Академия

Смоделировано распространение микропластика из сибирских рек в арктических морях

Смоделировано распространение микропластика из сибирских рек в арктических морях

Рубрика Исследования

Что происходит с микропластиком в океане? Он оседает на дно или дрейфует на поверхности, а если не тонет, то где в итоге оказывается? Сотрудники Института вычислительной математики и математической геофизики СО РАН с помощью математического моделирования показали, что вмерзание пластиковых фрагментов в морской лёд и их биообрастание существенно влияет на траектории распространения микропластика в Арктике. Результаты исследования опубликованы в двух статьях в журналах Water и Applied Sciences.

По данным исследований, каждый год в океан попадает от 8 до 13 миллионов тонн пластиковых отходов. Из-за воздействия солнечного света, волн, перепада температур и механического трения пластиковый мусор постепенно крошится и превращается в микропластик — фрагменты размером менее пяти миллиметров. Они представляют большую опасность для окружающей среды. Во-первых, живые организмы могут воспринимать мелкие пластиковые частицы в качестве пищи, что нередко приводит к их гибели. Во-вторых, на поверхности микропластика адсорбируются различные загрязняющие вещества. Двигаясь вверх по пищевой цепочке, они могут попадать в организм человека. 

Частицы микропластика находят в поверхностном и глубинном слоях океана, а также в морском льду. Учёные предполагают, что в Мировом океане существуют области накопления микропластика, которые достаточно сложно определить только на основе данных полевых измерений. В дополнение к ним необходимо применять численное моделирование.

Модельные траектории для отдельных частиц размером 0,5 мм (слева) и 0,01 мм (справа), выброшенных на шельф Карского моря в течение 2016 года: март (пурпурный), май (зелёный), октябрь (коричневый), декабрь (голубой). Вставки в углах рисунка иллюстрируют временные ряды глубины погружения для каждой частицы. Положительные значения глубины указывают на то, что частица вмёрзла в лёд

«Современные физико-математические модели на основе сценарных расчётов позволяют восстанавливать пространственно-временную изменчивость характеристик океанических вод, моделировать систему течений океана и дрейфа морского льда, а также определять возможные области накопления загрязняющих веществ», — рассказывает главный научный сотрудник ИВМиМГ СО РАН доктор физико-математических наук Елена Николаевна Голубева.

Сотрудники лаборатории математического моделирования процессов в атмосфере и гидросфере ИВМиМГ СО РАН в рамках проекта РНФ решили изучить, как происходит перенос распределения микропластика в арктических водах. С помощью модельных расчётов они выявили ключевые физические механизмы, влияющие на поведение и траектории распространения пластиковых частиц.

Численное моделирование переноса-осаждения микропластика в арктических морях проводилось с использованием трёхмерной модели океана и морского льда SibCIOM (Siberian Coupled Ice-Ocean Model), разработанной в ИВМиМГ СО РАН. «SibCIOM рассчитывает поля течений, температуры и солёности океана, а также толщину и дрейф льда. Модель неплохо показала себя при исследовании климатической изменчивости Северного Ледовитого океана в рамках международных проектов по сравнению моделей океана и морского льда», — констатирует Елена Голубева.

При проведении численных экспериментов важно было задать источники поступления микропластика в океан. Одним из основных источников считается речной сток. Имея огромные водосборные площади, арктические реки пересекают территорию крупных городов, промышленных и сельскохозяйственных районов и вбирают в себя сточные воды неизвестной степени очистки. В своей работе учёные использовали существующие модельные оценки сброса загрязнений крупнейшими реками мира, основанные на данных о плотности населения и оценке качества очистительных сооружений. По этим оценкам, среди сибирских арктических рек наиболее загрязнёнными считаются Обь и Енисей.

«В первую очередь распространение пластика в океане определяется системой океанических течений. Однако если он вмерзает в лёд, то начинает переноситься уже дрейфом льда», — рассказывает младший научный сотрудник ИВМиМГ СО РАН Марина Алексеевна Градова.

В исследовании рассматривались сферические частицы разных типов пластика. Они включали как лёгкие плавучие типы, так и тяжёлые, плотность которых выше плотности морской воды.

