Необычные электронные свойства двухслойного графена

А.Л. Рахманов Институт теоретической и прикладной электродинамики РАН ВНИИА им. Н.Л. Духова

- Три структуры двухслойного графена
- Подкрученный графен
- Магический угол скрутки
- Чем интересен графен со структурой АА
- Квантовая точка из АА графена с магическим радиусом
- «Четверть-металлическое состояние» в АА графене и другие необычные состояния

Однослойный графен

Графен - первый стабильный двумерный кристалл. Высококачественные образцы, отработаны экспериментальные методики. Высокая прочность, высокая подвижность электронов.

В <u>элементарной ячей</u>ке кристалла находятся два атома, обозначенные А и В. (s) (s) (s) $H = \sum_{\mathbf{k}\sigma} \psi_{\mathbf{k}\sigma}^{+} \hat{H}_{\mathbf{k}} \psi_{\mathbf{k}\sigma},$ $\hat{H}_{\mathbf{k}} = -t \begin{pmatrix} 0 & f_{\mathbf{k}} \\ f_{\mathbf{k}}^{*} & 0 \end{pmatrix}, \quad f_{\mathbf{k}} = 1 + 2e^{\frac{3ik_{x}a_{0}}{2}} \cos\left(\frac{ik_{y}a_{0}\sqrt{3}}{2}\right) = |f_{\mathbf{k}}|e^{i\varphi_{\mathbf{k}}}$ -2 $\psi_{\mathbf{k}\sigma} = \left(\begin{array}{c} a_{\mathbf{k}\sigma} \\ b \end{array}\right)$ 0 200 804

Энергетический спектр («мексиканская шляпа»)

2

Структуры двухслойного графена

AB (Bernal) упаковка.

(a) AB

АВ низкоэнергетический спектр: :

АА низкоэнергетический спектр:

A.V.Rozhkov, A.O.Sboychakov, A.L.Rakhmanov, F.Nori, <u>Phys.</u> <u>Reports</u> 648, pp. 1-104 (2016). Скрученный графен.

Сверхструктура

При малых θ(<1°) tBLG можно представить, как совокупность AA и AB областей.

Экперимент. Муаровая структура

Период:

 $L = \frac{a}{2\sin(\theta/2)}$ $a = \sqrt{3}a_0 \approx 2.46 \text{ Å}$ For r=1 $L_{sc}(m_0, 1) = L$ For r>1

 $L_{sc}(m_0,r) > L$

STM images of the tBLG samples with different twist angles θ clearly showing the Moire pattern. PRL **109**, 196802 (2012)

Соизмеримые углы

Число атомов в суперячейке:

$$N_{sc} = 4 \begin{bmatrix} 3m_0^2 + 3m_0r + r^2, & r \neq 3n \\ m_0^2 + m_0r + r^2/3, & r = 3n \end{bmatrix} \propto 1/\theta^2$$

Условие соизмеримости

$$\cos\theta = \frac{3m_0^2 + 3m_0r + r^2/2}{3m_0^2 + 3m_0r + r^2}$$

*m*₀ и *r* – взаимно простые целые числа

Вектора суперячейки:

$$\begin{cases} \mathbf{R}_1 = m_0 \mathbf{a}_1 + (m_0 + r) \mathbf{a}_2 \\ \mathbf{R}_2 = -(m_0 + r) \mathbf{a}_1 + (2m_0 + r) \mathbf{a}_2 \end{cases} \text{ if } r \neq 3n \\ \text{or} \end{cases}$$

$$\begin{bmatrix} \mathbf{R}_1 = \left(m_0 + \frac{r}{3} \right) \mathbf{a}_1 + \frac{r}{3} \mathbf{a}_2 \\ \mathbf{R}_2 = -\frac{r}{3} \mathbf{a}_1 + \left(m_0 + \frac{2r}{3} \right) \mathbf{a}_2 \end{bmatrix} \text{ if } r = 3n$$

Размер суперячейки: $L_{sc} = |\mathbf{R}_{1,2}| = a(N_{sc})^{1/2}/2$, a = 2.46 Å.

