phys. Plasmas 2, 3933 (1995).
- J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004).

- M. Andre, in First SPIE International Conference on Solid State Laser for Application to ICF, Monterey, CA (1999), p. 39.
- С. А. Бельков, С. Г. Гаранин, В. Г. Рогачев и др., XLVIII Международная (Звенигородская) конференция по физике плазмы и УТС, Звенигород (2021).
- Z. Fan, M. Chen, Z. Dai et al., arXiv:1303.1252 [physics.plasm-ph].
- X. T. He, Plenary Presentation at IFSA 8, Nara, Japan (2013).
- Yu. V. Afanasiev and S. Yu. Gus'kov, Nuclear Fusion by Inertial Confinement, ed. by G. Velarde et al., CRC Press (1993), p. 99.
- S. W. Haan, A. L. Kritcher, D. S. Clark et al., Report LLNL-TR-741418 (2017).
- 10. G. A. Vergunova and V. B. Rozanov, Laser Part. Beams 17, 579 (1999).
- А. Ф. Никифоров, В. Г. Новиков, В. Б. Уваров, Квантово-статистические модели высокотемпературной плазмы, Физматлит, Москва (2000).
- Д. А. Ким, И. Ю. Вичев, А. Д. Соломянная, А. С. Грушин, Препринт ИПМ 58, Москва (2020).
- W. M. Manheimer, D. G. Colombant, and J. H. Gardner, Phys. Fluids 25, 1644 (1982).
- 14. Y. B. Zel'dovich and Y. P. Raizer, *Physics of Shock Waves and High Temperature Hydrodynamic Phenomena*, Acad. Press, New York (1966).
- **15**. Ю. В. Афанасьев, Е. Г. Гамалий, В. Б. Розанов, Труды ФИАН **134**, 10 (1982).
- 16. R. E. Marshak, Phys. Fluids 1, 24 (1958).
- G. A. Vergunova, A. S. Grushin, V. G. Novikov et al., J. Russ. Laser Res. 34, 355 (2013).
- 18. W. C. Mead, E. M. Campbell, K. Estabrook et al., Phys. Fluids 26, 2316 (1983).
- H. Nishimura, F. Matsuoka, M. Yagi et al., Phys. Fluids 26, 1688 (1983).
- 20. M. D. Rosen, D. W. Phillion, V. C. Rupert et al., Phys. Fluids 22, 2020 (1979).
- W. Shang, J. Yang, W. Zhang et al., Appl. Phys. Lett. 108, 064102 (2016).
- 22. L. J. Suter, R. L. Kauffman, C. B. Darrow et al., Phys. Plasmas 3, 2057 (1996).
- 23. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion – Beam Plasma Interaction, Hydrodynamics, Dense Plasma Physics, Clarendon Press – Oxford Univ. Press, Oxford (2004).

ОСОБЕННОСТИ ДИНАМИКИ САМОВОЗДЕЙСТВИЯ ВОЛНОВЫХ ПАКЕТОВ С ИСХОДНО НОРМАЛЬНОЙ ДИСПЕРСИЕЙ ГРУППОВОЙ СКОРОСТИ В НЕЛИНЕЙНЫХ РЕШЕТКАХ

Л. А. Смирнов ^{a,b*}, В. А. Миронов ^a, А. Г. Литвак ^a

^а Институт прикладной физики Российской академии наук 603950, Нижний Новгород, Россия

^b Институт информационных технологий, математики и механики, Нижегородский государственный университет им. Н. И. Лобачевского 603950, Нижний Новгород, Россия

> Поступила в редакцию 16 января 2022 г., после переработки 27 января 2022 г. Принята к публикации 22 февраля 2022 г.

Исследованы особенности процессов самовоздействия волновых полей в рамках дискретного нелинейного уравнения Шредингера. Аналитически и численно показано, что динамика волновых пакетов с исходно нормальной дисперсией групповой скорости в системах, описываемых данным модельным уравнением, может существенным образом отличаться от эволюции аналогичных распределений в сплошной среде. Детально проанализировано поведение волновых полей с изначально гладкими (по сравнению с периодом рассматриваемых решеток) амплитудным профилем и фазовым фронтом и изучен механизм их разрушения в цепочках эквидистантно расположенных элементов. Предложена модификация бездисперсионного приближения, с использованием которой удается теоретически описать эффекты, приводящие к развитию мелкомасштабных неустойчивостей на фоне плавной огибающей и к ее последующим существенным деформациям (вплоть до распада). Представлены оценки критических параметров, при превышении которых следует ожидать указанных (нехарактерных для континуальных сред) процессов.

DOI: 10.31857/S004445102206013X **EDN:** DVESCO

1. ВВЕДЕНИЕ

В настоящее время нелинейные решеточные модели находят широкое применение при теоретическом исследовании физических явлений в различных по своей природе дискретных системах и при интерпретации экспериментально полученных данных [1–6]. При изучении распространения волновых полей в наборах, состоящих из большого числа связанных между собой эквидистантно расположенных элементов, активно используется дискретное нелинейное уравнение Шредингера (ДНУШ) [1–6]. Несмотря на то, что оно является непосредственным аналогом непрерывного нелинейного уравнения Шредингера (НУШ) [6–8], позволяющего успешно описать процессы самовоздействия в сплошных средах и вместе со своими разнообразными обобщениями представляющего один из наиболее важных классов модельных уравнений в частных производных, в пространственно-структурированной ситуации эволюция полей оказывается намного сложнее и естественно ожидать эффектов, которые отсутствуют в континуальной задаче. В частности, на данное обстоятельство указывает различие в дисперсионных свойствах и особенности, связанные с периодичностью выражающих их законов в дискретном случае и спецификой отдельно взятой зоны Бриллюэна, в которой присутствуют одновременно области как с нормальной, так и с аномальной дисперсией групповой скорости.

Детальный анализ динамики волновых пакетов в решетках в основном опирается на результаты численного моделирования. Как показывают такого рода расчеты (например, см. работы [9–14]), для плав-

^{*} E-mail: smirnov lev@appl.sci-nnov.ru

ных (по сравнению с периодом рассматриваемой решетки) начальных распределений поля их дальнейшее поведение может рассматриваться в континуальном пределе лишь на ограниченных трассах или в течение конечных временных интервалов. Применимость непрерывной аппроксимации для дискретных уравнений оправдана только до тех пор, пока характерные пространственные масштабы локализации неоднородностей не становятся того же порядка, что и расстояния между соседними структурными элементами обсуждаемой системы. Это приводит к тому, что даже в одномерной цепочке возникает целый ряд эволюционных сценариев, которые не встречаются в сплошной среде [9–14]. Например, в работах [9–12] изучалось распространение исходно широких квазиоптических пучков, инжектируемых в решетку эквидистантно расположенных световодов, и было показано, что их самофокусировка при превышении критической мощности заканчивается локализацией большей части электромагнитного излучения в одном из волноводов. Кроме того, подобный процесс самоканалирования приводит к отклонению трассы распространения максимума интенсивности от прямой линии [9, 11, 12, 15].

Похожие эффекты обсуждались также и в приложении к динамике набора взаимодействующих между собой облаков бозе-эйнштейновского конденсата, каждое из которых сосредоточено вблизи одного из соответствующих минимумов внешнего периодического потенциала, созданного оптической ловушкой [16-21]. Подчеркнем, что выводы, сделанные в большинстве из указанных выше статей, справедливы, только когда волновые пакеты находятся в области аномальной дисперсии. Стоит отметить, что во всех перечисленных здесь случаях, несмотря на разную физическую природу объектов, исследование проводилось в рамках ДНУШ, для которого развито существенно меньше аналитических методов построения точных и приближенных решений по сравнению с НУШ. Оказалось, что для дискретных моделей весьма полезным и конструктивным может быть использование вариационного подхода, основанного на априорных представлениях о форме изучаемых нелинейных возбуждений конечной амплитуды и позволяющего качественно, а порой и количественно адекватно описать в безаберрационном приближении ключевые аспекты эволюции и самоканалирования локализованных образований в пространственно-структурированных средах [10–14, 16].

В данной работе рассматриваются особенности динамики и процесса самовоздействия волновых пакетов с нормальной дисперсией групповой скорости, когда не удается сделать столь определенного прогноза о возможных сценариях распространения поля, как в случае аномальной дисперсии. В первую очередь связано это с тем, что в обсуждаемых условиях среда фактически становится дефокусирующей, вследствие чего использование пробных функций в виде гауссиана с линейной и квадратичной коррекциями фазового фронта при вариационном подходе не представляется до конца оправданным. Кроме того, на первый взгляд, есть основания полагать, что можно ограничиться вообще только континуальным пределом, в рамках которого все протекающие процессы описываются с помощью НУШ, поскольку на начальных этапах исходно плавные распределения будут еще больше расплываться. Однако, как показывают численные расчеты, существуют критические значения параметров таких распределений, при превышении которых на фоне расширяющегося гладкого профиля поля развивается неустойчивость, приводящая к его разрушению. Подобные динамические режимы, на которые отчасти обращалось внимание в работах [16–18,21], заведомо отсутствуют в аналогичных непрерывных моделях.

Основная цель представленной статьи заключается в объяснении механизмов возникновения данных сценариев поведения волнового поля в рамках ДНУШ. При этом для определенности постановка задачи формулируется применительно к распространению оптического излучения в дискретной системе, состоящей из большого числа связанных между собой световодов, хотя результаты проведенного анализа несложно перенести и на другие случаи, где речь идет об эволюции нелинейных возбуждений в цепочках эквидистантно расположенных элементов, для которых могут быть использованы соответствующие модельные уравнения.

Прежде чем переходить к изложению основного материала, сделаем еще ряд важных замечаний. Во-первых, нетривиальные режимы эволюции динамических систем нередко удается успешно классифицировать, изучая устойчивость стационарных состояний и автомодельных решений исследуемой задачи [1, 6–8, 22, 23]. В большинстве случаев это можно сделать посредством процедуры линеаризации исходных уравнений, описывающих то, как протекают интересующие нас процессы (например, распространение электромагнитного излучения в пространственно-структурированных средах, взаимодействие когерентных волн материи и формирование интерференционных картин в гидро- и газодинамике). Анализ поведения малых возмущений на заданном фоне достаточно часто позволяет оценить типичные времена перехода от одного нелинейного режима к другому, присущие масштабы возникающих неоднородностей, а также пороговые величины для основных характеристик волнового поля и бифуркационные значения управляющих параметров рассматриваемой системы, при которых начинают развиваться те или иные неустойчивости. В итоге такого рода подход в целом помогает прогнозировать возможные сценарии эволюции нелинейных возбуждений и объяснить ключевые моменты в динамике их развития, наблюдаемые на различных этапах непосредственно в эксперименте или при численном моделировании. Особенностью интересующей нас здесь ситуации является то, что ее можно интерпретировать как «жесткий» режим возникновения неустойчивости, когда распространение огибающей волнового поля довольно долго оказывается плавным (практически равновесным), перед тем как перейти к существенно нелинейному неравновесному варианту своего поведения.

Во-вторых, в рамках НУШ с дефокусирующей нелинейностью, для которого хорошо известно, что однородный фон конечной амплитуды устойчив, численно, аналитически, а также экспериментально подробно изучалась задача о разлете локализованных распределений поля, заданных как на пьедестале [24-33], так и на спадающих до нуля на бесконечности (т. е., можно сказать, расплывающихся в «вакуум») [24, 25, 34-45]. В частности, было наглядно показано, что для исходно широких сигналов дисперсионными эффектами можно пренебречь [24-33, 36-45] и, кроме того, для ряда ситуаций свести описание динамики поля к уравнению простой волны (уравнению Хопфа) [24, 25, 46–48], скорость распространения которой зависит от интенсивности в отдельно взятой точке. Следовательно, в ходе расширения изначально гладких огибающих волновых пакетов следует ожидать укручения профиля [24-33, 36-48]. Такого рода процесс способен быть причиной возникновения мелкомасштабных возмущений, на формирование и эволюцию которых уже оказывает принципиальное влияние конкуренция нелинейности и дисперсии [24–33, 36–48]. Однако детальные исследования, выполненные на основе НУШ, в том числе с помощью прямого его моделирования, достоверно демонстрируют, что при указанных условиях появляющиеся на плавном фоне неоднородности не приводят к его разрушению [24-33,36-49]. Похожие процессы также не наблюдаются и при столкновении волн рефракции, взаимодействие которых изучалось в статьях [36–43, 49].

В данной работе представлены численные и аналитические аргументы в пользу того, что учет дискретности среды в надпороговых условиях приводит в ходе эволюции к формированию локально неустойчивых распределений волнового поля. Отметим, что подобные процессы, по всей видимости, могут также наблюдаться при распространении лазерного излучения в волокнах, в которых проявляются линейные дисперсионные эффекты высокого порядка [48, 50–53]. Ниже описана постановка задачи, которая для определенности выполнена в терминах распространения электромагнитного излучения в наборе эквидистантно расположенных световодов, и приведены основные приближения, позволяющие использовать ДНУШ в качестве базовой модели. Затем проведено обобщение метода нелинейной геометрической оптики на случай дискретной среды. Оно состоит в более корректном учете изменения фазы волнового поля по сравнению с тем, как это обычно делается при использовании квазиклассического подхода для построения приближенных решений НУШ [24–33.36–53]. Полученная в результате совокупность бездисперсионных соотношений, как и в случае сплошной среды, имеет схожий вид с системами квазилинейных уравнений, часто встречающихся в газодинамике [22-33,36-49]. Однако в рассматриваемой нами ситуации данная совокупность уравнений в частных производных не является строго гиперболической. С учетом указанного обстоятельства удается показать, что при выполнении надпороговых условий в процессе плавного расплывания локализованных распределений поля в периферийной области тип системы квазилинейных уравнений меняется на эллиптический, что свидетельствует о потенциальной возможности развития неустойчивости гладкого профиля огибающей волнового пучка.

2. ОПИСАНИЕ РАСПРОСТРАНЕНИЯ ВОЛНОВОГО ПОЛЯ В ПРОСТРАНСТВЕН-НО-СТРУКТУРИРОВАННЫХ СРЕДАХ

2.1. Базовая модель в виде цепочки дискретных уравнений. Формулировка основной проблемы

Рассмотрим распространение одномерных квазиоптических волновых пучков, инжектируемых в

ЖЭТФ, том **161**, вып. 6, 2022

пространственно-неоднородную среду, состоящую из набора эквидистантно расположенных одномодовых световодов. Анализ проведем на базе стандартной теоретической модели [1-5, 9-14], в рамках которой предполагается, что фундаментальные направляемые моды ориентированных параллельно оси z оптических волноводов слабо связаны между собой. Огибающие поля каждой из таких мод медленно эволюционируют вдоль z и характеризуются своими комплексными амплитудами. Изменение этих индивидуальных амплитуд в зависимости от координаты z описывается системой уравнений, учитывающих как собственную нелинейность структурных элементов рассматриваемой решетки, так и взаимодействие с ближайшими соседями, возникающее из-за перекрытия направляемых ими мод. При отсутствии потерь в среде из неограниченного числа тонких световодов с дефокусирующей керровской нелинейностью приходим к бесконечной упорядоченной последовательности соотношений, которая называется ДНУШ и имеет в нормированных переменных следующий вид [1-5, 9-14]:

$$i\frac{\partial\psi_{n}}{\partial z} - \psi_{n-1} - \psi_{n+1} + |\psi_{n}|^{2}\psi_{n} = 0.$$
 (1)

Здесь функция $\psi_n(z)$ определяет комплексную амплитуду моды *n*-го волновода. ДНУШ (1) является одной из наиболее простых и универсальных дискретных моделей и при этом (не только качественно, но и количественно) адекватно описывает физическую ситуацию, когда пучок непрерывного излучения падает на решетку с большим числом направляющих элементов, в каждом их которых можно пренебречь дисперсионными и дифракционными эффектами [1–5].

Формально дискретному уравнению (1) можно поставить в соответствие континуальное НУШ

$$i\frac{\partial\psi}{\partial z} + 2i\sin\varkappa\frac{\partial\psi}{\partial x} - \cos\varkappa\frac{\partial^2\psi}{\partial x^2} + |\psi|^2\psi = 0.$$
 (2)

Для этого обычно вводят непрерывную координату x, ассоциированную с индексом n, и затем делают замену $\psi_n(z)$ на $\psi(x,z)$, считая функцию $\psi(x,z)$ плавной по x на масштабах, сравнимых с периодом рассматриваемой одномерной решетки, а также предварительно выделив в фазе компоненты $\psi_n(z)$ комплексного вектора составляющую вида $2\cos \varkappa z - \varkappa n$, которая может достаточно резко изменяться по величине при переходе от одного элемента цепочки к соседнему, когда характерное значение волнового числа \varkappa лежит вне малой окрестности центра зоны Бриллюэна. Отметим, что такое сопоставление имеет смысл при рассмотрении динамики исходно широких волновых пакетов.

Проведем более детальный, чем это обычно делается, анализ процессов в ДНУШ и получим полезные для понимания результатов численных расчетов аналитические соотношения. Для этого, во-первых, выделим у комплексного поля $\psi_n(z)$ амплитуду и фазу, т. е. представим $\psi_n(z)$ в виде

$$\psi_n(z) = \phi_n(z) \exp\left(-i\theta_n(z)\right),\tag{3}$$

где $\phi_n(z)$ и $\theta_n(z)$ являются действительными функциями. Затем, подставив (3) в (1) и приравняв по отдельности к нулю действительную и мнимую части полученного соотношения, в итоге придем к следующей системе дискретных уравнений:

$$\frac{\partial \phi_n}{\partial z} + \phi_{n+1} \sin v_{n+1} - \phi_{n-1} \sin v_n = 0, \qquad (4)$$

$$\frac{\partial \theta_n}{\partial z} - \frac{\phi_{n+1}}{\phi_n} \cos v_{n+1} - \frac{\phi_{n-1}}{\phi_n} \cos v_n + \phi_n^2 = 0.$$
 (5)

Здесь для удобства дальнейшего рассмотрения введено обозначение для разности фаз $v_n(z)$ = = $heta_n(z)$ – $heta_{n-1}(z)$ волновых функций $\psi_n(z)$ и $\psi_{n-1}(z)$ в соседних элементах рассматриваемой цепочки. Несложно заметить, что именно $v_n(z)$, а не $\theta_n(z)$ играет роль истинной динамической переменной, так как ДНУШ (1), а вслед за ним и соотношения (4), (5) инвариантны относительно преобразования $\theta_n(z) \to \theta_n(z) + \text{const}$, т. е. все равенства остаются неизменными при сдвиге фазы $\theta_n(z)$ на произвольную постоянную величину. Поэтому для теоретического рассмотрения динамических процессов в решетках локально связанных элементов совместно с (4) зачастую стоит использовать уравнение для $v_n(z)$, которое непосредственно следует из (5):

$$\frac{\partial v_n}{\partial z} - \frac{\phi_{n+1}}{\phi_n} \cos v_{n+1} + \frac{\phi_n}{\phi_{n-1}} \cos v_n - \frac{\phi_{n-1}}{\phi_n} \cos v_n + \frac{\phi_{n-2}}{\phi_{n-1}} \cos v_{n-1} + \phi_n^2 - \phi_{n-1}^2 = 0.$$
(6)

Таким образом, при описании эволюции волнового поля в дискретной среде далее будем отталкиваться от упорядоченной последовательности пар соотношений (4), (6).

