Академия

Найден простой способ превратить сверхкороткие лазерные импульсы ближнего инфракрасного диапазона в средний инфракрасный

Найден простой способ превратить сверхкороткие лазерные импульсы ближнего инфракрасного диапазона в средний инфракрасный

Рубрика Исследования

В Физическом институте им. П.Н. Лебедева РАН разработана простая лазерная система, преобразующая сверхкороткие — в квадриллионные доли секунды — лазерные импульсы ближнего инфракрасного диапазона в средний инфракрасный. Интерес к таким системам обусловлен тем, что именно они позволяют «заснять» молекулярные «отпечатки пальцев» многих веществ, например в составе лекарств или опасных газов.

Ввиду своей простоты и эффективности разработка может найти применение в медицине, системах безопасности и детектирования, где требуются мощные и точные инфракрасные источники. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Optics Letters.

Лазерные источники, генерирующие импульсы длительностью в квадриллион раз меньше секунды в среднем инфракрасном диапазоне, перспективны для самых разных применений. Например, этот диапазон хорошо проникает сквозь живые ткани и безопасен для организма, благодаря чему его можно использовать в медицинской диагностике. Кроме того, в нём находятся молекулярные «отпечатки пальцев» — уникальные спектральные образы — многих молекул, поэтому он удобен и для детектирования опасных веществ, например газов.

Титан-сапфировый лазер

Чаще всего ультракороткие лазерные импульсы среднего инфракрасного диапазона получают, преобразуя лазное излучение из другого спектрального диапазона, что технически сложно, а имеющиеся подходы сопряжены с малой энергетической эффективностью преобразования и требуют дорогого и громоздкого оборудования. Поэтому учёные ищут простые и высокоэффективные источники такого излучения.

Исследователи из Физического института имени П.Н. Лебедева РАН (Москва) разработали новую систему, генерирующую фемтосекундные лазерные импульсы в среднем инфракрасном диапазоне. За основу авторы взяли доступный в научных и медицинских лабораториях титан-сапфировый лазер, излучающий в ближнем инфракрасном свете. Чтобы «превратить» его спектр в средний инфракрасный диапазон, исследователи предложили разделить лазерный луч с помощью частично отражающего зеркала на две части. Одну из них пропустили через трубку, заполненную углекислым газом. Луч создал в газе плазменный канал, при прохождении по которому его спектр «растянулся» в сторону более длинных волн.

Кристалл тиогалата ртути, использованный в эксперименте

На выходе из газовой трубки этот луч снова соединился с тем, что не претерпел никаких изменений. Вместе их направили в кристалл из ртути, галлия и серы (тиогалата ртути). При прохождении через него в определённом направлении две совмещенные волны создавали такую поляризацию, которая позволила получить нужный средний инфракрасный диапазон. Авторы подчёркивают, что, поворачивая кристалл, можно менять спектр излучения, точно настраивая его под конкретные задачи, например поиск «отпечатков пальцев» определённых молекул.

Главные преимущества предложенной системы — простота реализации и высокая эффективность. Так, она позволяет преобразовать 30 % фотонов исходного ближнего инфракрасного излучения в нужный диапазон, что сопоставимо с лучшими существующими (и при этом более сложными по конструкции и эксплуатации) преобразователями.

«Насколько нам известно, эта разработка представляет собой лучшее из существующих сочетание простоты и эффективности. Такая система с небольшими затратами может быть воспроизведена в любой лаборатории, имеющей фемтосекундный титан-сапфировый лазер. Учитывая, что энергию и спектр получаемого излучения можно перестраивать, возможные сферы применения устройства весьма широки. Например, в медицине такие лазеры могут использоваться для точного удаления тканей без повреждения окружающих областей, а в системах безопасности — для детектирования взрывчатых веществ по их инфракрасным спектрам. В дальнейшем нам предстоит двигаться в направлении масштабирования энергии и совершенствования технологии для ее промышленного применения. В частности, мы уже проводим эксперименты по усилению излучения этой системы в углекислотном лазерном усилителе высокого давления. А технологическое совершенствование мы планируем осуществить за счёт перехода от газовой трубы к газонаполненным оптическим волокнам», — рассказывает руководитель проекта, поддержанного грантом РНФ, Игорь Киняевский, кандидат физико-математических наук, старший научный сотрудник лаборатории газовых лазеров ФИАН.

Источник: пресс-служба РНФ.

Новости Российской академии наук в Telegram →