Электронные свойства при больших углах подкрутки Скрученный графен в приближении сильной связи

A. O. Sboychakov, A. L. Rakhmanov, A. V. Rozhkov, and Franco Nori, Phys. Rev. B **92**, 075402 (2015)

$$\begin{split} H &= -t \sum_{\substack{\langle \mathbf{in}, \mathbf{jm} \rangle \\ s\sigma}} \left(d^{\dagger}_{s\mathbf{in}A\sigma} d_{s\mathbf{jm}B\sigma} + H.c. \right) + \\ \sum_{\substack{\mathbf{in}, \mathbf{jm} \\ \alpha\beta\sigma}} \left[t_{\perp} (\mathbf{R_i} + \mathbf{r_n^{1\alpha}}; \mathbf{R_j} + \mathbf{r_m^{2\beta}}) d^{\dagger}_{1\mathbf{in}\alpha\sigma} d_{2\mathbf{jm}\beta\sigma} + H.c. \right] \end{split}$$

 $A2 \xrightarrow{\theta} B2$ Y_1 Y_2 Y_3 A1 B1

AB-stacked graphene bilayer. $\gamma_1, \gamma_3, u \gamma_4 - три основные$ Describes positionВнутри суперячейки і используютсядля

парметризауии $t_{\perp}(\mathbf{r};\mathbf{r'})$.

$$t=2.57 \text{ eV}, \gamma_1 = 0.4 \text{ eV},$$

 $\gamma_3 = 0.254 \text{ eV}, \gamma_4 = 0.051 \text{ eV}.$

Параметризация $t_{\perp}(\mathbf{r};\mathbf{r}')$ учитывает атомное окружение при перескоках

 $t_{\perp}(\mathbf{r};\mathbf{r}') = \cos^{2}(\gamma)V_{\sigma}(\mathbf{r}-\mathbf{r}') + \sin^{2}(\gamma)V_{\pi}(\mathbf{r}-\mathbf{r}')$ $V_{\sigma}(\mathbf{r}) = t_{0}\exp(-r/r_{0}) \qquad t_{0} = 0.4\text{eV}$

M.S. Tang, et al., PRB 53 979 (1996)

 $\mathbf{R}_{in}^{s\alpha} = \mathbf{R}_i + \mathbf{r}_n^{s\alpha}, \ \mathbf{R}_i = i\mathbf{R}_1 + j\mathbf{R}_2, \ \mathbf{r}_n^{s\alpha}$

 $i = (i, j), n = (n,m), s = 1,2, \alpha = A,B$

-8

0

 $10^{3}\delta k/\Delta K$

8

-2

 $10^{3}\delta k/\Delta K$

0

2

Электронный спектр: большие углы $\theta > \sim 10^{\circ}$

Щель в спектре при учете конечных размеров образца

Экспериментальное наблюдение щели

J. Park et al., Nature Commun., 6 5677 (2015)

Электронный спектр: промежуточные углы $\theta_c < \theta < \sim 10^\circ$

Уменьшение скорости Ферми вблизи вырожденных конусов Дирака

Электронные свойства при промежуточных углах подкрутки

Уравнение на щель:

$$\Delta_{\mathbf{p}} = \frac{1}{2} \int_{RBZ} \frac{d^2 q}{v_{BZ}} \frac{A(\mathbf{p}; \mathbf{q}) \Delta_{\mathbf{q}}}{\sqrt{\Delta_{\mathbf{q}}^2 + E_{\mathbf{q}}^2}}$$

$$A(\mathbf{p};\mathbf{q}) = \sum_{ij\alpha\beta} \sum_{\mathbf{G}_{1}} \sum_{\mathbf{G}_{2}} \overline{U}_{\mathbf{pG}_{1}i\alpha}^{(S^{+})} \overline{U}_{\mathbf{qG}_{1}i\alpha}^{(S^{+})} V_{i\alpha;j\beta} (\mathbf{p} - \mathbf{q} + \mathbf{G}_{1} - \mathbf{G}_{1}; \mathbf{G}_{1} + \mathbf{G}_{2} - \mathbf{G}_{1} - \mathbf{G}_{2}) \overline{U}_{\mathbf{qG}_{2}j\beta}^{(S^{-})} \overline{U}_{\mathbf{pG}_{2}j\beta}^{(S^{-})} \overline{U}_{\mathbf{pG}_{2}j\beta}^{$$