В данной работе нас прежде всего интересуют особенности процесса самовоздействия пучков, изначально плавных на масштабах, сравнимых с периодом решетки. При этом основное внимание уделено ситуации, когда согласно представлениям, которые основаны на хорошо известных результатах, полученных в рамках НУШ, исходно широкие волновые пакеты будут расплываться, а все возникающие

Рис. 1. (В цвете онлайн) Рассчитанные с помощью прямого численного моделирования в рамках ДНУШ (1) и НУШ (2) соответственно распределения амплитуды $|\psi_n(z)|$ волнового поля в узлах эквидистантной решетки световодов (точки, соединенные между собой линиями синего цвета) и профили аналогичной характеристики $|\psi(x,z)|$ в континуальной задаче (сплошные линии красного цвета) для пучков, заданных при z = 0 в форме $\psi_n(0) = \psi(x = n, 0) \exp(-i\gamma n)$ и $\psi(x, 0) = a \exp\left[-(x/\sigma)^{2m}\right]$ с параметрами $\gamma = 0.1$, a = 1.125, $\sigma = 15$ и m = 3. На начальном этапе своего распространения (а) такие пучки в дискретном и континуальном случаях ведут себя схожим образом (не только качественно, но и количественно с допустимой степенью точности). Однако в процессе дальнейшей эволюции различия постепенно становятся намного более существенными (b). На периферии локализованного амплитудного распределения начинается резкий рост мелкомасштабных возмущений, который в конечном итоге приводит к разрушению плавного профиля волнового поля (с)

(например, из-за возможных эффектов укручения фронта и его опрокидывания) неоднородности не должны сильно нарастать [24-48]. Однако, как показывают численные расчеты (рис. 1), проведенные на базе ДНУШ (1), динамика распределения поля в решетке нередко существенно отличается от того, что предсказывают вычисления, выполненные в непрерывном пределе. Несмотря на достаточно хорошее совпадение на начальном этапе (рис. 1а), начиная с некоторого момента, в целом ряде случаев различия становятся значительными (рис. 1b). Распространяющийся в цепочке пучок сильно искажается, чаще всего перестает быть симметричным относительно своего центра, мелкомасштабные возмущения на периферии демонстрируют резкий рост, что в конечном итоге приводит к разрушению плавного профиля, из которого выделяются локализованные образования довольно большой амплитуды (рис. 1с). Отмеченный процесс носит взрывной характер и не укладывается в рамки стандартного континуального рассмотрения задачи, что указывает на развитие неустойчивости, обусловленной дискретностью системы.

Мы предприняли попытку объяснить причины возникновения подобного процесса и выявить основной физический механизм, вызывающий такое деструктивное поведение. Согласно изложенному ниже анализу, для этого достаточно сделать чуть более корректный переход от математической модели, используемой нами для изучения распространения излучения в системе эквидистантно расположенных нелинейных одномодовых световодов и записанной в терминах счетного набора комплексных амплитуд, характеризующих поле в каждом из структурных элементов обсуждаемой цепочки, к уравнениям в частных производных для гладких функций, непрерывно распределенных в поперечном к оси *z* направлении и совпадающих в узлах решетки со значениями истинных динамических переменных.

Прежде чем привести последовательное описание основных идей развитого теоретического подхода, заранее обратим внимание на довольно неожиданный и относительно нетривиальный факт. Оказывается достаточным ограничиться бездисперсионным приближением, когда учитываются только производные первого порядка (производные же второго порядка и выше отбрасываются), а специфика дискретности в первую очередь проявляется в модификации уравнения непрерывности и соотношения для градиента фазы, которая позволяет их применять в любой части зоны Бриллюэна и отслеживает эффективный тип нелинейности.

2.2. Бездисперсионный предел для дискретной модели

В качестве отправной точки для дальнейшего анализа нами была выбрана полученная выше система разностных уравнений (4), (6). Для того чтобы перейти к ее аналогу в непрерывном пределе, предположим, что значения $\phi_n(z)$ и $v_n(z)$ слабо изменяются при уменьшении или увеличении индекса *n* на несколько единиц \tilde{n} , т. е. при смещении вдоль цепочки на конечное число ячеек. Такое предположение справедливо при плавном на масштабах неоднородности среды распределениях величин $\phi_n(z)$ и $v_n(z)$. В этом случае можно перейти от дискретного набора пар $\phi_n(z)$ и $v_n(z)$ к двум непрерывным функциям $\phi(x, z)$ и v(x, z), зависящим не только от переменной z, но и от координаты по оси x, направленной вдоль одномерной решетки эквидистантно расположенных элементов. Если выразить $\phi_{n+\tilde{n}}(z)$ и $v_{n+\tilde{n}}(z)$ соответственно через $\phi(x,z)$ и v(x,z), ограничившись лишь двумя основными членами в формальном разложении в ряд Тейлора вблизи точки x = n,

$$\phi_{n\pm\tilde{n}}(z) \approx \left(1\pm \tilde{n}\frac{\partial}{\partial x}\right)\phi(x,z),$$
$$v_{n\pm\tilde{n}}(z) \approx \left(1\pm \tilde{n}\frac{\partial}{\partial x}\right)v(x,z),$$

то несложно получить для $\phi(x, z)$ и v(x, z) замкнутую систему квазилинейных уравнений в частных производных первого порядка:

$$\frac{\partial \phi}{\partial z} + 2\sin v \frac{\partial \phi}{\partial x} + \phi \cos v \frac{\partial v}{\partial x} = 0, \qquad (7)$$

$$\frac{\partial v}{\partial z} + 2\sin v \frac{\partial v}{\partial x} + 2\phi \frac{\partial \phi}{\partial x} = 0.$$
 (8)

При выводе данных соотношений считалось, что применение дифференциального оператора $\partial/\partial x$ к функциям $\phi(x, z)$ и v(x, z) повышает порядок малости тех комбинаций, в которых они возникают, что позволяет не принимать во внимание целый ряд слагаемых, содержащих произведения первых производных от $\phi(x, z)$ и v(x, z) по x или более высокие производные и не оказывающих существенного влияния при анализе указанных выше эффектов. Отметим также тот факт, что совокупность уравнений (7), (8) может быть представлена в неканонической гамильтоновой форме

$$\frac{\partial \rho}{\partial z} + \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{H}(\rho, v)}{\partial v} \right) = 0, \quad \frac{\partial v}{\partial z} + \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{H}(\rho, v)}{\partial \rho} \right) = 0$$

с гамильтонианом $\mathcal{H}(\rho, v) = \rho^2/2 - 2\rho \cos v$, где $\rho = \phi^2$. Фактически, систему (7), (8) можно интерпретировать как бездисперсионный предел дискретной модели (4), (6). Здесь прослеживается полная аналогия с приближением нелинейной геометрической оптики для сплошной среды (см., например, работу [54]), в которой эволюция огибающей волнового поля описывается континуальным НУШ, так

как именно в такие уравнения трансформируются равенства (7), (8) при условии, что в процессе распространения излучения отклонения $\tilde{v}(x, z)$ градиента фазы от исходно заданного значения v_0 оказываются малыми, т. е. $|\tilde{v}(x, z)| \ll \pi$ в ситуации, когда $v(x, z) = v_0 + \tilde{v}(x, z)$, где $v_0 = \text{const.}$ Следовательно, в системе (7), (8) выполнен более корректный учет особенностей изменений фазового фронта и его локальных перестроек в дискретном случае.

3. ЭВОЛЮЦИЯ ПРОСТРАНСТВЕННО-НЕОДНОРОДНЫХ РАСПРЕДЕЛЕНИЙ ВОЛНОВОГО ПОЛЯ И РАЗВИТИЕ НА ИХ ФОНЕ ХАРАКТЕРНОЙ ДЛЯ ДИСКРЕТНОЙ СИСТЕМЫ НЕУСТОЙЧИВОСТИ

3.1. Ключевые отличия бездисперсионного предела для дискретной модели от континуального аналога

Для удобства дальнейшего рассмотрения введем обозначения

$$\rho(x,z) = \phi^2(x,z), \quad u(x,z) = 2\sin v(x,z), \quad (9)$$

которые позволяют переписать соотношения (7), (8) в виде

$$\frac{\partial \rho}{\partial z} + \frac{\partial u \rho}{\partial x} = 0, \tag{10}$$

$$\frac{\partial u}{\partial z} + u \frac{\partial u}{\partial x} + 2\cos v \frac{\partial \rho}{\partial x} = 0, \qquad (11)$$

наиболее близком по своей структуре к уравнениям одномерной газодинамики [22, 23]. Если поставить величинам $\rho(x, z)$ и u(x, z) в соответствие плотность и поле скоростей, то несложно заметить, что первое равенство системы (10), (11) фактически играет роль уравнения непрерывности, а второе является аналогом уравнения Эйлера. Основное различие заключается в специфическом для рассматриваемой нами задачи множителе $2\cos v$, стоящем перед последним слагаемым в левой части равенства (11).

Согласно принятой классификации набора квазилинейных уравнений, совокупность соотношений (10), (11) может быть либо эллиптического, либо гиперболического типа [22, 23]. Для определения, к какому типу относится интересующая нас система (10), (11), поступим следующим образом. Используя выражения

$$\frac{\partial \chi}{\partial x} = -\rho(x, z), \quad \frac{\partial \chi}{\partial z} = u(x, z)\rho(x, z), \quad (12)$$

введем формально функцию $\chi(x, z)$, удовлетворяющую тождественно уравнению непрерывности (10). Затем, продифференцировав по *z* второе из определяющих $\chi(x, z)$ равенств (12), после несложных преобразований с учетом (10), (11) получим соотношение, связывающее между собой частные производные второго порядка от $\chi(x, z)$ по *z* и *x*, линейное по ним и записанное в канонической форме [23]

$$\mathcal{A}\frac{\partial^2 \chi}{\partial z^2} + 2\mathcal{B}\frac{\partial^2 \chi}{\partial z \partial x} + \mathcal{C}\frac{\partial^2 \chi}{\partial x^2} = 0, \qquad (13)$$

где коэффициенты \mathcal{A} , \mathcal{B} и \mathcal{C} в свою очередь зависят от $\rho(x, z)$ и v(x, z) (т. е. могут быть представлены только через производные первого порядка от $\chi(x, z)$ по z и x):

$$\mathcal{A} = 1, \quad \mathcal{B} = 2\sin v, \quad \mathcal{C} = 2\rho\cos v + 4\sin^2 v. \quad (14)$$

Исходя из общих представлений в случае, когда выполняется неравенство $\mathcal{B}^2 - \mathcal{AC} = 2\rho \cos v > 0$, уравнение (13) (а вместе с ним и система (10), (11), как и ее эквивалент (7), (8)) относится к гиперболическому типу, а в противоположной ситуации, когда $\mathcal{B}^2 - \mathcal{AC} = 2\rho \cos v < 0$, соответствующие соотношения принадлежат к эллиптическому классу. Отметим, что в первом из указанных двух вариантов уравнения

$$\frac{dx}{dz} = \frac{\mathcal{B} \pm \sqrt{\mathcal{B}^2 - \mathcal{AC}}}{\mathcal{A}} = 2\sin v \pm \sqrt{2\rho\cos v} \qquad (15)$$

определяют в плоскости xz два семейства характеристик $x_{\pm}(z)$ (для заданных $\rho(x, z), v(x, z)$, а вместе с ними для $\chi(x, z)$) [22,23].

Если для системы квазилинейных уравнений (7), (8) известно решение $\bar{\rho}(x,z), \bar{v}(x,z),$ которому отвечает своя функция $\bar{\chi}(x,z)$, удовлетворяющая (12) и (13), то можно рассмотреть задачу об устойчивости данного решения относительно малых возмущений $\tilde{\rho}(x,z), \tilde{v}(x,z)$ в рамках соотношения (13). При этом предположим, что для возникающих в силу тех или иных физических причин поправок $\tilde{\chi}(x,z)$ к сформировавшемуся профилю $\bar{\chi}(x,z)$ выполняются несколько требований, которые можно интерпретировать при $\mathcal{B}^2 - \mathcal{AC} > 0$ как условия геометрической акустики [23]. Будем считать, что подобные отклонения, описываемые $\tilde{\chi}(x,z)$, а также $\tilde{\rho}(x,z)$ и $\tilde{v}(x,z)$, на начальном этапе слабо отражаются на характерной динамике волнового поля (т. е. функция $\tilde{\chi}(x,z)$ и ее первые производные малы), однако сами возмущения являются достаточно мелкомасштабными и претерпевают довольно сильные изменения на сравнительно небольших пространственных интервалах (таким образом, вторые производные от $\tilde{\chi}(x, z)$ по xи z относительно велики). Подставим в (13) суперпозицию $\chi(x, z) = \bar{\chi}(x, z) + \tilde{\chi}(x, z)$ и линеаризуем полученное выражение относительно $\tilde{\chi}(x, z)$, принимая во внимание выбранный нами вид поправок $\tilde{\chi}(x, z)$ к исходному решению $\bar{\chi}(x, z)$ и связанным с ним решений $\bar{\rho}(x, z)$ и $\bar{v}(x, z)$. В итоге придем к следующему уравнению для $\tilde{\chi}(x, z)$:

$$\mathcal{A}(\bar{\rho},\bar{v})\frac{\partial^2 \tilde{\chi}}{\partial z^2} + 2\mathcal{B}(\bar{\rho},\bar{v})\frac{\partial^2 \tilde{\chi}}{\partial z \partial x} + \mathcal{C}(\bar{\rho},\bar{v})\frac{\partial^2 \tilde{\chi}}{\partial x^2} = 0, \quad (16)$$

в котором коэффициенты $\mathcal{A}(\bar{\rho}, \bar{v}), \mathcal{B}(\bar{\rho}, \bar{v})$ и $\mathcal{C}(\bar{\rho}, \bar{v})$ рассчитываются с применением невозмущенных распределений поля $\bar{\rho}(x, z)$ и $\bar{v}(x, z)$. В частности, из (16) непосредственно вытекает, что в тех областях, где выполняется неравенство

$$\mathcal{B}^2(\bar{\rho}, \bar{v}) - \mathcal{A}(\bar{\rho}, \bar{v})\mathcal{C}(\bar{\rho}, \bar{v}) = 2\bar{\rho}\cos\bar{v} > 0,$$

малоамплитудные возбуждения, обусловливающие наличие поправок $\tilde{\chi}(x,z)$, $\tilde{\rho}(x,z)$ и $\tilde{v}(x,z)$, по мере проникновения излучения в пространственно-структурированную среду нарастать не будут, а их распространение на заданном фоне $\bar{\chi}(x,z)$, $\bar{\rho}(x,z)$ и $\bar{v}(x,z)$ происходят вдоль соответствующих характеристик (15). В этом несложно убедиться, воспользовавшись стандартным методом перехода от волновой к геометрической акустике [23,54], т.е. представив $\tilde{\chi}(x,z)$ в виде

$$\tilde{\chi}(x,z) = \operatorname{Re}\left[\alpha(x,z)e^{-i\beta(x,z)}\right]$$

и построив на базе (16) уравнение для эйконала $\beta(x, z)$. С другой стороны, из (16) также наглядно видно, что в той части пространства, где

$$\mathcal{B}^2(\bar{\rho}, \bar{v}) - \mathcal{A}(\bar{\rho}, \bar{v})\mathcal{C}(\bar{\rho}, \bar{v}) = 2\bar{\rho}\cos\bar{v} < 0,$$

должен наблюдаться экспоненциальный рост рассматриваемого класса возмущений.

В итоге эквивалентные друг другу системы квазилинейных уравнений (10), (11) и (7), (8), описывающие эволюцию исходно широких волновых пучков в дискретных цепочках в бездисперсионном приближении, являются гиперболическими, если $\cos v(x, z) > 0$, и эллиптическими там, где $\cos v(x, z) < 0$. Из приведенных выше аргументов можно сделать вывод, что в пространственно-структурированных средах характерное поведение поля в различных локализованных областях может существенным образом различаться и определяется прежде всего знаком величины $\cos v(x, z)$ в отдельно выделенной и рассматриваемой окрестности, охватывающей конечное число структурных элементов решетки. В данном обстоятельстве состоит принципиальное отличие дискретной задачи от континуальной, в которой класс системы квазилинейных уравнений, полученной из НУШ (2) аналогичным путем, состоящим по сути в пренебрежении дисперсионными эффектами высшего порядка, однозначно определяется типом нелинейности. Так, для дефокусирующих сред в динамике плавных непрерывных распределений амплитуды и фазы во всем пространстве проявляются только черты, присущие гиперболическим моделям (распространение вдоль характеристик, возникновение участков с резкими градиентами вследствие процессов опрокидывания), тогда как для фокусирующей нелинейности в силу эллиптичности структуры базовых уравнений одну из основных ролей играет развитие модуляционной неустойчивости.

В дискретных системах, как показывают наши рассуждения, возможно возникновение ситуации, когда одновременно на разных участках наблюдаются разноплановые варианты поведения. В одних областях эволюция поля будет протекать по сценариям, характерным исключительно для дефокусирующего (гиперболического) случая, а в других областях пойдет усиление мелкомасштабных возмущений на фоне гладкого профиля с последующим резким ростом интенсивности поля и его локализацией в ограниченных пространственных областях, как при самофокусировке (свойственной эллиптической ситуации).