Результаты моделирования пятилетнего непрерывного поступления микропластика с речными водами Оби и Енисея на шельф Карского моря показали, что лёгкие пластиковые частицы разных размеров распространяются как в области шельфа, так и за его пределами. Они преимущественно остаются в поверхностном слое и следуют за океаническими течениями. Процесс попадания микропластика в лёд оказывает существенное влияние на траектории частиц, ведь циркуляция льда может отличаться от циркуляции верхнего слоя океана.

Модельное распределение частиц микропластика после пяти лет непрерывного стока с речными водами. Результаты эксперимента для частицы размером 0,5 мм зимой (слева) и летом (справа). Цвет частицы определяется глубиной её погружения, показанной на панели ниже. Круговые диаграммы показывают процентное содержание частиц в каждом слое

«Лёд движется быстро, особенно в области проливов, связывающих Арктику с Северной Атлантикой. Поэтому наиболее лёгкие частицы, выйдя за пределы Карского моря, могут распространяться достаточно далеко. Тяжёлые же пластиковые частицы быстро оседают в непосредственной близости от устья реки, не успев вмёрзнуть в ледяной покров, и переносятся системой придонных течений на небольшие расстояния по Карскому морю», — отмечает Елена Голубева.

Следующим этапом развития модели переноса-осаждения микропластика в Арктике стала разработка блока, описывающего биообрастание частиц.

«При благоприятных условиях пластиковые фрагменты могут накапливать на своей поверхности живые организмы, то есть происходит так называемый процесс биообрастания. Биоплёнка имеет большую плотность, чем морская вода, поэтому даже плавучие частицы, накопив биомассу, могут начать тонуть», — рассказывает Марина Градова.

Учёные включили в исследование процессы роста и деградации биоплёнки за счёт процессов жизнедеятельности водорослей. Также учитывались условия окружающей среды полярного региона, влияющие на размножение и изменение биомассы за счёт дыхания и смертности арктических водорослей.

Биообрастание представляет собой ключевой процесс, который влияет на глубину погружения плавающей частицы, траекторию её движения и скорость осаждения на дно.

Проведённое моделирование продемонстрировало сложный характер перемещения частиц по вертикали. Лёгкие частицы микропластика, обрастая водорослями, постепенно погружаются в нижележащие слои океана. Однако на определённой глубине, где условия становятся менее благоприятными (понижается температура воды, уменьшается количество проникающего света и доступного хлорофилла), эти водоросли теряют способность размножаться и биоплёнка постепенно отмирает. Очищенная частица всплывает ближе к поверхности, где может снова накопить биомассу.

«Такой характер вертикального движения свойственен частицам разных размеров, однако чем мельче частица, тем больше времени занимает процесс её всплытия. Относительно крупные частицы (около 0,5 мм в диаметре) за летний сезон многократно колеблются между поверхностью и глубиной эвфотической зоны — освещаемой солнцем верхней толщи воды. При этом в зимний период, полностью потеряв биоплёнку и поднявшись вверх, они могут быть вморожены в лёд. В таком случае их дальнейшая траектория определяется системой дрейфа льда. В то же время более мелким частицам (0,01 мм) после очищения требуется около года, чтобы подняться к поверхности. В период подъёма они перемещаются под действием глубоководных морских течений, направления которых отличаются от циркуляции поверхностного слоя и дрейфа льда», — говорит Елена Голубева.

Исследователи признают, что их подход является упрощением сложных взаимодействий между движением морской воды, дрейфом льда и плавучестью частиц, на которые влияют механическая фрагментация, биообрастание и другие факторы.

На данный момент учёные рассматривали в модели только сферическую форму пластиковых фрагментов, однако большая часть микропластика в океане представляет собой волокна, которые могут дрейфовать и погружаться немного иным образом. Также, вероятно, имеет смысл обратить внимание и на биологическую миграцию пластика — внутри поглотивших его живых организмов. Тем не менее специалисты подчеркивают, что эта работа фокусирует внимание на фундаментальных физических процессах, которые необходимо изучить, чтобы лучше определить области потенциального загрязнения морской среды микропластиком в будущем.

Исследование выполнено в рамках проекта РНФ № 20-11-20112 «Разработка системы моделирования для анализа современного состояния и оценки тенденций будущих изменений природной среды сибирских шельфовых морей».

Текст: Диана Хомякова.
Источник: «Наука в Сибири».

Новости Российской академии наук в Telegram →