Зависимость экситонной щели от параметра взаимодействия $\alpha = e^2/\varepsilon v_F$

A.O. Sboychakov, et al., PRL **120**, 266402 (2018)

Зависимость щели от угла θ

Conductivity of magic angle tBLG as function of doping. Experiment I

Y. Cao, et. al., Nature 556, 80 (2018)

Conductivity shows minima at half-filling (±n_s/2) that is for 2 extra electrons or holes per supercell
Some samples show also minima of conductivity at ±3n_s/4

Conductivity of magic angle tBLG as function of doping. Experiment I

Y. Cao, et. al., Nature 556, 43 (2018)

Minima of conductivity are observed for integer number of electrons or holes per supercell
Minima at n=±n_s/2 and n=±3n_s/4 cannot be explained within single particle theory

Результаты в приближении сильной связи с учетом е-е взаимодействия

A.O. Sboychakov, et al., PRB **100**, 045111 (2019) A.O. Sboychakov, et al., PRB **102**, 155142 (2020)

$$H = \sum_{\mathbf{nm}ij} \sum_{\alpha\beta\sigma} t^{ij\alpha\beta}_{\mathbf{nm}} d^{+}_{\mathbf{n}i\alpha\sigma} d_{\mathbf{m}j\beta\sigma'} + U \sum_{\mathbf{n}i\alpha} n_{\mathbf{n}i\alpha\uparrow} n_{\mathbf{n}i\alpha\downarrow} + \frac{1}{2} \sum_{\mathbf{nm}ij} \sum_{\alpha\beta\sigma\sigma'} V \left(\mathbf{r}_{\mathbf{n}}^{i\alpha} - \mathbf{r}_{\mathbf{m}}^{j\beta} \right) n_{\mathbf{n}i\alpha\sigma} n_{\mathbf{m}j\beta\sigma'}$$

 $d_{\mathbf{n}i\alpha\sigma}, d_{\mathbf{n}i\alpha\sigma}^+$ - creation and annihilation operators of electron with spin $n_{\mathbf{n}i\alpha\sigma} = d_{\mathbf{n}i\alpha\sigma}^+ d_{\mathbf{n}i\alpha\sigma}^+$ projection σ , located in layer *i*, at unit cell **n**, sublattice α

$$t = 2.57 \text{eV} \leftarrow \frac{\text{Intralayer nearest-neighbor}}{\text{hopping amplitude}}$$
$$t_{\perp}(\mathbf{r};\mathbf{r}') = \cos^{2}(\gamma)V_{\sigma}(\mathbf{r}-\mathbf{r}') + \sin^{2}(\gamma)V_{\tau}(\mathbf{r}-\mathbf{r}')$$
$$V_{\sigma}(\mathbf{r}) = t_{0}\exp(-r/r_{0}) \quad t_{0} = 0.4 \text{eV}$$

Магический угол θ_c =1.08° сооответвтует эксперименту Число атомов в суперячейке *N*=11164

Основное состояние SDW

Низкоэнергетический спектр, допирования нет

- ▶ В одноэлектронном приближении имеем 8 почти вырожденных зон.
- > При учете взаимодействия структура спектра квартет-квартет

Электронные свойства при малых углах подкрутки

Допированный образец, два электрона или дырки на суперячейку

Структура спектра дублет-квартет-дублет

Электронные свойства при малых углах подкрутки

Разные уровни допирования:

 $n=\pm n_s/4$

> At $n=\pm n_s/4$ we have doublet-singlet-singlet - singlet-singlet-doublet structure