3.2. Распространение пучка со ступенчатым профилем интенсивности. Автомодельные решения в рамках бездисперсионного приближения для дискретной модели

В этом разделе рассмотрим модельную задачу о распаде полуограниченного пучка [22–25, 36–43, 55, 56] с исходно линейным фазовым фронтом, для которого $v(x, 0) = \gamma$ ($|\gamma| < \pi/2$), а профиль интенсивности $\rho(x, z) = \phi^2(x, z)$ в сечении z = 0 задан в виде кусочно-постоянной (ступенчатой) функции действительного аргумента x:

$$\rho(x,0) = \begin{cases}
\rho_0, & x \le 0, \\
0, & x > 0.
\end{cases}$$
(17)

Такая постановка начальных условий для рассматриваемой проблемы дает возможность аналитически описать особенности протекающих процессов и получить наглядное представление о том, что может происходить с плавной огибающей излучения, значительная часть которого сосредоточена в ограниченной области, при его проникновении в пространственно-структурированную среду и как следует интерпретировать наблюдаемые эффекты. Ниже продемонстрировано, что для указанной ситуации удается построить автомодельное решение, а затем использовать его совместно с развитым нами подходом, что позволяет найти критическое значение параметра ρ_0 , при котором качественная картина распространения волнового поля меняется кардинально.

По аналогии с одномерной газодинамикой [23], где подобные автомодельные движения, возникающие, в частности, в цилиндрической трубе при равномерном перемещении поршня, играют важную роль, в случае рассматриваемой дискретной системы анализ эволюции распределения поля изначально ступенчатой формы является одной из отправных точек для общего понимания специфики и выделения ключевых отличительных черт поведения локализованных образований.

Будем искать решение совокупности уравнений (10), (11) в виде

$$\rho(x,z) = \rho(\xi), \quad v(x,z) = v(\xi), \quad u(x,z) = \sin v(\xi),$$

где все перечисленные величины зависят только от безразмерной автомодельной переменной $\xi = x/z$ [23, 43, 55, 56]. Другими словами, предположим, что форма каждой отдельно взятой интересующей нас функции при различных конечных значениях z > 0подобна самой себе и отличается лишь своим масштабом вдоль оси x, увеличивающимся пропорционально z. В результате придем к следующей совокупности обыкновенных дифференциальных уравнений:

$$(u-\xi)\frac{d\rho}{d\xi} + \rho\frac{du}{d\xi} = 0, \qquad (18)$$

$$2\cos v\frac{d\rho}{d\xi} + (u-\xi)\frac{du}{d\xi} = 0.$$
 (19)

Для того чтобы найти нетривиальные решения данной системы, во-первых, исключим (например) из (18) производные, выразив и подставив их из (19). Эта процедура эквивалентна приравниванию к нулю определителя системы (18), (19). В итоге находим, что в бездисперсионном приближении для решений, имеющих автомодельную форму, должно выполняться соотношение

$$\xi = x/z = u \pm \sqrt{2\rho \cos v},\tag{20}$$

которое, в частности, лишний раз подчеркивает, что волны такого типа существуют только в области гиперболичности квазилинейных уравнений (18), (19), т.е. при $\cos v(x, z) > 0$. Прежде чем переходить к дальнейшему изложению результатов данного раздела, обратим внимание, что в ситуации, когда $v(x,0) = \gamma$, где $-\pi/2 < \gamma \leq 0$, а распределение $\rho(x,0)$ в плоскости z = 0 достаточно хорошо аппроксимируется выражением (17), при z > 0 естественно ограничить возможные значения v(x, z) интервалом $\gamma \leq v(x,z) < \pi/2$, а в (20) выбрать знак «-». Оправданность таких предположений обосновывается в первую очередь физическими соображениями и интуитивными представлениями, согласно которым граница резкого перехода между областью, занятой полем конечной амплитуды $\sqrt{\rho_0}$, и «вакуумом» (той частью пространства, где внутри структурных элементов решетки излучение практически отсутствует) должна постепенно размываться прежде всего за счет возникновения знакоопределенных градиентов фазы, что в гидродинамической терминологии отвечает процессу разлета «газа», а распространение малых возмущений по однородному фону с $\rho(x,z) = \rho_0$ и $v(x,z) = \gamma$ от места исходного разрыва происходит со скоростью $\sqrt{\rho_0}$, являющейся аналогом «скорости звука» [55, 56].

Подставив $\xi = u - \sqrt{2\rho \cos v}$ в (18) и проинтегрировав полученное дифференциальное уравнение с учетом граничных условий $\rho(-\infty, z) = \rho_0$ и $v(-\infty, z) = \gamma$, найдем следующее соотношение:

$$\sqrt{\rho_0} - \sqrt{\rho} = \frac{1}{\sqrt{2}} \int_{\gamma}^{v} \sqrt{\cos w} \, dw =$$
$$= \sqrt{2} \Big(\operatorname{E} \left(v/2, 2 \right) - \operatorname{E} \left(\gamma/2, 2 \right) \Big), \quad (21)$$

которое совместно с задействованным при его выводе выражением для ξ дает полное аналитическое решение интересующей нас задачи об эволюции полуограниченного пучка с кусочно-постоянным профилем интенсивности в рамках бездисперсионного приближения для ДНУШ. Отметим, что в (21) используется стандартное обозначение E (v/2, 2) для неполного эллиптического интеграла второго рода.

Согласно проведенному нами в предыдущем разделе анализу, до тех пор пока в каждой точке пространства выполняется неравенство $\cos v(x, z) > 0$, совокупность квазилинейных уравнений (7), (8) (как и эквивалентная ей форма записи (10), (11)) является всюду гиперболической. Следовательно, неоднородное распределение волнового поля при распространении не подвержено неустойчивости. Однако если возникают области, где $\cos v(x, z) < 0$, то малые возмущения на этих участках будут экспоненциально нарастать, что в конечном итоге должно привести к разрушению пучка. Принимая во внимание данные обстоятельства и соотношение (21), справедливое для автомодельного решения, несложно показать, что гиперболичность системы (7), (8) сохраняется в процессе эволюции волнового пучка лишь при начальных интенсивностях ρ_0 , не превышающих критическое значение

$$\rho_{0_{cr}} = 2 \Big(\mathrm{E} \left(\pi/2, 2 \right) - \mathrm{E} \left(\gamma/2, 2 \right) \Big)^2.$$
(22)

В итоге естественно ожидать, что в ситуациях, когда $\rho_0 > \rho_{0cr}$, дискретность среды принципиальным образом сказывается на динамике световых пучков в одномерной решетке волноводов и приводит к разрушению плавных распределений поля. Этот вывод подтверждается сравнением данных прямого численного моделирования эволюции поля в рамках ДНУШ (1) и НУШ (2), исходный профиль которого был задан в форме соответственно

$$\psi_n(0) = \psi(x = n, 0)e^{-i\gamma n} \quad \mathbf{H}$$

$$\psi(x, 0) = \sqrt{\rho_0} \Big[1 - \operatorname{th} (x/\sigma) \Big], \qquad (23)$$

которая является часто используемой непрерывной аппроксимацией кусочно-постоянной функции.

На рис. 2 представлен случай, когда величина интенсивности ρ_0 ниже критического значения (22). Видно, что результаты расчетов для дискретной и континуальной задач практически совпадают не только качественно, но и количественно. Однако в ситуации, показанной на рис. 3 и отвечающей выбору $\rho_0 > \rho_{0cr}$, заметны существенные различия, объяснить которые можно развитием неустойчивости. В процессе эволюции в периферийной части волнового пучка возникает область, в которой поведение поля определяется эллиптической системой квазилинейных уравнений и малые возмущения нарастают экспоненциально, распространяясь к зону гиперболичности (см. рис. 3b, c).

4. ЗАКЛЮЧЕНИЕ

В заключение отметим, что сделанный выше вывод не зависит от сосредоточенной в пучке мощности. Следовательно, для любых широких распределений произвольной амплитуды с исходно плоским $(v_n(0) = 0)$ или слегка наклонным $(v_n(0) = \gamma)$, где $|\gamma| < \pi/2)$ фазовым фронтом начальная стадия эволюции достаточно хорошо описывается системой гиперболических квазилинейных уравнений и практически не отличается от того, что происходит с такими же волновыми полями в непрерывной зада-

Рис. 2. (В цвете онлайн) То же, что на рис. 1, для пучков, заданных при z = 0 в форме (23). Представленные результаты отвечают параметрам $\gamma = -0.25$, $\sigma = 1.33$ и $\sqrt{\rho_0} = 0.85\sqrt{\rho_{0cr}}$, где $\rho_{0cr} \approx 0.493$ — рассчитанное по формуле (22) критическое значение интенсивности для данной ситуации. Результаты расчетов практически совпадают для всех представленных сечений z = 50 (a), z = 400 (b) и z = 750 (c). Отличия между ними можно считать несущественными, так как на сплошные кривые красного цвета фактически накладываются точки, соединенные между собой линиями синего цвета

Рис. 3. (В цвете онлайн) То же, что и на рис. 2, только для $\sqrt{\rho_0} = 1.15 \sqrt{\rho_{0_{cr}}}$. В этой ситуации пороговое значение $\rho_{0_{cr}} \approx 0.493$ превышено, что, согласно развитым нами теоретическим представлениям, должно приводить к разрушению профиля пучка в дискретном случае. Видно, что данный процесс начинается с нарастания возмущений на периферии плавного профиля поля, которое вызвано развитием неустойчивости на его фоне. В расчетах, выполненных в рамках НУШ (2), подобного эффекта не наблюдается

че при описании их динамики в рамках дефокусирующего НУШ. Другими словами, нелинейные эффекты в первую очередь приводят к расплыванию огибающей пучка, на фоне которого происходит локальное укручение поперечного профиля и образование резкого перепада аналогично тому, как протекают подобные процессы в газодинамике. Однако последующие этапы распространения в континуальной и дискретной моделях могут как совпадать, так и существенным образом различаться в зависимости от того, выполняется ли для разности фаз $v_n(z) = \theta_n(z) - \theta_{n-1}(z)$ комплексной волновой функции $\psi_n(z) = \phi_n(z) \exp[-i\theta_n(z)]$ в соседних элементах решетки условие $\cos v_n(z) > 0$ по-прежнему во всем пространстве или же возникают области, где $\cos v_n(z) < 0$. Как показывает проведенный нами анализ, данное условие позволяет находить критические параметры начальных распределений поля, для которых следует ожидать развития неустойчивости, приводящей впоследствии к их разрушению.

Численное моделирование эволюции системы в рамках ДНУШ подтверждает сделанные выводы относительно динамики поля в дефокусирующем режиме. В работе приведены примеры различных вариантов эволюции неоднородных профилей интенсивности электромагнитных пучков, инжектируемых в одномерную решетку эквидистантно расположенных световодов. При этом наглядно продемонстрировано, что существуют сценарии, которые отсутствуют в аналогичных ситуациях в сплошной (неструктурированной) среде и характеризуются ростом малых возмущений и возникновением изрезанностей на периферии плавных распределений поля. В конечном счете этот процесс распространяется на центральную часть волнового пучка. При дальнейшем увеличении амплитуды поля интенсивность мелкомасштабной неустойчивости увеличивается. Это означает, что волновые поля с амплитудой, превышающей критическое значение, теряют когерентность в процессе распространения в дефокусирующей среде. Естественно ожидать нарушения плавной структуры поля и при распространении его в активной среде. Такого рода нарушение когерентности наступает катастрофическим образом.

Финансирование. Работа выполнена в Научном центре мирового уровня «Центр фотоники» при финансовой поддержке Министерства науки и высшего образования РФ (соглашение № 075-15-2020-906).

ЛИТЕРАТУРА

- P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, Springer Science & Business Media (2009).
- C. Denz, S. Flach, Yu S. Kivshar et al., Nonlinearities in Periodic Structures and Metamaterials, Springer (2010).
- F. Lederer, G. I. Stegeman, D. N. Christodoulides et al., Phys. Rep. 463, 1 (2008).
- Yu. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys. 83, 247 (2011).
- I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rep. 518, 1 (2012).
- Э. Скотт, Нелинейная наука: рождение и развитие когерентных структур, Физматлит, Москва (2007).
- 7. Э. Инфельд, Дж. Роуландс, *Нелинейные волны, солитоны и хаос*, Физматлит, Москва (2005).
- 8. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM (2010).
- A. B. Aceves, C. De Angelis, T. Peschel et al., Phys. Rev. E 53, 1172 (1996).
- A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Phys. Rev. A 94, 063806 (2016).
- А. Г. Литвак, В. А. Миронов, С. А. Скобелев, Л. А. Смирнов, ЖЭТФ 153, 28 (2018).

- A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Quant. Electr. 48, 720 (2018).
- A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, Laser Phys. 28, 045401 (2018).
- 14. A. A. Balakin, A. G. Litvak, V. Mironov et al., Laser Phys. 28, 105401 (2018).
- 15. O. Bang and P. D. Miller, Opt. Lett. 21, 1105 (1996).
- 16. A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001).
- A. Smerzi, A. Trombettoni, P. G. Kevrekidis, and A. R. Bishop, Phys. Rev. Lett. 89, 170402 (2002).
- T. Anker, M. Albiez, R. Gati et al., Phys. Rev. Lett. 94, 020403 (2005).
- 19. R. Franzosi, R. Livi, G.-L. Oppo, and A. Politi, Nonlinearity 24, R89 (2011).
- 20. H. Hennig and R. Fleischmann, Phys. Rev. A 87, 033605 (2013).
- H. Hennig, T. Neff, and R. Fleischmann, Phys. Rev. E 93, 032219 (2016).
- 22. Дж. Уизем, Линейные и нелинейные волны, Мир, Москва (1977).
- 23. Л. Д. Ландау, Е. М. Лифшиц, Гидродинамика, Физматлит, Москва (2001).
- 24. S. Trillo and M. Conforti, in *Handbook of Optical Fibers*, ed. by G.-D. Peng, Springer Singapore (2019), pp. 373–419.
- 25. А. М. Камчатнов, УФН 191, 52 (2021).
- 26. А. М. Камчатнов, ЖЭТФ 154, 1016 (2018).
- 27. A. M. Kamchatnov, Phys. Rev. E 99, 012203 (2019).
- 28. M. Isoard, A. M. Kamchatnov, and N. Pavloff, Phys. Rev. A 99, 053819 (2019).
- 29. M. Isoard, A. M. Kamchatnov, and N. Pavloff, Europhys. Lett. 129, 64003 (2020).
- 30. S. Ivanov and A. Kamchatnov, Phys. Fluids 31, 057102 (2019).
- 31. S. K. Ivanov and A. M. Kamchatnov, Phys. Fluids 32, 126115 (2020).
- 32. S. K. Ivanov, J.-E. Suchorski, A. M. Kamchatnov et al., Phys. Rev. E 102, 032215 (2020).
- 33. G. Xu, A. Mussot, A. Kudlinski et al., Opt. Lett. 41, 2656 (2016).

- 34. V. A. Brazhnyi, A. M. Kamchatnov, and V. V. Konotop, Phys. Rev. A 68, 035603 (2003).
- **35**. А. М. Камчатнов, ЖЭТФ **125**, 1041 (2004).
- 36. Y. Kodama and S. Wabnitz, Opt. Lett. 20, 2291 (1995).
- 37. Y. Kodama, S. Wabnitz, and K. Tanaka, Opt. Lett. 21, 719 (1996).
- 38. Y. Kodama, SIAM J. Appl. Math. 59, 2162 (1999).
- 39. G. Biondini and Y. Kodama, J. Nonlinear Sci. 16, 435 (2006).
- 40. O. C. Wright, M. G. Forest, and K.-R. McLaughlin, Phys. Lett. A 257, 170 (1999).
- 41. M. Forest, C. J. Rosenberg, and O. C. Wright, Nonlinearity 22, 2287 (2009).
- 42. S. K. Ivanov and A. M. Kamchatnov, Phys. Rev. A 99, 013609 (2019).
- 43. S. K. Ivanov and A. M. Kamchatnov, Europhys. Lett. 132, 65001 (2020).
- 44. G. Marcucci, D. Pierangeli, S. Gentilini et al., Adv. Phys. X 4, 1662733 (2019).

- 45. T. Bienaimé, M. Isoard, Q. Fontaine et al., Phys. Rev. Lett. 126, 183901 (2021).
- 46. B. Wetzel, D. Bongiovanni, M. Kues et al., Phys. Rev. Lett. 117, 073902 (2016).
- 47. D. Bongiovanni, B. Wetzel, P. Yang et al., Opt. Lett.
 44, 3542 (2019).
- 48. D. Bongiovanni, B. Wetzel, Z. Li et al., Opt. Express 28, 39827 (2020).
- 49. M. A. Hoefer, P. Engels, and J. J. Chang, Physica D 238, 1311 (2009).
- 50. B. G. Bale and S. Boscolo, J. Opt. 12, 015202 (2009).
- 51. S. Wabnitz, J. Opt. 15, 064002 (2013).
- 52. M. Conforti, F. Baronio, and S. Trillo, Phys. Rev. A 89, 013807 (2014).
- 53. S. Bose, R. Chattopadhyay, and S. K. Bhadra, Opt. Comm. 412, 226 (2018).
- 54. A. B. Shvartsburg, Phys. Rep. 83, 107 (1982).
- 55. A. M. Kamchatnov, J. Phys. Comm. 2, 025027 (2018).
- 56. S. K. Ivanov, Phys. Rev. A 101, 053827 (2020).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТОМА 161 ЗА 2022 г.

Вып. Стр.

