Академия

Создана модель движения частиц в коллайдере «Супер С-тау фабрика»

Рубрика Исследования

«Супер С-тау фабрика» — это будущий электрон-позитронный коллайдер, проект которого развивает Институт ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН). Научная программа установки включает изучение частиц, содержащих очарованные кварки и тау-лептоны, и поиск новых физических эффектов, не описываемых Стандартной моделью.

Концептуально проект уже разработан. Сегодня исследователи занимаются детальной проработкой технических решений для элементов установки и моделированием различных процессов эксперимента. Так, например, было проведено моделирование поведения электронов (их скорость, поперечная и продольная диффузия) в газовой смеси для внутренней трекинговой системы — части детектора, которая первая видит рождённые после столкновения электронов и позитронов частицы. Именно от выбора газовой смеси зависит качество измерения траектории полёта детектируемых частиц.

Задача детектора коллайдера в том, чтобы восстановить картину рождения частиц, возникающих при аннигиляции электронов и позитронов, то есть зарегистрировать продукты соударения и измерить их параметры. Подзадач у подобного устройства много и все они должны решаться с высокой точностью, поэтому детектор состоит из различных систем, встроенных одна в другую, и напоминает матрёшку. Внутренняя трекинговая система, или время-проекционная камера, представляет собой небольшой цилиндр высотой 60 см и диаметром 40 см, и именно она первая включается в работу, когда частицы долетают до детектора.

«Во время-проекционной камере, заполненной специальной газовой смесью, при помощи электродов создается однородное электрическое поле, — пояснил старший научный сотрудник ИЯФ СО РАН, старший научный сотрудник Лаборатории космологии и физики элементарных частиц Физического факультета Новосибирского государственного университета (НГУ) кандидат физико-математических наук Андрей Соколов. — Через камеру пролетает заряженная частица, оставляя в газовой смеси след, или трек, в виде ионизованных атомов газа. Ионы медленно дрейфуют в одну сторону, а электроны — быстро и в другую. Нас интересуют как раз электроны. Когда они добираются до торца камеры, в этой области их регистрирует микроструктурный газовый детектор, способный фиксировать одноэлектронные импульсы каждые 100 наносекунд. Эти высокочувствительные устройства создаются в ИЯФ СО РАН в лаборатории 3, под руководством доктора физико-математических наук Льва Исаевича Шехтмана. Если мы с высокой точностью можем измерить скорость дрейфа, то мы можем вычислить и место, откуда прилетела частица. Газовая смесь — это ключевой элемент данной системы. От неё зависит скорость дрейфа частиц, которая может отличаться в десять раз у разных смесей. Пространственное разрешение, то есть то, как точно мы сможем измерить траектории частиц, также зависит от неё».

3D-модель время-проекционной камеры

Перед прототипированием трекинговой системы специалисты провели моделирование, то есть рассчитали параметры различных газовых смесей для определения лучшей. Данные расчёты проводил аспирант НГУ Виджаянанд Куттикатту Вадакеппатту, приехавший в Новосибирск из Индии. Сотрудничество проходило в рамках программы 5-100 по развитию университетов России в образовательной, научной и инновационной сферах. Одним из направлений этой программы было привлечение иностранных студентов и аспирантов для обучения в НГУ.

«Основная цель нашего исследования состояла в выборе подходящей газовой смеси, которую мы будем использовать в качестве среды для дрейфа электронов в камере временной проекции, а также для уменьшения обратного потока ионов в ней, — прокомментировал аспирант Виджаянанд Вадакеппатту. — Конкретных правил для выбора газовой смеси не существует, но в основном он зависит от транспортных свойств, то есть поперечной и продольной диффузии электронов и скорости их дрейфа. Мы провели детальное имитационное исследование различных газовых смесей, чтобы оценить эти параметры. В качестве основного газа были выбраны аргон и неон. Наше исследование показало, что несмотря на то, что в неоновых смесях диффузия электронов и обратный поток ионов меньше, скорость дрейфа в них тоже меньше. Маленькая скорость дрейфа увеличивает риск перекрытия треков, что значительно усложняет их реконструкцию. Поэтому мы решили использовать газовые смеси на основе аргона и перешли к исследованиям их разрешающей способности».

Физики провели имитационные исследования для более чем 25 газовых аргоновых смесей и выбрали две: одну с содержанием 50 % тетрафторида углерода и другую с содержанием 40 % тетрафторида углерода и 15 % метана. Исследование показало, что использование данных видов смесей в трекинговой системе позволит получить поперечное пространственное разрешение лучше 200 микрометров и малый, около 1 %, обратный поток ионов — параметры, требуемые для экспериментов на коллайдере «Супер С-тау фабрика».

«Для подтверждения полученных при моделировании результатов необходимо протестировать прототип время-проекционной камеры, разработка которого сейчас ведется в ИЯФ. После этого мы полностью завершим этот этап работы», — добавил Виджаянянд Вадакеппатту.

«Супер С-тау фабрика» — ускорительный комплекс, предназначенный для проведения экспериментов со встречными электрон-позитронными пучками с энергией от 2 до 5 ГэВ с беспрецедентной светимостью, на два порядка превышающей достигнутую сегодня в мире в этом диапазоне энергии. Концепция нового коллайдера базируется на новом методе повышения светимости — Crab Waist, предложенном и разработанном специалистами INFN (Istituto Nazionale di Fisica Nucleare — Национальный институт ядерной физики, Италия) и ИЯФ СО РАН. Физическая программа основывается на поиске Новой физики в редких или запрещённых Стандартной моделью распадах очарованных частиц и тау-лептона. Похожие задачи решаются с помощью крупнейших современных экспериментов в области физики элементарных частиц, прежде всего — эксперимента Belle II на коллайдере SuperKEKB в лаборатории КЕК («Ко энэруги касокуки кэнкю кико» — Исследовательская организация ускорителей высокой энергии, Япония) и эксперимента LHCb на Большом адронном коллайдере в CERN (Швейцария).

Источник: ИЯФ СО РАН.

Новости Российской академии наук в Telegram →