> At $n=\pm 3n_s/4$ we have singlet-singlet-quartet-singlet-singlet structure

Электронные свойства при малых углах подкрутки

DOS на уровне Ферми и проводимость в зависимости от допирования

- > DOS at Fermi level has minima at $n/n_s=0, \pm 1/4, \pm 2/4, \text{ and } \pm 3/4$. (that is for **integer number** of electrons or holes per supercell).
- Minima of conductivity either equal or lay very close to integervalued doping levels in agreement with experiment X. Lu, et al., Nature 574, 653 (2019)

Нарушение вращательной симметрии (нематическое состояние).

$$\mathbf{S}_{\mathbf{n}i\alpha} = \frac{1}{U} \left(\operatorname{Re}(\Delta_{\mathbf{n}i\alpha}), \operatorname{Im}(\Delta_{\mathbf{n}i\alpha}) \right) \longleftarrow \operatorname{Cпины}$$
 на узле

Спины на слое 1, подрешетки *А* (показана только область

Тоже на подрешетке В

Спины S_{nia} колинеаргы и АФМ упорядочены в каждом слое

Образование неоднородной электроннной структуры (фазовое рааслоение)

А.О. Сбойчаков и др., Письма в ЖЭТФ 112, 693 (2020) [JETP Letters 112, 651 (2020)]

Зависимость хим. потенциала от допирования

Поведение немонотонное, что указывает на неустойчивость однородного состояния.

Квантовая точка из двухслойного АА графена

A. L. Rakhmanov, A. V. Rozhkov, and A. O. Sboychakov Phys. Rev. B **105**, 235415 (2022)_

Волновые уравнения вблизи конусов Дирака:

$$\mathbf{K} = \frac{4\pi}{3a_0} (0,1) = +1 \frac{4\pi}{3a_0} \boldsymbol{e}_y, \ \xi = +1: \ \widehat{H}^{SLG} = -i v_F \boldsymbol{\sigma} \boldsymbol{\nabla}$$
$$\mathbf{K}' = \frac{4\pi}{3a_0} (0,-1) = -1 \frac{4\pi}{3a_0} \boldsymbol{e}_y, \ \xi = -1: \ \widehat{H}^{SLG} = -i v_F \boldsymbol{\sigma}^* \boldsymbol{\nabla}$$
Гамильтониан в континуальном приближении:

Характерный пространственный масштаб

$$l = \frac{v_F}{t_0} = \frac{3ta_0}{2t_0} \approx 12a_0$$

$$\widehat{H}_{\xi} = \begin{pmatrix} 0 & -i\partial_{x} - \xi\partial_{y} & 1/l & 0 \\ -i\partial_{x} + \xi\partial_{y} & 0 & 0 & 1/l \\ 1/l & 0 & 0 & -i\partial_{x} - \xi\partial_{y} \\ 0 & 1/l & -i\partial_{x} + \xi\partial_{y} & 0 \end{pmatrix} \quad \Psi_{\xi} = \begin{pmatrix} \psi_{\xi 1a} \\ \psi_{\xi 1b} \\ \psi_{\xi 2a} \\ \psi_{\xi 2b} \end{pmatrix}$$

 $\hat{P}_{\xi} = i\partial_x + \xi\partial_y$ $\hat{P}_{\xi}^* = -i\partial_x + \xi\partial_y$

Энергия в единицах t_0 Длинна в единицах l

Граничные условия для круглой квантовой точки из АА графена:

Предполагаем, что рассеяние электронов на границе не перебрасывает их из одного конуса Дирака на другой.