EDN: DVIQHR

Α

Аборкин А. В. (см. Решетняк В. В.) ... 86 1 Аврорин А. В., Аврорин А. Д., Айнутдинов В. М., Аллахвердян В. А., Банаш П., Бардачова З., Белолаптиков И. А., Борина И. В., Бруданин В. Б., Буднев Н. М., Гафаров А. Р., Голубков К. В., Горшков Н. С., Гресь Т. И., Дворницки Р., Джилкибаев Ж.-А. М., Дик В. Я., Домогацкий Г. В., Дорошенко А. А., Дячок А. Н., Елжов Т. В., Заборов Д. Н., Катулин М. С., Кебкал К. Г., Кебкал О. Г., Кожин В. А., Колбин М. М., Конищев К. В., Копански К. А., Коробченко А. В., Кошечкин А. П., Круглов М. В., Крюков М. К., Кулепов В. Ф., Малецки П., Малышкин Ю. М., Миленин М. Б., Миргазов Р. Р., Назари В., Наумов Д. В., Нога В., Петухов Д. П., Плисковский Е. Н., Розанов М. И., Рушай В. Д., Рябов Е. В., Сафронов Г. Б., Сиренко А. Э., Скурихин А. В., Соловьев А. Г., Сороковиков М. Н., Стромаков А. П., Суворова О. В., Сушенок Е. О., Таболенко В. А., Таращанский Б. А., Файт Л., Фиалковский С. В., Храмов Е. В., Шайбонов Б. А., Шелепов М. Д., Шимковиц Ф., Штекл И., Эцкерова Э., Яблокова Ю. В., Яковлев С. А. Глубоководный черенковский детектор в озере Байкал 4 4764 **Аврорин А. Д.** (см. Аврорин А. В.) 476Авчян Б. Р., Казарян А. Г., Саргсян К. А., Седракян Х. В. Генерация высших гармоник в треугольных квантовых графеновых точках $\mathbf{2}$ 155Агафонова **Н.** Ю. (см. Мануковский К. В.) 3 331

Агафонова Н. Ю., Ряжская О. Г., от имени Коллаборации LVD. Изучение характеристик космогенных нейтронов и скорости счета импульсов на сцинтилляционных детекторах АСД, LSD и LVD . 4 533 Адамчак А., Баранов В. А., Богданова Л. Н., Вольных В. П., Вихлянцев О. П., Герштейн С. С., Грицай К. И., Лемин Л. Л.,

Грицай К. И., Демин Д. Л., Дугинов В. Н., Конин А. Д., Максимкин И. П., Мусяев Р. К., Руденко А. И., Файфман М. П., Фильчагин С. В., Юхимчук А. А. Выход γ -квантов от реакций ядерного синтеза в мюонных молекулах $pt\mu$ и $pd\mu$ 2 177

Айнутдинов В. М. (см. Аврорин А. В.) 4 476

- **Алиев З. С.** (см. Макарова Т. П.) 5 711
- **Аллахвердян В. А.** (см. Аврорин А. В.) 4 476
- **Амирасланов И. Р.** (см. Макарова Т. П.) 5 711
- **Аржников А. К.** (см. Грошев А. Г.) ... 3 363

Вып. Стр.

ЖЭТФ, том **161**, вып. 6, 2022

Астапов И. И., Безъязыков П. А., Бланк М., Бонвеч Е. А., Бородин А. Н., Брюкнер М., Буднев Н. М., Булан А. В., Вайдянатан А., Вишневский Р., Волков Н. В., Волчугов П. А., Воронин Д. М., Гафаров А. Р., Гресс О. А., Гресс Т. И., Гришин О. Г., Гармаш А. Ю., Гребенюк В. М., Гринюк А. А., Дячок А. Н., Журов Д. П., Загородников А. В., Иванова А. Л., Калмыков Н. Н., Киндин В. В., Кирюхин С. Н., Кокоулин Р. П., Компаниец К. Г., Коростелева Е. Е., Кожин В. А., Кравченко Е. А., Крюков А. П., Кузьмичев Л. А., Кьявасса А., Лагутин А. А., Лаврова М. В., Лемешев Ю. Е., Лубсандоржиев Б. К., Лубсандоржиев Н. Б., Миргазов Р. Р., Мирзоян Р., Монхоев Р. Д., Осипова Е. А., Пахоруков А. Л., Пан А., Панасюк М. И., Паньков Л. В., Петрухин А. А., Подгрудков Д. А., Полещук В. А., Попова Е. Г., Порелли А., Постников Е. Б., Просин В. В., Птускин В. С., Пушнин А. А., Разумов А. В., Райкин Р. И., Рубцов Г. И., Рябов Е. В., Сагань Я. И., Самолига В. С., Сатышев И., Силаев А. А., Силаев (мл.) А. А., Сидоренков А. Ю., Скурихин А. В., Соколов А. В., Свешникова Л. Г., Суворкин Я. В., Таболенко В. А., Танаев А. Б., Таращанский Б. А., Терновой М. Ю., Ткачев Л. Г., Тлужиконт М., Ушаков Н. А., Хорнс Д., Чернов Д. В., Яшин И. И. Изучение космических лучей на Астрофизическом комплексе TAIGA: результаты и планы. 4 548Атутов С. Н., Сорокин В. А. Оптические релаксационные явления в парах рубидия, помещенных в кювету с антирелаксационным покрытием при бихроматическом лазерном облучении 6525**Афонин Г. В.** (см. Макаров А. С.) 373 3 **Ашитков С. И.** (см. Мурзов С. А.) 3 315Б

Бабаев А. Б. (см. Муртазаев А. К.)

Бабаев П. А., Багуля А. В., Вол- ков А. Е., Горбунов С. А., Кали-		
нина Г. В., Коновалова Н. С., Ока-		
тьева Н. М., Полухина Н. Г., Са-		
дыков Ж. Т., Старков Н. И., Стар-		
ский М М Шелрина Т В Оценка		
эффекта фрагментации при регистрации		
сверхтяжелых ядер галактических косми-		
ческих лучей в палласитах	4	610
Багуля А. В. (см. Бабаев П. А.)	4	610
Бадиев М. К., Муртазаев А. К., Рама-		
занов М. К., Магомедов М. А. Струк-		
туры основного состояния модели Изинга		
на слоистой треугольной решетке в маг-	_	
нитном поле	5	753
Базилевская Г. А., Калинин М. С., Крайнев М. Б., Махмутов В. С., Свиржевская А. К., Свиржев-		
ский Н. С., Стожков Ю. И. О вос-		
произведении вариаций солнечной актив-		
ности в диапазоне 2–40 месяцев в межпла-		
нетной среде	4	560
Бакланова Я. В. (см. Бузлуков А. Л.) .	1	53
Бакулин А. В. (см. Чумакова Л. С.)	6	874
Балагуров Б. Я. К теории омических по-		
терь в <i>LC</i> -системах	2	296
Балагуров Б. Я. О проводимости двумер-		
ной модели Рэлея в области фазового пе-	0	~~~
рехода металл-диэлектрик	3	358
Балаев Д. А. (см. Гохфельд Д. М.)	6	833
Банаш П. (см. Аврорин А. В.)	4	476
Баранов В. А. (см. Адамчак А.)	2	177
Баранцев К. А., Литвинов А. Н., Паз-		
галёв А. С., Вершовский А. К. Лазер-		
ная накачка щелочных атомов в условиях		
сохранения спинового состояния ядра при	-	055
столкновениях в газовой ячейке	5	657
Бардачова З. (см. Аврорин А. В.)	4	476
Бахметьев М. В., Губанов В. А., Са-		
довников А. В., Моргунов Р. Б. Спин-		
волновые возоуждения в гетерострукту-		
ной разлелительного слоя Си	2	245
	-	210
тока на спиновую поляризацию электро-		
нов в материалах с неолноролной намаг-		
ниченностью	5	737
Безъязыков П. А. (см. Астанов И И)	4	548
	-	- - - - - - - - - - -

6 847

Белов И. А., Бельков С. А., Бонда-		
ренко С. В., Вергунова Г. А., Во-		
ронин А. Ю., Гаранин С. Г., Голов-		
кин С. Ю., Гуськов С. Ю., Демчен-		
ко Н. Н., Деркач В. Н., Дмитри-		
ев Е. О., Змитренко Н. В., Илюшеч-		
кина А. В., Кравченко А. Г., Кузь-		
ва А. Е. Рогачев В. Г. Рукавишни-		
ков А. Н., Соломатина Е. Ю., Старо-		
дубцев К. В., Стародубцев П. В., Чу-		
гров И. А., Шаров О. О., Яхин Р. А.		
Ударная передача давления твердому ве-		
ществу в мишени с пористым поглоти-		
телем излучения мощного лазерного им-		
пульса	3	403
Белолаптиков И. А. (см. Аврорин А. В.)	4	476
Белоусов Ю. М. Безызлучательный пе-		
реход ${}^{3}E \rightarrow {}^{1}A_{1}$ и ${}^{1}\widetilde{E} \rightarrow {}^{3}A_{2}$ в NV ⁻ -центре		
в алмазе	5	668
Бельков С. А. (см. Белов И. А.)	3	403
Бережко Е. Г. (см. Танеев С. Н.)	1	20
Биленко И. А. (см. Шитиков А. Е.)	5	683
Бланк М. (см. Астапов И. И.)	4	548
Блецки Я. (см. Савин С. П.)	3	381
Богданова Л. Н. (см. Адамчак А.)	2	177
Бонвеч Е. А. (см. Астапов И. И.)	4	548
Бонларенко С. В. (см. Белов И. А.)	3	403
Борина И. В. (см. Аврорин А. В.)	4	476
Боролин А. Н. (см. Астэнов И. И.)	1	5/18
EDENTIFIED BODY REPORT OF EDENTIFIED BODY 	1	65
	T	05
Бреев А. И., Гаврилов С. П., Гит-		
норного поля в КЭЛ с сильным внешним		
порного поли в тюд с сильных висшим	2	189
Бруданин В. Б. (см. Аврорин А. В.)	4	476
Брюкнер М. (см. Астапов И. И.)	4	548
Булнев H. M. (см. Аврорин A. B.)	4	476
EVILLE H \mathbf{M} (cm. ACTALIOR \mathbf{M} \mathbf{N})	4	548
	4	040
иев А В Котова И Ю Тютюн-		
ник А. П., Корона Л. В., Баклано-		
ва Я. В., Оглобличев В. В., Кожевни-		
кова Н. М., Денисова Т. А., Медве-		
дева Н. И. Ионная подвижность в трой-		
ных молибдатах и вольфраматах натрия		
со структурой NASICON	1	53
Булан А. В. (см. Астапов И. И.)	4	548

Буртебаев Н., Аргынова К., Черняв-		
ский М. М., Гиппиус А. А., Ко-		
новалова Н. С., Квочкина Т. Н.,		
Насурлла М., Окатьева Н. М.,		
Пан А. Н., Полухина Н. Г., Сады-		
ков Ж. Т., Щедрина Т. В., Стар-		
ков Н. И., Старкова Е. Н., Засавиц-		
кий И. И. Особенности регистрации уско-		
ренных тяжелых ионов детекторами из		
фосфатного стекла при различных темпе-		
ратурах	4	616
Буткевич А. В. Результаты нейтринных		
экспериментов Т2К и NOvA: упорядочи-		
вание масс нейтрино и СР-симметрия	4	515
Быков А. М., Осипов С. М., Роман-		
ский В. И. Ускорение космических лучей		
ло энергий выше 10 ¹⁵ эВ трансрелятивист-		
скими уларными волнами	4	570
Бычков Е (см. Циок O Б.)	1	65
DB INCO D. (CM. LINCK O. D.)	Ŧ	00

в

Вайдянатан А. (см. Астапов И. И.)	4	548
Валов А. Ф., Горский А. С., Неча-		
ев С. К. Поиск перехода Байка – Бен Ару-		
са–Пеше путем размерной редукции	3	430
Вальков А. Ю. (см. Кузьмин В. Л.)	6	779
Ванг Ч. (см. Савин С. П.)	3	381
Васильева О. Ф. (см. Зинган А. П.)	3	307
Васина С. Г. (см. Александров А. Б.)	4	590
Васютин М. А. (см. Гохфельд Д. М.)	6	833
Ведяев А. В. (см. Шубин Ю. Н.)	5	746
Вергунова Г. А. (см. Белов И. А.)	3	403
Вергунова Г. А., Гуськов С. Ю., Ви-		
чев И. Ю., Грушин А. С., Ким Д. А.,		
Соломянная А. Д. Особенности генера-		
ции лазерно-индуцированного рентгенов-		
ского излучения и его воздействия на ве-		
щество применительно к задачам лазерно-		
го термоядерного синтеза	6	887
Верещагин С. Н. (см. Дудников В. А.)	3	346
Вершовский А. К. (см. Баранцев К. А.)	5	657
Виглин Н. А., Никулин Ю. В., Цве-		
лиховская В. М., Павлов Т. Н., Про-		
глядо В. В. Спиновый транспорт в по-		
лупроводниках InSb с различной плотно-		
стью электронного газа	6	866
Вихлянцев О. П. (см. Адамчак А.)	2	177
Вичев И. Ю. (см. Вергунова Г. А.)	6	887
Вишневский Р. (см. Астапов И. И.)	4	548
Волков А. Е. (см. Бабаев П. А.)	4	610
Волков Н. В. (см. Астапов И. И.)	4	548

Алфавитный	указатель
	0

Волошин А. С. (см. Шитиков А. Е.)	5	683	Дворницки Р. (см. Аврорин А. В.)	4	47
Волчугов П. А. (см. Астапов И. И.)	4	548	Демин Д. Л. (см. Адамчак А.)	2	17
Вольных В. П. (см. Адамчак А.)	2	177	Демченко Н. Н. (см. Белов И. А.)	3	40
Воронин А. Ю. (см. Белов И. А.)	3	403	Денисова Т. А. (см. Бузлуков А. Л.)	1	5
Воронин Д. М. (см. Астапов И. И.)	4	548	Деркач В. Н. (см. Белов И. А.)	3	40
D			Лжафаризале М А (см. Эгбали-		

Г

Гаврилкин С. Ю. (см. Дудников В. А.)	3	346
Гаврилов С. П. (см. Бреев А. И.)	2	189
Галкин В. И. (см. Александров А. Б.) .	4	590
Гаранин С. Г. (см. Белов И. А.)	3	403
Гаркушин Г. В. (см. Савиных А. С.)	6	825
Гармаш А. Ю. (см. Астапов И. И.)	4	548
Гафаров А. Р. (см. Аврорин А. В.)	4	476
Гафаров А. Р. (см. Астапов И. И.)	4	548
Герштейн С. С. (см. Адамчак А.)	2	177
Гиппиус А. А. (см. Буртебаев Н.)	4	616
Гитман Д. М. (см. Бреев А. И.)	2	189
Глазкова Д. А. (см. Макарова Т. П.)	5	711
Глазкова Д. А. (см. Шикин А. М.)	1	126
Гогина А. А. (см. Макарова Т. П.)	5	711
Головкин С. Ю. (см. Белов И. А.)	3	403
Голубков К. В. (см. Аврорин А. В.)	4	476
Горбунов С. А. (см. Бабаев П. А.)	4	610
Горелов И. К. (см. Шитиков А. Е.)	5	683
Горский А. С. (см. Валов А. Ф.)	3	430
Горшков Н. С. (см. Аврорин А. В.)	4	476
Гохфельд Д. М., Савицкая Н. Е., Поп-		
ков С. И., Кузьмичев Н. Д., Васю-		
тин М. А., Балаев Д. А. Анизотропная		
намагниченность пленки NbN	6	833
Грачев В. М. (см. Александров А. Б.) .	4	590
Гребенюк В. М. (см. Астапов И. И.)	4	548
Гресс О. А. (см. Астапов И. И.)	4	548
Гресс Т. И. (см. Астапов И. И.)	4	548
Гресь Т. И. (см. Аврорин А. В.)	4	476
Григорьев П. Д. (см. Лебедева Е. В.)	5	767
Гринюк А. А. (см. Астапов И. И.)	4	548
Грицай К. И. (см. Адамчак А.)	2	177
Гришин О. Г. (см. Астапов И. И.)	4	548
Грошев А. Г., Аржников А. К. Форми-		
рование особенностей собственной энергии		
термическими флуктуациями сверхпрово-		
дящего параметра порядка	3	363
Грушин А. С. (см. Вергунова Г. А.)	6	887
Губанов В. А. (см. Бахметьев М. В.)	2	245
Гуськов С. Ю. (см. Белов И. А.)		
	3	403
Гуськов С. Ю. (см. Вергунова Г. А.)	$\frac{3}{6}$	$\begin{array}{c} 403 \\ 887 \end{array}$

Д

Давыдов В. Ю. (см. Фильнов С. О.) ... 2 227

Дворницки Р. (см. Аврорин А. В.)	4	476
Демин Д. Л. (см. Адамчак А.)	2	177
Демченко Н. Н. (см. Белов И. А.)	3	403
Денисова Т. А. (см. Бузлуков А. Л.)	1	53
Деркач В. Н. (см. Белов И. А.)	3	403
Джафаризаде М. А. (см. Эгбали-		
фам Φ .)	1	31
Джилкибаев ЖА. М. (см. Авро-		
рин А. В.)	4	476
Дзапарова И. М. (см. Новосель-		
цев Ю. Ф.)	4	466
Дик В. Я. (см. Аврорин А. В.)	4	476
Дмитриев Е. О. (см. Белов И. А.)	3	403
Дмитриев Н. Ю. (см. Шитиков А. Е.) .	5	683
Домогацкий Г. В. (см. Аврорин А. В.)	4	476
Дорожкин С. И. Равновесные киральные		
краевые токи спиновых подуровней Лан-		
дау	5	760
Дорошенко А. А. (см. Аврорин А. В.) .	4	476
Дровосеков А. Б., Крейнес Н. М., Ко-		
валев О. А., Ситников А. В., Нико-		
лаев С. н., Рыльков В. В. Магнит-		
ный резонанс в металл-диэлектрических		
нитными ионами в изолирующей матри-		
це	6	853
Дугинов В. Н. (см. Адамчак А.)	2	177
Дудников В. А., Верещагин С. Н.,		
Соловьёв Л. А., Гаврилкин С. Ю.,		
Цветков А. Ю., Ситников М. В., Ор-		
лов Ю. С. Структура, электрические и		
магнитные свойства метастабильных фаз		
$Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$	3	346
Дюгаев А. М. (см. Лебедева Е. В.)	5	767
Дячок А. Н. (см. Аврорин А. В.)	4	476
Дячок А. Н. (см. Астапов И. И.)	4	548

\mathbf{E}

Елжов Т. В. (см. Аврорин А. В.)	4	476
Елисеев И. А. (см. Фильнов С. О.)	2	227
Ерыженков А. В. (см. Фильнов С. О.)	2	227
Естюнин Д. А. (см. Макарова Т. П.)	5	711
Естюнин Д. А. (см. Шикин А. М.)	1	126

Ж

Жаворонков Ю. А. (см. Кузьмин В. Л.)	6	779
Жамков А. С. (см. Милюков В. К.)	4	596
Жаховский В. В. (см. Мурзов С. А.)	3	315

-			Кирюхин С. Н. (см. Астапов И. И.)
Заборов Д. Н. (см. Аврорин А. В.)	4	476	Климачков Д. А. (см. Юденкова М. А.)
Завидовский И. А., Нищак О. Ю., Са-			Климов С. И. (см. Савин С. П.)
вченко Н. Ф., Стрелецкий О. А. Вли-			Климовских И. И. (см. Макарова Т. П.)
яние низкоэнергетического ионного асси-			Климовских И. И. (см. Шикин А. М.)
стирования на структуру и оптическое			Кобелев Н. П. (см. Макаров А. С.)
поглощение композитных покрытий а-			KOBATER O A (CM. TROBOCEKOR A \overline{B})
CH:Ag	6	803	Kowopuwopp H M (av Evory
Загородников А. В. (см. Астапов И. И.)	4	548	кожевникова II. IVI. (См. Бузлу-
Зайцев Н. Л. (см. Шикин А. М.)	1	126	$\mathbf{K}_{\mathbf{N}} = \mathbf{K}_{\mathbf{N}} = $
Засавицкий И. И. (см. Буртебаев Н.) .	4	616	Кожин В. А. (см. Аврорин А. В.) \dots
Захаров Б. Г. Влияние коллективных			Кожин В. А. (см. астапов И. И.) \dots
ядерных колебаний на эксцентриситеты			Кокоулин Р. П. (см. Астапов И. И.)
начального состояния в столкновениях			Колбин М. М. (см. Аврорин А. В.)
Pb+Pb	6	788	Комаров П. С. (см. Мурзов С. А.)
Звездин А. К. (см. Шикин А. М.)	1	126	Компаниец К. Г. (см. Астапов И. И.)
Звездин К. А. (см. Шикин А. М.)	1	126	Кондратьев Н. М. (см. Шитиков А. Е.)
Зеленый Л. М. (см. Савин С. П.)	3	381	Конин А. Д. (см. Адамчак А.)
Зинган А. П., Васильева О. Ф. Нели-			Конищев К. В. (см. Аврорин А. В.)
нейная динамика атомно-молекулярной			Коновалов А. С. (см. Александ-
конверсии изотопов щелочных металлов			ров А. Б.)
при сверхнизких температурах	3	307	Коновалова Н. С. (см. Александ-
Змитренко Н. В. (см. Белов И. А.)	3	403	ров А. Б.)
ТЛ			Коновалова Н. С. (см. Бабаев П. А.)
И			Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.)
И Иванова А. Л. (см. Астапов И. И.)	4	548	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.)	$4 \\ 3$	548 438	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) .	4 3 3	$548 \\ 438 \\ 403$	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы лисперсии че-
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.)	$4 \\ 3 \\ 3 \\ 3$	548 438 403 315	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че-
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко-	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \end{array} $	548 438 403 315	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим сцектром при высоком
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в	$ 4 \\ 3 \\ 3 \\ 3 $	548 438 403 315	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \end{array} $	548 438 403 315 40	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 1 \end{array} $	548 438 403 315 40	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (ам. Бизишков А. П.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках	4 3 3 1	548 438 403 315 40	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках К Казарян А. Г. (см. Авчян Б. Р.)		548 438 403 315 40	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках К Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.)	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \end{array} $	548 438 403 315 40 155 560	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.)	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \end{array} $ $ 2 \\ 4 \\ 4 \end{array} $	548 438 403 315 40 155 560 610	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Макарова Т. П.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Калмыков Н. Н. (см. Астапов И. И.)	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \end{array} $ $ 2 \\ 4 \\ 4 \\ 4 \end{array} $	548 438 403 315 40 155 560 610 548	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Макарова Т. П.) Кох К. А. (см. Шикин А. М.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Калмыков Н. Н. (см. Астапов И. И.) Карташов И. Н., Кузелев М. В. Про-	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \end{array} $ $ 2 \\ 4 \\ 4 \\ 4 \end{array} $	548 438 403 315 40 155 560 610 548	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Макарова Т. П.) Кох К. А. (см. Шикин А. М.) Кочкаров М. М. (см. Новосель-
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Калмыков Н. Н. (см. Астапов И. И.) Карташов И. Н., Кузелев М. В. Про- блема повышения рабочей частоты в че	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \\ 2 \\ 4 \\ 4 \\ 4 \end{array} $	548 438 403 315 40 155 560 610 548	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Шикин А. М.) Кочкаров М. М. (см. Новосель- цев Ю. Ф.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках Каликих двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Калмыков Н. Н. (см. Астапов И. И.) Карташов И. Н., Кузелев М. В. Про- блема повышения рабочей частоты в че- ренковских плазменных источниках элек-	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \end{array} $ 1 2 4 4 4	548 438 403 315 40 155 560 610 548	 Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии четырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Шикин А. М.) Кочкаров М. М. (см. Новосельцев Ю. Ф.) Кошечкин А. П. (см. Аврорин А. В.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках Калики двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Калмыков Н. Н. (см. Астапов И. И.) Карташов И. Н., Кузелев М. В. Про- блема повышения рабочей частоты в че- ренковских плазменных источниках элек- тромагнитного излучения	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \\ 2 \\ 4 \\ 4 \\ 2 \end{array} $	548 438 403 315 40 155 560 610 548 281	 Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии четырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Шикин А. М.) Кочкаров М. М. (см. Новосельцев Ю. Ф.) Кошечкин А. П. (см. Аврорин А. В.) Кравченко А. Г. (см. Белов И. А.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Конох Д. А. Дисперсия изгибных мод в мягких двумерных решетках Каликих двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Калмыков Н. Н. (см. Астапов И. И.) Карташов И. Н., Кузелев М. В. Проблема повышения рабочей частоты в черенковских плазменных источниках электромагнитного излучения Карузский А. Л. (см. Пересторо	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \\ 2 \\ 4 \\ 4 \\ 4 \\ 2 \end{array} $	548 438 403 315 40 155 560 610 548 281	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Макарова Т. П.) Кох К. А. (см. Шикин А. М.) Кочкаров М. М. (см. Новосель- цев Ю. Ф.) Корачин А. П. (см. Аврорин А. В.) Кравченко А. Г. (см. Белов И. А.) Кравченко Е. А. (см. Астапов И. И.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Конох Д. А. Дисперсия изгибных мод в мягких двумерных решетках Калики двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинин А. С. (см. Базалевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Карташов И. Н., Кузелев М. В. Про- блема повышения рабочей частоты в че- ренковских плазменных источниках элек- тромагнитного излучения Карузский А. Л. (см. Пересторо- нин А. В.)	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \end{array} $ $ \begin{array}{c} 2 \\ 4 \\ 4 \\ 4 \end{array} $ $ \begin{array}{c} 2 \\ 1 \end{array} $	548 438 403 315 40 155 560 610 548 281 5	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Макарова Т. П.) Кох К. А. (см. Шикин А. М.) Кочкаров М. М. (см. Новосель- цев Ю. Ф.) Кошечкин А. П. (см. Аврорин А. В.) Кравченко Е. А. (см. Астапов И. И.) Кравченко Е. А. (см. Астапов И. И.) Кравченко Е. А. (см. Астапов И. И.)
И Иванова А. Л. (см. Астапов И. И.) Ивлиев С. В. (см. Фальков А. Л.) Илюшечкина А. В. (см. Белов И. А.) . Иногамов Н. А. (см. Мурзов С. А.) Ипатов А. Н., Паршин Д. А., Ко- нюх Д. А. Дисперсия изгибных мод в мягких двумерных решетках Каликих двумерных решетках Казарян А. Г. (см. Авчян Б. Р.) Калинин М. С. (см. Базилевская Г. А.) Калинина Г. В. (см. Бабаев П. А.) Калмыков Н. Н. (см. Астапов И. И.) Карташов И. Н., Кузелев М. В. Про- блема повышения рабочей частоты в че- ренковских плазменных источниках элек- тромагнитного излучения Карузский А. Л. (см. Пересторо- нин А. В.) Катулин М. С. (см. Аврорин А. В.)	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 1 \\ 2 \\ 4 \\ 4 \\ 2 \\ 1 \\ 4 \\ 1 \\ 4 \end{array} $	$548 \\ 438 \\ 403 \\ 315 \\ 40 \\ 155 \\ 560 \\ 610 \\ 548 \\ 281 \\ 5 \\ 476 \\ 155 \\ 560 \\ 610 \\ 548 \\ 281 \\ 5 \\ 476 \\ 476 \\ 4$	Коновалова Н. С. (см. Бабаев П. А.) Конюх Д. А. (см. Ипатов А. Н.) Копански К. А. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коробченко А. В. (см. Аврорин А. В.) Коровай О. В. Законы дисперсии че- тырехуровневого атома с эквидистантным энергетическим спектром при высоком уровне возбуждения Королев П. С. (см. Александров А. Б.) Корона Д. В. (см. Бузлуков А. Л.) Коростелева Е. Е. (см. Астапов И. И.) Котова И. Ю. (см. Бузлуков А. Л.) Кох К. А. (см. Макарова Т. П.) Кох К. А. (см. Шикин А. М.) Кочкаров М. М. (см. Новосель- цев Ю. Ф.) Кошечкин А. П. (см. Аврорин А. В.) Кравченко Е. А. (см. Базилевская Г. А.) Крейнес Н. М. (см. Дровосеков А. Б.) .

Жуков А. А., Фольк К., Шеперс Т. Исследование особенностей когерентного магнитотранспорта в нанопроволоках InN

в присутствии сканирующего затвора ... Журов Д. П. (см. Астапов И. И.)

Квочкина Т. Н. (см. Буртебаев Н.)

Кебкал К. Г. (см. Аврорин А. В.)

Кебкал О. Г. (см. Аврорин А. В.)

Киктенко Е. О. (см. Кронберг Д. А.) ...

Ким Д. А. (см. Вергунова Г. А.)

Киндин В. В. (см. Астапов И. И.)

Кронберг Д. А., Киктенко Е. О., Тру-		
шечкин А. С., Федоров А. К. Ком-		
ментарий к статье «Достаточно ли состоя-		
ний ловушек (Decoy state-метода) для га-		
рантии секретности ключей в квантовой		
криптографии?» С. Н. Молоткова, К. С.		
Кравцова, М. И. Рыжкина и к поправке к		
этой статье	5	627
Круглов М. В. (см. Аврорин А. В.)	4	476
Кругляк В. В. (см. Пойманов В. Д.)	5	720
Крюков А. П. (см. Астапов И. И.)	4	548
Крюков М. К. (см. Аврорин А. В.)	4	476
Ксенофонтов Л. Т. (см. Танеев С. Н.) .	1	20
Кузелев М. В. (см. Карташов И. Н.)	2	281
Кузьмин В. Л., Жаворонков Ю. А.,		
Ульянов С. В., Вальков А. Ю. Моде-		
лирование переноса излучения в тер-		
минах уравнения Бете-Солпитера для		
двухслойных систем биотканей	6	779
Кузьмин И. В. (см. Белов И. А.)	3	403
Кузьмичев Л. А. (см. Астапов И. И.) .	4	548
Кузьмичев Н. Д. (см. Гохфельд Д. М.)	6	833
Кулепов В. Ф. (см. Аврорин А. В.)	4	476
Кулькова С. Е. (см. Чумакова Л. С.)	6	874
Куреня А. Н. (см. Новосельцев Ю. Ф.)	4	466
Кутузов М. И. (см. Цебро В. И.)	2	266
Кучугов П. А. (см. Белов И. А.)	3	403
Къявасса А. (см. Астапов И. И.)	4	548
· · · · · · · · · · · · · · · · · · ·		

Л

Лаврова М. В. (см. Астапов И. И.)	4	548
Лагутин А. А. (см. Астапов И. И.)	4	548
Ларионов А. А. (см. Александров А. Б.)	4	590
Ларионов Н. В. <i>Q</i> -распределение для од-		
ноатомного лазера, работающего в «клас-		
сическом» режиме	2	166
Лебедева Е. В., Дюгаев А. М., Григо-		
рьев П. Д. Диагностика микрочастиц на		
поверхности воды	5	767
Лежен Л. А. (см. Савин С. П.)	3	381
Лемешев Ю. Е. (см. Астапов И. И.)	4	548
Лидванский А. С. (см. Романенко В. С.)	4	523
Лидванский А. С., Хаердинов М. Н.,		
Хаердинов Н. С. Вариации потока мю-		
онов космических лучей во время гроз .	4	497
Литвак А. Г. (см. Смирнов Л. А.)	6	897
Литвинов А. Н. (см. Баранцев К. А.)	5	657
Лобанов В. Е. (см. Шитиков А. Е.)	5	683
Лобода П. А. (см. Фальков А. Л.)	3	438
Лоншаков Е. А. (см. Шитиков А. Е.)	5	683

Лубсандоржиев пов И. И.)	Б.	K.	(см.	Аста-	4	548
Лубсандоржиев	н.	Б.	(см.	Аста-		
пов И. И.)					4	548
Луганский Л. Б.	(см. 1	Цебро	эΒ. И.)	2	266
Ляхов В. В. (см.	Савин	а С. I	I.)		3	381

\mathbf{M}

Магомедов М. А. (см. Бадиев М. К.)	5	753
Магомедов М. А. (см. Рамазанов М. К.)	6	816
Макаров А. С., Афонин Г. В.,		
Цзиао Ц. Ч., Кобелев Н. П., Хо-		
ник В. А. Прогнозирование кинетики ре-		
лаксации модуля сдвига при кристаллиза-		
ции металлических стекол на основе кало-		
риметрических измерений	3	373
Макарова Т. П., Естюнин Д. А., Филь-		
нов С. О., Глазкова Д. А., Пули-		
ков Д. А., Рыбкин А. Г., Гогина А. А.,		
Алиев З. С., Амирасланов И. Р.,		
Мамедов Н. Т., Кох К. А., Тере-		
шенко О. Е., Шикин А. М., Отро-		
ков М. М., Чулков Е. В., Климов-		
ских И. И. Влияние атомов Со на элек-		
тронную структуру топологических изо-		
ляторов Bi ₂ Te ₃ и MnBi ₂ Te ₄	5	711
Максимкин И. П. (см. Аламчак А.)	2	177
Маленки П. (см. Аврорин А. В.)	4	476
Малышкин Ю. М. (см. Аврорин А. В.)	4	476
$\mathbf{M}_{\mathbf{A}} = \mathbf{M}_{\mathbf{A}} \mathbf{C} \qquad (c_{\mathbf{M}} = \mathbf{M}_{\mathbf{A}} \mathbf{M}_{\mathbf{A}} \mathbf{C})$	-	110
кий К В)	3	331
Мамелов Н. Т. (см. Макарова Т. П.)	5	711
Манагалзе А. К. (см. Алексанл-	0	, 11
DOB A B)	4	590
Мануковский К. В., Юлин А. В.,	-	000
Агафонова Н. Ю., Мальгин А. С.		
ка летектора LSD на нейтринную вспыш-		
KV OT SN1987A	3	331
Махмутов В. С. (см. Базилевская Г. А.)	4	560
Машаев М. Х. (см. Шубин Ю. Н.)	5	746
Мелвелева Н. И. (см. Бузлуков А. Л.)	1	53
Мельниченко И. А. (см. Алексанл-	-	00
ров А. Б.)	4	590
Мерзликин А. М. (см. Ролионов С. А.)	5	702
Миленин М. Б. (см. Аврорин А. В.)	4	476
Милюков В. К., Филеткин А. И.,		
Жамков А. С. Космический гравита-		
ционный градиентометр: пути повышения		
точности моделей гравитационного поля		
Земли	4	596

Миньков К. Н. (см. Шитиков А. Е.)	5	683	Осипов С. М. (см. Быков А. М.)	4	570
Миргазов Р. Р. (см. Аврорин А. В.)	4	476	Осипова Е. А. (см. Астапов И. И.)	4	548
Миргазов Р. Р. (см. Астапов И. И.)	4	548			
Мирзоян Р. (см. Астапов И. И.)	4	548	0		
Миронов В. А. (см. Смирнов Л. А.)	6	897	от имени Коллаборации LVD (см. Ага-		
Монхоев Р. Д. (см. Астапов И. И.)	4	548	фонова Н. Ю.)	4	533
Моргунов Р. Б. (см. Бахметьев М. В.) .	2	245	фолода II 101)	-	000
Мурзов С. А., Ашитков С. И., Стру-			0		
лева Е. В., Комаров П. С., Хох-				۲	711
лов В. А., Жаховский В. В., Инога-			Отроков М. М. (см. Макарова 1. 11.)	5	(11
мов Н. А. Упругопластические и поли-			п		
морфные превращения в пленках железа			11		
при нагрузке ультракороткими лазерны-			Павлов Т. Н. (см. Виглин Н. А.)	6	866
ми ударными волнами	3	315	Пазгалёв А. С. (см. Баранцев К. А.)	5	657
Муртазаев А. К. (см. Бадиев М. К.)	5	753	Пан А. (см. Астапов И. И.)	4	548
Муртазаев А. К. (см. Рамазанов М. К.)	6	816	Пан А. Н. (см. Буртебаев Н.)	4	616
Муртазаев А. К., Бабаев А. Б. Фазовые			Панасюк М. И. (см. Астапов И. И.)	4	548
переходы в двумерных моделях Поттса на			Паньков Л. В. (см. Астапов И. И.)	4	548
гексагональной решетке	6	847	Паршин Д. А. (см. Ипатов А. Н.)	1	40
Мусяев Р. К. (см. Адамчак А.)	2	177	Пахоруков А. Л. (см. Астапов И. И.)	4	548
Мюсова А. Е. (см. Белов И. А.)	3	403	Пересторонин А. В., Карузский А. Л.		
TT			Условия применимости приближения,		
Н			предполагающего малое влияние тормо-		
Назари В. (см. Аврорин А. В.)	4	476	жения излучением на движение класси-		
Найнг Со Тан (см. Бабаев П. А.)	4	610	ческого электрона в поле монохроматиче-		
Нами С. (см. Эгбалифам Ф.)	1	31	ской плоской волны	1	5
Насурлла М. (см. Буртебаев Н.)	4	616	Петков В. Б. (см. Новосельцев Ю. Ф.).	4	466
Наумов Д. В. (см. Аврорин А. В.)	4	476	Петков В. Б. (см. Романенко В. С.)	4	523
Немечек З. (см. Савин С. П.)	3	381	Петросян А. С. (см. Юденкова М. А.).	3	388
Нечаев С. К. (см. Валов А. Ф.)	3	430	Петрухин А. А. (см. Астапов И. И.)	4	548
Нещадим В. М. (см. Савин С. П.)	3	381	Петухов Д. П. (см. Аврорин А. В.)	4	476
Николаев Е. Г. (см. Цебро В. И.)	2	266	Плисковский Е. Н. (см. Аврорин А. В.)	4	476
Николаев С. Н. (см. Дровосеков А. Б.)	6	853	Полгрудков Д. А. (см. Астапов И. И.)	4	548
Никулин Ю. В. (см. Виглин Н. А.)	6	866	Поддубный А. Н. (см. Юлин А. В.)	2	206
Нищак О. Ю. (см. Завидовский И. А.)	6	803	Подлазов А. В. Решение самоорганизо-		
Новосельцев Ю. Ф., Дзапарова И. М.,			ванно-критической модели Манны для		
Кочкаров М. М., Куреня А. Н.,			размерностей пространства 2–4	3	414
Новосельцева Р. В., Петков В. Б.,			Пойманов В. Д., Кругляк В. В. Невза-		
Стриганов П. С., Унатлоков И. Б.,			имность распространения обменно-ди-		
Янин А. Ф. Мониторинг нейтринных			польных спиновых волн в двуслойных		
вспышек в Галактике	4	466	магнитных пленках со скрещенной намаг-		
Новосельцева Р. В. (см. Новосель-			ниченностью слоев	5	720
цев Ю. Ф.)	4	466	Полетаев Г. М., Ситников А. А.,		
Нога В. (см. Аврорин А. В.)	4	476	Яковлев В. И., Филимонов В. Ю.		
0			Молекулярно-динамическое исследование		
0			зависимости температуры плавления на-		
Овечкин А. А. (см. Фальков А. Л.)	3	438	ночастиц Ti, Ti $_3$ Al, TiAl и TiAl $_3$ от их диа-		
Оглобличев В. В. (см. Бузлуков А. Л.)	1	53	метра в вакууме и в жидком алюминии	2	221
Окатьева Н. М. (см. Александров А. Б.)	4	590	Полещук В. А. (см. Астапов И. И.)	4	548

915

3 346

Полухина Н. Г. (см. Александров А. Б.)