$$\Psi_{\xi} = \widehat{M}_{\xi} \Psi_{\xi}, \qquad \widehat{M}_{\xi} = \widehat{M}_{\xi}^{+} = \widehat{M}_{\xi}^{-1}, \quad \left\{ \widehat{M}_{\xi}, \widehat{j}_{r\xi} \right\}_{+} = 0, \qquad \widehat{j}_{r\xi} = \begin{pmatrix} 0 \ e^{-i\xi\theta} \ 0 \ 0 \ 0 \\ e^{i\xi\theta} \ 0 \ 0 \ 0 \\ 0 \ 0 \ e^{-i\xi\theta} \\ 0 \ 0 \ e^{-i\xi\theta} \\ 0 \ 0 \ e^{i\xi\theta} \ 0 \end{pmatrix}$$

$$\widehat{M}_{\xi} = \begin{pmatrix} m_{11} & im_{12}e^{-i\xi\theta} & im_{13}e^{if} & m_{14}e^{i(f-\xi\theta)} \\ -im_{12}e^{i\xi\theta} & -m_{11} & -m_{14}e^{i(f+\xi\theta)} & -im_{13}e^{if} \\ -im_{13}e^{-if} & -m_{14}e^{-i(f+\xi\theta)} & m_{33} & im_{34}e^{-i\xi\theta} \\ m_{14}e^{i(\xi\theta-f)} & im_{13}e^{-if} & -im_{34}e^{i\xi\theta} & -m_{33} \end{pmatrix}$$

$$\begin{cases} m_{11}^{2} + m_{12}^{2} + m_{13}^{2} + m_{14}^{2} = 1 \\ m_{33}^{2} + m_{34}^{2} + m_{13}^{2} + m_{14}^{2} = 1 \\ m_{13}(m_{11} + m_{33}) - m_{14}(m_{12} + m_{34}) = 0 \\ m_{13}(m_{12} - m_{34}) + m_{14}(m_{11} - m_{33}) = 0 \end{cases}$$

Мы наблюдаем набор радиусов, при которых

Меняется четность основного состояния относительно перестановке слоев
Это состояние вырождено восьмикратно по спину σ, индексу долины ξ и четности с

Основное состояние отделено большой щелью от возбужденных

Величина первого из этих магических радиусов порядка размера АА области в графене, скрученном на магический угол (см. следующий слайд).

Другие гран. условия

Численный результат для «сложных» гран. условий.

Меняем форму точки с круглой на треугольную или прямоугольную. Основной результат не меняется. Он устойчив.

У квантовой точки из однослойного графена нет такого свойства (нет квантового числа с).

$$J_{\mu}\left(\frac{\varepsilon R}{\hbar v_{\rm F}}\right) + \cot\left(\frac{\phi}{2}\right) J_{\mu+1}\left(\frac{\varepsilon R}{\hbar v_{\rm F}}\right) = 0$$

Нет магических радиусов у квантовых точек из АВ графена:

Напрашивается аналогия между «магическими углами» скрученного двухслойного графена и «магическими радиусами» квантовой точки двухслойного АА графена.

Существование «магических радиусов» уникально для структуры АА и связано с симметрией его слоев.

Дробно-металлическое состояние, чутверть-металлическое состояние в АА графене

Электронные состояния на поверхности Ферми обычных металлов вырождены ПО проекции спина, рис.(а), и спиновая поляризация равна нулю. Сильные электрон-электронные взаимодействия МОГУТ СНЯТЬ ЭТО вырождение, и электронная жидкость приобретает спиновую поляризацию, рис. (b). В предельном случае только электроны с одной проекцией спина достигают поверхности Ферми, рис.(с).

Эти системы называют полуметаллами (half-metal) [R. A. de Groot, et al. PRL 50, 2024 (1983), M.I. Katsnelson et al. RMP 80, 315 (2008)]. В HM электрический ток имеет 100% поляризацию по спину, что интересно для приложений в спинтронике [X. Hu, Adv. Mater. **24**, 294 (2012),]. В настоящее время найдены десятки таких систем: NiMnSb, La_{0.7}Sr_{0.3}MnO₃, CrO₂, Co₂MnSi, [Pr_{2-x}Sr_xMgIrO₆]₂. Двухслойном AA графене возможна реализация таких и даже более сложных состояний, несмотря на относительно слабое е-е взаимодействие.