Полухина Н. Г. (см. Бабаев П. А.)

4 590

4 610

 $4 \ 610$

Окатьева Н. М. (см. Бабаев П. А.)

Орлов Ю. С. (см. Дудников В. А.)

Полухина Н. Г. (см. Буртебаев Н.)	4	616
Попков С. И. (см. Гохфельд Д. М.)	6	833
Попова Е. Г. (см. Астапов И. И.)	4	548
Порелли А. (см. Астапов И. И.)	4	548
Постников Е. Б. (см. Астапов И. И.)	4	548
Пошакинский А. В. (см. Юлин А. В.)	2	206
Проглядо В. В. (см. Виглин Н. А.)	6	866
Просин В. В. (см. Астапов И. И.)	4	548
Птускин В. С. (см. Астапов И. И.)	4	548
Пудиков Д. А. (см. Макарова Т. П.)	5	711
Пушнин А. А. (см. Астапов И. И.)	4	548

Ρ

Разоренов С. В. (см. Савиных А. С.)	6	825
Разумов А. В. (см. Астапов И. И.)	4	548
Райкин Р. И. (см. Астапов И. И.)	4	548
Рамазанов М. К. (см. Бадиев М. К.)	5	753
Рамазанов М. К., Муртазаев А. К.,		
Магомедов М. А. Фрустрированная мо-		
дель Поттса с числом состояний спина		
q = 4 в магнитном поле	6	816
Рахманова Л. С. (см. Савин С. П.)	3	381
Решетняк В. В., Решетняк О. Б.,		
Аборкин А. В., Филиппов А. В.		
Межатомное взаимодействие на границе		
алюминий–фуллерен С ₆₀	1	86
Решетняк О. Б. (см. Решетняк В. В.) .	1	86
Роганова Т. М. (см. Александров А. Б.)	4	590
Рогачев В. Г. (см. Белов И. А.)	3	403
Родионов С. А., Мерзликин А. М. Эф-		
фективный показатель преломления дву-		
мерных пористых композитов	5	702
Розанов М. И. (см. Аврорин А. В.)	4	476
Романенко В. С., Петков В. Б.,		
Лидванский А. С. Гамма-астрономия		
сверхвысоких энергий на установке «Ко-		
вер» Баксанской нейтринной обсервато-		
рии ИЯИ РАН	4	523
Романский В. И. (см. Быков А. М.)	4	570
Рубцов Г. И. (см. Астапов И. И.)	4	548
Руденко А. И. (см. Адамчак А.)	2	177
Рукавишников А. Н. (см. Белов И. А.)	3	403
Рушай В. Д. (см. Аврорин А. В.)	4	476
Рыбкин А. Г. (см. Макарова Т. П.)	5	711
Рыбкин А. Г. (см. Фильнов С. О.)	2	227
Рыбкин А. Г. (см. Шикин А. М.)	1	126
Рыбкина А. А. (см. Фильнов С. О.)	2	227
Рыльков В. В. (см. Дровосеков А. Б.) .	6	853
Рябов Е. В. (см. Аврорин А. В.)	4	476
Рябов Е. В. (см. Астапов И. И.)	4	548
Ряжская О. Г. (см. Агафонова Н. Ю.)	4	533

Ряжская О. Г.	(см.	Мануков-		
ский К. В.)			3	331
Рязанцева М. С). (см. Савин С	С. П.)	3	381

\mathbf{C}

Савин А. В., Савина О. И. Упругие и пластические деформации многослойных упаковок углеродных нанотрубок на плоской полложке	1	75
Савин С. П., Ляхов В. В., Неща- дим В. М., Зеленый Л. М., Неме- чек З., Шафранкова Я., Ванг Ч., Климов С. И., Скальский С. А., Ря- занцева М. О., Рахманова Л. С., Блецки Я., Лежен Л. А. Собственные колебания головной ударной водны и их	-	
Resource and the second		
взаимосвязь с магнитосферными резонан-	3	281
$\mathbf{C}_{\mathbf{D}\mathbf{D}\mathbf{W}\mathbf{D}} \mathbf{O} \mathbf{M} \left(\alpha_{\mathbf{M}} \mathbf{C}_{\mathbf{D}\mathbf{D}\mathbf{W}\mathbf{M}} \mathbf{A} \mathbf{B} \right)$	1	75
Cabuna O. M. (CM. Cabun A. D.) \dots	T	75
зоренов С. Б. Блияние малых предвари-		
тельных деформации и начальной темпе-		
ратуры на сопротивление высокоскорост-		
ному деформированию Армко-железа в	c	005
ударных волнах и волнах разрежения	0	820
Савицкая Н. Е. (см. гохфельд Д. М.).	0	833
Савченко Н. Ф. (см. Завидовский И. А.)	6	803
Сагань Я. И. (см. Астапов И. И.)	4	548
Садовников А. В. (см. Бахметьев М. В.)	2	245
Садыков Ж. Т. (см. Александров А. Б.)	4	590
Садыков Ж. Т. (см. Бабаев П. А.)	4	610
Садыков Ж. Т. (см. Буртебаев Н.)	4	616
Самолига В. С. (см. Астапов И. И.)	4	548
Саргсян К. А. (см. Авчян Б. Р.)	2	155
Сатышев И. (см. Астапов И. И.)	4	548
Сафронов Г. Б. (см. Аврорин А. В.)	4	476
Свешникова Л. Г. (см. Астапов И. И.)	4	548
Свиржевская А. К. (см. Базилевс-		
кая Г. А.)	4	560
Свиржевский Н. С. (см. Базилевс-		
кая Г. А.)	4	560
Седракян Х. В. (см. Авчян Б. Р.)	2	155
Сёмкин С. В., Смагин В. П., Тара- сов В. С. Фрустрации в разбавленном		
изинговском магнетике на решетке Бете	6	840
Сердцев А. В. (см. Бузлуков А. Л.)	1	53
Сидоренков А. Ю. (см. Астапов И. И.)	4	548
Силаев (мл.) А. А. (см. Астапов И. И.)	4	548
Силаев А. А. (см. Астапов И. И.)	4	548
Сиренко А. Э. (см. Аврорин А. В.)	4	476
Ситников А. А. (см. Полетаев Г. М.)	2	221

	0	050			F 40
Ситников А. В. (см. Дровосеков А. Б.)	6	853	Танаев А. Б. (см. Астапов И. И.)	4	548
Ситников М. В. (см. Дудников В. А.) .	3	346	Танеев С. Н., Ксенофонтов Л. Т.,		
Скальский С. А. (см. Савин С. П.)	3	381	Бережко Е. Г. Влияние коронального		
Скурихин А. В. (см. Аврорин А. В.)	4	476	выброса массы на ускорение солнечных		
Скурихин А. В. (см. Астапов И. И.)	4	548	космических лучей ударной волной в ниж-		
Смагин В. П. (см. Сёмкин С. В.)	6	840	ней короне Солнца	1	20
Смирнов Л. А., Миронов В. А., Лит-			Тарасов А. В. (см. Фильнов С. О.)	2	227
вак А. Г. Особенности динамики самовоз-			Тарасов В. С. (см. Сёмкин С. В.)	6	840
действия волновых пакетов с исходно нор-			Таращанский Б. А. (см. Аврорин А. В.)	4	476
мальной дисперсией групповой скорости в			Таращанский Б. А. (см. Астапов И. И.)	4	548
нелинейных решетках	6	897	Тверьянович А. С. (см. Шиок О. Б.)	1	65
Смородин Б. Л. Волновые режи-			Терешенко О. Е. (см. Макарова Т. П.)	5	711
мы электроконвекции при инжек-			Topomonko O, E. (cm. Makapoba I. II.) Topomonko O, E. (cm. III. μ_{K} M.)	1	196
ции с катода и нагреве сверху	1	137		1	120 E 40
Соколов А. В. (см. Астапов И. И.)	4	548		4	548
Соловьев А. Г. (см. Аврорин А. В.)	4	476	Ткачев Л. Г. (см. Астапов И. И.)	4	548
Соловьёв Л. А. (см. Дудников В. А.)	3	346	Тлужиконт М. (см. Астапов И. И.)	4	548
Соломатина Е. Ю. (см. Белов И. А.)	3	403	Тонких А. А. (см. Цебро В. И.)	2	266
Соломянная А. Д. (см. Вергунова Г. А.)	6	887	Трушечкин А. С. (см. Кронберг Д. А.)	5	627
Сорокин В. А. (см. Атутов С. Н.)	5	652	Тюков В. Э. (см. Александров А. Б.)	4	590
Сороковиков М. Н. (см. Аврорин А. В.)	4	476	Тютюнник А. П. (см. Бузлуков А. Л.)	1	53
Старков А. С., Старков И. А. Усредне-					
ние термоэлектрических сред: непрерыв-	_		У		
ность термоэлектрического потенциала .	2	253	$\mathbf{V}_{\mathbf{T}}$	c	770
Старков И. А. (см. Старков А. С.)	2	253	УЛЬЯНОВ С. В. (см. Кузьмин В. Л.)	0	119
Старков Н. И. (см. Александров А. Б.)	4	590	Унатлоков И. Б. (см. Новосель-		100
Старков Н. И. (см. Бабаев П. А.)	4	610	цев Ю. Ф.)	4	466
Старков Н. И. (см. Буртебаев Н.)	4	616	Ушаков Н. А. (см. Астапов И. И.)	4	548
Старкова Е. Н. (см. Александров А. Б.)	4	590	<i>т</i>		
Старкова Е. Н. (см. Бабаев П. А.)	4	610	Ψ		
Старкова Е. Н. (см. Буртебаев Н.)	4	616	Файт Л. (см. Аврорин А. В.)	4	476
Стародубцев К. В. (см. Белов И. А.)	3	403	Файфман М. П. (см. Аламчак А.)	2	177
Стародубцев П. В. (см. Белов И. А.)	3	403	Φ альков Λ П Побода П Λ Овеч-	-	1.1.1
Стенькин Ю. В. Выдающиеся достиже-					
ния эксперимента LHAASO в области гам-			atomhoù monekungphoù nuhamuku nug pac-		
ма-астрономии сверхвысоких энергий	4	461	чета коэффициентов вязкости и ионной		
	4	560	иста коэффициентов визкости и ионнои	2	438
Стожков Ю. И. (см. Базилевская Г. А.)		000	самолиффузии плотной плазмы	- A	100
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс-		000	самодиффузии плотной плазмы	ა 5	627
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.)	6	803	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.)	5 1	627
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.)	$6\\5$	803 746	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.)	5 1	$627 \\ 53$
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель-	$6 \\ 5$	803 746	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро-	5 1	627 53
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.)	$6 \\ 5 \\ 4$	803 746 466	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.)	5 5 1 4	627 53 476
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) .		803 746 466 476	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) .	5 5 1 4 4	627 53 476 596
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.)		803 746 466 476 315	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.)	5 5 1 4 4 2	627 53 476 596 221
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.) Суворкин Я. В. (см. Астапов И. И.)		803 746 466 476 315 548	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.) Филиппов А. В. (см. Решетняк В. В.) .	5 5 1 4 4 2 1	627 53 476 596 221 86
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.) Суворкин Я. В. (см. Астапов И. И.) Суворова О. В. (см. Аврорин А. В.)	$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \end{array} $	803 746 466 476 315 548 476	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.) Филиппов А. В. (см. Решетняк В. В.) . Филиппов А. В. Электростатическое вза-	5 1 4 4 2 1	627 53 476 596 221 86
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.) Суворкин Я. В. (см. Астапов И. И.) Суворова О. В. (см. Аврорин А. В.) Сушенок Е. О. (см. Аврорин А. В.)	$ \begin{array}{r} 6 \\ 5 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \end{array} $	803 746 466 476 315 548 476 476	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.) Филиппов А. В. (см. Решетняк В. В.) . Филиппов А. В. Электростатическое вза- имодействие заряженного диэлектричес-	5 1 4 4 2 1	627 53 476 596 221 86
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.) Суворкин Я. В. (см. Астапов И. И.) Суворова О. В. (см. Аврорин А. В.) Сушенок Е. О. (см. Аврорин А. В.)	$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	803 746 466 476 315 548 476 476	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.) Филиппов А. В. (см. Решетняк В. В.) . Филиппов А. В. Электростатическое вза- имодействие заряженного диэлектричес- кого шара с плоской заряженной границей	5 1 4 4 2 1	627 53 476 596 221 86
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.) Суворкин Я. В. (см. Астапов И. И.) Суворова О. В. (см. Аврорин А. В.) Сушенок Е. О. (см. Аврорин А. В.) Т	$ \begin{array}{r} 6 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	803 746 466 476 315 548 476 476	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.) Филиппов А. В. (см. Решетняк В. В.) . Филиппов А. В. Электростатическое вза- имодействие заряженного диэлектричес- кого шара с плоской заряженной границей однородных диэлектриков	5 5 1 4 4 2 1 5	627 53 476 596 221 86 691
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.) Суворкин Я. В. (см. Астапов И. И.) Суворкин Я. В. (см. Аврорин А. В.) Сушенок Е. О. (см. Аврорин А. В.) Т Таболенко В. А. (см. Аврорин А. В.)	$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	803 746 466 476 315 548 476 476 476	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.) Филиппов А. В. (см. Решетняк В. В.) . Филиппов А. В. Электростатическое вза- имодействие заряженного диэлектричес- кого шара с плоской заряженной границей однородных диэлектриков Фильнов С. О. (см. Макарова Т. П.)	5 5 1 4 4 2 1 5 5	627 53 476 596 221 86 691 711
Стожков Ю. И. (см. Базилевская Г. А.) Стрелецкий О. А. (см. Завидовс- кий И. А.) Стрелков Н. В. (см. Шубин Ю. Н.) Стриганов П. С. (см. Новосель- цев Ю. Ф.) Стромаков А. П. (см. Аврорин А. В.) . Струлева Е. В. (см. Мурзов С. А.) Суворкин Я. В. (см. Астапов И. И.) Суворова О. В. (см. Аврорин А. В.) Сушенок Е. О. (см. Аврорин А. В.) Таболенко В. А. (см. Аврорин А. В.) Таболенко В. А. (см. Астапов И. И.)	$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	 803 746 466 476 315 548 476 476 476 548 	самодиффузии плотной плазмы Федоров А. К. (см. Кронберг Д. А.) Федоров Д. С. (см. Бузлуков А. Л.) Фиалковский С. В. (см. Авро- рин А. В.) Филеткин А. И. (см. Милюков В. К.) . Филеткин А. И. (см. Милюков В. К.) . Филимонов В. Ю. (см. Полетаев Г. М.) Филиппов А. В. (см. Решетняк В. В.) . Филиппов А. В. Электростатическое вза- имодействие заряженного диэлектричес- кого шара с плоской заряженной границей однородных диэлектриков Фильнов С. О. (см. Макарова Т. П.) Фильнов С. О. (см. Шикин А. М.)	5 5 1 4 4 2 1 5 5 1	627 53 476 596 221 86 691 711 126

DACOB \triangle B EDELWEHKOB \triangle B ETH-		
paced II. D., Ephincenked II. D., Enn-		
сеев И. А., Давыдов В. Ю., Ши-		
кин А. М., Рыбкин А. Г. Исследование		
процесса интеркаляции кобальта под бу-		
ферный слой углерода на монокристалле		
SiC (0001)	2	227
Фильчагин С. В. (см. Адамчак А.)	2	177
Фольк К. (см. Жуков А. А.)	1	116

Х

4	497
4	497
2	266
2	266
2	238
3	373
4	548
3	315
4	476
	$ \begin{array}{c} 4 \\ 4 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 3 \\ 4 \end{array} $

Ц

Цвелиховская В. М. (см. Виглин Н. А.)	6	866
Цветков А. Ю. (см. Дудников В. А.)	3	346
Цебро В. И., Николаев Е. Г., Луган-		
ский Л. Б., Кутузов М. И., Хмель-		
ницкий Р. А., Тонких А. А., Харь-		
ковский А. И. Активационный прыжко-		
вый транспорт в нематических проводя-		
щих аэрогелях	2	266
Цзиао Ц. Ч. (см. Макаров А. С.)	3	373
Циок О. Б., Бражкин В. В., Тверья-		
нович А. С., Бычков Е. Логарифмиче-		
ская релаксация удельного объема и опти-		
ческих свойств уплотненного стекла ${ m GeS}_2$	1	65

Ч

Чернов Д. В. (см. Астапов И. И.)	4	548
Чернявский М. М. (см. Александ-		
ров А. Б.)	4	590
Чернявский М. М. (см. Бабаев П. А.)	4	610
Чернявский М. М. (см. Буртебаев Н.)	4	616
Чугров И. А. (см. Белов И. А.)	3	403
Чулков Е. В. (см. Макарова Т. П.)	5	711
Чумакова Л. С., Бакулин А. В., Куль-		
кова С. Е. Электронная структура и ме-		
ханические свойства ${\rm Ti}_5{ m Si}_3$	6	874

Ш

Шайбонов Б. А. (см. Аврорин А. В.)	4	476
Шаров О. О. (см. Белов И. А.)	3	403
Шафранкова Я. (см. Савин С. П.)	3	381
Шевченко В. И. (см. Александров А. Б.)	4	590
Шелепов М. Д. (см. Аврорин А. В.)	4	476
Шеперс Т. (см. Жуков А. А.)	1	116
Шикин А. М. (см. Макарова Т. П.)	5	711
Шикин А. М. (см. Фильнов С. О.)	2	227
Шикин А. М., Естюнин Д. А., Зай- цев Н. Л., Глазкова Д. А., Климов- ских И. И., Фильнов С. О., Рыб- кин А. Г., Кох К. А., Терещен- ко О. Е., Звездин К. А., Звез- дин А. К. Модуляция энергетической за- прещенной зоны в точке Дирака в анти- ферромагнитном топологическом изоля- торе MnBi ₂ Te ₄ как результат изменений поверхностного градиента потенциала	1	126
Шимковиц Ф. (см. Аврорин А. В.)	4	476
Шитиков А. Е., Волошин А. С., Горелов И. К., Лоншаков Е. А., Миньков К. Н., Дмитриев Н. Ю., Кондратьев Н. М., Лобанов В. Е., Биленко И. А. Генерация оптических частотных гребенок в оптическом микрорезонаторе на длине волны 780 нм в режиме за-	L	609
тягивания при накачке лазерным диодом	9	683
с непрерывным временем при конечных		
концентрациях	1	104
Штекл И. (см. Аврорин А. В.)	4	476
Шубин Ю. Н., Машаев М. Х., Ве- дяев А. В., Стрелков Н. В. Час- тота спин-трансферного наноосциллятора на основе перпендикулярной туннельной наногетероструктуры с ненулевой эллип-	F	740
	0 0	(40 000
шумихин А. С. (см. домкин А. Л.)	2	238
Щ		
Щедрина Т. В. (см. Александров А. Б.)	4	590

Щедрина Т. В. (см. Бабаев П. А.)