Зона Бриллюэна содержит два неэквивалентных конуса Дирака. Вблизи конусов электроны имеют разную киральность. Их волновые функции являются собственными функциями оператора $k_x+i\xi k_y$, где $\xi = +1$ для одного конуса и $\xi = -1$ для другого.

Двухслойный АА графен может переходить в фазу, «четверть-металла»: на поверхности Ферми электроны со 100% поляризацией по спину и киральностью одного знака. Нарушается вращательная симметрия электронной системы, появляется спонтанная одноосная анизотропия («нематическая» фаза).

Состояние четверть-металла является основным состоянием системы, если взаимодействие электронов в одной долине много больше, чем взаимодействие между долинами,

$$V_{\rm C}(\mathbf{q}) >> V_{\rm C}(\mathbf{q} + \Delta \mathbf{K}), |\mathbf{q}| << |\Delta \mathbf{K}|.$$

$$\hat{H}_{0} = -t \sum_{\langle \mathbf{mn} \rangle l\sigma} d^{\dagger}_{\mathbf{m} l 0\sigma} d_{\mathbf{n} l 1\sigma} - t_{0} \sum_{\mathbf{n} a\sigma} d^{\dagger}_{\mathbf{n} 0 a\sigma} d_{\mathbf{n} 1 a\sigma} + H.c. - \mu n.$$
$$\hat{H}_{\text{int}} = \frac{1}{2N_{c}} \sum_{\mathbf{kp} la \atop l'a'\sigma} V^{ll'}_{aa'} (\mathbf{k} - \mathbf{p}) d^{\dagger}_{\mathbf{k} la\sigma} d_{\mathbf{p} la\sigma} d^{\dagger}_{\mathbf{p} l'a'\bar{\sigma}} d_{\mathbf{k} l'a'\bar{\sigma}}$$

Взаимодействие электронов открывает щель в спектре, **рис. (а)**.

При допировании на поверхности Ферми появляются электроны с разной поляризацией по спину и разной киральностью, рис. (b,c).

Очевидно, величина шели зависит от допирования

Электроны на поверхности Ферми можно разделить на 4 сектора $s=(\sigma,\xi)$

$$\begin{split} \Delta_s &= \Delta_0 \sqrt{1 - \frac{x_s}{x_0}}, \ \frac{\mu}{\Delta_0} = 1 - \frac{x_s}{2x_0}, \ x_0 = \frac{q_{F0}^2 \Delta_0}{4\pi t_0}.\\ E_{\mathbf{k}\sigma}^{\mathrm{m}} &= \sqrt{|\Delta_{\mathbf{k}\sigma}|^2 + t_0^2 (1 - q/q_{F0})^2}, \end{split}$$

 $\Omega = -T \ln\{\text{Tr exp}[-(\hat{H} - \mu \hat{N})/T]\} \quad F_s(0) = -q_{F0}^2 \Delta_0^2 / 8\pi t_0$

$$F_s(x_s) = F_s(0) + \int_0^{x_s} \mu(x) dx \qquad F = \sum F_{\xi\sigma}$$
$$F = 4F_s(0) + \Delta_0 x - \left(\frac{\Delta_0}{4x_0} \sum_{\xi,\sigma} x_{\xi\sigma}^2\right)$$

Если все сектора одинаково допированы, то $x_s = x/4$ и последнее слагаемое $-\Delta_0 x^2/16x_0$. Если только один из секторов принимает дополнительные электроны, то $-\Delta_0 x^2/4x_0$.

Если х_s ≥ x₀, то щель в одном секторе обращается в нуль, начинает заполняться второй сектор и т.д.

Выводы

• Двухслойный графен является интересным материалом, перспективным для приложений

•В подкрученном графене возможно существование разнообразных электронных состояний, в том числе, сверхпроводимости, магнитного порядка, неоднородной фазы

• Двухслойный графен со структурой АА также обладает весьма необычными свойствами. Возможно, его изучение даст ключ к более полному пониманию электронных свойств подкрученного графена.

СПАСИБО ЗА ВНИМАНИЕ!