Щедрина Т. В. (см. Буртебаев Н.)

4 610

 $4 \ 616$

Э			G		
Эгбалифам Ф., Джафаризаде М. А., Нами С. Закон масштабирования для эн- тропии запутывания для основного состо-			Grinis R. Differentiable programming for particle physics simulations	2	184
яния в решеточной модели суперсиммет-			K		
ричных фермионов Энкерова Э (см. Аврорин А В)	$\frac{1}{4}$	$31 \\ 476$	Коновалова Н. С. (см. Буртебаев Н.) .	4	616
Ю	1	110	Korochkin A., Neronov A., Lavaux G.,		
Юденкова М. А., Климачков Д. А.,			Ramsøy M., Semikoz D. Detectability of large correlation length inflationary mag-		
Петросян А. С. Волны Пуанкаре и вол- ны Россби в сжимаемых течениях мелкой			netic field with Cherenkov telescopes	4	583
воды	3	388	\mathbf{L}		
Юдин А. В. (см. Мануковский К. В.)	3	331	Lavaux G. (see Korochkin A.)	4	583
Поддубный А. Н. Оптомеханическая лазерная генерация и доменные стенки,			Ν		
обусловленные экситон-фононным взаи- молействием	2	206	Neronov A. (see Korochkin A.)	4	583
Юхимчук А. А. (см. Адамчак А.)	2	177	Ο		
R			Окатьева Н. М. (см. Буртебаев Н.)	4	616
Яблокова Ю. В. (см. Аврорин А. В.) \mathbf{W} ориор Р. И. (см. Подотор Г. М.)	4	476 221	D.		
Яковлев С. А. (см. Аврорин А. В.)	$\frac{2}{4}$	476	ĸ		
Янин А. Ф. (см. Новосельцев Ю. Ф.)	4	466	Ramsøy M. (see Korochkin A.)	4	583
Яхин Р. А. (см. Белов И. А.) Яшин И. И. (см. Астапов И. И.)	$\frac{3}{4}$	$\begin{array}{c} 403 \\ 548 \end{array}$	S		
А Аргынова К. (см. Буртебаев Н.)	4	616	Semikoz D. (see Korochkin A.) Sokolsky P., D'Avignon R. The unreason-	4	583
D			able effectiveness of the air-fluorescence tech-		
D'Avignon R. (see Sokolsky P.)	4	544	mque in determining the EAS shower maxi- mum	4	544

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ТОМА 161 ЗА 2022 г.

Вып. Стр.

Вып.	Стр.
------	------

EDN: DVVTZW	Нелинейная динамика атомно-молекулярной конверсии изотопов шелочных метал-				
1. Атомы, молекулы, оптика	лов при сверхнизких температурах. Зин- ган А. П., Васильева О. Ф	7			
1.2 Квантовая информация и физика квантовых компьютеров	Упругопластические и полиморфные пре- вращения в пленках железа при нагруз-				
Комментарий к статье «Достаточно ли со- стояний ловушек (Decoy state-метода) для гарантии секретности ключей в квантовой криптографии?» С. Н. Молоткова, К. С. Кравцова, М. И. Рыжкина и к поправке к этой статье. Кронберг Д. А., Киктен- ко Е. О., Трушечкин А. С., Федоров А. К. 5 627	ке ультракороткими лазерными ударными волнами. Мурзов С. А., Ашитков С. И., Струлева Е. В., Комаров П. С., Хох- лов В. А., Жаховский В. В., Инога- мов Н. А	5			
1.3 Коллективные свойства холодных атомов и молекул (включая БЕК)	мин В. Л., Жаворонков Ю. А., Улья- нов С. В., Вальков А. Ю 6 77	9			
Нелинейная динамика атомно-молекулярной конверсии изотопов щелочных метал- лов при сверхнизких температурах. Зин- ган А. П., Васильева О. Ф	1.7 Взаимодействие атомов и моле- кул с электромагнитным полем, кван- товая и классическая оптика, физика лазеров, нелинейная оптика				
1.4 Структура и динамика атомов и молекул Межатомное взаимодействие на грани- це алюминий-фуллерен С ₆₀ . Решет- няк В. В., Решетняк О. Б., Абор- кин А. В., Филиппов А. В 1 86 Безызлучательный переход ${}^{3}E \rightarrow {}^{1}A_{1}$ и ${}^{1}\tilde{E} \rightarrow {}^{3}A_{2}$ в NV ⁻ -центре в алмазе. Бело- исов Ю М 5 668	Условия применимости приближения, предполагающего малое влияние тормо- жения излучением на движение класси- ческого электрона в поле монохроматиче- ской плоской волны. Пересторонин А. В.,	_			
	Карузский А. Л 1 Генерация высших гармоник в треуголь- ных квантовых графеновых точках. Ав-	5			
	чян Б. Р., Казарян А. Г., Саргсян К. А., Седракян Х. В	5			
1.6 Взаимодействие фотонов, элект-	<i>Q</i> -распределение для одноатомного лазера, работающего в «классическом» режиме. <i>Ларионов Н. В.</i>	6			
ронов, атомов и молекул с конденси- рованными телами и поверхностями	Оптомеханическая лазерная генерация и доменные стенки, обусловленные экситон-				
Условия применимости приближения, предполагающего малое влияние тормо-	фононным взаимодействием. Юлин А. В., Пошакинский А. В., Поддубный А. Н 2 20	6			
жения излучением на движение классического электрона в поле монохроматиче-	Законы дисперсии четырехуровневого ато- ма с эквидистантным энергетическим				
скои плоскои волны. Пересторонин А. В., Карузский А. Л 1 5	спектром при высоком уровне возбужде- ния. Коровай О. В 5 63	1			
Оптические релаксационные явления в па- рах рубидия, помещенных в кювету с антирелаксационным покрытием при би- хроматическом лазерном облучении. <i>Ату- тов С. Н., Сорокин В. А</i> Лазерная накачка щелочных атомов в усло- виях сохранения спинового состояния яд- ра при столкновениях в газовой ячейке.	5	652	Оценка эффекта фрагментации при реги страции сверхтяжелых ядер галактиче ских космических лучей в палласитах. Ба баев П. А., Багуля А. В., Волков А. Е. Горбунов С. А., Калинина Г. В., Конс валова Н. С., Окатьева Н. М., Полухи на Н. Г., Садыков Ж. Т., Старков Н. И. Старкова Е. Н., НайнгСо Тан, Черняе		
---	---	-----	---	---	-----
Баранцев К. А., Литвинов А. Н., Пазга- иёв А. С. Вершовский А. К.	5	657	ский М. М., Щедрина Т. В Особенности регистрации ускоренных тя-	4	610
Генерация оптических частотных гребенок в оптическом микрорезонаторе на длине волны 780 нм в режиме затягивания при накачке лазерным диодом. Шити- ков А. Е., Волошин А. С., Горелов И. К., Лоншаков Е. А., Миньков К. Н., Дмит- риев Н. Ю., Кондратьев Н. М., Лоба- нов В. Е., Биленко И. А.	5	683	желых ионов детекторами из фосфат- ного стекла при различных температу- рах. Буртебаев Н., Аргынова К., Черняв- ский М. М., Гиппиус А. А., Коновало- ва Н. С., Квочкина Т. Н., Насурлла М., Окатьева Н. М., Пан А. Н., Полухи- на Н. Г., Садыков Ж. Т., Щедрина Т. В., Старков Н. И., Старкова Е. Н., Засавиц-		
Особенности генерации лазерно-индуциро-	0	000	кий И. И Влияние коллективных ядерных колебаний	4	616
ванного рентгеновского излучения и его воздействия на вещество применительно к задачам лазерного термоядерного синте-			на эксцентриситеты начального состояния в столкновениях Pb+Pb. Захаров Б. Г	6	788
чев И. Ю., Грушин А. С., Ким Д. А., Со- ломянная А. Д.	6	887	2.3 Электромагнитные и слабые взаи- модействия		
			Результаты нейтринных экспериментов T2K и NOvA: упорядочивание масс нейт-		
1.8 Классическая электродинамика			рино и СР-симметрия. Буткевич А. В	4	515
Электростатическое взаимодействие заря- женного диэлектрического шара с плоской			2.4 Гравитация и астрофизика		
заряженной границей однородных диэлек- триков. Филиппов А. В	5	691	Влияние коронального выброса массы на ускорение солнечных космических лучей ударной волной в нижней короне Солн- ца. <i>Танеев С. Н.</i> , <i>Ксенофонтов Л. Т.</i> ,		
2. Ядра, частицы, поля, гравита-			Бережко Е. Г.	1	20
ция и астрофизика			Моделирование отклика детектора LSD на нейтринную вспышку от SN1987A.		
2.1 Структура ядер, столкновения и ядерные реакции			Мануковский К. В., Юдин А. В., Агафонова Н. Ю., Мальгин А. С., Ряжская О. Г	3	331
Выход у-квантов от реакций ядерного			Выдающиеся достижения эксперимента		
синтеза в мюонных молекулах ріµ и рац. Адамчак А., Баранов В. А., Бог- данова П. Н. Вольных В. П. Вих-			сверхвысоких энергий. Стенькин Ю. В. Мониторинг, нейтринных вспышек в Га-	4	461
лянцев О. П., Герштейн С. С., Гри- цай К. И., Демин Д. Л., Дугинов В. Н., Конин А. Д., Максимкин И. П., Муся-			лактике. Новосельцев Ю. Ф., Дзапа- рова И. М., Кочкаров М. М., Куре- ня А. Н., Новосельцева Р. В., Пет-		
ев Р. К., Руденко А. И., Файфман М. П., Фильчагин С. В., Юхимчук А. А	2	177	ков В. Б., Стриганов П. С., Унатло- ков И. Б., Янин А. Ф	4	466

Глубоководный черенковский детектор в озере Байкал. Аврорин А. В., Аврорин А. Д., Айнутдинов В. М., Аллахвердян В. А., Банаш П., Бардачова З., Белолаптиков И. А., Борина И. В., Бруданин В. Б., Буднев Н. М., Гафаров А. Р., Голубков К. В., Горшков Н. С., Гресь Т. И., Дворницки Р., Джилкибаев Ж.-А. М., Дик В. Я., Домогацкий Г. В., Дорошенко А. А., Дячок А. Н., Елжов Т. В., Заборов Д. Н., Катулин М. С., Кебкал К. Г., Кебкал О. Г., Кожин В. А., Колбин М. М., Конищев К. В., Копански К. А., Коробченко А. В., Кошечкин А. П., Круглов М. В., Крюков М. К., Кулепов В. Ф., Малецки П., Малышкин Ю. М., Миленин М. Б., Миргазов Р. Р., Назари В., Наумов Д. В., Нога В., Петухов Д. П., Плисковский Е. Н., Розанов М. И., Рушай В. Д., Рябов Е. В., Сафронов Г. Б., Сиренко А. Э., Скурихин А. В., Соловьев А. Г., Сороковиков М. Н., Стромаков А. П., Суворова О. В., Сушенок Е. О., Таболенко В. А., Таращанский Б. А., Файт Л., Фиалковский С. В., Храмов Е. В., Шайбонов Б. А., Шелепов М. Д., Шимковиц Ф., Штекл И., Эцкерова Э., Яблоко-

Вариации потока мюонов космических лучей во время гроз. Лидванский А. С., Хаердинов М. Н., Хаердинов Н. С	4	497
Гамма-астрономия сверхвысоких энергий на установке «Ковер» Баксанской нейт- ринной обсерватории ИЯИ РАН. Романен- ко В. С., Петков В. Б., Лидванский А. С.	4	523
Изучение характеристик космогенных нейтронов и скорости счета импуль- сов на сцинтилляционных детекторах АСД, LSD и LVD. Агафонова Н. Ю., <i>Ряжская О. Г.</i> , от имени Коллаборации LVD.	4	533
The unreasonable effectiveness of the air-fluo- rescence technique in determining the EAS shower maximum. <i>Sokolsky P.</i> .		

D'Avignon R.

ва Ю. В., Яковлев С. А.

Изучение космических лучей на Астро-		
физическом комплексе TAIGA: результа-		
ты и планы. Астапов И. И., Безъязы-		
ков П. А., Бланк М., Бонвеч Е. А., Бо-		
родин А. Н., Брюкнер М., Биднев Н. М.,		
Билан А. В. Вайдянатан А. Вишнев-		
ский Р Волков Н В Волчигов П А Во-		
понин Л М Гафаров А Р Гресс О А		
Γ		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		
$I period D. M., I punch A. A., \Delta A$		
q_{0k} A. H_{i} , M_{gp06} \mathcal{A}_{i} H_{i} , $Sacopoonu-$		
KOB A. D., HBUHOBU A. J., KUMMOKOB H. H.,		
Кинбин В. В., Кирюхин С. П., Коко-		
улин Р. П., Компаниец К. Г., Коростеле-		
ва Е. Е., Кожин В. А., Кравченко Е. А.,		
Крюков А. П., Кузьмичев Л. А., Кьявас-		
са А., Лагутин А. А., Лаврова М. В., Ле-		
мешев Ю. Е., Лубсандоржиев Б. К., Луб-		
сандоржиев Н. Б., Миргазов Р. Р., Мирзо-		
ян Р., Монхоев Р. Д., Осипова Е. А., Па-		
хоруков А. Л., Пан А., Панасюк М. И.,		
Паньков Л. В., Петрухин А. А., Под-		
грудков Д. А., Полещук В. А., Попо-		
ва Е. Г., Порелли А., Постников Е. Б.,		
Просин В. В., Птускин В. С., Пуш-		
нин А. А., Разумов А. В., Райкин Р. И.,		
Рубцов Г. И., Рябов Е. В., Сагань Я. И.,		
Самолига В. С., Сатышев И., Сила-		
ев А. А., Силаев (мл.) А. А., Сидорен-		
ков А. Ю., Скирихин А. В., Соколов А. В.,		
Свешникова Л Г Сиворкин Я В Та-		
boreuro B A Tayaee A E Tanayyay		
C C C C C C C C C C		
$T_{\text{Automation}} M$ $V_{\text{Automation}} H$ A $V_{\text{Automation}} H$		
Плужиконт и., ушиков п. А., Лорнс Д.,	4	E 10
Чернов Д. Б., Яшин И. И	4	040
0		
О воспроизведении вариации солнечной ак-		
тивности в диапазоне 2–40 месяцев в меж-		
планетной среде. Базилевская Г. А., Ка-		
линин М. С., Крайнев М. Б., Махму-		
тов В. С., Свиржевская А. К., Свиржев-		H 0.0
ский Н. С., Стожков Ю. И	4	560
Ускорение космических лучей до энер-		
гий выше 10 ¹³ эВ трансрелятивистскими		
ударными волнами. Быков А. М., Оси-		
пов С. М., Романский В. И	4	570
Detectability of large correlation length in-		
flationary magnetic field with Cherenkov		

Korochkin A., Neronov A.,

4 583

Lavaux G., Ramsøy M., Semikoz D.

4 544

telescopes.

4 476

4	590	Влияние атомов Со на электронную струк- туру топологических изоляторов Ві ₂ Те ₃ и MnBi ₂ Te ₄ . Макарова Т. П., Естю- нин Д. А., Фильнов С. О., Глазкова Д. А., Пудиков Д. А., Рыбкин А. Г., Гоги- на А. А., Алиев З. С., Амирасланов И. Р., Мамедов Н. Т., Кох К. А., Терещен- ко О. Е., Шикин А. М., Отроков М. М., Чулков Е. В., Климовских И. И Влияние низкоэнергетического ионного ас- систирования на структуру и оптиче- ское поглощение композитных покры- тий а-CH:Ag. Завидовский И. А., Ни- щак О. Ю., Савченко Н. Ф., Стрелец- кий О. А	5	711
		ва, дефекты, рост кристаллов		
1	31	Ионная подвижность в тройных молибда- тах и вольфраматах натрия со структурой NASICON. Бузлуков А. Л., Федоров Д. С., Сердцев А. В., Котова И. Ю., Тютюн- ник А. П., Корона Д. В., Бакланова Я. В., Оглобличев В. В., Кожевникова Н. М., Денисова Т. А., Медведева Н. И	1	53
2 2	184 189	Упругие и пластические деформации мно- гослойных упаковок углеродных нанотру- бок на плоской подложке. Савин А. В., Савина О. И Упругопластические и полиморфные пре-	1	75
		вращения в пленках железа при нагруз- ке ультракороткими лазерными ударными		
		волнами. Мурзов С. А., Ашитков С. И., Струлева Е. В., Комаров П. С., Хох- лов В. А., Жаховский В. В., Инога-	0	015
1	40	мов Н. А.	3	315
2	206	3.3 Тепловые свойства твердых тел и жидкостей Логарифмическая релаксация удельного объема и оптических свойств уплотненного стекла GeS ₂ . Циок О. Б., Бражскин В. В., Тверьянович А. С., Бычков Е.	1	65
2	221 702	3.5 Низкоразмерные системы (струк- тура и т. д.) Дисперсия изгибных мод в мягких дву- мерных решетках. Ипатов А. Н., Пар- шин Д. А., Конюх Д. А	1	40
	$\begin{array}{ccc} 4 \\ 1 \\ 2 \\ 1 \\ 2 \\ 5 \end{array}$	 4 590 4 596 1 31 2 184 2 189 1 40 2 206 2 221 5 702 	 Влияние атомов Со на электронную структуру топологических изоляторов Bi₂Te₃ и MnBi₂Te₄. Макарова Т. П., Ествонин Д. А., Фильнов С. О., Глазкова Д. А., Пудиков Д. А., Рыбкин А. Г., Гоенна А. А., Алиев З. С., Амирасаенов И. Р., Мамедов Н. Т., Кох К. А., Тереценко О. Е., Шикин А. М., Отроков М. М., Чулков Е. В., Климовских И. И влияние низкоэнергетического ионного ассистирования на структуру и оптическое поглощение композитных покрытий а-СН-Аg. Завидовский И. А., Нищак О. Ю., Савченко Н. Ф., Стрелецкий О. А. 590 3.2 Структура, механические свойства, дефекты, рост кристаллов Ионная подвижность в тройных молибдатах и вольфраматах натрия со структурой NASICON. Буллуков А. Л., Федоров Д. С., Сердцев А. В., Котова И. Ю., Тютюнник А. П., Корона Д. В., Бакланова Я. В., Ослобличев В. В., Кожевникова Я. В., Денисова Т. А., Медведева Н. И	Влияние атомов Со на электронную структуру топологических изоляторов Bi ₂ Te ₃ и MnBi ₂ Te ₄ . Макарова Т. П., Естю- пин Д. А., Фиљнов С. О., Глазкова Д. А., Пудиков Д. А., Рыбкин А. Г., Гоги- на А. А., Алиее З. С., Амирасланов И. Р., Мамедов Н. Т., Кох К. А., Терещен- ко О. Е., Шикин А. М., Отроков М. М., Чулков Е. В., Климовских И. И

Упругие и пластические деформации мно- гослойных упаковок углеродных нанотру- бок на плоской подложке. <i>Савин А. В.,</i> <i>Савина О. И.</i>	1	75	Упругопластические и полиморфные пре- вращения в пленках железа при нагруз- ке ультракороткими лазерными ударными волнами. <i>Мурзов С. А., Ашитков С. И.,</i>		
Исследование процесса интеркаляции ко- бальта под буферный слой углерода на мо- нокристалле SiC (0001). Фильнов С. О.,			Струлева Е. В., Комаров П. С., Хох- лов В. А., Жаховский В. В., Инога- мов Н. А.	3	315
Рыокина А. А., Гарасов А. В., Ерыжен- ков А. В., Елисеев И. А., Давыдов В. Ю., Шикин А. М., Рыбкин А. Г	2	227	О проводимости двумерной модели Рэлея в области фазового перехода металл-ди- электрик. Балагуров Б. Я	3	358
Диагностика микрочастиц на поверхности воды. Лебедева Е. В., Дюгаев А. М., Гри- горьев П. Д	5	767	Структуры основного состояния модели Изинга на слоистой треугольной решет- ке в магнитном поле. Бадиев М. К., Мур- тазаев А. К., Рамазанов М. К., Магоме-		
4. Порядок, беспорядок и фазо-			дов М. А	5	753
вые переходы в конденсирован-			Влияние малых предварительных дефор-		
ных средах			маций и начальной температуры на сопро-		
4.1 Неоднородные, неупорядоченные и частично разупорядоченные системы			тивление высокоскоростному деформиро- ванию Армко-железа в ударных волнах и волнах разрежения. Савиных А. С., Гар-		
Ионная подвижность в тройных молибда-			кушин Г. В., Разоренов С. В	6	825
тах и вольфраматах натрия со структурой NASICON. Бузлуков А. Л., Федоров Д. С., Сердцев А. В., Котова И. Ю., Тютюн-			Фазовые переходы в двумерных моделях Поттса на гексагональной решетке. <i>Мур-</i> <i>тазаев А. К., Бабаев А. Б.</i>	6	847
ник А. П., Корона Д. В., Бакланова Я. В., Оглобличев В. В., Кожевникова Н. М., Денисова Т. А., Медведева Н. И	1	53	Электронная структура и механические свойства Ti ₅ Si ₃ . <i>Чумакова Л. С., Баку-</i> лин А. В. Килькова С. Е.	6	874
Логарифмическая релаксация удельного объема и оптических свойств уплотнен- ного стекла GeS ₂ . Циок О. Б., Браж-	1	65		-	
кин Б. Б., Тверъянович А. С., Бычков Е. Межатомное взаимодействие на грани-	1	05	4.2 Магнетизм, пьезо- и сегнетоэлект- ричество		
це алюминий-фуллерен C_{60} . <i>Решет</i> - няк В. В., <i>Решетняк О. Б.</i> , <i>Абор</i> - кин А. В., Филиппов А. В	1	86	Модуляция энергетической запрещенной зоны в точке Дирака в антиферромагнит-		
Случайные блуждания с непрерывным временем при конечных концентрациях. Шкилев В. П	1	104	ном топологическом изоляторе MnBi ₂ Te ₄ как результат изменений поверхностно- го градиента потенциала. Шикин А. М.,		
Новый класс фазовых переходов в водоро- де и дейтерии при наличии химических реакций ионизации и диссоциации. <i>Хом</i> -	9	238	Естюнин Д. А., Зайцев Н. Л., Глаз- кова Д. А., Климовских И. И., Филь- нов С. О., Рыбкин А. Г., Кох К. А., Терешенко О. Е. Звездин К. А. Звез-		
	4	200	дин А. К	1	126
спин-волновые возоуждения в тетеро- структурах NiFe/Cu/IrMn с варьируемой толщиной разделительного слоя Cu. <i>Бах</i> -			Структура, электрические и магнит- ные свойства метастабильных фаз		
метьев М. В., Губанов В. А., Садовни- ков А. В., Моргунов Р. Б	2	245	$Sr_{0.8}Dy_{0.2}CoO_{3-\delta}$. Дудников В. А., Верещагин С. Н., Соловъёв Л. А., Гаврил-		
к теории омических потерь в LC-системах. Балагуров Б. Я.	2	296	кин С. Ю., Цветков А. Ю., Ситни- ков М. В., Орлов Ю. С	3	346

Невзаимность распространения обмен- но-дипольных спиновых волн в двуслой- ных магнитных пленках со скрещенной намагниченностью слоев. Пойманов В. Д., Кругляк В. В.	5	720	Анизотропная намагниченность пленки NbN. Гохфельд Д. М., Савицкая Н. Е., Попков С. И., Кузъмичев Н. Д., Васю- тин М. А., Балаев Д. А	6	833
Влияние электрического тока на спино- вую поляризацию электронов в матери- алах с неоднородной намагниченностью. Бобощии Н. Г.	5	737	4.4 Общие вопросы физики фазовых переходов		
Частота спин-трансферного наноосцилля- тора на основе перпендикулярной тун- нельной наногетероструктуры с ненулевой эллиптичностью. Шубин Ю. Н., Маша-	5	101	О проводимости двумерной модели Рэ- лея в области фазового перехода металл– диэлектрик. <i>Балагуров Б. Я.</i>	3	358
ев М. Х., Ведяев А. В., Стрелков Н. В.	5	746	5. Электронные свойства твер-		
Структуры основного состояния модели Изинга на слоистой треугольной решет-			дых тел		
ке в магнитном поле. Бадиев М. К., Мур- тазаев А. К., Рамазанов М. К., Магоме- дов М. А.	5	753	5.1 Электронные свойства металлов и диэлектриков		
Фрустрированная модель Поттса с числом состояний спина $q = 4$ в магнитном поле. Рамазанов М. К., Муртазаев А. К., Ма-			Исследование особенностей когерентного магнитотранспорта в нанопроволоках InN в присутствии сканирующего затвора. Жуков А. А., Фолък К., Шеперс Т	1	116
гомедов М. А	6	816	Исследование процесса интеркаляции ко-		
Анизотропная намагниченность пленки NbN. Гохфельд Д. М., Савицкая Н. Е., Попков С. И., Кузъмичев Н. Д., Васю- тин М. А., Балаев Д. А	6	833	бальта под буферный слой углерода на мо- нокристалле SiC (0001). Фильнов С. О., Рыбкина А. А., Тарасов А. В., Ерыжен- ков А. В., Елисеев И. А., Давыдов В. Ю.,		
Фрустрации в разбавленном изинговском магнетике на решетке Бете. Сёмкин С. В.,	6	840	Шикин А. М., Рыбкин А. Г Усреднение термоэлектрических сред:	2	227
Фазовые переходы в двумерных моделях Поттса на гексагональной решетке. <i>Мур</i> -	0	040	непрерывность термоэлектрического по- тенциала. Старков А. С., Старков И. А.	2	253
тазаев А. К., Бабаев А. Б.	6	847			
Магнитный резонанс в металл-диэлектрических наногранулярных композитах			5.2 Сильно коррелированные элект- ронные системы		
с парамагнитными ионами в изолирую- щей матрице. Дровосеков А. Б., Крей- нес Н. М., Ковалев О. А., Ситников А. В., Николаев С. Н., Рыльков В. В	6	853	Исследование особенностей когерентного магнитотранспорта в нанопроволоках InN в присутствии сканирующего затвора. Жуков А. А., Фольк К., Шеперс Т	1	116
			Модуляция энергетической запрещенной		
4.3 Сверхпроводимость и сверхтекучесть			зоны в точке Дирака в антиферромагнит- ном топологическом изоляторе MnBi ₂ Te ₄ как результат изменений поверхностно-		
Молекулярно-динамическое исследование зависимости температуры плавления на- ночастиц Ti, Ti ₃ Al, TiAl и TiAl ₃ от их диа- метра в вакууме и в жидком алюминии.			го градиента потенциала. Шикин А. М., Естюнин Д. А., Зайцев Н. Л., Глаз- кова Д. А., Климовских И. И., Филь- нов С. О., Рыбкин А. Г., Кох К. А.,		
полетаев 1. М., Ситников А. А., Яко- влев В. И., Филимонов В. Ю	2	221	перещенко О. Е., Звезоин К. А., Звез- дин А. К	1	126

Формирование особенностей собственной энергии термическими флуктуациями сверхпроводящего параметра порядка. <i>Грошев А. Г., Аржсников А. К.</i>	3	363
Прогнозирование кинетики релаксации мо- дуля сдвига при кристаллизации метал- лических стекол на основе калориметри- ческих измерений. Макаров А. С., Афо- нин Г. В., Цзиао Ц. Ч., Кобелев Н. П., Хоник В. А	3	373
Влияние электрического тока на спино- вую поляризацию электронов в матери- алах с неоднородной намагниченностью. <i>Бебенин Н. Г.</i>	5	737
5.3 Физика полупроводников		
Исследование особенностей когерентного магнитотранспорта в нанопроволоках InN в присутствии сканирующего затвора. Жуков А. А., Фольк К., Шеперс Т	1	116
Оптомеханическая лазерная генерация и доменные стенки, обусловленные экситон- фононным взаимодействием. Юлин А. В., Пошакинский А. В., Поддубный А. Н	2	206
Усреднение термоэлектрических сред: непрерывность термоэлектрического по- тенциала. Старков А. С., Старков И. А.	2	253
5.4 Низкоразмерные системы (элект- ронные свойства)		
Исследование особенностей когерентного магнитотранспорта в нанопроволоках InN в присутствии сканирующего затвора.		
Жуков А. А., Фольк К., Шеперс Т Генерация высших гармоник в треуголь- ных квантовых графеновых точках. Ав- чян Б. Р., Казарян А. Г., Саргсян К. А.,	1	116
Седракян Х. В Исследование процесса интеркаляции ко- бальта под буферный слой углерода на мо- нокристалле SiC (0001). Фильнов С. О., Рыбкина А. А., Тарасов А. В., Ерыжен- ков А. В., Елисеев И. А., Давидов В. Ю.,	2	155
Шикин А. М., Рыбкин А. Г Активационный прыжковый транспорт в нематических проводящих аэрогелях. Це- бро В. И., Николаев Е. Г., Луган- ский Л. Б., Кутузов М. И., Хмель- ницкий Р. А. Тонкик А. А. Харьков.	2	227
ский А. И.	2	266

Равновесные киральные краевые токи		
спиновых подуровней Ландау. Дорож-		
кин С. И	5	760
Анизотропная намагниченность пленки		
NbN. Гохфельд Д. М., Савицкая Н. Е.,		
Попков С. И., Кузъмичев Н. Д., Васю-		
тин М. А., Балаев Д. А	6	833
Спиновый транспорт в полупроводниках		
InSb с различной плотностью электронно-		
го газа. Виглин Н. А., Никулин Ю. В.,		
Цвелиховская В. М., Павлов Т. Н., Про-		
глядо В. В	6	866
Электронная структура и механические		
свойства Ті ₅ Sі ₃ . <i>Чумакова Л. С., Баку</i> -		
лин А. В., Кулькова С. Е	6	874

6. Статистическая и нелинейная физика, физика «мягкой» материи

6.1 Статистическая физика

1	104
2	238
3	414
3	430
	1 2 3 3

6.2 Полимеры, жидкие кристаллы

6.3 Физика биологических систем

Волновые режимы электроконвекции при		
инжекции с катода и нагреве сверху.		
Смородин Б. Л	1	137
К теории омических потерь в <i>LC</i> -системах.		
Балагуров Б. Я	2	296

6.5 Динамика жидкостей		Метод псевдоатомной молекулярной дина-
Собственные колебания головной ударной волны и их взаимосвязь с магнитосфер- ными резонансами. Савин С. П., Ля- хов В. В., Нещадим В. М., Зеленый Л. М., Намечет З. Шафрантоса Я. Ваша Ч		мики для расчета коэффициентов вяз- кости и ионной самодиффузии плотной плазмы. Фальков А. Л., Лобода П. А., Овечкин А. А., Ивлиев С. В
пемечек З., Шарранкова Л., Ванг Г., Климов С. И., Скальский С. А., Рязан- цева М. О., Рахманова Л. С., Блецки Я., Лежен Л. А	3 381	Осооенности генерации лазерно-индуциро- ванного рентгеновского излучения и его воздействия на вещество применительно к залачам дазерного термоядерного синте-
Волны Пуанкаре и волны Россби в сжи- маемых течениях мелкой воды. Юден- кова М. А., Климачков Д. А., Петро-		за. Вергунова Г. А., Гуськов С. Ю., Ви- чев И. Ю., Грушин А. С., Ким Д. А., Со- ломянная А. Д
сян А. С	388	
горьев П. Д 5	5 767	6.7 Вычислительная физика, сложные системы
6.6 Физика плазмы, термоядерный		
синтез		Волновые режимы электроконвекции при
Проблема повышения рабочей частоты в черенковских плазменных источниках электромагнитного излучения. <i>Карта-</i> щов И. Н., Кузелев М. В 2	281	инжекции с катода и нагреве сверху. Смородин Б. Л 1 13'
Собственные колебания головной ударной волны и их взаимосвязь с магнитосфер- ными резонансами. Савин С. П., Ля- хов В. В., Нещадим В. М., Зеленый Л. М., Немечет З. Шафпантова Я. Ванг Ч		6.8 Общие вопросы физики нелинейных систем. Теоретическая и математическая физика
Климов С. И., Скальский С. А., Рязан- цева М. О., Рахманова Л. С., Блецки Я., Лемсен П. А.	381	Собственные колебания головной ударной волны и их взаимосвязь с магнитосфер- ными резонансами. <i>Савин. С. П., Ля</i> -
Ударная передача давления твердому ве- ществу в мишени с пористым поглоти- телем излучения мощного лазерного им- пульса, Белов И. А., Бельков С. А., Бон-	001	хов В. В., Нещадим В. М., Зеленый Л. М., Немечек З., Шафранкова Я., Ванг Ч., Климов С. И., Скальский С. А., Рязан- цева М. О., Рахманова Л. С., Блецки Я.,
даренко С. В., Вергунова Г. А., Воро- нин А. Ю., Гаранин С. Г., Головкин С. Ю., Гиантов, С. Ю. Поликито, Н. Н. Пор		Лежен Л. А
кач В. Н., Дмитриев Е. О., Змитрен- ко Н. В., Илюшечкина А. В., Кравчен-		путем размерной редукции. Валов А. Ф., Горский А. С., Нечаев С. К 3 430
ко А. Г., Кузъмин И. В., Кучугов П. А., Мюсова А. Е., Рогачев В. Г., Рукавиш- ников А. Н., Соломатина Е. Ю., Ста- родубцев К. В., Стародубцев П. В., Чу-		Особенности динамики самовоздействия волновых пакетов с исходно нормальной дисперсией групповой скорости в нели- нейных решетках. Смирнов Л. А., Миро-
гров И. А., Шаров О. О., Яхин Р. А 3	403	нов В. А., Литвак А. Г 6 89'

Главный редактор А. И. СМИРНОВ

Редколлегия:

д-р физ.-мат. наук И. Г. ЗУБАРЕВ,

д-р физ.-мат. наук Е. И. КАЦ (зам. гл. редактора, представительство ЖЭТФ во Франции), д-р физ.-мат. наук В. П. КРАЙНОВ, акад. М. В. САДОВСКИЙ, канд. физ.-мат. наук С. С. СОСИН, канд. физ.-мат. наук Ю. С. БАРАШ, член-корр. РАН С. В. ТРОИЦКИЙ (зам. гл. редактора), член-корр. РАН И. А. ФОМИН (зам. гл. редактора), д-р физ.-мат. наук А. В. ФИЛИППОВ, д-р физ.-мат. наук Д. Е. ХМЕЛЬНИЦКИЙ (зам. гл. редактора, представительство ЖЭТФ в Великобритании), д-р физ.-мат. наук А. А. ЦЕЙТЛИН, акад. А. М. ЧЕРЕПАЩУК

Редакционный совет:

акад. А. Ф. АНДРЕЕВ (председатель), член-корр. РАН В. В. ЛЕБЕДЕВ, д-р физ.-мат. наук В. С. ПОПОВ

Зав. редакцией Н. Г. Церевитинова Редакторы: Л. Б. Кульчицкая, Т. Г. Орехова, Т. Н. Смирнова